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ABSTRACT

A phylogenetic tree is an unordered, distinctly leaf-labeled tree which shows evolu-

tionary relationship among the leaves that represent the species. Inferring phylogenies

using computational methods has several important applications in biological and bio-

chemical research. Drug discovery and conservation biology are such examples. Phy-

logenetic trees have some important applications in practical fields, such as forensics,

gene and protein function detection and drug design. In Bioinformatics, computation

of the Tree of Life considering all living beings on earth is a grand challenge, in which

phylogenetic tree can play important role to derive such relations.

Phylogenetic tree construction from valid triplet set is one of the most common ap-

proaches of construction till date. A valid triplet set consists of a number of rooted

triplets which are individually a phylogenetic tree of three leaves. Aho et al. first inves-

tigate the problem and later other researchers gradually meliorate and enrich his idea.

These great research works solve many problems as well as introduce some open prob-

lems related to phylogenetic tree construction. Such a problem is to construct a phylo-

genetic tree consistent with all triplets in the given triplet set. Experimentally obtained

data may contain incorrect information which results in erroneous triplet set, and thus

maximum rooted triplet consistency (MaxRTC) is maintained in this case. During

phylogenetic tree construction, maintenance of MaxRTC, sometimes ignores some

important triplets where loss of information occurs. Moreover, the tree constructed

from the triplet set contains unevenly distributed species.

In this thesis, we study different aspects of the problem and introduce a heuristic

algorithm to construct phylogenetic tree on all the triplets in the triplet set by making

a small number of corrections on the triplets, where approximately even distribution of

species is ensured. For a given set of m triplets with n species, this algorithm runs in

O(m × n) time. Though the algorithm is less efficient, the loss of information is less

here than previous algorithms. On the other hand, checking the consistency of the triplet

in a phylogenetic tree is another important problem in the field of phylogenetics. It is

useful to compare two phylogenetic trees and measure the dissimilarity between them

to check the accuracy. So it is very important to check this consistency in minimum

amount of time. In this thesis, we give an algorithm to check the consistency of the

triplet in constant time. This algorithm requires an initialization stage of time complex-

ity O(n2) that preprocess the phylogenetic tree. Then we check if the triplet satisfies

the phylogenetic tree or not in O(1) time. Though the initial complexity is high, the

algorithm is helpful because it can check the consistency of a triplet in constant time.
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CHAPTER 1
INTRODUCTION

For almost 150 years, the theory of evolution represents the model of the evolution of
species in the world. The discipline that deals with the modeling of evolution is called
phylogenetics. The word phylogenetics is originated from Greek words phyle meaning
tribe or race and genesis meaning birth or beginnings. The data structure that has been
used (and is still used) by the scientists and scholars to describe the evolutionary history is
called phylogenetic tree. A phylogenetic tree corresponds to a weighted tree-graph where
the leaves represent the biological objects of interest.

The reconstruction of these trees are very interesting from both a computer scientific and
biological point of view. For various reasons, inferring an accurate phylogenetic tree from
experimental data is problematic. In this thesis we concentrate on two phylogenetic tree
problems. The first problem that we consider is a phylogenetic tree construction problem
from given erroneous data inputs. Another problem that we consider, involves finding a
constant time algorithm that checks a triplet’s consistency in a given phylogenetic tree.

Determining the evolutionary history of mankind and all other living and extinct species on
earth is one of the fundamental goals of evolutionary biology. The “Tree of Life” is name
of the ongoing project where many biologists are working to form one-encompassing tree,
joining different parts of the tree together [2]. Phylogenetic trees are very useful to biol-
ogists; they represent a hypothesis about the geneological relationships among organisms
derived from data such as DNA sequences. To perform phylogenetic analysis, first problem
is to construct an accurate phylogenetic tree.

1.1 Phylogenetic Trees and Related Problems

In this section, we enlight the problem of phylogenetic tree construction. At first, we define
the phylogenetic tree in a formal way. Later we discuss about the method of construction
of a phylogenetic tree and our study related to pairwise compatibility graph. And then we
define the problem of triplet consistency checking with a phylogenetic tree.

10



1.1.1 Phylogenetic Tree

A phylogenetic tree is an unordered, distinctly leaf-labeled tree which represents a bi-
nary evolutionary relationship between the species. A phylogenetic tree is also known as
cladogram or dendogram. In this tree the leaves refer to the existing species and the in-
ternal nodes refer to the hypothetical ancestors. Two similar species are represented as
neighbors and will be joined to a common parent branch. Phylogenetic tree is divided into
two categories. [3] One is the unrooted tree, where the common ancestor is unknown. Other
one is the rooted tree where there is a common ancestor. Figure 1.1 illustrates the two cate-
gories of tree. In the rooted phylogentic tree, the root is the most ancient ancestor, common
to all species. In this thesis, we concentrate our analysis to only rooted phylogenetic trees.

Figure 1.1: (a) An unrooted tree and (b) a rooted tree.

As an example of phylogenetic tree, we illustrate the phylogeny of lizards in Figure 1.2.
In the figure, five current species are shown in the leaves of the tree. Here, time is the
vertical dimension with the current time at the lowest branch and earlier times above it. The
lines above the extant species represent the same species, just in the past. When two lines
converge to a point, it means two taxa (species) diverge from a common ancestral taxon.
The top most point is the taxon of the past, from where all other taxa is evaluate.

Figure 1.2: Phylogeny of lizards.

11



1.1.2 Construction of a Phylogenetic Tree

There are different methods to construct a phylogenetic tree. The method is dependent on
the type of the given data. We can divide these methods into two main categories. One is
distance based, another is character based. Both of these two categories offer a vast vari-
ety of options when constructing trees. Here we are using Supertree method. A supertree

method is a method for merging an input collection of phylogenetic trees on overlapping sets
of rooted triplets into a single phylogenetic tree called supertree [4]. A rooted triplet is
a binary phylogenetic tree with exactly three leaves. If a unique rooted triplet with a leaf set
x, y, z where the lowest common ancestor (lca) of x and y is a proper descendant of the lca
of y and z is xy|z.

Figure 1.3: A solution to given triplet constraints.

If we represent xy|z with index 1, 2, 3 respectively to x, y, z then the constraint of the triplet
is:

(1, 2) < (1, 3)

Suppose we are given a set of constraints,

(1, 2) < (1, 3),

(3, 4) < (1, 5),

(3, 5) < (2, 4).

We can construct one possible tree T with these constraints, shown in Figure 1.3. Now, if
we add another constraint (4, 5) < (1, 2), then it is not possible to construct a tree satisfying
all these constraints.

The input collection of given rooted triplets to construct a supertree might contain erroneous
data because of error in experimental data. So, a supertree method should construct phylo-
genetic trees keeping as much of branching information as possible. Supertree methods are
used because of two main reasons:

12



• Supertrees can be used to deduce hypothetical evolutionary relationships between taxa
which do not occur together in any one of the input trees. For example, “the tree of
life” project’s goal is to construct a tree that represents the evolution of more than one
and a half million species [2] that requires data from so many different sources to be
combined.

• In the context of building a phylogenetic tree from sequence or character data, su-
pertree methods may be convenient in case where the taxa set is too large for com-
putationally expensive phylogenetic tree reconstruction methods such as likelihood or
maximum parsimony.

In the supertree method, we follow a divide-and-conquer approach. First we apply an ex-
pensive method to infer a collection of highly accurate trees for small, overlapping subsets
of the taxa. Then supertree method is applied, which is computationally cheaper. Many
interesting algorithms are developed for this [5, 6].
Rooted supertree methods are preferable over unrooted supertree method on the point of
computational complexity [7]. On the other hand, RTC is solvable in polynomial time,
but others; such as, quartet consistency is NP-hard [8]. Reliable rooted triplets can be in-
ferred from [6] or Sibley-Ahlquist-style DNA-DNA hybridization experiments [9]. RTC-
based supertree methods is applicable to marsupial species as well as rbcL gene data [2]
and Cryptococcus gattii yeast data [10] and it performs well. In this thesis we construct
phylogenetic tree using supertree method.

1.1.3 Pairwise Compatibility Graphs

In the field of different graph construction problem and different graph study problem, Pair-
wise Compatibility Problem (PCG) has become an interesting sector of it. PCG is used in
many important graph studies and to determine evolutionary relationship between various
species.

Let T be an edge weighted tree and G = (V, E) be a graph. We call graph G a Pairwise
compatibility graph, if each vertex of G corresponds to a leaf of T and an edge (u, v) ∈ E
if and only if the distance between the two leaves of T corresponding to u and v is within
a given range [11]. In Figure 1.4 we see an example of PCG. In Figure 1.4, there is an
edge weighted tree T and the pairwise compatibility graph G of T . The PCG is constructed
considering the distance between a pair of leaves in between four to seven.

During our thesis we also study some properties of pairwise compatibility graphs. It is
because; Pairwise compatibility graphs have application in reconstruction of evolutionary
relationships of a set of species from Phylogeny. Phylogeny represents biological data or

13



Figure 1.4: An edge weighted tree T and a pairwise compatibility graph G of T .

various species [11]. Some study relating Pairwise Compatibility Graph and Phylogenetic
Tree construction is performed till date. Kearney et al. introduce the pairwise compatibility
graph concept while dealing with a sample problem in a phylogenetic tree [12]. Therefore
building a proper relationship between a Pairwise Compatibility Graph and Phylogenetic
Tree a new gateway in graph study and evaluating evolutionary relationship between species.

At the preliminary stage of our thesis, we study thoroughly on Pairwise Compatibility
Graph. Since both the PCG and Phylogenetic tree is considered for deriving evolution-
ary relationship among set of species. Initially understanding the properties of Phylogenetic
tree becomes easier since we know about PCGs. In our future development consideration,
we have Pairwise Compatibility Graph and Phylogenetic Tree relationship and derive some
effective relationship between these two concepts.

1.1.4 Consistency of a Triplet

Checking the consistency of a triplet with a phylogenetic tree is often an essential measure
to compare two phylogenetic trees. Given a triplet P (xy|z) and a phylogenetic tree T , the
triplet P will be consistent with T , if the lowest common ancestor of x and y is a proper
descendant of the lowest common ancestor of x and z, in the tree T . So we can divide this
problem in three parts:

• Find the lowest common ancestor of x and y in tree T , say u.

• Find the lowest common ancestor of x and z in tree T , say v.

• Check if u is a proper descendant of v in the tree T .

In our thesis, we find a constant time algorithm which gives a solution to this problem. We
pre-process the tree T in such a way so that each of the three sub problems can be solved in
constant time. And finally after the processing, we can check the consistency of the triplet
in constant time.
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1.2 Motivation of the Thesis

In this section, we describe our motivation of the thesis briefly. In Section 1.2.1, we describe
some practical applications and research works on phylogenetics which motivated us to do
our thesis on this topic. In latter sections, we describe some previous works related to
constructing phylogenetic trees and triplet consistency checking which inspired us for the
thesis.

1.2.1 Motivation of Studying Phylogenetics

In 1990 a young woman in Florida contracted AIDS without having previously been ex-
posed to the established risks of HIV infection. Scientists at the Centers for Disease Control
in Atlanta launched an extensive investigation to find the cause of the infection. They dis-
covered that a dentist suffering from AIDS had infected several of his patient with HIV [13].
This Finding is the result of application of two scientific methodologies, the experimental
method of DNA sequencing and the mathematical method of Phylogenetic analysis.

Earlier phylogenetics just focused on the evolution of species based on morphological char-
acteristics, but nowadays the explosive advancement in molecular biology now requires the
investigation of proteins as well. During the last ten years, a lot of research has been car-
ried out on the development of computational techniques for molecular biology research.
This research effort, which includes research into algorithmic and combinatorial problems
as well as software development, is called computational molecular biology. A lot of the
motivation for computational biology research has come from the Human Genome Project,
which aims to sequence the DNA of humans and to use this information to understand genes
and their functions.

We always assume that, we can represent the evolutionary history of a group of related bi-
ological species as a rooted tree. Although disagreement about the true nature of evolution
generate much controversy, this is a general consideration. The root of the tree represents the
ancient species from which all the other species evolves. Any internal node of the tree rep-
resents a speciation event which splits the original species at that node into two or more new
species, depending on the number of outgoing edges from the internal node. We bijectively
label the leaves of the tree, by the group of species for available data.

1.2.2 Motivation of Studying Phylogenetic Tree Construction with Erroneous Data

Phylogenetic tree construction is a complex yet important problem in the field of bioin-
formatics. Once constructed, a phylogenetic or evolutionary tree can lend insight into the
evolution of different species. The issue is that for a large number of species the problem
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grows to a computational complexity that is not easily solved. For this reason, new methods
are being researched and applied to phylogenetic tree construction and have provided some
promising results.

The research on construction of phylogenetic tree has been triggered on 1981, by A. V.
Aho [14]. Aho gave an of O(kn) to find Rooted Triplet Consistency (RTC) for a given
triplet set in the form of constraints. Here, k is the number of triplets and n is the number
of leaves in the phylogenetic tree. This algorithm returns the resultant phylogenetic tree
consisting all the triplets, if tree construction is possible; otherwise it does not construct any
tree. Aho’s approach ofRTC is studied for years to optimize the running time and to modify
to return a tree even when the data set is not completely adaptable. Later, Wu [15] gave
an algorithm of O((k + n2)3n) which follows Maximum Rooted Triplet Consistency

MaxRTC, which is an dynamic-programming algorithm to produce a phylogenetic tree
with maximum adaptable triplets of input data set. Following MaxRTC, Gasieniec [16]
has given two polynomial algorithms that introduce two new techniques ofOne-Leaf -Split
and Min-Cut-Split. Vast research work had been done in this field to produce MaxRTC

phylogenetic tree with minimum loss.

But all these research works to produce MaxRTC use the method of edge deletion, causing
the deletion of one or more triplets. It causes a great loss of data in the resultant phylogenetic
tree. At this point we found our inspiration of research to construct phylogenetic tree with
erroneous data with minimum loss. Instead of edge deletion, we replace a vertex of the
erroneous triplet with the most suitable option, as an attempt to correct the error, which
saves a lot more data than edge deletion.

1.2.3 Motivation of Studying Triplet Consistency Check

Checking the consistency of a triplet in constant time has an important significance in the
field of research in phylogeny. It has many applications in genetics, bio-informatics and
evaluating the evolutionary relationship among species. It is an effective way to check the
accuracy of an algorithm that constructs phylogenetic tree from triplets. This method is
useful to compute the rooted triplet distance between two phylogenetic trees.

The term rooted triplet distance was first introduced in 1975, by Dobson [17]. Given two
phylogenetic trees T1 and T2 with same leaf label setL, the rooted triplet distance between T1
and T2 is drt(T1,T2) is the number of rooted triplets over L that are consistent with exactly
one of T1 and T2. Rooted triplet distance drt is a measure of dissimilarity between two
phylogenetic trees. The value of drt will be smaller if two trees are similar and the number
of consistent triplet sets is larger. This measure of dissimilarity between two phylogenetic
trees is useful to compare two phylogenetic trees. This comparison helps in the sector of
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evaluating methods for phylogenetic reconstruction [18] or querying phylogenetic database
[19]. There are various methods developed in recent years to compare two phylogenetic
trees. Some are Robinson-Foulds distance [20], tripartitions distance, the µ-distance,
the nodal distance are some of these. Some special structure of phylogenetic networks like
galled trees have been studied by Cardona et al. [21] and later the complexity has been
reduced to O(n2.687) by Jansson and Lingas [22]. These vast scope of research on this field
motivated us to study the consistency of a triplet in a phylogenetic tree.

1.3 Scope of the Thesis

Phylogenetic tree is vast field of interest among researchers and scientist. We focus our
research on the construction of phylogenetic tree from given triplet set. There are various
algorithms available to construct tree from triplet set. But most of them is not fit with
erroneous data set. In this thesis, we research on how we can construct a phylogenetic tree
from erroneous data set with minimum changes. We also give an algorithm to chack the
consistency of a triplet in a phylogenetic tree.

1.3.1 Simulation of Aho′s Algorithm

In this thesis, we study the algorithm by Aho et al. [14], which we consider the first initiative
to construct the phylogenetic trees. We study different aspects of this algorithm through
simulating different scenarios and implementation. In Chapter 3 of this thesis we describe
our study about this algorithm. This study is helpful for us for further development.

1.3.2 Phylogenetic Tree with Erroneous Data

Later, we study the case of constructing phylogenetic tree with erroneous data. Here we
concentrate to find out the data which contains the erroneous information. Then we correct
that specific triplet in a systematic approach. We replace the species which cause the error
with another species. Here we introduce a new term AllRTC - All Rooted Triplet Con-
sistency, as our attempt is to produce a phylogenetic tree which satisfies all the RTCs. We
also concentrate on constructing a distributed phylogenetic tree, so that the tree is not dense.
In Chapter 4, we give this method to ensure the construction of a phylogenetic tree with
minimum error.
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1.3.3 Triplet Consistency Check

Another topic of our research is on checking the consistency of triplet set with a phylogenetic
tree. This is useful in comparing two phylogenetic trees and measuring the dissimilarity. In
this thesis, we introduce an algorithm to check the consistency of a triplet in constant time.
To implement this, the phylogenetic tree should be preprocessed. In the initialization stage
we apply a naive approach to find the pairwise lowest common ancestors and finding the
ancestors. In chapter 5, we discuss the algorithm in detail.

1.4 Organization of the Thesis

We give some preliminaries e.g. definitions of basic terms of graph theory and algorithms
related to this thesis in Chapter 2. Then in Chapter 3, we discuss the existing algorithm
of constructing phylogenetic tree from constraints and we describe Aho’s algorithm to con-
struct phylogenetic tree. Chapter 4 consists of one part of our main research. We give the
new algorithm of construction of phylogenetic tree from erroneous triplet set here. We also
discuss how to identify erroneous data and how to correct them in this chapter. In Chap-
ter 5, we give our research on triplet consistency check in a phylogenetic tree in constant
time. Finally, Chapter 6 summarizes our thesis and discusses open problems and future
possibilities.
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CHAPTER 2
PRELIMINARIES

In this chapter, we define some basic terms of graph theory and algorithms related to our
thesis. In Section 2.1, we define some basic terminologies related to graph theory. Later, in
Section 2.2, some basic terms related to algorithms and complexity is defined, which will
be used throughout the thesis.

2.1 Basic Terminology

In this section we give some basic definitions used throughout the thesis. These definitions
are mostly collected from the manuscript Basic Graph Theory [23] and the book Planar
Graph Drawing [24].

2.1.1 Graph

A graph G is a tuple consisting of a finite set of vertices V and a finite set of edges E
where each edge is an unordered pair of vertices. We denote the set of vertices of G by
V (G) and the set of edges by E(G). An edge connecting vertices vi and vj in V is denoted
by (vi, vj). An edge (vi, vj) is called a loop if vi = vj . A graph is called a simple graph if
there is no loop or multiple edges between any two vertices in G. A subgraph of a graph G
= (V,E) is a graph G′ = (V ′, E ′) such that V ′⊆ V and E ′⊆ E.
In Figure 2.1, we show a graph G with a vertex set V (G) = {v1, v2, v3, v4, v5} and edge

set E(G) = {(v1, v2), (v2, v5), (v2, v4), (v3, v4), (v3, v5), (v4, v5), (v3, v1)}. Since there is no

Figure 2.1: Illustration for a graph.
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loop or multiple edges between two vertices, it is a simple graph.

2.1.2 Degree of a Vertex

The degree of a vertex v in a graph G, denoted by deg(v) or d(v), is the number of edges
incident to v in G, with each loop at v counted twice. In Figure 2.1, the degree of the vertex
v1 is 2 and the degree of the vertex v2 is 3.

2.1.3 Path Graph

A path graph is a graph G that contains a list of vertices v1, v2, · · · , vp of G such that for
1≤ i ≤ p − 1, there is an edge (vi, vi−1) in G and these are the only edges in G. The two
vertices v1 and vp are called the end− vertices of G.

Figure 2.2: Illustration for a path graph.

In Figure 2.2, a path graph with four vertices is illustrated. A path graph with n vertices
is denoted by Pn. The degree of each vertex of a path graph is two except for the two
end-vertices, both of which have degree one.

2.1.4 Cycle Graph

A cycle graph is a graph that is obtained by joining the two end-vertices of a graph. Thus
the degree of each vertex of a cycle is two. A cycle graph with n vertices is often denoted
by Cn. In Figure 2.3, a cycle graph with four vertices is illustrated.

Figure 2.3: Illustration for a cycle graph.
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2.1.5 Connected Graph

A graph is a connected graph if there is a path between every pair of vertices. Inversely, a
graph is a disconnected graph if there no path between every pair of vertices.

Figure 2.4: Illustration for a connected graph.

Figure 2.5: Illustration for a disconnected graph.

In the graph of Figure 2.4, there is path between every pair of vertices; thus it is a connected
graph. But in the graph of Figure 2.5, there is no path between the vertices v3 and v4; so it
is a disconnected graph.

2.1.6 Connected Component of a Graph

A connected subgraph which does not contain any other larger subgraph, is called amaximal
connected subgraph of a graph. A connected component of a graph, is a maximal con-
nected subgraph. A graph can have one or more connected components.

In Figure 2.6, the graph G = (V,E) have two connected components C1 = (V1, E1) and C2

= (V2, E2), where V = {v0, v1, v2, v3, v4, v5,v6, v7, v8}, V1 = {v0, v1, v2, v3, v4, v5} and V2 =
{v6, v7, v8}.
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Figure 2.6: Illustration for a graph with two connected components.

2.1.7 Connectivity of a Graph

The connectivity κ(G) of a connected graph G is the minimum number of vertices whose
removal results in a disconnected graph or a single vertex graph K1. A graph G is k-
connected if κ(G) ≥ k. A separating set or a vertex cut of a connected graph G is a
set S ⊆ V (G) such that G − S has more than one component. If a vertex-cut contains
exactly one vertex, then we call the vertex-cut a cut-vertex. If a vertex-cut contains exactly
two vertices, then we call the two vertices a separation-pair.
The edge-connectivity κ′(G) of a connected graph G is the minimum number of edges
whose removal results in a disconnected graph. A graph is k-edge-connected if κ′(G) ≥ k.
A disconnecting set of edges in a connected graph is a set F ⊆ E(G) such that G − F

has more than one component. If a disconnecting set contains exactly one edge, it is called
a bridge.
In the graph of Figure 2.7, connectivityκ(G) = 3, as we must remove at least three ver-

Figure 2.7: Illustration for a connected graph.

tices to disconnect the graph. We can call this graph a 3-connected graph. For the same
graph, separating set or vertex-cut would be S = {v1, v2, v3}. The edge connectivity of
the graph is κ′(G) = 3, because we need to delete at least three edges to disconnect the
graph. We can call this graph 3-edge-connected. A disconnecting set for this graph can be
F = {(v1, v4), (v3, v6), (v2, v5)}.
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2.1.8 Tree

A tree is a connected graph containing no cycle. The vertices in a tree are usually called
nodes. A rooted tree is a tree in which one of the nodes is distinguished from the others.
The distinguished node is called the root of the tree. Every node u other than the root is
connected by an edge to some other node p called the parent of u. We also call u a child of
p. A leaf is a node of a tree that has no children. An internal node is a node that has one
or more children. Thus every node of a tree is either a leaf or an internal node.
The parent child relationship can be extended naturally to ancestors and descendants. Sup-
pose that u1, u2, · · · , ul is a sequence of nodes in a tree such that u1 is the parent of u2,
which is a parent of u3, and so on. Then node u1 is called an ancestor of ul and u1 is a
descendant of u1. The root is an ancestor of every node in a tree and every node is a de-
scendant of the root.

Figure 2.8: Illustration for a tree.

In Figure 2.8, a tree is with 8 nodes is illustrated. Here, v1 is the root node; v1, v2, v3, v4
are internal nodes; v5, v6, v7, v8 are leaf nodes. Node v2 is an ancestor of node v5 but not of
node v7. Node v5 is a descendant of v2, but not of v3.
A collection of trees is called a forest. In other words, a forest is a graph with no cycle.
Such a graph is also called an acyclic graph. Each component of a forest is a tree.

2.1.9 Binary Tree

A binary tree is either a single node or consists of a node and two subtrees rooted at the
node, both of the subtrees are binary trees. A complete binary tree is a rooted tree with
each internal node having exactly two children.

Figure 2.9 illustrates a binary tree with 15 nodes.
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Figure 2.9: Illustration for a binary tree.

2.1.10 Set

A set is a collection of distinguishable objects, called itsmembers or elements. If an object
x is a member of a set S, we write x ∈ S. If x is not a member of S, we write x /∈ S. We
can describe a set by explicitly listing its members as a list inside braces.
For example, we can define a set S to contain precisely the numbers 1, 2 and 3 by writing
S = { 1, 2, 3}. Since 2 is a member of the set S, we can write 2 ∈ S, and since 4 is not a
member of the set S, we can write 4 /∈ S.
Given two sets A and B, we can also define new sets by applying set operations:

• The intersection of the sets A and B is the set A ∩ B = { x : x ∈ A and x ∈ B }

• The union of the sets A and B is the set A ∪ B = { x : x ∈ A or x ∈ B }

• The difference between sets A and B is the set A - B = { x : x ∈ A and x /∈ B }

2.1.11 Array

An array is a data structure in which the location of an entry can be uniquely determined
by its index and the entry can be accessed in constant time. A vector or a set of variables
is usually stored as a (one-dimensional) array and a matrix is stored as a two-dimensional
array.

2.1.12 List

A list is a data structure which consists of homogeneous records, linked together in a linear
fashion. Each record contains one or more items of data and one or more pointers. In a
singly linked list, each record has a single forwarding pointer indicating the address of
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Figure 2.10: Illustration for a list.

the memory cell of the next record. In a doubly linked list, each record has forward and
backward pointers indicating the address of the memory cell of the next and the previous
records, respectively.
In the Figure 2.10, we show a singly linked list, holding three integer data 25, 9 and 19.

The pointer ’H’ indicates the starting of the list and null indicates the end of the list.

2.2 Algorithms and Complexity

In this section, we give some basic definitions related to the algorithms and complexity of
the algorithms.

2.2.1 The Notation O(n)

In analyzing the complexity of an algorithm, we are often interested only in the ”asymptotic
behavior”, that is, the behavior of the algorithm when applied to very large inputs. To deal
with such a property of functions we shall use the following notations for asymptotic running
time. Let f(n) and g(n) are the functions from the positive integers to the positive reals,
then we write f(n) = O(g(n)) if there exists positive contants c1 and c2 such that f(n) ≤
c1g(n)+ c2 for all n. Thus the running time of an algorithm may be bounded from above by
phrasing like ”takes time O(n2)”.

2.2.2 Polynomial Algorithms

An algorithm is said to be polinomial bounded (or simply polynomial) if its complexity
is bounded by a polynomial of the size of a problem instance. Examples of such complex-
ities are O(n), O(nlogn), O(n100), etc. The remaining algorithms are usually referred as
exponential or nonpolynomial. Example of such complexity are O(2n), O(n!), etc.
When the running time of an algorithm is bounded by O(n), we call it a linear time
indexlinear time algorithm or simply a linear algorithm.
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2.2.3 Constant Time

In computational complexity theory, constant time refers to the computation time of a
problem when the time needed to solve that problem doesn’t depend on the size of the data
that is as input. Constant time is noted as O(1).
For example, accessing the elements in the array takes constant time as we can pick up an
element using the index and start working with it. However finding the minimum value in an
array is not a constant time operation as we need to scan each element of the array and then
decide the minimum of those elements. Hence it is linear time operation and takes O(n)
time.

2.2.4 Recursive Algorithms

A recursive algorithm is a problem solving technique in which it calls itself recursively
one or more times to deal with closely related sub problems, to solve a specific problem.
These algorithm break the problem into several sub problems that are similar to the original
problem but smaller in size, solve the sub problems recursively, and then combine these
solutions to create a solution to the original problem. In general, recursive algorithms require
more memory and computation compared to iterative algorithms. Still, recursive algorithms
are widely used in problem solving for its simplicity.

2.2.5 Graph Searching Algorithms

In graph theory, we often need a method to explore the vertices and edges of a graph. Graph
searching algorithms systematically follow the edges of the graph so as to visit the vertices
of the graph. Depending on the order of exploring unvisited edges, there are two basic
algorithms of searching a graph -Breadth F irst Search (BFS) andDepth F irst Search
(DFS). We can use these algorithms to find number of connected components of a graph.

• Breadth First Search (BFS): Given a graph G = (V,E) and a distinguished source
vertex s, BFS systematically explores the edges of G to discover every vertex that is
reachable from s, taking the ones closest to s first. Every vertex is visited at most
once. It also produces a breadth-first tree with root s that contains all reachable
vertices. For any vertex v reachable from s, the simple path in the breadth-first tree
from s to v in G, that is, a path containing the smallest number of edges. The running
time of this algorithm is O(V + E) where V is the vertex set and E is edge set.

• Depth First Search (DFS): Given a graph G = (V,E), DFS explores edges out of
the most recently discovered vertex v that still has unexplored edges leaving it. Once
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all of v’s edges have been explored, the search backtracks to explore edges leaving the
vertex from which v was discovered. This process continues until we have discovered
all the vertices that are reachable from the original source vertex. If any undiscovered
vertices remain, then depth-first search selects one of them as a new source, and it
repeats the search from that source. The algorithm repeats this entire process until it
has discovered every vertex. The predecessor subgraph of a depth-first search forms a
depth-first forest comprising several depth-first trees. The running time of this
algorithm is also O(V + E).

2.2.6 Tree Traversal

In a tree T , we can order the nodes based on the way the edges are chosen to be traversed.
Let us consider a node v from which a new edge would be explored and another node would
be reached. We mark a node u and call the label of u the rank of u. The rank of the root of
the tree is 0. So the rank of a vertex u is the number of vertices explored before u is reached
for the first time. Such a traversal is called a pre-order traversal of the vertices of the tree. If
a vertex u is labeled after all vertices located in the subtree rooted at u are labeled, then the
traversal is called post-order traversal. In case of a binary tree, if the vertex u is labeled after
all vertices located in the left subtree rooted at u are labeled, but before all vertices located
in the right subtree rooted at u are labeled, then the traversal is called in-order traversal.
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CHAPTER 3
SIMULATION OF AHO′S ALGORITHM

In this chapter we present an overview of previous studies on Phylogenetic Tree, an elaborate
demonstration of Aho′s algorithm and step by step simulation of this algorithm.

3.1 Introduction

Phylogenetic tree is one of the most interesting fields of data structure that is used to de-
scribe tree like evolutionary relationship among biological species or some other entities
depending upon similarities and dissimilarities in their characteristics. Estimation of the
tree plays a critical role in a wide variety of molecular studies and comparative genomics.
In most of the cases, the tree construction is performed based on thousands of different pro-
tein alignment. Therefore construction becomes difficult in various situations. For very large
set of data, constructing a correct tree representing the evolutionary relationship among the
given species is futile most of the time. Moreover, though different studies shows different
methods for tree construction, constructing within a small amount of time is far from us.

Figure 3.1: Phylogentic Tree of Life - A speculatively rooted tree for rRNA genes [1].

Figure 3.1 shows a speculatively rooted tree for rRNA genes. This tree representation show-
ing the evolutionary relationship among the Bacteria, Archaea and Eucaryota. Thereby the
major branches are shown with the most common species are shown in this figure.
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For such problems we define a Phylogenetic Tree as a rooted, unordered, distinctly leaf-
labeled tree in which every internal node has at least two children [25]. For any rooted
triplet xy|z and Phylogenetic Tree T which also have leaves labeled x, y and z, if the lca
in T of pair (x, y) is descendant of the lca of the pair (x, z), then xy|z is consistent in T ;
otherwise they are inconsistent. Triplet consistency checking is another relevant topic of
Phylogenetic Tree construction or related Phylogenetic studies. Figure 3.2 demonstrates
such an example. Here the triplet is of the form ab|c. Next to it we have our Phylogenetic
Tree. From the figure we can see that the given triplet is consistent on the tree since the lca
of pair (a, b) is the descendant of the pair (a, c).

Figure 3.2: Triplet ab|c is consistent in the phylogenetic tree T .

Several studies are performed till date in this topic. The subject is same but the field is
different such as some research work is on Phylogenetic tree construction, some are on triplet
consistency check, etc. But in 1981, Aho etal. introduces an algorithm for Phylogenetic
tree construction [14]. This polynomial time algorithm outputs a Phylogenetic tree that is
consistent with every rooted triplet in the given triplet set, say R. If such a tree cannot be
constructed from R, then it is not possible to construct such a tree with whom every triplet
in the triplet set is consistent with. It is because the error in the triplets that prevents the
consistency of the triplet with the constructed tree. The main focus of our thesis is to detect
the erroneous triplet and correct it in the minimum elementary level so that the Phylogenetic
tree can be constructed with whom all the triplets in the triplet set are consistent. So as a
start we go through Aho′s procedure and simulate the algorithm with necessary examples to
understand it and have a proper indication to achieve the proper goal of our thesis.
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3.2 Stages of the Problem Analysis

In this section the problem solved by Aho is discussed in an elongated manner with proper
example.

3.2.1 Problem Definition

In the problem definition constraints instead of triplets are considered. Therefore the tree is
constructed from the given set of constraints. The constraints are of the form (i, j) < (k, l)

where i 6= j and k 6= l where the lca of the pair (i, j) is a proper descendant of pair
(k, l). Here the order of i and j in (i, j) and of k and l in (k, l) are irrelevant. Therefore
is it possible to construct a tree T from the set of constraints or such a tree does not exist
is the main objective of this problem. Now considering the following example for proper
understanding of the problem,

Example 1: For the given set of constraints,

(1, 2) < (1, 3)

(3, 4) < (1, 5)

(3, 5) < (2, 4)

The resulting tree is in Figure 3.3.

Figure 3.3: Solution for the constraints given in Example 1.

In Figure 3.3, a possible solution for the given constraint is considered where a proper
Phylogenetic tree T is constructed. If we consider another constraint (4, 5) < (1, 2) in
the constraint set, then no tree can simultaneously satisfy all the constraints in the constraint
set.
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3.2.2 Analysis of the Problem and Solution Technique

In the main paper, it is stated that, the main idea behind the solution is to determine for a
potential tree T the sets of leaves that are descendants of each child of the root of T [14].
Let these sets are, S1, S2, · · · , Sr where r ≥ 2 this is because if a tree satisfying a set of
constraints exists, then there must exist another tree satisfying the same set of constraints if
we merge each node having one child with that child.

There are two conditions that these sets must satisfy for each constraint (i, j) < (k, l). These
conditions are,

1. In the first condition i and j must be in the same set. Otherwise pair (i, j) is the root
of T where the root cannot be a proper descendant of the pair (k, l).

2. The last condition is, either k and l are in different sets, or i, j, k and l are all together
in one set. Otherwise the pair (i, j) cannot be a proper descendant of pair (k, l).

Therefore if we can partition the nodes into two or more sets satisfying the above two con-
ditions and if we can recursively build trees for each set then a tree exists; otherwise one
does not. If we define a partition by πc for leaves 1, 2 · · · , n for the given set of constraints
C following the rules,

1. If (i, j) < (k, l) is the constraint, then i and j are in one block of πc.

2. If (i, j) < (k, l) is the constraint and k and l are in one block, then i, j, k and l are
all in the same block of πc.

3. No two leaves are in the same block of πc unless it follows from (1) and (2).

Therefore, we can see that the recursive algorithm presented by Aho is to build a tree T
satisfying a set of constraint, say C where S is a nonempty set of nodes. If such a tree does
not exist, it returns a null tree. The basic idea of the algorithm is to compute the partition
c checking that if it has at last two blocks r ≥ 2 and construct the sets of constraints Cm,
1 ≤ m ≤ r, Cm is C restricted to those constraints that involve members of Sm only [14].

Up to this we discuss briefly about the main ideas of Ahos algorithm and different aspects
of the algorithm. Now a step by step simulation of the algorithm is presented with proper
example and demonstration of each step relating it with the algorithm to have a proper
understanding on how does the algorithm works and construct a Phylogenetic Tree.
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3.2.3 Aho′s Algorithm

In this section we present Aho′s algorithm that is used for simulation and provided by the
author [14].

We present Aho′s algorithm in two steps. They are,

1. procedure BUILD(S, C)

2. procedure PIC()

The Procedure BUILD

procedure BUILD(S, C)
if S consists of a single node i then

return the tree consisting of node i alone
else

begin
compute πc = S1, S2, · · · , Sr;
if r = 1 then

return the null tree
else

for m := 1 to r do
begin
Cm := (i, j) < (k, l) in C | i, j, k, l are in Sm;
Tm := BUILD(Sm, Cm);
if Tm = the null tree then

return the null tree
end;

/* if we reach here a tree exists */
let T be the tree with a new node for its root and whose children are the roots of Tm,

1 ≤ m ≤ r;
return T

end
end BUILD
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The General Case Partitioning Algorithm

procedure PIC()

1. for each leaf l mentioned in a constraint do
begin

set Ll to the empty list;
set S[l] to l;

end;

2. for each constraint (i, j) < (k, l) do
begin

let c be the implication k ≡ l→ i ≡ l;
add c to LS[k];
add c to LS[l];
add the command i ≡ j to Q;

end;

3. while Q is not empty do
begin

remove a command p ≡ q from Q;
if S[p] 6= S[q] then

begin
let L be the shorter of LS[p] and LS[q];
for each implication u ≡ v → x ≡ y on L do

if one of u and v is in S[p] and the other is in S[q] then
add the command x ≡ y to Q;

append LS[p] to LS[q];
merge S[p] and S[q];

end;
end;

end PIC
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3.2.4 Simulation of the Algorithm

In this section we present an elaborative demonstration of Ahos algorithm with proper ex-
plication of that.

For the simulation of the algorithm we consider the following constraint set,

(1, 3) < (2, 5)

(1, 4) < (3, 7)

(2, 6) < (4, 8)

(3, 4) < (2, 6)

(4, 5) < (1, 9)

(7, 8) < (2, 10)

(7, 8) < (7, 10)

(8, 10) < (5, 9)

From the given constraint set we can see that the number of species in this case is 10, thus n
= 1, 2, · · · , 10. For the algorithm simulation we need a queue, set array and a list according
to the algorithm. Initially the states of the queue Q, set array S and list L is as shown in
Figure 3.4. From the figure, we can see that, the list L is allocated for 10 species, the queue
is initially empty and in the set array each set allocated 10 species is initialized by the species
itself.

Figure 3.4: Initial stage of the list array L, queue Q and set array S.
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Iteration Number 1

In Step 1 we consider each of the constraint one by one, convert it into a command and make
changes to the initial state of the Q, L and S.

1. For the constraint 1 we have (1, 3) < (2, 5), the implication for it is, 2 ≡ 5 → 1 ≡ 5

where i = 1, j = 3, k = 2, l = 5. Now S[2] = 2 and S[5] = 5. So this implication
is added to the L(2) and L(5) list array and in queue 1 ≡ 3 is added. Now the current
situation of Q, L and S can be seen from Figure 3.5. From Figure 3.5 we can see that
at L(2) and L(5) the implication is added and the command is added in queue.

Figure 3.5: For the constraint (1, 3) < (2, 5), the current state of the list array L, queue Q
and set array S.

2. For the constraint 2 we have (1, 4) < (3, 7), the implication for it is, 3 ≡ 7 → 1 ≡ 7

where i = 1, j = 4, k = 3, l = 7. Now S[3] = 3 and S[7] = 7. So this implication
is added to the L(3) and L(7) list array and in queue 1 ≡ 4 is added. Now the current
situation of Q, L and S can be seen from Figure 3.6. From Figure 3.6 we can see that
at L(3) and L(7) the implication is added and the command is added in queue.

3. For the constraint 3 we have (2, 6) < (4, 8), the implication for it is, 4 ≡ 8 → 2 ≡ 8

where i = 2, j = 6, k = 4, l = 8. Now S[4] = 4 and S[8] = 8. So this implication
is added to the L(4) and L(8) list array and in queue 2 ≡ 6 is added. Now the current
situation of Q, L and S can be seen from Figure 3.7. From Figure 3.7 we can see that
at L(4) and L(8) the implication is added and the command is added in queue.

4. For the constraint 4 we have (3, 4) < (2, 6), the implication for it is, 2 ≡ 6 → 3 ≡ 6

where i = 3, j = 4, k = 2, l = 6. Now S[2] = 2 and S[6] = 6. So this implication
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Figure 3.6: For the constraint (1, 4) < (3, 7), the current state of the list array L, queue Q
and set array S.

is added to the L(2) and L(6) list array and in queue 3 ≡ 4 is added. Now the current
situation of Q, L and S can be seen from Figure 3.8. From Figure 3.8 we can see that
at L(2) and L(6) the implication is added and the command is added in queue.

5. For the constraint 5 we have (4, 5) < (1, 9), the implication for it is, 1 ≡ 9 → 4 ≡ 9

where i = 4, j = 5, k = 1, l = 9. Now S[1] = 1 and S[9] = 9. So this implication
is added to the L(1) and L(9) list array and in queue 4 ≡ 5 is added. Now the current
situation of Q, L and S can be seen from Figure 3.9. From Figure 3.9 we can see that
at L(1) and L(9) the implication is added and the command is added in queue.

6. For the constraint 6 we have (7, 8) < (2, 10), the implication for it is, 2 ≡ 10→ 7 ≡
10 where i = 7, j = 8, k = 2, l = 10. Now S[2] = 2 and S[10] = 10. So this
implication is added to theL(2) and L(10) list array and in queue 7 ≡ 8 is added. Now
the current situation of Q, L and S can be seen from Figure 3.10. From Figure 3.10
we can see that at L(2) and L(10) the implication is added and the command is added
in queue.

7. For the constraint 7 we have (7, 8) < (7, 10), the implication for it is, 7 ≡ 10→ 7 ≡
10 where i = 7, j = 8, k = 7, l = 10. Now S[7] = 7 and S[10] = 10. So this
implication is added to theL(7) and L(10) list array and in queue 7 ≡ 8 is added. Now
the current situation of Q, L and S can be seen from Figure 3.11. From Figure 3.11
we can see that at L(7) and L(10) the implication is added and the command is added
in queue.

8. For the constraint 8 we have (8, 10) < (5, 9), the implication for it is, 5 ≡ 9→ 8 ≡ 9

where i = 8, j = 10, k = 5, l = 9. Now S[5] = 5 and S[9] = 9. So this implication
is added to the L(5) and L(9) list array and in queue 8 ≡ 10 is added. Now the current
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Figure 3.7: For the constraint (2, 6) < (4, 8), the current state of the list array L, queue Q
and set array S.

Figure 3.8: For the constraint (3, 4) < (2, 6), the current state of the list array L, queue Q
and set array S.

situation of Q, L and S can be seen from Figure 3.12. From Figure 3.12 we can see
that at L(5) and L(9) the implication is added and the command is added in queue.

Now in Step 2, we consider each of the command in the queue and do the merge operation
between set arrays and append lists.

1. Dequeue the command 1 ≡ 3. For the command 1 ≡ 3, S[1] = 1 and S[3] = 3,
since S[1] 6= S[3], choosing L(1) be the shorter list. Therefore considering each of
the implication in this list we get,

• 1 ≡ 9 → 4 ≡ 9 where u = 1, v = 9, x = 4 and y = 9. Now S[1] = u but
S[3] 6= v. Therefore we proceed to the next step by merging L(3) with L(1) and
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Figure 3.9: For the constraint (4, 5) < (1, 9), the current state of the list array L, queue Q
and set array S.

Figure 3.10: For the constraint (7, 8) < (2, 10), the current state of the list array L, queue Q
and set array S.

placing S[3] = 1.

2. Dequeue the command 1 ≡ 4. For the command 1 ≡ 4, S[1] = 1 and S[4] = 4,
since S[1] 6= S[4], choosing L(4) be the shorter list. Therefore considering each of
the implication in this list we get,

• 4 ≡ 8 → 2 ≡ 8 where u = 4, v = 8, x = 2 and y = 8. Now S[4] = u but
S[1] 6= v. Therefore we proceed to the next step by merging L(4) with L(1) and
placing S[4] = 1.

3. Dequeue the command 2 ≡ 6. For the command 2 ≡ 6, S[2] = 2 and S[6] = 6,
since S[2] 6= S[6], choosing L(6) be the shorter list. Therefore considering each of
the implication in this list we get,
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Figure 3.11: For the constraint (7, 8) < (7, 10), the current state of the list array L, queue Q
and set array S.

Figure 3.12: For the constraint (8, 10) < (5, 9), the current state of the list array L, queue Q
and set array S.

• 2 ≡ 6 → 3 ≡ 6 where u = 2, v = 6, x = 3 and y = 6. Now S[2] = u and
S[6] = v. Therefore add the command 3 ≡ 6 in queue. Then we proceed to the
next step by merging L(6) with L(2) and placing S[6] = 2.

4. Dequeue the command 3 ≡ 4. For the command 3 ≡ 4, S[3] = 1 and S[4] = 1, since
S[3] = S[4], we proceed to the next stage.

5. Dequeue the command 4 ≡ 5. For the command 4 ≡ 5, S[4] = 1 and S[5] = 5,
since S[4] 6= S[5], choosing L(5) be the shorter list. Therefore considering each of
the implication in this list we get,

• 2 ≡ 5 → 1 ≡ 5 where u = 2, v = 5, x = 1 and y = 5. Now S[5] = v but
S[4] 6= u. Therefore we proceed to the next implication by merging L(5) with
L(1) and placing S[5] = 1.
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• 5 ≡ 9 → 8 ≡ 9 where u = 5, v = 9, x = 8 and y = 9. Now S[5] = u but
S[4] 6= v. Therefore we proceed to the next step.

6. Dequeue the command 7 ≡ 8. For the command 7 ≡ 8, S[7] = 7 and S[8] = 8,
since S[7] 6= S[8], choosing L(8) be the shorter list. Therefore considering each of
the implication in this list we get,

• 4 ≡ 8 → 2 ≡ 8 where u = 4, v = 8, x = 2 and y = 8. Now S[8] = v and
S[7] 6= u. Therefore we proceed to the next step by merging L(8) with L(7) and
placing S[8] = 7.

7. Dequeue the command 7 ≡ 8. For the command 7 ≡ 8, S[7] = 7 and S[8] = 7, since
S[7] = S[8], we proceed to the next step.

8. Dequeue the command 8 ≡ 10. For the command 8 ≡ 10, S[8] = 7 and S[10] = 10,
since S[8] 6= S[10], choosing L(10) be the shorter list. Therefore considering each of
the implication in this list we get,

• 2 ≡ 10→ 7 ≡ 10 where u = 2, v = 10, x = 7 and y = 10. Now S[10] = v and
S[8] 6= u. Therefore we proceed to the next step by merging L(10) with L(7)
and placing S[10] = 7.

• 7 ≡ 10→ 7 ≡ 10 where u = 7, v = 10, x = 7 and y = 10. Now S[8] = u and
S[10] = v. Therefore add the command 7 ≡ 10 in queue. Then we proceed to
the next step.

9. Dequeue the command 3 ≡ 6. For the command 3 ≡ 6, S[3] = 1 and S[6] = 2,
since S[3] 6= S[6], choosing L(2) be the shorter list. Therefore considering each of
the implication in this list we get,

• 2 ≡ 5 → 1 ≡ 5 where u = 2, v = 5, x = 1 and y = 5. Now S[6] = u and
S[3] 6= v. Therefore we proceed to the next step by merging L(2) with L(1) and
placing S[2] = 1 and S[6] = 1.

• 2 ≡ 6 → 3 ≡ 6 where u = 2, v = 6, x = 3 and y = 6. Now S[6] = u and
S[3] 6= v. Therefore we proceed to the next step.

• 2 ≡ 10→ 7 ≡ 10 where u = 2, v = 10, x = 7 and y = 10. Now S[6] = u and
S[3] 6= v. Therefore we proceed to the next step.

• 2 ≡ 6 → 3 ≡ 6 where u = 2, v = 6, x = 3 and y = 6. Now S[6] = u and
S[3] 6= v. Therefore we proceed to the next step.

10. Dequeue the command 7 ≡ 10. For the command 7 ≡ 10, S[7] = 7 and S[10] = 7,
since S[7] = S[10], we proceed to the next step.
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After the above steps the queue is now empty. Therefore for all these steps, the list array
and the set array will be changed and they are now of the form shown in Figure 3.13 and
Figure 3.14. In Figure 3.13 and Figure 3.14 we can see that after the First iteration we
have three sets of species. Therefore up to now tree construction is possible from the given
constraint set.

Figure 3.13: After Iteration 1 state of the list array L.

Figure 3.14: After Iteration 1 state of the set array S.

In Figure 3.15 we see the initial tree after first iteration. In the successive iterations this tree
is going to have a tree like structure. According to the simulations shown above here we
have three branches in the tree.

In Step 3 we consider now the newly created species sets and repeat Steps 1 and 2 recursively
until we have a single element in the tree. Now considering the three sets we have,

S1 = 1, 2, 3, 4, 5, 6

S2 = 7, 8, 10

S3 = 9
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Figure 3.15: After Iteration 1 state of the tree.

Iteration Number 2

In iteration number 2 we consider these three sets. Since S3 has a single node the recursive
call is not applicable for it. Now for set S1 we consider the following set of constraints, C1,

(1, 3) < (2, 5)

(3, 4) < (2, 6)

And again for set S2 we consider the following set of constraints, C2,

(7, 8) < (7, 10)

Since it is a recursive call, first S1 with C1 call is made. Until every node in this branch is
explored and tree like structure is obtained, this recursion continues. After this iteration we
obtain a tree that looks like the following one given in Figure 3.16. From Figure 3.16 we
can see that this time we have four sets from branch one.

The four sets are,
S1 = 1, 3, 4

S2 = 2

S3 = 5

S4 = 6

Since set S2, S3 and S4 contains single element. They are not candidate for the recursive
call. Therefore the candidate of recursive call is set S1.
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Figure 3.16: After Iteration 2 state of the tree.

Iteration Number 3

For the next iteration we consider set S1 and for S1 we have the following constraint set C1

= NULL. Since none of the constraint is supporting this set. Therefore after this iteration
the structure of the tree is something like Figure 3.17.

Figure 3.17: After Iteration 3 state of the tree.

From Figure 3.17 we can see that the branch 1 is completely have a tree like structure since
in this iteration we get three sets each containing a single element. Therefore exploration of
branch 1 is now completed. Now we have branch 2 to be explored. Therefore the recursion
moves to the initial stage.
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Iteration Number 4

In the initial stage we have,
S2 = 7, 8, 10

C2 = (7, 8) < (7, 10)

With S2 and C2 we make the call and have a tree that looks like the one in Figure 3.18.

Figure 3.18: After Iteration 4 state of the tree.

From Figure 3.17 we can see that after this iteration we get two sets,

S1 = 7, 8

S2 = 10

Since S2 has a single component the recursive call is performed with S1.

Iteration Number 5

In this stage we have,
S2 = 7, 8

C2 = NULL

Again the constraint set is null since there is no compatible constraint set with this set of
nodes. For this we have the tree that looks like the one given in Figure 3.19. Since the
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constraint set is empty therefore this iteration returns two sets each containing a single node.
Here the tree construction process is completed.

Figure 3.19: After Iteration 5 state of the tree.

3.3 Conclusion

Aho′s algorithm is one of the mostly used and well known algorithms for Phylogenetic Tree
construction. Because it is easy and well understood. It recursively construct the tree that is
consistent with all the constraints in the given constraint set. Using this idea of construction
several research work has been done till date. We also use this idea in a different manner to
do our thesis work on Phylogenetic tree construction and it is really been a helpful material
for us.
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CHAPTER 4
PHYLOGENETIC TREES WITH ERRONEOUS DATA

4.1 Introduction

Phylogenetic Tree construction considering the maximum number of triplets in the given
triplet set is common. But while considering only those triplets that are consistent with the
Phylogenetic Tree and ignoring others, results in loss of important evolutionary relationship.
In this thesis, we investigate some process how we can reduce this practice.

For the triplet because of which tree cannot be constructed are considered to be erroneous.
By making elementary level changes in the triplet or correcting it this error can be removed
and a proper Phylogenetic Tree can be constructed. The main target is to reduce the loss of
data ensuring the construction of the tree. Moreover while correcting the triplet our main
concern is to do minimum number of changes in it as well as changing it in a way so that
the species organization in the tree is approximately a sparse distribution.

In this section we present the overall procedure to solve the problem and a heuristic algo-
rithm to solve it.

4.2 Problem Definition

Let P(T) denote the set of all triplets consistent with a given tree T. The tree consists of n
species and the triplet set consists of m triplets. Each triplet is of the form xy|z where the
constraint imposed is of the form (x, y) < (x, z). That is, the lowest common ancestor of
the pair (x, y) is a proper descendant of the lowest common ancestor of the pair (x, z). At
any point of the construction, if any triplet of the form (i, j) < (k, l) acts inconsistent with
the tree T, then the triplet is corrected and after that construction will proceed so that the
resulting tree is consistent with all the triplets in the set. The process requires minimum
number of changes to the triplets.
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4.3 Stages of the Problem Analysis

In this section we present the real problem and discuss the solution of it and how it works.
Identify separate stages of the problem and solution technique of the problem.

The problem is divided into some stages where different part of the problem is considered.
The stages we consider here are,

1. Identification of the Erroneous Triplet.

2. Correction of the Erroneous Triplet.

3. Construction of the Tree.

4.3.1 Identification of the Erroneous Triplet

In this section we present the way to detect the erroneous triplet from the triplet set.

Suppose we have n = 5 species for which we are given the triplet set consists of m = 4

triplets of the form,
12|3

13|4

45|2

35|2

Now if we consider the step by step simulation of the problem then we will consider graph
simulation because it is faster to know whether the given triplet set can build the tree or not.
Moreover at any point of time if any one triplet constructs a single graph component then
we need to correct that triplet and then proceed to the next triplet in the set. Thereby, before
going through the triplet set the species are of the form that are shown in Figure 4.1 where
there are 5 nodes initially.

Figure 4.1: Initial state of the nodes.

For the triplet 12|3 there is an edge between the pair (1, 2). Similarly for the triplet 13|4 and
45|2 we have edge (1, 3) and (4, 5). In Figure 4.2 the stages are shown for the triplets 12|3,
13|4 and 45|2 respectively. In the first stage, for the triplet 12|3 an edge between node 1 and
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2 is added. Then for the triplet 13|4 another edge between node 1 and 3 is added. Then in
the ending stage, for the triplet 45|2 an edge is added between node 4 and 5.

Figure 4.2: Stages of graph construction for different triplets.

But for the triplet 35|2 it becomes a single component which means there is an error in the
triplet. In Figure 4.3 the graph becomes a single component for the triplet 35|2 after adding
edge between node 3 and 5.

Now we consider this triplet as a candidate of correction and correct it.

4.3.2 Correction of the Erroneous Triplet

In this section we present the way to correct the error in a way so that the species in the tree
is sparsely distributed in the tree.

Once the erroneous triplet is determined our next task is to correct the error. In order to
correct the error we consider the erroneous triplet first. Then the degree of each of the node
in the pair. Such as, for the i-th triplet xy|z the pair is (x, y). We determine the degree of
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Figure 4.3: For the triplet 35|2 error occurs (Red Edge).

node x and y in the grpah formed using upto (i − 1)-th triplet. Here we look for the node
that has the minimum degree so that if we add an edge with it, there will be an increase in
its degree. Suppose x has the minimum degree. Then we check which component consists
of this node. Then in this component we check for all node and find out one that has the
minimum degree amongst them all. Suppose that node is w. Then we add an edge between
node w and x. The triplet then becomes xw|z.

Suppose considering for the above example, we get that, the erroneous triplet is 35|2. At
this point of time we have two components. Those are,

C1 = 1, 2, 3

C2 = 4, 5

Therefore adding an edge between 3 and 5 converts it into one component. Thereby to
avoid it we follow the above method. Here, both the degree of 3 and 5 in the graph is 1.
Therefore we can consider any of them having minimum degree. Let us consider 5. Now
we can check it with other nodes in the component. For them we have, 4 has the minimum
degree. Therefore an edge is added between 4 and 5. The triplet becomes 45|2. The error is
removed.

After correction graph construction continues until such error occurs again. Then the above
procedure will be continued. When all triplets in the triplet set is considered and the graph
construction is completed with less than or equal to 2 components, the tree construction
starts.

4.3.3 Construction of the Tree

In this section we present a way to construct the tree using the triplets.

Once all the triplets are corrected, the tree construction procedure takes place. For the Tree
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construction process we follow any of the algorithms introduced before. Since the problem
of erroneous triplet is removed all algorithms will output a proper Phylogenetic Tree.

The above procedure can now construct a Phylogenetic Tree that is consistent with all the
triplets in the triplet set. Therefore we better explain the overall procedure in terms of
algorithm. The AllRTC algorithm present the above procedure.

4.4 Simulation of the Algorithm

In this section we simulate the overall procedure of Algorithm AllRTC to construct a
phylogenetic tree considering all triplets in the triplet set doing minimum changes to the
erroneous triplets in the elementary level.

For our simulation we consider the following triplet set,

12|3

34|1

25|4

12|4

14|2

In the Identification of the Erroneous Triplet stage, we consider the triplets one by one. From
the given triplet set we can see that we have total 5 species. Therefore the initial state of the
graph is shown in Figure 4.4.

Figure 4.4: Initial state of the graph.

Now for the triplet 12|3 we add an edge between the pair (1, 2). Figure 4.5 shows the
change in the graph. Since after adding the edge we have total four components in the
graph. Therefore, this triplet is not erroneous.

For the triplet 34|1 we add an edge between the pair (3, 4). Figure 4.6 shows the change
in the graph. Since after adding the edge we have total three components in the graph.
Therefore, this triplet is not erroneous.

For the triplet 25|4 we add an edge between the pair (2, 5). Figure 4.7 shows the change in
the graph. Since after adding the edge we have total two components in the graph. Therefore,
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Figure 4.5: State of the graph considering the triplet 12|3.

Figure 4.6: State of the graph considering the triplet 34|1.

this triplet is not erroneous.

For the triplet 12|4 we add an edge between the pair (1, 2). Since after adding the edge we
have total two components in the graph. Therefore, this triplet is not erroneous.

For the triplet 14|2 we add an edge between the pair (1, 4). Figure 4.8 shows the change in
the graph. Since after adding the edge we have total one components in the graph. Therefore,
this triplet is erroneous and a proper candidate for correction.

In the Correction of the Erroneous Triplet step we consider the triplet 14|2. Here the degree
of node 1 and node 4 is 1. Now considering node 4 has the lowest degree. In its component
it has only node 3. So the correct triplet is 34|2. Therefore the correct triplet set is,

12|3

34|1

25|4

12|4

34|2

Since there is no error in the triplet set, therefore if we apply Aho′s algorithm to construct
the tree that looks like the one given in Figure 4.9
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Figure 4.7: State of the graph considering the triplet 25|4.

Figure 4.8: For the triplet 14|2 error occurs (Red Edge).

Figure 4.9: Tree for the given triplet set.
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4.5 Procedure of Algorithm AllRTC

Here we give an Algorithm 1 to determine error in triplets and correct it to construct a phylo-
genetic tree considering all triplets in the triplet set, which we call the AllRTC Algorithm.

Algorithm 1 Algorithm AllRTC
Require: n > 0 ∧m > 0 ∧ Triplet Set P ∧ Set array S
Ensure: Phylogenetic Tree Construction
Q← φ
Initialize S with n sets with the species itself
for each Triplet of the form xy|z do
Q← (x, y)

end for
while Q 6= φ do
(u, v)← Q.dequeue()
Add (u, v) to G
Merge S(u) with S(v)
if G contains single component then

Delete edge (u, v)
if degree(u) < degree(v) then
j ← u

else
j ← v

end if
for each species in S(j) do

Calculate n = Minimum Degree Species
end for
Q← (j, n)

end if
end while
for each Triplet in P do

Construct Tree T
end for
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4.6 Experiment with Real Data Set

The correctness and efficiency of the given algorithm is tested using some real data set.
Those information is based on some real species. Construction of a Phylogenetic tree from
this algorithm is tested to measure the correctness of it with this real triplet set. After the
construction the tree is tested with the real one and measure the percentage of error.

4.6.1 Phylogeny of Lizards

For this example we consider the Phylogeny of Lizards [3]. The phylogeny of lizards include
some species namelyC.tigris,D.dorsalis,C.draconoides, U.scoparia and P.platyrhinos.
For the ease of our experiment we assign numbers to each of these species. The numbering
is done as following,

C.tigris = 1

D.dorsalis = 2

C.draconoides = 3

U.scoparia = 4

P.platyrhinos = 5

For the construction of the phylogenetic tree construction we consider the following triplet
set,

34|5

25|1

53|2

14|2

Now In the Identification of the Erroneous Triplet stage we consider each triplets one by
one. Initially the graph looks like the one given in Figure 4.10. Each of the node represents
any of the species. Therefore the total number of component is 5.

Figure 4.10: Initial Stage of the Graph.

For the triplet 34|5, we add an edge between node 3 and node 4. This edge addition re-
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sults in a graph that looks like the one given in Figure 4.11. After this the total number of
components are 4.

Figure 4.11: State of the graph considering the triplet 34|5.

For the triplet 25|1, we add an edge between node 2 and node 5. This edge addition re-
sults in a graph that looks like the one given in Figure 4.12. After this the total number of
components are 3.

Figure 4.12: State of the graph considering the triplet 25|1.

For the triplet 53|2, we add an edge between node 5 and node 3. This edge addition re-
sults in a graph that looks like the one given in Figure 4.13. After this the total number of
components are 2.

Figure 4.13: State of the graph considering the triplet 53|2.

For the triplet 14|2, we add an edge between node 1 and node 4. This edge addition re-
sults in a graph that looks like the one given in Figure 4.14. After this the total number of
components are 1. Therefore this triplet is erroneous and a candidate for correction.

In the Correction of the Erroneous Triplet step we consider the triplet 14|2. Here the degree
of node 1 is 0 and node 4 is 1. Now node 1 has the lowest degree. Since its degree is 0 we
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Figure 4.14: State of the graph considering the triplet 14|2.

cannot consider it. Therefore we consider node 4 in this case. In its component it has node
2, 3 and 5. The degrees of these nodes are 1, 2 and 2. Though node 2 has the minimum
degree, we cannot consider it since it is already present in the triplet. So, we add an edge
between node 4 and 3. Therefore the correction in the triplet forms 34|2. Therefore the
correct triplet set is,

34|5

25|1

53|2

34|2

Since there is no error in the triplet set, therefore if we apply Aho′s algorithm to construct
the tree that looks like the one given in Figure 4.15

Figure 4.15: Phylogenetic Tree showing Evolutionary Relationship of Lizards.

56



The constructed tree is correct. But while correcting the choice of node 5 instead of node
3 is also correct. So confusion may arise. Moreover node 2 is not considered, since it is
already in the triplet. So additional check is required.

4.6.2 Phylogeny of Yeast

The Fungal Biodiversity Center in Utrecht (Netherlands) provides some real yeast data.
From this data set some triplets are produced [26]. For this simulation we consider only
20 triplets for proper understanding of the working procedure of our algorithm. For this
example the triplet set is,

10 11|1

10 12|1

10 13|11

10 14|15

12 19|14

13 17|1

14 18|15

15 16|1

16 18|4

16 20|1

17 21|4

2 6|8

2 3|15

3 16|20

4 11|19

4 5|1

8 12|11

7 19|6

8 9|1

1 5|6
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Now In the Identification of the Erroneous Triplet stage we consider each triplets one by
one. Initially the graph looks like the one given in Figure 4.16. Each of the node represents
any of the species. Therefore the total number of component is 21.

Figure 4.16: Initial Stage of the Graph.

For the triplet 10 11|1, we add an edge between node 10 and node 11. This edge addition
results in a graph that looks like the one given in Figure 4.17.

Figure 4.17: State of the graph considering the triplet 10 11|1.

For the triplet 10 12|1, we add an edge between node 10 and node 12. This edge addition
results in a graph that looks like the one given in Figure 4.18.

Figure 4.18: State of the graph considering the triplet 10 12|1.

For the triplet 10 13|11, we add an edge between node 10 and node 13. This edge addition
results in a graph that looks like the one given in Figure 4.19.

For the triplet 10 14|15, we add an edge between node 10 and node 14. This edge addition
results in a graph that looks like the one given in Figure 4.20.

For the triplet 12 19|14, we add an edge between node 12 and node 19. This edge addition
results in a graph that looks like the one given in Figure 4.21.
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Figure 4.19: State of the graph considering the triplet 10 13|11.

Figure 4.20: State of the graph considering the triplet 10 14|15.

Then for rest of the triplets in the triplet set, 13 17|1, 14 18|15, 15 16|1, 16 18|4, 16 20|1,
17 21|4, 2 6|8, 2 3|15, 3 16|20, 4 11|19, 4 5|1, 8 12|11, 7 19|6, 8 9|1, we add edges in the
graph that results in a graph that looks like the one given in Figure 4.22.

But for the triplet 1 5|6, we add an edge between node 1 and node 5. This edge addition
results in a graph that looks like the one given in Figure 4.23. Since addition of this edge
results in a graph that has a single component, therefore this triplet is erroneous and a can-
didate of correction.

Figure 4.21: State of the graph considering the triplet 12 19|14.
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Figure 4.22: State of the graph considering the triplets in the triplet set.

Figure 4.23: For the triplet 1 5|6 error occurs (Red Edge).
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In the Correction of the Erroneous Triplet step we consider the triplet 1 5|6. Here the degree
of node 1 is 0 and node 5 is 1. Now node 1 has the lowest degree. Since its degree is
0 we cannot consider it. Therefore we consider node 5 in this case. So, we add an edge
between node 5 and 10 according to the algorithm. Therefore the correction in the triplet
forms 10 5|6. Therefore the correct triplet set is,

10 11|1

10 12|1

10 13|11

10 14|15

12 19|14

13 17|1

14 18|15

15 16|1

16 18|4

16 20|1

17 21|4

2 6|8

2 3|15

3 16|20

4 11|19

4 5|1

8 12|11

7 19|6

8 9|1

10 5|6

Therefore the resulting graph after correcting all the triplets in the triplet set becomes the
one in Figure 4.24.

Since there is no error in the triplet set, therefore if we apply Aho′s algorithm to construct
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Figure 4.24: State of the graph considering all triplets in the triplet set.

the tree then it generates a tree that looks like the one given in Figure 4.25.

Figure 4.25: Phylogenetic Tree showing Evolutionary Relationship of Yeast.
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4.7 Conclusion

In this chapter we present a method to determine the erroneous triplet from the triplet set and
take corrective measures in elementary level to construct a Phylogenetic Tree that represents
an evolutionary relationship among these triplets and loss of information is minimum. Here
the time complexity is O(m × n) and two memory space, one of size n and another of size
m × m is used where m is the number of triplet and n is the number of species. Though
the process introduced here is time consuming and consume huge memory space, such an
experiment is really informative in Phylogenetic Tree related studies.
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CHAPTER 5
TRIPLET CONSISTENCY CHECK

5.1 Introduction

In the previous chapter, we have discussed an algorithm to construct phylogenetic tree with
erroneous data. In this chapter, we are going to discuss an algorithm to check the consis-
tency of a triplet in a phylogenetic tree in constant time. Though the algorithm requires an
initialization stage which may be time and memory consuming, it can check the consistency
of a triplet in O(1) time.
This process of triplet consistency check is especially useful to test an algorithm that con-
structs phylogenetic tree from a set of rooted triplets. In genetics, a particular evolutionary
relationship may be derived experimentally and needs to be checked if it is correct with a
previously established phylogenetic tree. This algorithm can be helpful in this type of situ-
ation.
Let, T be a phylogenetic tree and P (ab|c) be a rooted triplet. We now have to check if the
triplet P is consistent with the tree T. Here we assume that the phylogenetic tree is static.

Figure 5.1: A phylogenetic tree T .

Now, triplet P will be consistent with tree T if the lowest common ancestor of a and b in
tree T , is a descendant of the lowest common ancestor (LCA) of a and b in tree T .
In Figure 5.1, a phylogenetic tree T is illustrated. In Figure 5.2, a triplet P (ab|c) is given
which is consistent with the phylogenetic tree T . Though phylogenetic trees are leaf-labeled
trees, we use a dummy labeling for the internal nodes for the phylogenetic trees and triplets
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in this chapter. This temporary labeling does not change any property of the tree. This is to
uniquely define each node in the tree and is essential to perform the algorithm correctly.
The algorithm has two successive stages. The first stage is the initialization stage where we
process the tree T to construct two matrices - Matrix A and Matrix B. Matrix A contains the
pairwise LCA of all nodes of T and Matrix B keeps the information of the ancestors of each
node of T. In the second stage, the consistency of P with T is checked using the matrices
derived in initialization stage. The rest of the chapter is organized as follows. Section 5.2
discusses about the initialization stage of the algorithm. In Sections 5.3, we describe the
method to check the consistency of a triplet. And finally Section 5.4 is the conclusion.

5.2 Initialization Stage

In this section, we describe the initialization stage of the algorithm. In this stage the phylo-
genetic tree T is processed to find the pairwise lowest common ancestors and the ancestor
relationship with every node. In Section 5.3.1, we describe the procedure to find a 2D matrix
to contain lowest common ancestors for every pair of node of tree T. In Section 5.3.2, we
explore the child-parent relationship of every node of the tree.

5.2.1 Finding Pairwise Lowest Common Ancestors

In this section we will describe a method to find the lowest common ancestors for every pair
of nodes in the tree T. Every node starting from the root of the tree T should be indexed from
1,2, · · · , n. Suppose, we have to find the lowest common ancestors of the nodes m and n.
For node m, we will make a recursive call to the parent of m until the root is reached and
we will save the found nodes in an array, say pm. We will repeat the process for node n and
find the array of parent pn of node n. The lowest common node of pm and pn will be the
lowest common ancestor of node m and n.

Applying the same method, we will find the lowest common ancestors for all pair of nodes

Figure 5.2: A rooted triplet P .
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Figure 5.3: Phylogenetic tree T after indexing.

Figure 5.4: Pairwise lowest common ancestors of every node stored in Matrix A.

(m,n) that belongs to tree T. We will store these pairwise lowest common ancestors of every
node, in a 2D matrix A. That means A(m,n) will denote the lowest common ancestor of the
nodes m and n.
In Figure 5.3, a phylogenetic tree T with 9 nodes are shown. We index the nodes of the
tree sequentially with an increasing integer sequence of 1,2,· · · ,9 starting from the root
node. Now for the tree T we shall derive Matrix A of pairwise lowest common ancestors by
following the method described above. The matrix is shown in Figure 5.4. The first row and
column denotes the indices of the nodes of the tree. All other cells of the matrix denotes the
lowest common ancestors of two nodes of the tree. The value of a cell, holds the index of
the lowest common ancestor of the two specific nodes. For the cells where lowest common
ancestor is not possible, the value is zero. As example, The cell A(8, 9) holds 4; which
means the lowest common ancestor of a and b is 4.
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5.2.2 Finding Ancestors

To check the consistency of a triplet with a phylogenetic tree in constant time, we should
find a method to check the ancestor relation in a constant time. In this section, we will find
an effective method for this.
Here we will again take a 2D array B of size n × n, initialized with 0’s. Every row of the
matrix will be dedicated to a node of the tree T. For every node of tree T, we will traverse
the ancestors of the node in a recursive fashion and change the value of the array B to 1 in
the specific position. That means, if the value of B(p, q) is 1, it means that q is an ancestor
of p.

Figure 5.5: Recursive call from leaf a to find the ancestors.

Figure 5.6: An array denoting ancestor relationship of 8-th node with every other node of
the tree.

Figure 5.7: Ancestor relationship of nodes in T.
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In Figure 5.5, a phylogenetic tree T is shown. For the leaf node a, which is indexed as 8,
we make a recursive call to its parents. This function call would return the 4th, 2nd and 1st
indices of the tree, which are the ancestors of the node a. So, we would change the value
of B(8,4), B(8,2), B(8,1) into 1. This change is shown in Figure 5.6. Following the similar
method for every node, we shall derive the matrix B, which will denote the ancestor relation
of the tree T for every pair of nodes. Matrix B for the tree T is shown in Figure 5.7, which
denotes the ancestor relation of every pair of nodes of the tree.

5.3 Triplet Consistency Check

In Section 5.3, we have discussed the initialization procedure of our algorithm. Now in this
section, we will describe the second stage of the algorithm to find the consistency of the
triplet in constant time.
As assumed earlier, we have to check the consistency of the triplet P (ab|c) with the phyloge-
netic tree T. We also assume that, the information of the pairwise lowest common ancestors
and the ancestors of every node is available to us from the initialization step, described in
Section 5.3. We will get the lowest common ancestor of the pairs a, b and a, c from A(a, b)

and A(a, c) respectively. Let A(a, b) be m and A(a, c) be n. Now we have to check if m
is a descendant of n or not in the tree T . We can easily check this from the array B. If the
value of B(m,n) is 1, then it means n is an ancestor of m in the tree T and the triplet P is
consistent with the tree T . But if the value of B(m,n) is 0, it means that the triplet P is not
consistent with the tree T .
The cost of finding lowest common ancestor of the pairs a, b and a, c is O(1). Checking the
ancestor of m and n is also done in O(1) timing. So, the whole task of triplet consistency
checking is done in constant timing.
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5.4 Procedure of Algorithm checkConsistency

Here we give an algorithm to check consistency of a triplet with a phylogenetic tree in
constant time in algorithm 2, which we call checkConsistency algorithm.

Algorithm 2 checkConsistency
Require: n > 0 ∧ m > 0 ∧ Tree T ∧ Triplet xy|z
Ensure: Triplet Consistency Check within Constant time.

Initialize 2D array A
Initialize 2D array B
for each species i in T do

for each species j in T do
K ← Ancestors of i
T ← Ancestors of j

end for
A← LCA of (i, j) from K and T

end for
for each species i in T do

if i 6= root then
B(i, root of T )← 1

end if
r ← Closest ancestor of i
while r 6= root do

B(i, r)← 1
r ← Closest ancestor of r

end while
end for
u← A(x, y)
v ← A(x, z)
if B(u, v) = 1 then
xy|z Consistent with T

else
xy|z Not consistent with T

end if

5.5 Conclusion

In this chapter, we give a simple algorithm to check the consistency of a triplet with a
static phylogenetic tree. It describes the procedure of initialization which takes n2 space
and O(n2) time. Though the initial time and memory requirement is high, this algorithm
is beneficial when the number of triplets is huge. The main concern of this algorithm is
constant time solution which is very important in this case.
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CHAPTER 6
CONCLUSION

Phylogeny and related studies has brought revolutionary changes in the Biology and Bio-
chemical investigation related studies in recent years. Inferring an accurate Phylogenetic
tree from experimental data is a difficult task. Since constructed Phylogenetic trees are
tested on real life species that presents an evolutionary relationship. So it needs to be correct
and similar to the given data set. Moreover sometime it becomes necessary to check whether
a triplet set is consistent with the given Phylogenetic Tree or not. In such case getting the
answer in constant amount of time is important because it shows the class of the species
in the triplet and ensures instant application of those in some other experiment. Therefore
several studies have been performed on this topic in various aspect to make it correct. Here
we summarize each chapter and its contributions. In Chapter 1, we have discussed about
phylogenetic trees, their reconstruction, pairwise compatibility graph and other problems.
This introductory discussion is important for proper understanding of latter chapters.
In Chapter 2, we have given some basic definition of graph theory, algorithms and data
structure. These basic terminologies are used through the thesis.
In Chapter 3, we have thoroughly discussed about the Aho′s algorithm for phylogenetic tree
construction. We have simulated the algorithm with an example and discussed every step
for proper understanding of the process. This algorithm is the basic of the phylogenetic tree
construction and proper understanding of this algorithm would give us a strong base in the
research of phylogenetic trees.
In Chapter 4, we develop a new method to construct phylogenetic tree with erroneous data.
The motive of this approach is to minimize the error by correcting the erroneous triplet and
produce a phylogenetic tree consistent with all given triplets. We have developed this algo-
rithm with the concept of vertex deletion, which is a new approach in this field. Moreover,
we have concentrated on generating a distributed tree so that the phylogenetic tree is not
dense.
In Chapter 5, we have given a simple algorithm to check the consistency of a triplet with a
phylogenetic tree. This algorithm checks the consistency in constant time, which is very im-
portant to compare two phylogenetic trees. Though the initial complexity of the algorithm is
high, it is essential to perform the fast checking. Where the triplet set is huge, this constant
time algorithm is a very suitable one.
In this thesis we introduce two new algorithms for phylogenetic tree related problems.
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Though these algorithms are not that efficient but the AllRTC reduces the information loss
during tree construction, do minimum corrections to erroneous triplets and construct an ap-
proximately sparse Phylogenetic Tree that shows an evolutionary relationship among a set of
triplets. At the same time the checkConsistency algorithm reduces the time to determine
consistency of a triplet with a Phylogenetic Tree. In both the algorithms, there are some
scope where some improvement is necessary that can reduce the overall time complexity of
the process. Some ideas of improvement can be,

a) InAllRTC, the current time complexity is too high. Since we search each node to find out
which one has the minimum degree. This can be optimized by keeping a data structure with
each of the node where degrees of the nodes will be stored. It can be used in an interesting
way to determine the minimum degree node at any point of time.

b) In checkConsistency, for n number of species we need n × n sized two memories.
An interesting future development can reduce this memory requirement. Moreover, time
complexity currently is O(n2) for the initialization stage. This will surely reduce then.

Here we conclude our thesis with some open problems:

• Would the algorithm AllRTC work for a phylogenetic tree which does not have a
binary representation?

• Give an algorithm to generate all possible triplet set that are consistent with a specific
phylogenetic tree.

• Is the algorithm checkConsistency applicable to phylogenetic networks too? If not
suggest a suitable modification to solve this problem.
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APPENDIX A
CODES

A.1 Implemented Code

We use this code to find out AllRTC

1 #include<stdio.h>

2 #include<iostream>

3 #include<stdlib.h>

4 #include<string.h>

5 #include<string>

6 #include<sstream>

7 #include<vector>

8 #include<algorithm>

9 #include<math.h>

10 #include<queue>

11 #include<deque>

12 #include<stack>

13 #include<set>

14 #include<list>

15 using namespace std;

16

17 int n,m;

18 vector<int>S;

19 vector<int>C[100];

20 int Parent[100];

21 int subscript[100];

22

23 struct listStructure{

24 int k;

25 int l0;

26 int i;

27 int l1;
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28 };

29

30 struct queueStructure{

31 int u;

32 int v;

33 };

34

35 struct node{

36 int value;

37 int parent;

38 string section;

39 };

40

41 vector<node>Tree;

42

43 void treeInput()

44 {

45 //Triplet Set Input

46

47 cin>>n>>m;

48

49 S.clear();

50 memset(subscript,0,sizeof(subscript));

51

52 for(int k=0;k<m;k++)

53 {

54 C[k].clear();

55 }

56

57 cout<<"Enter the set elements: \n\n";

58

59 S.push_back(0);

60

61 for(int i=1;i<=n;i++)

62 {

63 int x;

64 cin>>x;

65 S.push_back(x);

66 Parent[x] = x;
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67 }

68

69 cout<<"Enter the constraints: \n";

70

71 for(int i=0;i<m;i++)

72 {

73 int x,y,z,w;

74

75 cin>>x;

76 cin>>y;

77 cin>>z;

78 cin>>w;

79

80 cout<<"( "<<x<<" , "<<y<<" ) < ( "<<z<<" , "<<w<<" )\n";

81

82 C[i].push_back(x);

83 C[i].push_back(y);

84 C[i].push_back(z);

85 C[i].push_back(w);

86 }

87 cout<<endl;

88 }

89

90 vector<int> computePIc(vector<int>s, vector<int>c[100])

91 {

92 list<listStructure>L[100];

93 int x,y,z,w;

94 queue<queueStructure>Q;

95 set<int>track;

96

97 Q.empty();

98

99 //Initialization of List array, Set array & Queue

100

101 for(int j=0;c[j].size() == 4;j++)

102 {

103 x=c[j][0];

104 y=c[j][1];

105 z=c[j][2];
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106 w=c[j][3];

107

108 s[x] = x;

109 s[y] = y;

110 s[z] = z;

111 s[w] = w;

112

113 track.insert(x);

114 track.insert(y);

115 track.insert(z);

116 track.insert(w);

117 }

118

119 for(int p=0;c[p].size() == 4;p++)

120 {

121 listStructure a;

122 a.k = c[p][2];

123 a.l0 = c[p][3];

124 a.i = c[p][0];

125 a.l1 = c[p][3];

126

127 L[s[c[p][2]]].push_back(a);

128 L[s[c[p][3]]].push_back(a);

129

130 queueStructure q;

131 q.u = c[p][0];

132 q.v = c[p][1];

133 Q.push(q);

134 }

135

136 //Identification and Correction of the Erroneous Triplet

137

138 while(!Q.empty())

139 {

140 queueStructure qu;

141 list<listStructure>smallList;

142 list<listStructure>largeList;

143 int small, large;

144
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145 qu = Q.front();

146 Q.pop();

147

148 if(s[qu.u] != s[qu.v])

149 {

150 int p = qu.u;

151 int q = qu.v;

152

153 if(L[s[p]].size() < L[s[q]].size())

154 {

155 small = s[p];

156 large = s[q];

157 }

158 else{

159 small = s[q];

160 large = s[p];

161 }

162

163 list<listStructure>l;

164 list<listStructure>::iterator it;

165 l = L[small];

166

167 for(it = l.begin();it != l.end();++it)

168 {

169 listStructure a;

170 a = *it;

171 if((s[p] == a.k && s[q] == a.l0)

172 || (s[p] == a.l0 && s[q] == a.k))

173 {

174 queueStructure t;

175 t.u = a.i;

176 t.v = a.l1;

177 Q.push(t);

178 }

179 }

180

181 list<listStructure>::iterator itn;

182

183 for(itn = L[small].begin();itn != L[small].end();++itn)
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184 {

185 listStructure an;

186 an = *itn;

187 L[large].push_back(an);

188 }

189

190 L[small].clear();

191

192 s[p] = large;

193 s[q] = large;

194

195 track.insert(large);

196 track.erase(small);

197

198 int r = 1;

199

200 while(r<=s.size())

201 {

202 if(s[r] == small) s[r] = large;

203 r++;

204 }

205 }

206 }

207 return s;

208 }

209

210 vector<int> treeBuild(vector<int>s, vector<int>c[100], char p)

211 {

212 //Tree Construction

213

214 if(s.size() == 1) return s;

215 else{

216 vector<int>PIc;

217 set<int>track;

218 set<int>::iterator m;

219

220 PIc.clear();

221 PIc = computePIc(s,c);

222 track.clear();
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223

224 for(int j=0;j<=n;j++)

225 {

226 track.insert(PIc[j]);

227 if(subscript[j] == 0) subscript[j] = PIc[j];

228 }

229

230 if(track.size() == 1){

231 vector<int>m;

232 return m;

233 }

234 else{

235 int h=0;

236

237 for(m = track.begin(); m != track.end(); ++m)

238 {

239 int t = 0;

240 int new_p = p;

241 vector<int>cm[100];

242 vector<int>sm(n+1,0);

243 stringstream sec;

244

245 if((*m) == -1 || (*m) == 0) continue;

246 else{

247 h++;

248

249 for(int k=0;c[k].size() == 4;k++)

250 {

251 int x,y,z,w;

252

253 x = c[k][0];

254 y = c[k][1];

255 z = c[k][2];

256 w = c[k][3];

257

258 if(PIc[x] == PIc[y] && PIc[y] == PIc[z]

259 && PIc[z] == PIc[w] && PIc[w] == *m)

260 {

261 cm[t].push_back(x);
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262 cm[t].push_back(y);

263 cm[t].push_back(z);

264 cm[t].push_back(w);

265

266 sm[x] = x;

267 sm[y] = y;

268 sm[z] = z;

269 sm[w] = w;

270

271 t++;

272 }

273 }

274 }

275

276 new_p++;

277 int countt = 0;

278 vector<int>Tm = treeBuild(sm,cm,new_p);

279

280 for(int i=0;i<PIc.size();i++)

281 {

282 if(PIc[i] == *m)

283 {

284 countt++;

285 }

286 }

287

288 if(Tm.size() == 0)

289 {

290 char tt;

291

292 if(countt > 1)

293 {

294 tt = new_p + 1;

295 }

296 else tt = new_p;

297

298 sec << tt;

299

300 for(int i=0;i<PIc.size();i++)
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301 {

302 if(PIc[i] == *m)

303 {

304 node a;

305

306 a.value = i;

307 a.parent = PIc[i];

308 a.section = sec.str();

309

310 Tree.push_back(a);

311 }

312 }

313 }

314 }

315 }

316 }

317 }

318

319 int main()

320 {

321

322 char P = 96;

323 treeInput();

324 treeBuild(S,C,P);

325

326 for(int j=0;j<Tree.size();j++)

327 cout<<Tree[j].value<<" "<<Tree[j].parent<<" "

328 <<Tree[j].section<<subscript[Tree[j].value]<<endl;

329

330 return 0;

331 }
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