
B.Sc. in Computer Science and Engineering Thesis

Inter Word Semantic and String Distance Using
Ontological Techniques

Submitted by

Sanjid Habib Sultan
Id: 201114034

Afrin Jahan Noumen
Id: 201114039

Lamia Alam
Id: 201114053

Supervised by

Dr. Muhammad Masroor Ali

Professor

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology

Dhaka-1205, Bangladesh

.

Department of Computer Science and Engineering
Military Institute of Science and Technology

December 2014

CERTIFICATION

This thesis paper titled “Inter Word Semantic and String Distance Using Ontological
Techniques”, submitted by the group as mentioned below has been accepted as satisfactory
in partial fulfillment of the requirements for the degree B.Sc. in Computer Science and
Engineering in December 2014.

Group Members:

Sanjid Habib Sultan

Afrin Jahan Noumen

Lamia Alam

Supervisor:

Dr. Muhammad Masroor Ali
Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology
Dhaka-1205, Bangladesh

ii

CANDIDATES’ DECLARATION

This is to certify that the work presented in this thesis paper, titled, “Inter Word Semantic
and String Distance Using Ontological Techniques”, is the outcome of the investigation and
research carried out by the following students under the supervision of Dr. Muhammad Mas-
roor Ali, Professor, Department of Computer Science and Engineering, Bangladesh Univer-
sity of Engineering and Technology, Dhaka-1205, Bangladesh.

It is also declared that neither this thesis paper nor any part thereof has been submitted
anywhere else for the award of any degree, diploma or other qualifications.

Sanjid Habib Sultan
Id: 201114034

Afrin Jahan Noumen
Id: 201114039

Lamia Alam
Id: 201114053

iii

ACKNOWLEDGEMENT

We are thankful to Almighty Allah for his blessings for the successful completion of our
thesis. Our heartiest gratitude, profound indebtedness and deep respect go to our supervisor,
Dr. Muhammad Masroor Ali, Professor, Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh, for his
constant supervision, affectionate guidance and great encouragement and motivation. His
keen interest on the topic and valuable advices throughout the study was of great help in
completing thesis.

We are especially grateful to the Department of Computer Science and Engineering (CSE)
of Military Institute of Science and Technology (MIST) for providing their all out support
during the thesis work.

Finally, we would like to thank our families and our course mates for their appreciable
assistance, patience and suggestions during the course of our thesis.

Dhaka
December 2014
.

Sanjid Habib Sultan

Afrin Jahan Noumen

Lamia Alam

iv

ABSTRACT

Ontologies are today a key part of every knowledge based system. They provide

a source of shared and precisely defined terms, resulting in system interoperability by

knowledge sharing and reuse. Unfortunately, the variety of ways that a domain can

be conceptualized results in the creation of different ontologies with contradicting or

overlapping parts. For this reason ontologies need to be brought into mutual agreement

(aligned). Thus ontology matching between words is a useful technique for data integra-

tion and data sharing. Two important methods for ontology matching is the comparison

of words using semantic similarity and string distance metrics. In our thesis work, we

have used a lexical database called WordNet to find semantic similarity between words.

String metric based similarity has been found out by using Jaro Winkler distance on the

basis of commonality and differences between two words.

1

TABLE OF CONTENT

CERTIFICATION ii

CANDIDATES’ DECLARATION iii

ACKNOWLEDGEMENT iv

ABSTRACT 1

List of Figures 4

List of Tables 5

List of Abbreviation 6

List of Symbols 7

1 Introduction 8
1.1 General Overview . 8
1.2 Preview on Methodology . 8
1.3 A Glance at the Chapters . 9

2 Background Study 10
2.1 Ontology . 10
2.2 Ontology Matching . 11
2.3 WordNet . 13

3 Semantic Matching 14
3.1 Related Study . 14
3.2 Motivating Scenario . 16
3.3 Element Level Semantic Matching . 17

3.3.1 Knowledge Based Matchers . 17

4 String Metric Based Similarity 19
4.1 Related Study . 19

4.1.1 Set, Global, Perfect-sequence . 20
4.1.2 Set, Global, Imperfect-sequence 20
4.1.3 Set, Local, Perfect-sequence . 21
4.1.4 Set, Local, Imperfect-sequence . 21
4.1.5 Non-set, Global, Perfect-sequence 21

2

4.1.6 Non-set, Global, Imperfect-sequence 21
4.1.7 Non–set, Local, Perfect-sequence 21
4.1.8 Non-set, Local, Imperfect-sequence 22
4.1.9 Syntactic . 23
4.1.10 Semantic . 23

4.2 Desired Properties . 24
4.3 Jaro Winkler Distance . 25

5 Methodology 26
5.1 Semantic Similarity Measurement . 26
5.2 String Metric Measurements . 26

6 Experiments And Results 28
6.1 Semantic Similarity . 28

6.1.1 Code Analysis . 28
6.1.2 Experiment-1 . 29
6.1.3 Experiment-2 . 30

6.2 String Metric Similarity . 30
6.2.1 Code Analysis . 31
6.2.2 Experiment 1 . 32
6.2.3 Experiment 2 . 32

7 Discussion 33
7.1 Future Expansion . 33
7.2 Conclusion . 34

References 34

A Codes 38
A.1 Codes . 38

A.1.1 Semantic Matching . 38
A.1.2 String Matching . 39

3

LIST OF FIGURES

2.1 Google web directory. 10
2.2 Example of ontology “Business”. 11

3.1 Parts of Google and Yahoo directories integrate these two directories 16
3.2 An example of WordNet nouns taxonomy 17

4

LIST OF TABLES

2.1 Relations in WordNet. 13

3.1 An Example of WordNet nouns taxonomy. 18

5

LIST OF ABBREVIATION

COMA : Composite Schema Matching System
Idk : I don’t know
OAEI : Ontology Alignment Evaluation Initiative

6

LIST OF SYMBOLS

≡ : Equivalence relation
⊇ : Superset relation
⊆ : Subset relation
⊥ : Disjointness relation
∃ : existential quantification
∧ : Logical AND relation
∈ : Set membership

7

CHAPTER 1
INTRODUCTION

1.1 General Overview

Our thesis topic is Inter Word Semantic and String Distance Using Ontological Techniques.
To begin with an ontology typically provides a vocabulary that describes a domain of in-
terest and a specification of the meaning of terms used in the vocabulary. Depending on
the precision of this specification, the notion of ontology encompasses several data/con-
ceptual models, for example, classifications, database schema, fully axiomatized theories.
Ontology matching [1] is a key interoperability enabler for the Semantic Web, as well as a
useful tactic in some classical data integration tasks dealing with the semantic heterogene-
ity problem. To build a collaborative semantic web, which allows data to be shared and
reused across applications, enterprises, and community boundaries, it is necessary to find
ways to compare, match and integrate various ontologies. Different strategies (e.g., string
similarity, synonyms, structure similarity and based on instances) for determining similarity
between entities are used in current ontology matching systems. Synonyms can help to solve
the problem of using different terms in the ontologies for the same concept. WordNet [2]
is a lexical database for the English language. It groups English words into sets of syn-
onyms called synsets, provides short definitions and usage examples, and records a number
of relations among these synonym sets or their members. WordNet can thus be seen as a
combination of dictionary and thesaurus. The WordNet can support improving similarity
measures. So it is widely used for measuring similarities. Our thesis work relates with the
ontology matching. This paper emphasizes on String Matching and Semantic Matching of
two words. We provide our findings about the similarities and dissimilarities of both the
words using both the matching techniques and provide with our analysis in this paper.

1.2 Preview on Methodology

We wanted to find the similarities of two words using ontology matching. To achieve that
we used two techniques Semantic Matching and String Matching.

We achieve the similarities of two words semantically by implementing WordNet based
equality. It compares the two words with WordNet database and results in a number between

8

[0-1]. This represents the semantic relation of the given words.

String matching is another similarity measures we are conducting. This is based on both
common and uncommon substrings in the two words. After finding their common and
uncommon entities we cannot get the best results. So to improve our results we add Jaro
Winkler Distance of both the words with our current result. This provides us with a better
result on similarities.

We analyze our results with other similarity matchings to compare the similarities and dis-
similarities of two words.

1.3 A Glance at the Chapters

Chapter 2 discusses about the background study on our work topics. Chapter 3 discusses
about Semantic Matching and its usage in our work. Chapter 4 discusses about the string
matching on our work topics. Chapter 5 discusses about the methodology of our work.
Chapter 6 analysis of our thesis results. Chapter 7 contains the overall discussion and obser-
vation of our thesis.

9

CHAPTER 2
BACKGROUND STUDY

This chapter includes the background study of our thesis related topics.

2.1 Ontology

By an ontology [1] we mean here a way of defining a conceptualization of an application
domain in terms of concepts, attributes, and relations expressed in a formal language. Re-
lations can be defined by the user, but there are some pre-defined relationships with known
semantics, i.e., is-a; part-of; instance-of. A concept hierarchy is an ontology without at-
tributes and only with is-a relations between elements.

Figure 2.1: Google web directory.

One example of ontology can be constructed by complicating the concept hierarchy shown

10

in Figure 2.1, by adding attributes to the concept Association, see Figure 2.2. Attributes
of the concept Associations are BN, City, Street, Zip, while data instances are B8 and
B2. Data instances have fixed attributes values: instance B8 has BN=“B8”, City=“Trento”,
Street=“Piazza Venezia”, etc.

Figure 2.2: Example of ontology “Business”.

2.2 Ontology Matching

Matching is a critical operation in many application domains, such as semantic web, schema/on-
tology integration, data warehouses, e-commerce, query meditation, etc. It takes as two
input schema/ontologies, each consisting of a set of discrete entities (e.g. tables, XML ele-
ments, classes, properties, rules, predicates) and determines as output the relationships (e.g.
equivalence, subsumption) holding between these entities. The ontology matching problem
may be considered as a problem of matching the hierarchies of concepts and relations of two
ontologies. Without the hierarchy of relations , an ontology can be regarded as a schema.
In the schema matching domain, there was a lot of researches in the context of data inte-
gration and data translation. A good survey of approaches to automatic schema matching is
presented in [3].

Despite its pervasiveness, today ontology matching is largely conducted by hand, in a labor-
intensive and error-prone process. The manual matching has now become a key bottleneck
in building large scale information management systems. The advent of technologies such
as the WWW, XML and the emerging Semantic Web will further information sharing appli-
cations and exacerbate the problem. Hence, the development of tools to assist in the ontol-

11

ogy matching process has become crucial for the success for a wide variety of information
management applications.

There is not very much work in the ontology matching domain. Some of recent researches
are GLUE [4], Anchor-PROMPT [5] and SAT [6].

GLUE [4] is the evolved version of LSD [4] whose goal is to semi automatically find schema
mappings for data integration. Like LSD, GLUE use machine learning techniques to find
mappings. In GLUE, there are several learners, which are trained by data instances of on-
tologies. After learning phase, different characteristic instance patterns and matching rules
for single elements of the target schema are discovered. The predictions of individual match-
ers are combined by a meta-learner and from that, final mappings result will be deduced.

Anchor-PROMPT [5] constructs a directed labeled graph representing the ontology from the
hierarchy of concepts (called classes in the algorithm) and the hierarchy of relations (called
slots in the algorithm), where nodes in the graph are concepts and arcs are the relationships
between concepts (the labels are the names of the relations). An initial list of anchors-pairs
of related concepts defined by the users or automatically identified by lexical matching is
the input for the algorithm. Anchor-PROMPT analyzes then the paths in the sub-graph lim-
ited by the anchors and it determines which concepts frequently appear in similar positions
on similar paths. Basing on these frequencies, the algorithm decides if these concepts are
semantically similar concepts.

SAT [1] takes as input two graphs of concepts and produces as output relationships such as
equivalence, overlapping, mismatch, more general and more specific between two concepts.
The main idea of this approach is to use logic to encode the concept of a node in the graph
and to use SAT to find relationships. The concept at a node, which is then transformed
into a propositional formula, is the conjunction of all the concepts of the nodes on the path
from the root of the graph to that node. The concept of a node, in turn, is extracted from
WordNet. WordNet is a lexical database. The relationship which needs to be proved between
two concepts is also converted to a propositional formula. SAT solver will run on the set of
calculated propositional formulas to verify if the assumed relationship is true or not.

Initially, ontologies were used in an attempt to dene all the concepts within a specic domain
and their relationships. An example of a popular ontology is WordNet [2], which models
the lexical knowledge of a native English speaker.

Our goal is to apply techniques for ontological matching similarity measures, semantic com-
parison and string comparison (e.g. JaroWinkler metric). We do this for calculating the
similarity value between descriptions of the concepts or the relations between two words.
We also integrate the WordNet lexical database.

12

2.3 WordNet

WordNet [2] is an external terminological dictionary and a lexical database for English lan-
guage which basically includes noun, verb, adverb and adjective lexical catagories. WordNet
was created in the Cognitive Science Laboratory of Princeton University under the direction
of psychology professor George Armitage Miller starting in 1985 and has been directed in
recent years by Christiane Fellbaum. The project received funding from government agen-
cies including the National Science Foundation, DARPA, the Disruptive Technology Office
(formerly the Advanced Research and Development Activity) and REFLEX. George Miller
and Christiane Fellbaum were awarded the 2006 Antonio Zampolli Prize for their work with
WordNet.

Description based similarity measure is often called terminological similarity measure as a
description usually contains informative issues. The reason behind using WordNet in deter-
mining similarity measure is, it groups English words into sets of synonyms called synsets.
Information in WordNet is organized around lexical groupings called synsets and semantic
pointers. Informally, a synset represents a set of synonym words, while a semantic pointer
models the semantic relationships between two synsets. Words like “benefit” and “profit”
are synonyms which are grouped in Wordnet in same synsets. WordNet also provides short
description and examples of the words. All synsets are connected to other synsets by means
of semantic relations like hypernyms, hyponyms etc. The hypernym/hyponym relationships
among the noun synsets can be interpreted as specialization relations among conceptual
categories.

Relation Description Example

Hypernym is a generalization of motor vehicle is a hypernym of car

Hyponym is a kind of car is a hyponym of motor vehicle

Meronym is a part of lock is a meronym of door

Holonym contains part door is a holonym of lock

Troponym is a way to fly is a troponym of travel

Antonym opposite of stay in place is an antonym of travel

Attribute attribute of fast is an attribute of speed

Entailment entails calling on the phone entails dialing

Cause cause to to hurt causes to suffer

Table 2.1: Relations in WordNet.

13

CHAPTER 3
SEMANTIC MATCHING

The match operator takes two graph-like structures and produces a mapping between the
nodes of the graphs that correspond semantically to each other.

With the emergence of the semantic web and the growing number of heterogenous data
sources, the benefits of ontologies are becoming widely accepted. The domain of application
is widening every day, ranging from word sense disambiguation to search of biological
macromolecules such as DNA and proteins.

Many diverse solutions of match have been proposed so far. We focus on a schema-based
solution, namely a matching system exploiting only the schema information, thus not con-
sidering instances. We follow a novel approach called semantic matching [1]. Semantic
matching is a technique used in computer science to identify information which is seman-
tically related. This approach is based on the two key ideas. The first is that we calculate
mappings between schema elements by computing semantic relations (e.g., equivalence,
more generality, disjointness), instead of computing coefficients rating match quality in the
[0,1] range, as it is the case in the most previous approaches, see, for example, [7–9]. The
second idea is that we determine semantic relations by analyzing the meaning (concepts, not
labels) which is codified in the elements and the structures of schemas. In particular, labels at
nodes, written in natural language, are translated into propositional formulas which explic-
itly codify the labels intended meaning. This allows us to translate the matching problem
into a propositional unsatisfiability problem, which can then be efficiently resolved using
(sound and complete) state of the art propositional satisfiability (SAT) deciders, e.g., [10].

3.1 Related Study

At present, there exists a line of semi-automated schema matching systems, see, for in-
stance [7–9, 11] . A good survey and a classification of matching approaches up to 2001
is provided in [3], while an extension of its schema-based part and a user-centric classifi-
cation of matching systems is provided in [13]. In particular, for individual matchers, [13]
introduces the following criteria which allow for detailing further (with respect to [3]), the
element and structure level of matching: syntactic techniques (these interpret their input as

14

a function of their sole structures following some clearly stated algorithms, e.g., iterative
fix point computation for matching graphs), external techniques (these exploit external re-
sources of a domain and common knowledge, e.g., WordNet [14]), and semantic techniques
(these use formal semantics, e.g., model-theoretic semantics, in order to interpret the input
and justify their results). The distinction between the hybrid and composite matching algo-
rithms of [3] is useful from an architectural perspective. [13] extends this work by taking
into account how the systems can be distinguished in the matter of considering the mappings
and the matching task, thus representing the end-user perspective. In this respect, the fol-
lowing criteria are proposed: mappings as solutions (these systems consider the matching
problem as an optimization problem and the mapping is a solution to it, e.g., [9]); mappings
as theorems (these systems rely on semantics and require the mapping to satisfy it, e.g., the
approach proposed in this paper); mappings as likeness clues (these systems produce only
reasonable indications to a user for selecting the mappings, e.g., [7, 8]). Let us consider
some recent schema-based state of the art systems in light of the above criteria.

RONDO: The Similarity Flooding (SF) [9] approach, as implemented in Rondo, utilizes a
hybrid matching algorithm based on the ideas of similarity propagation. Schemas are
presented as directed labeled graphs. The algorithm exploits only syntactic techniques
at the element and structure level. It starts from the string-based comparison (common
prefixes, suffixes tests) of the nodes labels to obtain an initial mapping which is further
refined within the fix-point computation. SF considers the mappings as a solution to
a clearly stated optimization problem.

CUPID: Cupid [8] implements a hybrid matching algorithm comprising syntactic tech-
niques at the element (e.g., common prefixes, suffixes tests) and structure level (e.g.,
tree matching weighted by leaves). It also exploits external resources, in particular, a
precompiled thesaurus. Cupid falls into the mappings as likeness clues category.

COMA: COMA [7] is a composite schema matching system which exploits syntactic and
external techniques. It provides a library of matching algorithms; a framework for
combining obtained results, and a platform for the evaluation of the effectiveness of
the different matchers. The matching library is extensible, it contains 6 elementary
matchers, 5 hybrid matchers, and one reuse-oriented matcher. Most of them imple-
ment string-based techniques (affix, n-gram, edit distance, etc.); others share tech-
niques with Cupid (tree matching weighted by leaves, thesauri look-up, etc.); reuse-
oriented is a completely novel matcher, which tries to reuse previously obtained results
for entire new schemas or for its fragments. Distinct features of COMA with respect
to Cupid, are a more flexible architecture and a possibility of performing iterations in
the matching process. COMA falls into the mappings as likeness clues category.

15

Figure 3.1: Parts of Google and Yahoo directories integrate these two directories

3.2 Motivating Scenario

In order to motivate the matching problem and illustrate one of the possible situations which
can arise in the data integration task let us use the (parts of the Google and Yahoo) directories
depicted in Figure 3.1.

A first step in the integration process is to identify the matching candidates. For example,
ShoppingO1 can be assumed equivalent to ShoppingO2, while Board GamesO1 is less gen-
eral than GamesO2. Hereafter the subscripts designate the directory (either O1 or O2) of the
node considered. Once the correspondences between two schemas have been determined,
the next step has to generate query expressions that automatically translate data instances of
these schemas under an integrated schema. We think of a mapping element (or mapping) as
a 4-tuple (IDi,j , n1i, n2j , Ri).

i = 1 , 2 , 3 . . .N1

j = 1 , 2 , 3 . . .N2

where IDi,j is a unique identifier of the given mapping element; n1i is the i-th node of the
first graph, N1 is the number of nodes in the first graph; n2j is the j-th node of the second
graph, N2 is the number of nodes in the second graph; and R specifies a similarity relation
of the given nodes. For instance, in this paper we consider equivalence (≡); more general
(⊇); less general (⊆); disjointness (⊥) relations. The semantics of the above relations are
the obvious set-theoretic semantics. When none of the relation holds, the special Idk (I do
not know) relation is returned. We define matching as the process of discovering mappings
between two graph-like structures through the application of a matching algorithm.

16

3.3 Element Level Semantic Matching

The matching process is often articulated into two basic steps, namely element and structure
level matching [3].

Element level matchers consider only the information at the atomic level (e. g., the infor-
mation contained in elements of the schemas);

Structure level matchers often aggregate the results of the several element level matchers
and consider also the information about the structural properties of the schemas.

The matching process is often articulated into two basic steps, namely element and structure
level matching. Element level semantic matchers return semantic relations (⊆,⊇,⊥,≡, Idk)
rather then similarity coefficients [0..1] which are often considered as equivalence relation
with certain level of plausibility or confidence [1].

3.3.1 Knowledge Based Matchers

Knowledge based matchers take in input two concept (or synset) identifiers defined in Word-
Net. They produce semantic relations by exploiting its structural properties. In some cases
they combine the knowledge derived from WordNet with statistics collected from large scale
corpora.

Figure 3.2: An example of WordNet nouns taxonomy

17

Often knowledge based matchers are based on either similarity or relatedness measures. If
the value of the measure exceeds the given threshold the certain semantic relation is pro-
duced. Otherwise Idk is returned.

The wordnet matcher is a well known knowledge based matcher. It translates the relations
provided by WordNet to semantic relations according to the following rules: A⊆ B if A is a
hyponym, meronym or troponym of B; A ⊇ B if A is a hypernym or holonym of B; A ≡ B
if they are connected by synonymy relation or they belong to one synset (night and nighttime
from abovementioned example); A ⊥ B if they are connected by antonymy relation or they
are the siblings in the part of hierarchy.

Notice that hyponymy, meronymy, troponymy, hypernymy and holonymy relations are tran-
sitive. Therefore, for example, from Figure 3.2 we can derive that Person ⊆ LivingThing.
If none of the abovementioned relations holds among the two input synsets Idk relation is
returned.

Source lable Target lable Semantic Relation

car minivan ⊇

car auto ≡

tail dog ⊆

red pink idk

Table 3.1: An Example of WordNet nouns taxonomy.

Table 3.3.1 illustrates WordNet matcher results.

18

CHAPTER 4
STRING METRIC BASED SIMILARITY

String metric based similarity is done comparing two string depending on their distance.
A string metric provides a number indicating an algorithm-specific indication of distance.
String metrics are used heavily in information integration and are currently used in areas in-
cluding fraud detection, fingerprint analysis, plagiarism detection, ontology merging, DNA
analysis, RNA analysis, image analysis, evidence-based machine learning, database data
deduplication, data mining, Web interfaces, e.g. Ajax-style suggestions as you type, data
integration, and semantic knowledge integration [15].

4.1 Related Study

Dozens of ontology matching systems have been developed over the last decade, and nearly
all of them use of a string similarity metric. But despite their ubiquity, there has been little
systematic analysis on which metrics perform well when applied to ontology matching. To-
day quite a lot of string metrics exist in literature. These string metrics have been developed
and applied in different scientific fields like statistics, for probabilistic record linkage [16],
database, for record matching [17], Artificial Intelligence, for supervised learning [18] and
Biology, for identifying common molecular subsequences [19].

Recent work by Ngo and his colleagues has analyzed the performance of some string met-
rics for ontology matching and their interaction with structural and semantic metrics [20].
There has also been some prior analysis of string similarity metrics in the context of ontology
matching as part of the development of a new string similarity metric designed specifically
for this domain done by Stoilos and his colleagues [21]. They compared the performance
of a variety of string metrics on a subset of the Ontology Alignment Evaluation Initiative
(OAEI) benchmark test set and determined that the performance among metrics varied con-
siderably. Another piece of work done in this area is a report produced by the Knowledge
Web Consortium in 2004 that contained a description of a variety string (terminological)
metrics and string normalization and stemming applied to the problem of ontology align-
ment [22]. When the area of interest is expanded to include string similarity metric studies
for other domains, we find some more interesting surveys. For instance, Branting looked at
string similarity metrics as applied to name matching in legal case files [23]. He evaluated

19

the performance of various combinations of normalization, indexing (determining which
names would be compared to one another) and similarity metrics. In addition, Cohen et
al. did a very thorough analysis of string similarity metrics as applied to name matching
tasks [24].

We can group string metrics along three major axes [25] : global versus local, set versus
whole string, and perfect-sequence versus imperfect-sequence. Global versus local refers to
the amount of information the metric needs in order to classify a pair of strings as a match or
a non-match. Global metrics must compute some information over all of the strings in one or
both ontologies before it can match any strings whereas for local metrics the pair of strings
currently being considered is all the input that is required. Global metrics can be more tuned
to the particular ontology pair being matched, but that comes at the price of increased time
complexity. Perfect-sequence metrics require characters to occur in the same position in
both strings in order to be considered a match. Imperfect sequence metrics equate matching
characters as long as their positions in the strings differ by less than some threshold. In
some metrics, this threshold is the entire length of the string. Imperfect-sequence metrics
are thought to perform better when the word ordering of labels might differ but may result
in more false positives. A set-based string metric works by finding the degree of overlap
between the words contained in two strings. The set-based metric must still use a basic
string metric to establish if the individual tokens are equal. Word-based set metrics are
generally thought to perform well on long strings.

The list below contains all metrics found in the review of OAEI participants and categorizes
them based on the classifications described above. For set-based metrics, the underlying
base metric used is given in parentheses. A subset of these metrics (shown in bold) has been
chosen for analysis related to various aspects of the ontology alignment problem. These
metrics were chosen to reflect those most commonly used in existing alignment systems as
well as to cover as fully as possible all combinations of the classification system provided.

4.1.1 Set, Global, Perfect-sequence

Evidence Content (with exact): Similar to Jaccard mentioned below, but words are weighted
based on their evidence content (a function of their frequency in the ontology)

TF-IDF (with exact match): Term Frequency / Inverse Document Frequency; the idea is
that two entities are more similar if they share a word that is rare in the ontologies

4.1.2 Set, Global, Imperfect-sequence

Soft TF-IDF (with Jaro Winkler)- A variant of TF-IDF that considers words equal based
on Jaro Winkler (mentioned below) rather than exact match

20

4.1.3 Set, Local, Perfect-sequence

Jaccard (with exact match) - The number of words two strings have in common divided
by the total number of unique words

Overlap Coecient (with exact) - The number of words two strings have in common divided
by the number of words in the smaller string

4.1.4 Set, Local, Imperfect-sequence

RWSA - Redundant, Word-by-word, Symmetrical, Approximate; strings are indexed by
their Soundex representation and are a match if each word in the smaller string has a
weighted edit distance less than a threshold for a word in the longer string [23]

Soft Jaccard (with Levenstein) - Levenstein is run on all pairs of words in both strings and
the number less than the threshold is counted and divided by the number of words in
the longer string

4.1.5 Non-set, Global, Perfect-sequence

None

4.1.6 Non-set, Global, Imperfect-sequence

COCLU Compression-based Clustering; a Human tree is used to cluster the strings based
on a metric called the Cluster Code Dierence, and strings in the same cluster are
considered equivalent [26]

4.1.7 Non–set, Local, Perfect-sequence

Exact Match - Checks for string equality

Longest Common Substring - The length of the largest substring common to both strings,
normalized by the length of the strings

Prex - Checks if the rst string is a prex of the second

Substring Inclusion - Whether the rst string is contained in the second

Sux - Whether the rst string is a sux of the second

21

4.1.8 Non-set, Local, Imperfect-sequence

Jaro - Based on the number of matching and transposed characters, where characters match
if they are within a window based on the lengths of the strings and are transposed if
they match but are in reverse order

Jaro Winkler - Variation of the Jaro metric that gives a preference to strings that share a
common prex

Levenstein - The number of insertions, deletions, and substitutions required to transform
one string to another; also called edit distance

Lin - Based on the idea that similarity between two strings can be determined by taking a
measure of what they have in common and dividing by a measure of the information
it takes to describe them [27]

Monge Elkan - A variant of Smith Waterman (see below) with nonlinear gap penalties,
approximate character matching, and particular parameter values [17]

N-gram - Converts strings into sets of n-grams (we use n=3); the resulting sets are com-
pared using a set similarity metric such as cosine similarity or Dices coecient

Normalized Hamming Distance - The number of substitutions required to transform one
string into another, divided by the length of the string

Smith Waterman - Uses dynamic programming over a matrix describing the matches, in-
sertions, and deletions between two strings

Smith Waterman Gotoh - A variant of the Smith-Waterman metric that has ane gap penal-
ties

Stoilos - Specically developed for ontology alignment, this metric explicitly considers both
the commonalities and the dierences of the strings being compared [21]

String Matching (SM) - A variant of Levenstein in which the dierence between the length of
the shorter string and the edit distance is divided by the length of the shorter string [28]

Often alignment algorithms modify the strings before computing their similarity. All of the
pre-processing approaches that were either tried or proposed by OAEI participants are listed
here. The approaches mentioned by more than two participants are shown in bold - these
will be examined in detail.

These approaches can be divided into two major categories: syntactic and semantic. Syn-
tactic pre-processing methods are based on the characters in the strings or the rules of the

22

language in which the strings are written. They can generally be applied quickly and without
reference to an outside data store. Semantic methods relate to the meanings of the strings.
These methods generally involve using a dictionary, thesaurus, or translation service to re-
trieve more information about a word or phrase.

4.1.9 Syntactic

tokenization - Splitting strings into their component words based on delimiters and camel-
Case

split – Splitting the compound words

normalization - Elimination of stylistic dierences due to capitalization, punctuation, word
order, and characters not in the Latin alphabet

stemming/lemmatization - Elimination of grammatical dierences due to verb tense, plu-
rals, etc. We use the Porter stemming algorithm

stop word removal Removal of very common words. The Glasgow stop word list is used
in this work

consider part-of-speech - Functional words such as articles, conjunctions, and prepositions
are weighted less (or removed completely)

4.1.10 Semantic

synonyms - Strings are supplemented with their synonyms

antonyms - Used with metrics considering dierences and commonalities

categorization - An external source containing a category hierarchy is used. Strings falling
into the same category are considered more similar.

language tag - Leverage language tags contained in some ontologies to avoid comparing
labels in dierent languages or as an aid for translation

translations - Strings are translated before they are compared. We have used Google
Translate.

expand abbreviations and acronyms - There have been several attempts to do such expan-
sions into long form, by either looking them up in external knowledge sources or using
language production rules.

23

4.2 Desired Properties

Ontology matching is a relatively new field in computer science. Thus, none of the classical
string metrics has been created having the properties and characteristics of this field in mind.
Algorithms that are used in ontology matching are very complex and contain many features
and parameters that can affect the performance even of commonly accepted and good string
metrics, when they are used in this new context. Features like the threshold (the value
above which two pairs are considered identical), or the cardinality of mappings (one-to-one,
one-to-many etc.) play a key role in ontology alignment and as we will see the metrics
found in literature sometimes fail to give satisfactory results cause of the existence of these
parameters. Thus, before we define our string metric we think that it is crucial to state the
specifications that we want such a string metric to fulfill. More precisely we want the new
metric to be:

1. Fast: Since ontologies are used in applications that demand processing in real-time, like
the semantic web or intelligent retrieval tasks, the complexity of the string metric should be
very low, leading to a fast matching procedure.

2. Stable: As we aforementioned, one very crucial parameter of ontology alignment algo-
rithms is their threshold. When we will demand from alignment platform to automatically
operate on the semantic web their threshold would probably be fixed at a value considered
optimal by their authors. Though some methods that automatically adjust the threshold dur-
ing runtime exist in literature [29] it cannot be proved that they select the optimum value for
threshold each time an alignment is performed. Thus, we demand by the string metrics to be
as stable as possible. By stability we define the ability of a string metric to perform almost
optimal even if small diverges from the optimal threshold take place. As we will see all
metrics fail to satisfy this crucial property. Even worst, classical metrics are really sensitive
in small changes of the threshold, and while they can provide good results if the threshold
is optimized, this performance can rapidly decrease if we slightly disturb the value of the
threshold.

3. Intelligent: When operating for example in the semantic web context, it is likely that an
ontology be compared to an irrelevant one, but with which string resemblances occur. In this
case we want our metric to identify all the differences and provide us with correct results.
But it is not uncommon the situation where usual string metrics fail to identify cases where
two strings represent completely different concepts but resemble a lot. Consider for example
the words score and store. They represent two completely different concepts. Though this
is true the Monge-Elkan, Levenstein, SubString, Needleman-Wunsch, Q-Gram and Jaro-
Winkler metrics rate the pair with a similarity degree of 0.68, 0.8, 0.6, 0.9, 0.57 and 0.88
which are relatively hight values.

24

4. Discriminating: One of the most usual cardinalities requested for alignment mappings
is the one-to-one cardinality. As it is obvious in an one-to-one mapping if a string in a
reference ontology is mapped with the same similarity degree to more than one in the second
ontology it is very probable that the algorithm fails to pick the correct pair from the set of
pairs. Hence, we would like from our similarity metric to rarely assign the same similarity
degree when we compare one particular string to several others.

4.3 Jaro Winkler Distance

To improve the efficiency of the string matching results,a distance value between the given
strings is added to the result. This distance is known as Jaro Winkler distance. The Jaro-
Winkler distance is a measure of similarity between two strings. It is mainly used in the
area of record linkage for duplicate detection. The higher the Jaro-Winkler distance for two
strings, the more similar the strings are. The Jaro-Winkler distance metric is best suited for
short strings such as person or proper names. The score is normalized such that 0 equates to
no similarity and 1 is an exact match.

Given strings s = a1 . . . aK and t = b1 . . . bL, define a character ai in s to be common

with t there is a bj = ai in t such that i − H ≤ j ≤ i + H ,where H=min|s|, |t|/2.

Let s ′ = a ′1 . . . a ′K be the characters in s which are common with t (in the same order they
appear in s) and let t ′ = b ′1 . . . b ′L, be analogous; now define a transposition for s ′, t ′ to
be a position i) such that a′i 6= b′j . Let Ts′,t′ be half the number of transpositions for s’ and t’.
The Jaro similarity metric for s and t is

Jaro(s , t)= 1/3 . (|S′|/|S| + |t′|/|t| + |s′ −K|/|s′|

where K =Ts′,t′

A variant of this due to Winkler [16] also uses the length P of the longest common prefix of
s and t.

Jaro −Winkler(s , t)= Jaro(s , t)+|P |/|10|.(1 -Jaro(s , t))

25

CHAPTER 5
METHODOLOGY

5.1 Semantic Similarity Measurement

We use WordNet for semantic similarity measurement by employing WordNet based equal-
ity. WordNet based equality is derived from the senses of the words in WordNet. It states
that two terms are equal if they have at least one sense in common, which is synonym of the
second one [6]. In this process of equality measurement, senses of the words are inferred
from WordNet and then are compared for finding common synonym. If any of the senses are
common between two words, they are considered equal. The equality measure is denoted
by SimWN. If t1 and t2 are two terms in consider, then the value of SimWN(t1 , t2) is 1.0 if
at least one sense of t1 matches that of t2. Otherwise, if t1 and t2 get no senses in common
between them, value of SimWN(t1 , t2) is 0.0. The expression for equality measure is :

SimWN(t1 , t2)=

 1.0, if cond(t1, t2)holds

0.0, otherwise

where, cond(t1 , t2)= ∃x{x ∈ senses(t1) ∧ senses(t2)}

5.2 String Metric Measurements

The string metric is based on the intuitions presented in [27] about the similarity between
two entities. We believe that the similarity between two entities is related to their common-
alities as well as to their differences. Thus, the similarity should be a function of both these
features. This feature also appears, sometimes implicitly, in other measures as well. For
example, in those measures that perform string editing, such operation can be considered as
a form of difference counting, while non-editing can be considered as similarity counting.
Thus, our metric is defined by the following equation:

Sim(s1 , s2) = Comm(s1 , s2)− Diff (s1 , s2) + winkler(s1 , s2) . . . (1)

where comm(s1, s2) stands for the commonality between s1 and s2, d iff(s1, s2) for the
difference and W inklerImpr(s1, s2) for the improvement of the result using the method
introduced by Winkler in [16]. We now have to define the functions of commonality and

26

difference. The function of commonality is motivated by the substring string metric. In
the substring metric the biggest common substring between two strings is computed. This
process is further extended by removing the common substring and by searching again for
the next biggest substring until no one can be identified. The sum of the lengths of these
substrings is then scaled with the length of the strings. The intuition behind this extension
of the substring metric is the following. In the field of Computer Science researchers tend
to use descriptive names for their variables or the units that represent real world entities.
In other cases they tend to concatenate words and create new ones. For example in order
to represent the concept of the number of pages of a book it is likely that someone uses
the word numberOfPages or some one else might use the word numPages. As one can see
these two strings share not one but two common substrings which is very crucial to identify
in order to approximate their real similarity as much as possible. Moreover, we can now
distinguish cases like the above with cases where the substring Pages is shared but the rest
of the strings are quite different, thus satisfying the specification for an intelligent metric.
Hence, the function of commonality is given by the following equation:

Comm(s1 , s2) = 2 ∗ ilength(maxComSubStringi)length(s1) + length(s2) . . . (2)

As for the difference function, this is based on the length of the unmatched strings that
have resulted from the initial matching step. Moreover, we believe that difference should
play a less important role on the computation of the overall similarity. Our choice was
the Hamacher product [30], which is a parametric triangular norm. This leads us to the
following equation:

Diff (s1 , s2) = uLens1 ∗ uLens2p + (1 − p) ∗ (uLens1 + uLens2 − uLens1 ∗ uLens2) . . . (3)

where p ∈ [0,8), and uLens1, uLens2 represent the length of the unmatched substring from
the initial strings s1 and s2 scaled with the string length, respectively.

27

CHAPTER 6
EXPERIMENTS AND RESULTS

6.1 Semantic Similarity

By applying WordNet based equality for semantic similarity measures, we get the measure-
ment result in nominal form. The result is either “equal” or “non-equal”. “Equal” value is
denoted by 1.0 and “non-equal” value is denoted by 0.0.

6.1.1 Code Analysis

For our thesis work we used Python programming language. We connected the “Wordnet
Database” with our code by importing “NLTK” package of python. It enabled us to access
the database according to our will. We start our program by taking input two desired words.
The program takes the input and find the synsets of the words. Afterwards it finds the
common synsets between the two of them and provides the common synset of the words.
The code for Semantic matching:

1 from nltk.corpus import wordnet as wn

2 import re

3 print(’Enter first Word’)

4 word1=input()

5 print(’Enter 2nd Word’)

6 word2=input()

7 str1=wn.synsets(word1)

8 str2=wn.synsets(word2)

9 print(’The SYNSETS OF’,word1)

10 print(str1)

11 print(’The SYNSETS OF’,word2)

12 print(str2)

13 print(len(str1))

14 print(len(str2))

15 x=’nothing’

16 y=’nothing’

28

17 for a in str1:

18 if a in str2:

19 x=a

20 else:

21 y=a

22 print(’Matches are:’,x)

6.1.2 Experiment-1

Let us consider two noun terms “forest” and “wood”. In WordNet the word “forest” gives
us two senses:

1. forest, wood, woods - the trees and other plants in a large densely wooded area

2.forest, woodland, timberland, timber - land that is covered with trees and shrubs

The word “wood” gives us eight senses from WordNet:

1. wood - the hard fibrous lignified substance under the bark of trees

2. forest, woodland, timberland, timber - land that is covered with trees and shrubs

3. Wood, Natalie Wood - United States film actress (1938-1981)

4. Wood, Sir Henry Wood, Sir Henry Joseph Wood - English conductor (1869-1944)

5. Wood, Mrs. Henry Wood, Ellen Price Wood - English writer of novels about murders
and thefts and forgeries (1814-1887)

6. Wood, Grant Wood - United States painter noted for works based on life in the Midwest
(1892-1942)

7. woodwind, woodwind instrument, wood - any wind instrument other than the brass
instruments

8. wood - a golf club with a long shaft used to hit long shots; originally made with a wooden
head; metal woods are now available

Here wee see that, sense 1 of the term “forest” exactly matches with the sense 2 of the term
“wood”. So the value of SimWN(t1 , t2) becomes 1.0 for this case since one sense is common
between the terms in consider. So the terms “forest” and “wood” are to be said “semantically
equal”.

29

6.1.3 Experiment-2

For the second case study, let us consider two adjective terms “angry” and “violent” in
WordNet.

The word “angry” gives following three senses:

1. angry - feeling or showing anger

2. angry, furious, raging, tempestuous, wild - (of the elements) as if showing violent
anger

3. angry - severely inflamed and painful

Though “violent” seems similar to “angry”, let us take a look at the senses it shows in
WordNet:

1. violent - acting with or marked by or resulting from great force or energy or emotional
intensity; “a violent attack”; “a violent person”; “violent feelings”

2. violent - effected by force or injury rather than natural causes; “a violent death”

3. violent, wild - (of colors or sounds) intensely vivid or loud; “a violent clash of colors”;
“her dress was a violent red”; “a violent noise”; “wild colors”; “wild shouts”

4. fierce, tearing, vehement, violent, trigger-happy - marked by extreme intensity of
emotions or convictions; inclined to react violently; fervid; “fierce loyalty”; “in a tearing
rage”; “vehement dislike”; “violent passions”

5. crimson, red, violent - characterized by violence or bloodshed; “Writes of crimson deeds
and barbaric days”- Andrea Parke; “ Fann’d by Conquest’s crimson wing”- Thomas Gray;
“Convulsed with red rage”- Hudson Strode

Here we see that no senses of “angry” and “violent” matches with one another. In according
to our applied method SimWN(t1 , t2) is equal to 0.0 which means these two terms are
semantically unequal.

6.2 String Metric Similarity

For string metric similarity measurement, we are finding the length of common substring and
uncommon substring between two words. We use Jaro Winkler distance with our results to
obtain string similarity between the two given terms.

30

6.2.1 Code Analysis

For string matching we take input two words. We find the common substring of both the
words. We take the input for the value of P. After that we find the difference of the total
length of the word and common substring length to obtain the unmatched substring length.
Using the values of common substring length and unmatched substring length we obtain
the commonality and difference value. Then we call the function “jaro.distance” which is
imported from the package jellyfish with both words as parameters. It provides the Jaro
distance value. We then calculate the similarity using the formula.

The code we implemented is:

1 import jellyfish

2

3 print(’Enter first Word’)

4 word1=input()

5 print(’Enter second Word’)

6 word2=input()

7 print (’Give the value of P’)

8 p1=input()

9 p=float(p1)

10 len1=len(word1)

11 len2=len(word2)

12 answer=""

13 for i in range(len1):

14 for j in range(len2):

15 if(i==j and word1[i]==word2[j]):

16 answer=answer+word1[i]

17

18 commonlength=len(answer)

19 unmatch1=len1-commonlength

20 unmatch2=len2-commonlength

21 comm=(2*commonlength)/(len1+len2)

22 difference=(unmatch1*unmatch2)/(p+(p-1)*(unmatch1+unmatch2-(unmatch1*unmatch2)))

23 jarodistance=jellyfish.jaro_distance(word1,word2)

24 result=comm-difference+jarodistance

25 print(result)

31

6.2.2 Experiment 1

Let us consider two word “Attribute” as s1 and “Attraction” as s2, if we want to find similar-
ity by string metric measurement between these two word. The equation for this measure-
ment is Sim(s1, s2) = Comm(s1, s2) - Diff(s1, s2) + winkler(s1, s2).

At first find the letters which are common in both letter.Here 4 letters are common. They are
“attr”.

Now we have to measure commonality between these words by applying bellow equation:

Comm(s1, s2) = 2 * i length(maxComSubStringi)length(s1) + length(s2) For these words
the result is: 0.42105263157894735.

Then we measure the difference between these two words by applying this equation:

Diff(s1, s2) = uLens1 * uLens2 p + (1 - p) * (uLens1 + uLens2 - uLens1 * uLens2)

The result: 1.7441860465116277.

Here we consider the value of p is: 0.1.

For the improvement of the result we have to calculate the method introduced by Winkler.

The result of Jaro Winkler method: .70001.

The total result of similarity: -0.62312341493268035

6.2.3 Experiment 2

Let us consider two word “Price” as s1 and “Pride” as s2, if we want to find similarity by
string metric measurement between these two word.

At first find the letters which are common in both letter. Here 4 letters are common. They
are p,r,i,e.

Now we have to measure commonality between these words by applying bellow equation:

For these words the commonality result is: 0.8.

The result of difference is: -1.25.

Here we consider the value of p is: 0.1.

For the improvement of the result we have to calculate the method introduced by Winkler.

The result of Jaro Winkler method is: .86666.

The total result of similarity is: 2.91666

32

CHAPTER 7
DISCUSSION

By doing our experiments we found out the semantic matching of two words based on their
synsets. We got the result on the basis matching senses. Our results shows the matchings
between the two words. If there is at least one sense is common between the words the result
shows “MATCHED”. If there is no match between the two words we get the result as “NO
MATCH”.

We also experimented on String matching. It provides us results based on the commnality
and difference. Generally the result is a positive number. But sometimes it is seen that if
two words have less commnality than difference then the result shows negative value.

We found that the result of string matching was not too perfect. So to improve our result
we also added Jaro Winkler Distance to the formula. Jaro Winkler Distance requires a value
entitled as P which can be varied from 0 to 8. In our experiment we considered the value of
P is 0.1.

Working on our thesis we achieved the semantic similarities of two words basing on their
senses. It is seen that two words can be assumed to be same in meaning but if they are con-
sidered by senses,they are not actually same. Our semantic matching distinguishes between
such kind of words. String matching is quite similar like matching substrings between two
words. But by simply finds the common and uncommon substring we can not get the perfect
similarity. So we have to implement the Jaro Distance as a improvement for the result.

7.1 Future Expansion

In future we plan to implement semantic matching and string matching in Bangla language.
It would be a great challenge as there is no WordNet Database on Bangla and Bangla lan-
guage has far different grammatical structure than English.

33

7.2 Conclusion

Our thesis experiment was based on similarity features between two words. To achieve
it we implemented semantic and string matching between the words. Semantic matching
occupies a vast sector of matching algorithms, we just gained partial knowledge on this
topic. String matching is another similarity that we have implemented for our thesis. It also
uses Jaro Winkler Distance for improvement of the result. We achieved the value for both
the similarities between two words in our thesis. This enabled us to find how two words
have different similarities based on String Matching and Semantic Matching.

34

REFERENCES

[1] F. Giunchiglia and P. Shvaiko, “Semantic matching,” Knowledge Eng. Review, vol. 18,
no. 3, pp. 265–280, 2003.

[2] http://wordnet.princeton.edu/.

[3] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic schema matching,”
the VLDB Journal, vol. 10, no. 4, pp. 334–350, 2001.

[4] A. Doan, J. Madhavan, P. Domingos, and A. Halevy, “Learning to map between on-
tologies on the semantic web,” in Proeceedings of the 11th International Conference

on World Wide Web, pp. 662–673, 2002.

[5] N. F. Noy and M. A. Musen, “Anchor-prompt: Using non-local context for semantic
matching,” in Proceedings of the workshop on ontologies and information sharing at

the international joint conference on artificial intelligence (IJCAI), pp. 63–70, 2001.

[6] F. Giunchiglia, P. Shvaiko, and M. Yatskevich, S-Match: an algorithm and an imple-

mentation of semantic matching. Springer, 2004.

[7] H.-H. Do and E. Rahm, “Coma: a system for flexible combination of schema matching
approaches,” in Proceedings of the 28th international conference on Very Large Data

Bases, pp. 610–621, VLDB Endowment, 2002.

[8] P. A. Bernstein, J. Madhavan, and E. Rahm, “Generic schema matching, ten years
later,” Proceedings of the VLDB Endowment, vol. 4, no. 11, pp. 695–701, 2011.

[9] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: A versatile graph
matching algorithm and ist application to schema matching,” in Proc. 18th ICDE, (San
Jose, CA), Feb. 2002.

[10] http://www.sat4j.org/.

[11] S. Bergamaschi, S. Castano, and M. Vincini, “Semantic integration of semistructured
and structured data sources,” SIGMOD Record (ACM Special Interest Group on Man-

agement of Data), vol. 28, no. 1, pp. 54–??, 1999. Special section on semantic inter-
operability in global information systems.

[12] E. Rahm and P. Bernstein, “A survey of approaches to automatic schema matching,”
2001.

35

http://wordnet.princeton.edu/
http://www.sat4j.org/

[13] P. Shvaiko and J. Euzenat, “A survey of schema-based matching approaches,”
vol. 3730, pp. 146–171, 2005.

[14] G. A. Miller, “WordNet: A lexical database for English,” Communications of the ACM,
vol. 38, pp. 39–41, Nov. 1995.

[15] http://en.wikipedia.org/wiki/String_metric/.

[16] W. E. Winkler, “The state of record linkage and current research problems,” in Statis-

tical Research Division, US Census Bureau, Citeseer, 1999.

[17] A. E. Monge, C. Elkan, et al., “The field matching problem: Algorithms and applica-
tions.,” in KDD, pp. 267–270, 1996.

[18] S. Tejada, C. A. Knoblock, and S. Minton, “Learning object identification rules for
information integration,” Information Systems, vol. 26, no. 8, pp. 607–633, 2001.

[19] T. F. Smith and M. S. Waterman, “Identification of common molecular subsequences,”
Journal of molecular biology, vol. 147, no. 1, pp. 195–197, 1981.

[20] D. Ngo, Z. Bellahsene, and K. Todorov, “Opening the black box of ontology match-
ing,” in The Semantic Web: Semantics and Big Data, pp. 16–30, Springer, 2013.

[21] G. Stoilos, G. Stamou, and S. Kollias, “A string metric for ontology alignment,” in The

Semantic Web–ISWC 2005, pp. 624–637, Springer, 2005.

[22] J. Euzenat, T. Le Bach, J. Barrasa, P. Bouquet, J. De Bo, R. Dieng-Kuntz, M. Ehrig,
M. Hauswirth, M. Jarrar, R. Lara, et al., “State of the art on ontology alignment,”
Knowledge Web Deliverable D, vol. 2, pp. 2–3, 2004.

[23] L. Branting, “A comparative evaluation of name-matching algorithms,” p. 224232,
ACM, 2003.

[24] W. Cohen, P. Ravikumar, and S. Fienberg, “A comparison of string metrics for match-
ing names and records,” in KDD Workshop on Data Cleaning and Object Consolida-

tion, vol. 3, pp. 73–78, 2003.

[25] M. Cheatham and P. Hitzler, “String similarity metrics for ontology alignment,” in The

Semantic Web–ISWC 2013, pp. 294–309, Springer, 2013.

[26] A. G. Valarakos, G. Paliouras, V. Karkaletsis, and G. Vouros, “A name-matching algo-
rithm for supporting ontology enrichment,” in Methods and Applications of Artificial

Intelligence, pp. 381–389, Springer, 2004.

[27] Lin and Dekang, “An information-theoretic definition of similarity,” in ICML, vol. 98,
pp. 296–304, 1998.

36

http://en.wikipedia.org/wiki/String_metric/

[28] A. Maedche and S. Staab, “Measuring similarity between ontologies,” in Knowledge

engineering and knowledge management: Ontologies and the semantic web, pp. 251–
263, Springer, 2002.

[29] M. Ehrig and Y. Sure, “Ontology mapping–an integrated approach,” in The Semantic

Web: Research and Applications, pp. 76–91, Springer, 2004.

[30] H. Hamacher, H. Leberling, and H.-J. Zimmermann, “Sensitivity analysis in fuzzy
linear programming,” Fuzzy sets and systems, vol. 1, no. 4, pp. 269–281, 1978.

37

APPENDIX A
CODES

A.1 Codes

Here are the codes that are implemented in our work.

A.1.1 Semantic Matching

We use this code to find out the Semantic Matching. . .

1 from nltk.corpus import wordnet as wn

2 import re

3 print(’Enter first Word’)

4 word1=input()

5 print(’Enter 2nd Word’)

6 word2=input()

7 str1=wn.synsets(word1)

8 str2=wn.synsets(word2)

9 print(’The SYNSETS OF’,word1)

10 print(str1)

11 print(’The SYNSETS OF’,word2)

12 print(str2)

13 print(len(str1))

14 print(len(str2))

15 x=’nothing’

16 y=’nothing’

17 for a in str1:

18 if a in str2:

19 x=a

20 else:

21 y=a

22 print(’Matches are:’,x)

38

A.1.2 String Matching

We use this code to find out the String Matching. . .

1 import jellyfish

2

3 print(’Enter first Word’)

4 word1=input()

5 print(’Enter second Word’)

6 word2=input()

7 print (’Give the value of P’)

8 p1=input()

9 p=float(p1)

10 len1=len(word1)

11 len2=len(word2)

12 answer=""

13 for i in range(len1):

14 for j in range(len2):

15 if(i==j and word1[i]==word2[j]):

16 answer=answer+word1[i]

17

18 commonlength=len(answer)

19 unmatch1=len1-commonlength

20 unmatch2=len2-commonlength

21 comm=(2*commonlength)/(len1+len2)

22 difference=(unmatch1*unmatch2)/(p+(p-1)*(unmatch1+unmatch2-(unmatch1*unmatch2)))

23 jarodistance=jellyfish.jaro_distance(word1,word2)

24 result=comm-difference+jarodistance

25 print(result)

39

	CERTIFICATION
	CANDIDATES' DECLARATION
	ACKNOWLEDGEMENT
	ABSTRACT
	List of Figures
	List of Tables
	List of Abbreviation
	List of Symbols
	Introduction
	General Overview
	Preview on Methodology
	A Glance at the Chapters

	Background Study
	Ontology
	Ontology Matching
	WordNet

	Semantic Matching
	Related Study
	Motivating Scenario
	Element Level Semantic Matching
	Knowledge Based Matchers

	String Metric Based Similarity
	Related Study
	Set, Global, Perfect-sequence
	Set, Global, Imperfect-sequence
	Set, Local, Perfect-sequence
	Set, Local, Imperfect-sequence
	Non-set, Global, Perfect-sequence
	Non-set, Global, Imperfect-sequence
	Non–set, Local, Perfect-sequence
	Non-set, Local, Imperfect-sequence
	Syntactic
	Semantic

	Desired Properties
	Jaro Winkler Distance

	Methodology
	Semantic Similarity Measurement
	String Metric Measurements

	Experiments And Results
	Semantic Similarity
	Code Analysis
	Experiment-1
	Experiment-2

	String Metric Similarity
	Code Analysis
	Experiment 1
	Experiment 2

	Discussion
	Future Expansion
	Conclusion

	References
	Codes
	Codes
	Semantic Matching
	String Matching

