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ABSTRACT

Mobility of Internet hosts allows computing nodes to move between subnets. In order to

provide seamless connectivity to the roaming users several mobility protocols have been

developed at different layers. Mobile IP has been developed to handle mobility of Internet

hosts at the network layer. Transport layer mobility can overcome many of the limitations

of network layer schemes. Various approaches have been proposed to implement mobility

in the transport layer. In this thesis, we discuss a number of transport layer mobility pro-

tocols, classify them according to their approach, and compare them based on a number of

evaluation criteria. The components of a complete mobility management scheme consist

of handoff, connection migration, and location management. Evaluation criteria have been

developed to determine and compare the effectiveness of mobility schemes. The criteria

include handoff, packet loss and delay, fault tolerance, requirement for change in network

infrastructure, mobility type, support for IP diversity, security, scalability, etc. In this thesis,

we use the above criteria to classify the proposed mobility schemes.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The Internet is based on five layer architecture: physical, data link, network, transport and

application layers, with each layer having specific responsibilities. Since mobility can be

managed at different layers, a natural question to answer is the layer at which mobility

should be managed. Several works have done on weakness and strengths of mobility man-

agement at the different layers. Mobility can be handled at different layers of the protocol

stack, with network and transport layer mobility being the most widely studied. Transport

layer mobility can overcome many of the limitations of network layer schemes like Mobile

IP.

1.2 Overview

Mobile nodes of the future will be equipped with multiple network interfaces to take ad-

vantage of overlay networks, yet no current mobility systems provide full support for the

simultaneous use of multiple interfaces. The need for such support arises when multiple

connectivity options are available with different cost, coverage, latency and bandwidth char-

acteristics, and applications want their data to flow over the interface that best matches the

characteristics of the data. We present an architecture called Transport Layer Mobility that

allows mobile nodes to not only change their point of attachment to the Internet, but also to

control which network interfaces are used for the different kinds of data leaving from and

arriving at the mobile node.

The Internet was originally designed for static hosts connected through wired networks. Pro-

liferation of wireless net works has given rise to an increasing demand for mobility of hosts,
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resulting in various mobility management schemes. Mobility management consists of two

fundamental operations Handoff and Location Management. Handoff occurs when a mobile

device changes its point of attachment while still communicating with its peer. Handoff can

be implemented a Location management refers to the task of locating (finding the IP ad-

dress) a Mobile Host (MH) in order to initiate and establish a connection by a node. A good

location management scheme should provide a valid address of the MH, and be transparent

to its peers.

1.2.1 Different transport layer protocols

There are many transport layer mobility protocols with different criteria. While Mobile IP

is a network layer scheme which makes mobility transparent to upper layers by increas-

ing the burden and responsibility of the Internet infrastructure, transport layer schemes are

based on an end-to-end approach to mobility that attempt to keep the Internet infrastructure

unchanged by allowing the end hosts to take care of mobility. MSOCKS[?], SIGMA[?],

RCP[?], Freeze-TCP[?], R2CP, MMSP, I-TCP, M-TCP, M-UDP, BARWAN, TCP-R, mSCTP[?]

etc are the different mobility protocols of transport layer.

1.2.2 Comparison Criteria

Handoff, connection migration, and location management are the main fundamentals of a

complete mobility management scheme. Evaluation criteria have to be developed to deter-

mine and compare the effectiveness of mobility schemes. In this paper, we use handoff,

packet loss and delay, fault tolerance, requirement for change in network infrastructure,

mobility type, support for IP diversity, security, scalability, etc. to classify the proposed

mobility schemes.
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CHAPTER 2

LITERATURE BACKGROUND

The proliferation of laptops, hand-held computers, cellular phones, and other mobile com-

puting platforms connected to the Internet has triggered much research on mobility support

in IP networks. Modern mobile terminals are likely to be equipped with wireless communi-

cation devices allowing them to constantly reach the Internet and participate in it as normal

end systems would. A mobile terminal, however, represents an ill fit with the traditional

assumptions upon which the IP protocols is based: a classic end system does not move and

has only a single point of attachment to the network. For such an end system, a single han-

dle is sufficient to represent both the identity of a terminal as well as its location within the

network; the IP address is this very handle. Such a permanent handle is not appropriate

in mobile networks. On one hand, an identifier is necessary to distinguish among different

terminals; on the other hand, information about the current location within a network has

to be provided to ensure that packets destined to a certain terminal can still be routed to-

wards this terminal. The fundamental mobility problem in IP-based networks is therefore

the separation of identity and location.

The problem of mobility in IP[?] networks has traditionally been solved at the network layer.

Now it is solved at the transport layer in an end-to-end fashion. Implementing this concept

requires changes to existing transport layers. In previous work, TCP has been modified to

support such an end-to-end mobility concept. While TCP is indeed the most often used

transport protocol in the Internet, it might not be the perfect platform to experiment with

unconventional ways of supporting mobility. The Internet is based on five layer architec-

ture: physical, data link, network, transport and application layers, with each layer having

specific responsibilities. Since mobility can be managed at different layers, but for handle

in efficient way transport layer introduces some important TCP schemes. Here, efficiency

needs for some important issues like, Packet loss and latency, congestion control, connection

3



migration, infrastructure, location management etc. The schemes for mobility management

under transport layer are:

• MSOCKS

• SIGMA

• Migrate TCP

• Freeze TCP

• RCP

• R2CP

Some other schemes also entrusted. Our main task is to compare the six protocols which

are mentioned. We compare the protocols on basically some important criteria handoff

process, transparency, loss or delay, scalability and fault tolerance, security, path diversity,

infrastructure change etc.

MSOCKS uses TCP Splice for connection migration and supports multiple IP addresses

for multiple interfaces. When an MH disconnects itself from a subnet during handoff, it

obtains a new IP address from the new subnet using DHCP, and establishes a new connection

with the proxy using its second interface. The communication between proxy and CN,

however, remains unchanged. The data flow between MH and CN thus continues, with the

CN being unaware of the mobility. So, its achievement are mobile node has freedom to

send and receive from network interface of its choice and preservation of TCPs end-to-end

reliability and correctness. So, MSOCKS provides applications with different control over

their sessions.

SIGMA is a complete mobility management scheme of seamless IP diversity implemented

at the transport layer, and can be used with any transport protocol that supports IP diversity.

MSOCKS implement mobility as an end-to-end service without the requirement to change

the network layer infrastructures; they, however, do not aim to reduce the high latency and

packet loss resulting from handovers. High latency and packet loss control is the significance

of SIGMA. MH moves into the overlapping region of two neighboring subnets, it obtains a

4



new IP address from the new subnet while still having the old one as its primary address.

When the received signal at the MH from the old subnet goes below a certain threshold,

the MH changes its primary address to the new one. When it leaves the overlapping area,

it releases the old address and continues communicating with the new address. Location

management in SIGMA is done using DNS as almost every Internet connection starts with

a name lookup. Whenever an MH changes its address, the DNS entry is updated so that

subsequent requests can be served with the new IP address.

Migrate TCP (M-TCP) is a transparent mobility management scheme which is based on

connection migration and uses DNS for location management. In Migrate TCP, when an MH

initiates a connection with a CN, the end nodes exchange a token to identify the particular

connection. A hard handoff takes place when the MH reestablishes a previously established

connection using the token, followed by migration of the connection. Similar to SIGMA[?],

this scheme proposes to use DNS for location management. The main achievement of M-

TCP is service continuity. The basic application of M-TCP is for long lived connections

like multimedia streaming services or videos, end users expect both correctness and good

response time like, Internet banking, e-commerce etc.

Freeze-TCP mechanism which is a true end-to-end scheme and does not require the in-

volvement of any intermediaries (such as base stations) for flow control. Furthermore, this

scheme does not require any changes on the “sender side”or intermediate routers; changes

in TCP code are restricted to the mobile client side, making it possible to fully inter-operate

with the existing infrastructure. Freeze-TCP lets the MH ‘freeze’or stops an existing TCP

connection during handoff by advertising a zero window size to the CN, and unfreezes the

connection after handoff. This scheme reduces packet losses during handoff at the cost of

higher delay.

RCP (Reception Control Protocol) is a receiver-centric transport protocol that is a TCP

clone in its general behavior, but allows for better congestion control, loss recovery, and

power management mechanisms compared to sender-centric approaches. In RCP, since the

control of data transfer is shifted from the sender to the receiver, the DATA-ACK style of

handshaking in TCP is no longer applicable. Instead, to mimic the self clocking charac-

teristics of TCP, RCP uses the REQ-DATA handshake for data transfer, where any data

transferred from the sender is preceded with an explicit request (REQ) from the receiver.

5



So, the achievement are receiver has full control on data and any loss recovery mechanism

can be used that optimizes the wireless environment.

R2CP (Radial Reception Control Protocol) is based on Reception Control Protocol, a TCP

clone in its general behavior but moves the congestion control and reliability issues from

sender to receiver on the assumption that the MH is the receiver and should be responsible

for the network parameters. R2CP has some added features over RCP like the support of

accessing heterogeneous wireless connections and IP diversity that enables a soft handoff

and bandwidth aggregation using multiple interfaces. A location management scheme might

be integrated with R2CP to deploy a complete scheme. R2CP maintains the four key data

structures for performing effective packet scheduling like, binding, pending, rank and active.

The achievements are seamless handoffs between interfaces, server migration, bandwidth

aggregation etc.

There are more other protocol schemes of mobility management. For example, MMSP,

I-TCP, mSCTP, M-UDP, BARWAN etc.

MMSP (Mobile Multimedia Streaming Protocol) supports transparent soft handoff through

IP diversity and uses bicasting to prevent losses during the handoff period. This protocol

uses Forward Error Correction (FEC) and fragmentation to mitigate wireless errors and does

not include location management.

I-TCP (Indirect TCP) is a mobility scheme that requires a gateway between the communica-

tion path of the CN and MH to enable mobility. In this scheme, a TCP connection between

CN and gateway and a I-TCP connection between the gateway and MH is established to pro-

vide CN to MH communication. The TCP portion remains unchanged during the lifetime

of the communication and remains unaware of the mobility of MH. In the I-TCP portion,

when the MH moves from one subnet to another one, a new connection between MH and the

gateway is established and the old one is replaced by the new one. Location management is

not included in this scheme.

mSCTP (Mobile SCTP) supports IP diversity and soft handoff. The handoff is similar to

the one of SIGMA. mSCTP[?] can maintain application transparency but it does not support

location management. M-UDP (Mobile UDP) is an implementation of UDP protocol with

6



mobility support similar to I-TCP and M-TCP. Like M-TCP, M-UDP uses a gateway to split

the connections between MH and CN to ensure one unbroken gateway to CN connection and

continuously changing MN to gateway connection. This also does not include IP diversity

or location management.

BARWAN (The Bay Area Research Wireless Access Network) is a solution to heteroge-

neous wireless overlay network. It has a gateway centric architecture on an assumption that

the wireless networks are built around the gateways. Diverse overlapping networks are in-

tegrated through software that operates between the MH and the network. This supports the

MH to move among multiple wireless networks. BARWAN requires the application to be

aware of mobility as the decision to make a handoff is taken by the application. This scheme

does not specify a location manager.
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CHAPTER 3

TRANSPORT LAYER MOBILITY PROTOCOLS

3.1 Introduction

In this chapter, we will discuss about six transport layer mobility protocols: MSOCKS,

SIGMA, RCP, R2CP, Freeze TCP, Migrate TCP.

3.2 MSOCKS

MSOCKS is built around a proxy that is inserted into the communication path between a

mobile node and its correspondent hosts. For each data stream from a mobile node to a cor-

respondent host, the proxy is able to maintain one stable data stream to the correspondent

host, isolating the correspondent host from any mobility issues. Meanwhile the proxy can

simultaneously make and break connections to the mobile node as needed to migrate data

streams between network interfaces or subnets. The proxy can then mediate the commu-

nication between server and client, and provide services on behalf of either. Proxies can:

Figure 3.1: Common network topology showing the location of a proxy between the mobile

node and correspondent host.
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provide processing resources the client may not have; reformat information from the server

to fit the mobile node, such as resizing GIF images for small screens; or use compression

to reduce the bandwidth required between the mobile node and proxy, which is frequently a

low quality link. In one word, MSOCKS is a flexible system that mobile nodes can continue

connections between different interfaces.

3.2.1 MSOCKS Architecture

MSOCKS, is built around a technique we call TCP Splice. TCP Splice allows the machine

where two independent TCP connections terminate to splice the two connections together,

effectively forming a single end-to-end TCP connection between the endpoints of the two

original connections. MSOCKS architecture consists of three pieces: a user level MSOCKS

proxy process running on a proxy machine; an in-kernel modification on the proxy machine

to provide the TCP Splice service; and a MSOCKS library that runs under the application

of the mobile node.

Figure 3.2: Parts shown in green are where MSOCKS alterations are made to the standard

parts of proxy based client-server system.
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3.2.2 MSOCKS Protocol

Connection establishment

Figure 3.3 shows the packets exchanged when an MSOCKS client application connects

to a server on a correspondent host. The applications connect() call is intercepted by the

MSOCKS library and turned into a call to Mconnect(). Mconnect first uses the mobile

nodes normal TCP stack to make a connection to the proxy, using whatever addresses are

appropriate to the data the connection will carry. Over this connection, the library sends

the proxy the servers address and port number that the application gave as arguments to

Mconnect() along with any authentication information the proxy requires.

Figure 3.3: Connection establishment between a MSOCK client and a corresponding host

via a MSOCK Proxy.

The splicing technique supports an arbitrary authentication negotiation with packets sent

both from and to the proxy, After authenticating the mobile node, the proxy connects to

the desired serve and then splices the mobile-proxy and proxy-server connection together.

When the splice is set up, the proxy transmits a final OK message to the mobile node to

synchronize the MSOCKS library. The OK message contains the connection identifier of

the proxy has assigned to this session for use should the mobile node later want to reconnect

it.

Mobile node reconnection

The splicing technique allows us to perform reconnections even when there is data in flight

between correspondent host and mobile node, or when there is no warning the mobile node

will need to change addresses, such as during hard hand-offs. Without care, these packets in

flight may be lost or duplicated; the MSOCKS RECONNECT protocol together with TCP

10



Splice ensures that the end-to-end reliable, in-sequence semantics of TCP are maintained.

Figure 3.4 shows the packets exchanged when a connection between a mobile node and

proxy breaks for some reason (e.g., the mobile node moves and obtains a new IP address, or

it wishes to switch the session from one network interface to another). After the connection

to the proxy is broken, the MSOCKS library opens a new socket, labeled E in the figure,

and connects to the proxy using it. The MSOCKS library transmits a reconnect message to

Figure 3.4: Packet exchange datagram for a mobile node reconnecting to an existing con-

nection.

the proxy giving the connection identifier of the old connection to the server, along with a

data-read counter, telling the proxy how many bytes of data the application has read from

the connection, and a data-written counter, telling the proxy how many bytes of data the

application has written to the connection. The proxy then splices the new connection to

the proxy-server connection in place of the old mobile-proxy connection and closes the old

connection. Once the splice is setup, the proxy sends an OK message to the MSOCKS

library, along with data write and data salvage counters directing the MSOCKS library how

to complete the splice at the mobile node’s end. The application and server are completely

unaware the switch has happened.
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3.2.3 Performance

In addition to supporting many connections, an ideal MSOCKS proxy would add minimal

latency to the path of packets traveling to or from mobile nodes.

Figure 3.5: Comparison of the latency of IP forwarding with the latency of TCP Splice

forwarding

Another issue of concern is how quickly MSOCKS will be able to reconnect TCP connec-

tions after the decision to reroute a connection has been made. The time taken by the proxy

to resplice two connections is insignificant. The greatest latency in reconnection results from

the time required to establish the new TCP connection and transmit the RECONNECT mes-

sage, which in turn depends critically on the roundtrip time (RTT) of the particular network

technology being switched to. A protocol level analysis shows the greatest rate at which a

mobile node can reasonably reconnect TCP sessions is limited to once per 2.5 round trip

times: 1.5 RTT for the connection establishment, and 0.5 for transmission of the RECON-

NECT OK message, and 0.5 RTT for the data.

Figure 3.5 compares the latency seen by packets in a TCP connection routed via IP forward-

ing through our test machine with the latency seen by packets in a TCP connection spliced

at our test machine. The X-axis in the figure is the sequence number of the packet. The data

from a larger run is summarized in table 3.1
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Table 3.1: Summary of forwarding latencies created bt TCP Splice And IP Routing

Criteria mean(msecs) median(msecs)

IP Forwrding 0.4038 0.0960

TCP Splice Forwarding 0.4444 0.1120

3.3 SIGMA

SIGMA stands for Seamless IP diversity based Generalized Mobility Architecture. SIGMA[?]

provides seamless handover for mobile hosts and is based on SCTP, which is a new reliable

transport protocol introduced by IETF to transport SS7 signaling messages over IP network.

It can greatly reduce the handover latency, packet loss, signaling costs and improve the

whole systems throughput compared to the popular Mobile IP[?] based handover schemes.

3.3.1 Motivation of SIGMA

Other transport layer mobility protocols implement mobility as an end-to-end service with-

out the requirement to change the network layer infrastructures; many transport layer pro-

tocols do not aim to reduce the high latency and packet loss resulting from handovers. But

Sigma deals with high latency and packet loss. Seamless means low latency and low packet

loss. The basic idea of SIGMA is to decouple location management from data transfer, and

achieve seamless handover by exploiting IP diversity to keep the old path alive during the

process of setting up the new path during handover.

3.3.2 Detailed Handover Procedure of SIGMA

STEP 1: Obtain new IP address

Refer to Figure 3.6 as an example, the handover preparation procedure begins when MH

moves into the overlapping radio coverage area of two adjacent subnets. Once the MH

receives the router advertisement from the new access router (AR2), it should begin to obtain

a new IP address (IP2 in Figure 3.6). This can be accomplished through several methods:

DHCP, DHCPv6, or IPv6 stateless address auto-configuration (SAA).
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Figure 3.6: An SCTP association with multi-homed mobile host

STEP 2: Add IP addresses into the association

After the MH obtained the IP address IP2 by STEP 1, MH should notify CN about the avail-

ability of the new IP address through SCTP Address Dynamic Reconfiguration option. This

option defines two new chunk types (ASCONF andASCONF-ACK) and several parameter

types (Add IP Address,Delete IP address, and Set Primary Address etc.).

STEP 3: Redirect data packets to new IP address

When MH moves further into the coverage area of wireless access network2, CN can redi-

rect data traffic to new IP address IP2 to increase the possibility that data can be delivered

successfully to the MH. This task can be accomplished by sending an ASCONF from MH

to CN, through which CN set its primary destination address to MHs IP2.

STEP 4: Update location manager (LM)

SIGMA supports location management by employing a location manager which maintains a

database recording the correspondence between MHs identity and MHs current primary IP

address. MH can use any unique information as its identity such as home address like MIP,

or domain name, or a public key defined in Public Key Infrastructure(PKI). We can observe

an important difference between SIGMA and MIP: the location management and data traffic

forwarding functions are coupled together in MIP[?], while in SIGMA they are decoupled

to speedup handover and make the deployment more flexible.

14



STEP 5: Delete or deactivate obsolete IP address

When MH moves out of the coverage of wireless access network1, no new or retransmitted

data should be directed to address IP1. In SIGMA, MH notifies CN that IP1 is out of service

for data transmission by sending an ASCONF chunk to CN to delete IP1 from CNs available

destination IP list. A less aggressive way to prevent CN from sending data to IP1 is MH

advertising a zero receiver window (corresponding to IP1) to CN. By deactivating, instead

of deleting, the IP address,SIGMA can adapt more gracefully to MHs zigzag movement

patterns and reuse the previously obtained IP address (IP1) as long as the IP1s lifetime is

not expired. This will reduce the latency and signalling traffic caused by obtaining a new IP

address.

3.3.3 Timing Diagram

Figure 3.7 summarizes the signaling sequences involved in SIGMA. Here we assume IPv6

Figure 3.7: Timing Diagram of Sigma

SAA is used by MH to get new IP address. It should be noted that before the old IP is

deleted at CN, it can always receive data packets (not shown in the figure) in parallel with

the exchange of signaling packets.

15



3.4 Receiption Control Protocol

RCP moves the responsibility for performing reliability and congestion control from the

sender to the receiver. Receiver-centric transport protocol called RCP (Reception Control

Protocol) that is a TCP clone in its general behavior, but allows for better congestion control,

loss recovery, and power management mechanisms compared to sender-centric approaches.

More importantly, in the context of recent trends where mobile hosts are increasingly being

equipped with multiple interfaces providing access to heterogeneous wireless networks, we

show that a receiver-centric protocol such as RCP can enable a powerful and comprehensive

transport layer solution for such multi-homed hosts. We evaluate RCP both to demonstrate

its TCP-friendliness, and to highlight its unique benefits when compared to sender-centric

transport protocols.

3.4.1 Transposition of Functionalities

TCP is a connection-oriented transport layer protocol that provides reliable in sequence data

delivery to the application. Its protocol operation mainly consists of the following four

functionalities: connection management, flow control, congestion control, and reliability.

Figure 3.8 shows a schematic view of the sender receiver interaction in TCP, along with

several state variables.

Figure 3.8: TCP sender centric
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The connection management is required by any connection-oriented protocol to synchronize

connection states between the communicating peers. After the connection is established, the

sender in TCP controls the progress of data transfer. The sender drains data from its buffer

based on the amount of data that the receiver can accept (flow control), and the amount of

data that the network can sustain (congestion control). The receiver performs resequencing

and acknowledges data received. Reliable data transfer is achieved through loss detection

and loss recovery performed at the sender. It is clear that the connection management cannot

be implemented only at one side of the connection, but needs participation of both the sender

and the receiver. For the other functionalities, while TCP uses a sender-centric approach,

RCP delegates the responsibility to the receiver as shown in Figure 3.9

Figure 3.9: TCP receiver centric

While the receiver in TCP merely sends back ACKs with no control over which and in

what sequence data is transmitted by the sender, in RCP the receiver explicitly controls

these factors and the reliable delivery of data. Moreover, the RCP receiver also assumes

total control over the bandwidth the connection can consume, using the same window based

algorithm employed by the TCP sender. Finally, although flow control in TCP involves

the sender, it is performed solely by the receiver in RCP. Therefore, the receiver in RCP

determines how much data the sender can send (via congestion control and flow control),

and which data the sender should send (via reliability).
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3.4.2 Overview of RCP

In RCP, since the control of data transfer is shifted from the sender to the receiver, the

DATA-ACK style of handshaking in TCP is no longer applicable. Instead, to mimic the

self-clocking characteristics of TCP, RCP uses the REQ-DATA handshake for data trans-

fer, where any data transferred from the sender is preceded with an explicit request (REQ)

from the receiver. Equivalently, RCP uses the incoming data to clock the request for new

data. The sender simply maintains the send buffer with one pointer (SND.NXT) indicating

the maximum sequence number sent thus far. After the connection is established, the re-

ceiver requests data from the sender based on the size of the initial congestion window. The

progression of its congestion window follows the slow start, congestion avoidance, fast re-

transmit, and fast recovery phases just like in TCP. The key difference in the operation is that

any trigger for performing congestion control is inferred based on the arrival (or non-arrival)

of data segments. For example, a loss is inferred upon the arrivals of three out-of-order data

segments instead of ACKs. Upon detection of a segment loss, RCP cuts down its congestion

window, and retransmits the corresponding REQ asking for the lost segment. Finally, the

receiver performs data resequencing, and gives in-sequence data to the application.

3.4.3 REQ-DATA Handshake

In the DATA-ACK handshake, TCP uses the cumulative acknowledgment for achieving ro-

bustness to losses. To emulate this behavior and tolerate loss in the reverse path, RCP allows

the receiver to send request either in a cumulative mode or in a pull mode, by appropriately

setting the pull flag (PUL) in the packet header. The receiver by default uses the cumu-

lative mode to requests for new data, and uses the pull mode only for retransmission of

requests. When the sender receives a request with the pull flag set, it sends only the data

segment indicated in the packet header. Otherwise, the sender cumulatively transmits data

from SND.NXT that has not been sent yet. Hence, the loss of REQ in cumulative mode has

similar impact to that of ACK loss in TCP. To protect REQ in the pull mode from losses,

RCP also uses a similar mechanism used by TCP for protecting SACK from losses. The

receiver puts the most recent blocks of sequence numbers (we use three blocks as proposed

in the SACK) it requested in the REQ header. The sender, in addition to maintaining the

18



Figure 3.10: Transposition of TCP

send buffer, also maintains a cyclic buffer consisting of the most recent blocks of sequence

numbers (three blocks) it sent out. Upon receiving the request from the receiver, the sender

checks the consistency between the blocks in REQ and its cyclic buffer. Any mismatch is

an indication of REQ losses, and will be recovered by the sender. Note that a request in the

pull mode for a specific data segment will be carried in at least four REQs.

3.4.4 Connection Management

Just like in TCP, either the RCP sender or the receiver can initiate the connection setup. The

setup process consists of the same SYN-SYN+ACK-ACK handshake as in TCP. However,

once the connection is established, instead of the sender sending the first data segment, the

RCP receiver transmits the first REQ with the initial sequence number. The sender then

transmits the first data segment upon receiving the REQ. The connection teardown in RCP

also follows that in TCP.

3.4.5 Congestion Control

In RCP, the receiver performs congestion control and maintains the congestion control pa-

rameters including the congestion window CWND and round-trip time information. Since

RCP is a TCP clone, it adopts the window based congestion control used in TCP. The slow
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start, congestion avoidance, fast retransmits and fast recovery phases are triggered and ex-

ited in the same fashion as in TCP. While the same window adaptation algorithm (additive

increase, multiplicative decrease) can be implemented either at the sender or at the receiver

for performing congestion control, the semantics of the congestion window and the trigger

for window increase or cut down are different. In TCP, the size of the congestion window

limits the amount of unacknowledged DATA in the network, and the sender uses the return

of ACKs to trigger the progression of the congestion window. In RCP, the size of the con-

gestion window limits the amount of outstanding REQs in the network, and the receiver uses

the return of DATA to trigger the progression of the congestion window.

3.4.6 Flow Control

Flow control allows the receiver to limit the amount of in-transit data to the available buffer

space at the receiverwhen waiting for the application to read (and purge) in-sequence data,

or waiting for the arrivals of out-of-order data. In RCP, a request is sent out only if the

corresponding data, once received, does not cause buffer overflow at the receiver. This can

be achieved by creating a dummy (that does not contain any data) in the receive buffer for

each data segment requested. New requests are issued as long as new space is created in

the buffer. Unlike TCP in RCP, since the receiver maintains the receive buffer, and has total

control over how much data the sender can send, flow control is internal to the receiver.

Interestingly, RCP also needs a window field (SEG.DEQ) in the packet header to inform

the sender of the highest in-sequence data received so far (which can be calculated at the

sender using SEG.REQ-SEG.DEQ), thus allowing the sender to purge such data from its

send buffer. The window scale option used in TCP can also be applied to RCP in the same

fashion.

3.4.7 Reliability

As Figure 3.9 shows, in RCP the resequencing and reliability functionalities are collocated at

the receiver. Upon receiving a data segment from the sender, the receiver enqueues the data

in the corresponding dummy and updates RCV.NXT after the resequencing process. In TCP,

since reliability is performed at the sender while resequencing is performed at the receiver,
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RCV.NXT is conveyed as the cumulative ACK to the sender for it to perform loss detection.

However, RCV.NXT conveys limited information about the state of the receive buffer, and

hence early implementations of TCP that rely on the cumulative ACK for performing loss

detection, suffer from recovering at most one loss per round-trip time, in addition to incur-

ring frequent timeouts . The SACK option is proposed to address this limitation, using which

the TCP sender aims to construct the bitmap of the receive buffer in the “scoreboard”data

structure. However, in RCP the receiver has direct access to the receive buffer, and hence it

can timely and accurately perform loss detection and loss recovery without relying on the

use of SACK.

3.4.8 Supporting Heterogeneous Interfaces

Seamless Handoffs

When the coverage areas of different access technologies overlap, it is possible to achieve

seamless handoffs at the link layer. However, such link layer handoffs do not necessar-

ily translate into seamless handoffs at the transport layer. Specifically, when mobile host

handoffs from one interface to another with an IP address change handled by Mobile IP,

the prolonged delay for registration with the home agent can potentially introduce packet

losses after the link layer handoff has completed. To prevent TCP from having adverse re-

actions due to packet losses during handoffs, the mobile host needs to inform the sender of

the handoff decision. Whenever feedback information is required, a receiver-centric pro-

tocol has advantages over a sender-centric one due to the locality of information needed.

However, while it is possible to freeze TCP during handoffs such a stall causes connec-

tion disruption and prevents users from enjoying seamless handoffs. One solution to avoid

the handoff latency without relying on infrastructure support is to use a mobility-enabled

transport protocol for achieving end-to-end host mobility. When the mobile host decides to

perform a vertical handoff, it can create a new “data stream”for data transfer through the new

address, as soon as the new interface becomes active. With an approach like the mobile host

can use multiple TCP pipes (streams) simultaneously without experiencing any connection

stall as long as the link layer supports seamless handoffs. A receiver-centric transport proto-

col thus has advantages over a sender-centric one in such a scenario, since the receiver can

accurately control which and how much data to send through each pipe based on the status
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(say, signal strength) of each interface. Moreover, when the receiver decides to switch to an-

other interface specific congestion control mechanism after handoffs, such decision does not

need to involve the sender, which otherwise would be tasked with, in addition to supporting

a plethora of congestion control mechanisms, the seamless transition from one congestion

control mechanism to another for a live connection.

3.5 R2CP

R2CP stands for RADIAL RECEPTION CONTROL PROTOCOL. When a mobile host

handoffs from one interface to another during a live connection, it can benefit from the

following functionalities the transport protocol supports:

1. seamless handoffs without relying on infrastructure support,

2. server migration for achieving service continuity, and

3. bandwidth aggregation using multiple active interfaces.

3.5.1 Receiver-Centric Operation

To achieve optimal performance, a mobile host may need to use network (or interface) spe-

cific congestion control. When the mobile host is equipped with heterogeneous wireless

interfaces, a receiver-centric protocol allows it to freely use the desired congestion control

mechanism depending on the interface it chooses, or the access network it migrates to, with-

out involving the remote server. In addition, during periods of mobility, the mobile host may

need to handoff from one server to another (for service continuity), or change the number

of servers it connects to (for bandwidth aggregation). It is thus advantageous for the mo-

bile host to use a receiver-centric protocol with a simple sender design, allowing the mobile

host to have control over the reliable delivery of data from the sender(s). Being a receiver

a receiver-centric protocol that allows the mobile host to drive the protocol operation such

as congestion control and reliability, hence turns out to be an ideal protocol for the target

environment.
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3.5.2 Maintaining Multiple States

Existing transport protocols suffer from performance degradation during handoffs across

heterogeneous networks due to the prolonged handoff latency Mobile IP introduces. While

end-to-end host mobility without relying on the support from the infrastructure has been

proposed, it does not fully address this problem due to the single-state design in TCP that

maintains only one TCB per connection. When link layer handoffs invalidate the state main-

tained at the transport layer (e.g. due to the change in IP addresses), the transport layer pro-

tocol needs to modify its state accordingly for achieving transport layer mobility. Although

intelligently perform connection migration, it introduces packet losses by overwriting the

old state right after the new one is created. An ideal solution for achieving state migration,

however, should allow the two states to co-exist in the connection for as long as it takes to

handoff the states (considering packets in transit). Therefore, to support transparent host

mobility without infrastructure support, a transport layer protocol should be able to handle

multiple states. We hence build it as a multi-state extension of RCP.

It dynamically creates and deletes RCP states according to the number of active interfaces

in use. It effectively maintains multiple states at the mobile host without requiring explicit

support from the remote server. No change is necessary at the RCP sender to support the

multistate operation at the receiver. Thus, it is different from related approaches that require

changing both ends to support the multi-state operation. Since it is a receiver-only extension

of RCP, it allows the mobile host to establish a multipoint-to-point connection to commu-

nicate with multiple servers, while in related work multiple states are confined to within a

unicast connection.

3.5.3 Overview

Figure 3.11 presents an architectural overview of R2CP and its key data structures. An

R2CP connection consists of one receiver, and one or multiple senders. Different senders

of an R2CP connection can be located at one or multiple hosts. While a unicast R2CP con-

nection is in fact equivalent to an RCP connection, a multipoint-to-point R2CP connection

can be considered as an aggregation of multiple RCP connections whose receiving ends are

coordinated by an R2CP engine at the receiver using the interface functions shown in the
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Figure 3.11: R2CP Architecture

figure. We refer to the virtual connections that exist between the R2CP receiver and individ-

ual senders as RCP pipes, and focus on the receiver for the following discussions. When the

application at the mobile host opens an R2CP connection, initially one RCP pipe is created

between the active interface and the remote server. When the mobile host handoffs from

one interface to another, a new RCP pipe between the newly active interface and the server

is created, after which the old RCP pipe is deleted. However, if bandwidth aggregation is

possible (the old interface remains active after handoffs) and desirable (instructed by the ap-

plication through a socket option), the old pipe is not deleted. If server migration is required

when the mobile host handoffs to the new interface, the new RCP pipe is created between the

newly active interface and the new server. The application can use a socket option to convey

the address of the new server to R2CP. Whenever multiple RCP pipes co-exist in an R2CP

connection, the R2CP engine performs transmission scheduling using the data structures,

to minimize out-of-order arrivals due to data requested through different RCP pipes. Since

multiple RCP pipes collaboratively request data for the same connection, it is possible that

data requested through individual pipes is non-contiguous, depending on the transmission

schedule used by the R2CP engine. Hence, in R2 CP the request is always transmitted in the

pull mode, such that the sender can transmit only the data requested. However, to facilitate

loss detection and loss recovery, at the receiver each RCP pipe internally maintains a local

sequence number space. Since the R2CP engine controls the packet I/O (to and from the IP

layer), it converts the local sequence number used by each RCP pipe to the global sequence

24



number used by the aggregate connection before sending out the packet, and vice versa.

3.5.4 Connection Management

When R2CP creates an RCP pipe, it uses the open() call to make the RCP pipe start the

connection setup procedure. The connection setup procedure for each RCP pipe is same as

RCP connection management. When the RCP pipe is established, it uses the established()

call to notify R2CP. The R2CP connection is established when any of the RCP pipe returns

with the established() call. On the other hand, when R2CP deletes an RCP pipe, it uses the

close() call to make the RCP pipe enter the closing handshake. When all RCP pipes return

with the close() call, the R2CP connection is closed.

3.5.5 Congestion Control

Congestion control in an R2CP connection is performed on a per pipe basis, where each

RCP pipe is responsible for controlling the amount of data transferred through the respective

path. R2CP decides the congestion control mechanism to use for each wireless interface by

opening an appropriate RCP pipe. We assume the choice as to which congestion control

scheme to use for each interface is an external decision, and is provided to R2CP through a

system configuration or a socket option.

3.5.6 Flow Control

Since R2CP has control over the receive buffer, it is responsible for the flow control of

the aggregate connection. R2CP freezes a requesting RCP pipe if it finds that the number of

outstanding data is equal to the available buffer space. It de-freezes concerned pipes through

the resume() call when any space is created in the buffer. The flow control mechanism for

individual RCP pipes will not kick in since they do not deal with the actual data segments.

Note that R2CP is also responsible for appropriately informing the senders about what data

to purge using the SEG.DEQ field in the RCP header.
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3.5.7 Reliability

R2CP is primarily responsible for the reliable data transfer of the aggregate connection. It

achieves this goal by maintaining the binding information for all data segments. Once a

segment is bound to a particular RCP pipe, the concerned pipe will take over the respon-

sibility (since RCP is a reliable protocol). However, note that when an RCP pipe detects a

segment loss and reports to R2CP using the loss() call, R2 CP will unbind the corresponding

data segment, and delegate the reliable transfer of the lost segment to the next available pipe

(according to the rank). While the original RCP pipe will still strive to deliver the same

segment (in terms of the RCP sequence number) via retransmissions, it will be assigned a

different data segment by R2CP

3.5.8 Seamless Handoffs

When mobile hosts handoff between heterogeneous wireless networks, a key challenge in

supporting seamless handoffs is the problem associated with address change and prolonged

registration delay. Conventional approaches for performing vertical handoffs suffer from

connection disruptions due to this problem. The multi-state design in R2CP allows it to

open multiple connections (pipes) associated with the wireless interfaces that become active

during handoffs. By retaining the old connection (for as long as the link layer supports) dur-

ing the initial setup delay of the new connection, the application can continue transmitting

and receiving data from either or both interfaces without being disrupted during handoffs.

When the mobile host handoffs from one access network to another the mobile host is ini-

tially connected to Server-I through network A and hence one RCP pipe (RCP-1) is created

in the R2CP connection. After some time the mobile host decides to handoff to network

B, so a second RCP pipe (RCP-2) is created (using the new network address). However,

RCP-1 is not closed until some more time, and hence during this time two pipes co-exist in

the connection to collaboratively deliver data for the application. Even if there is some setup

or ramp-up (e.g. due to slow start) delay for the RCP-2 pipe, the existence of the RCP-1

pipe allows the aggregate connection to continue progressing without being disrupted. This

is very different from related work that uses a single state transport protocol for handoffs.

Since R2CP is a multi-state transport protocol, it is capable of maintaining multiple (in-
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terface specific) pipes effectively in a connection without suffering from problems due to

packet reordering or duplicates. The redundant striping technique can also be used during

handoffs for achieving better performance.

3.5.9 Server Migration

A key difference between R2CP and other multi-state transport protocols is the ability to

support end-point handoffs in R2CP. By virtue of its receiver-centric design, the sender

does not maintain any hard state (e.g. retransmission timers) of the connection. Since the

mobile host controls which data to receive from the sender, handoffs from one server to

another can be as simple as stop requesting data from the old server, and start from the

new one. Server migration involves interaction between the transport layer and higher layer

protocols. We focus in this section on the ability of R2CP to facilitate server migration

given sufficient support from the higher layers, and hence motivate its use as a valuable and

effective building block for end-to-end mobility support frameworks.

Figure 3.12: R2CP Testbed Scenerio

As Figure 3.12 shows, when the mobile host moves to network B, it has access to a replicated

server (Server-II). The end-to-end path from the mobile host (using interface B) to Server-II

has a shorter round-trip time and a larger bandwidth, and hence the mobile host decides to

perform server migration from Server-I to Server-II. Initially, the R2CP connection creates

an RCP pipe (RCP-1) using network address A and the address of Server-I. When the mobile
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host moves to network B, R2CP creates a new RCP pipe (RCP-3) using network address B

and the address of Server-II. At first mobile host does not perform server migration, and

hence the second RCP pipe created (RCP-2) is between network address B and the address

of Server-I. After the new RCP pipe is established, the mobile host requests data that has not

been delivered by Server-I, instead of requesting from the first byte of the data. Approaches

used for achieving seamless handoffs discussed previously can also be used for achieving

seamless server migration. Based on the content of its receive buffer, R2CP may request

non-contiguous data from Server-II. Hence server migration using R2CP does not cause

redundant transmissions compared to that using only TCP (the TCP sender delivers only

in-sequence data stream). While support for selective pulling of data is provided by some

applications (e.g. HTTP 1.1 Range Requests), it can be achieved in R2CP with no support

from the server side application.

3.5.10 Bandwidth Aggregation

When a mobile host handoffs between heterogeneous wireless networks, it is possible that

the old connection remains active after the handoff is complete. In such a case, it would

be advantageous for the mobile host to achieve aggregate bandwidths by simultaneously

using both interfaces. Since R2CP allows multiple RCP pipes to co-exist in one connection,

and performs effective transmission scheduling for striping across multiple pipes, a mobile

host using R2CP can easily achieve bandwidth aggregation if desired. While bandwidth

aggregation can be achieved between the mobile host and one server (point-to-point), we

consider a scenario where the two pipes connect to different servers (multipoint-to-point).

The mobile host opens the RCP-1/RCP-2 pipe between network address A/B and the address

of Server-I/Server-II respectively. However, instead of closing the RCP-1 pipe after RCP-

2 is established, the mobile host keeps both pipes open during the period it is within the

coverage of both WLANs. R2CP can achieve the aggregate bandwidth of the two pipes. We

now use simulation to evaluate the performance of R2CP in achieving effective bandwidth

aggregation under various network conditions. We use a network topology similar to the

topology. The mobile host opens two pipes to aggregate bandwidths from different servers.

We vary the characteristics of the two paths, in terms of the bandwidth of the bottleneck

link, and the round-trip time of the entire path, to introduce bandwidth mismatches and
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delay mismatches. We also introduce bandwidth fluctuations by using on/off traffic sources.

We compare the performance of R2CP against the following approaches:

1. Ideal: the ideal performance of bandwidth aggregation, where the aggregate band-

width equals the sum of bandwidths along the two pipes;

2. APPS: an application layer striping approach, where the application stripes across

multiple RCP connections without using R2CP;

3. R2CP-s: a simplified version of R2CP, where the data request is assigned to individual

pipes on a first-come-first-served basis without considering the round-trip times.

Figure 3.13: R2 CP Performance

Due to lack of space, we present only a subset of the performance results in Figure 3.13.

In Figure 3.13(a), we vary the bandwidth of the two pipes such that the bandwidth of the

first pipe is fixed at 4Mbps, while that of the second pipe varies from 1Mbps to 6Mbps.

We observe that both R2CP and R2CP-s achieve the ideal performance irrespective of the

bandwidth mismatches. The application striping approach fails to achieve the desired per-

formance for the same reason explained in. In Figure 3.13(b), we vary the roundtrip time of

the two pipes such that the RTT of the first pipe is fixed at 30ms, while that of the second

pipe varies from 30ms to 210ms. We find that while the performance of R2CP still closely

tracks the ideal performance, R2CP. R2CP-s fails to scale when the RTT mismatch increases

beyond 3. The performance degradation of R2CP-s is due to the scheduling used that does
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not take into consideration the round-trip times of different pipes. While an FCFS style

of striping policy works well when the round-trip times of different paths are comparable,

as the RTT mismatches increase, it suffers from frequent out-of-order arrivals. Due to the

limited space in the R2CP receive buffer, head-of-line blocking eventually triggers the flow

control of R2CP and causes the progression of the aggregate connection to stall. We show

in Figure 3.13(c) the percentage of packets that find the buffer 75% full upon arrivals, for

three different striping approaches. The reason for the non-performance of the application

striping approach is clear from the figure. While R2CP-s manages to maintain a small queue

size when the RTT mismatches are small, the queue builds up noticeably as the RTT mis-

matches increase. R2CP, on the other hand, achieves better performance even with large

RTT mismatches.

3.6 FREEZE TCP

With explosive growths in wireless services and their sub-scribers, as well as portable and

affordable computing devices; it is natural that supporting user mobility in the Internet is

a hot and exciting issue that has attracted extensive efforts. the basic mobile IP protocol

is more or less standardized, researchers are beginning to focus on performance enhancing

mechanisms at all layers of the networking stack in order to deliver high performance at the

end-user level.

TCP is a vital component of the Transport layer of the Internet protocol suite. It is intended

to provide connection oriented reliable service over an underlying unreliable network. It is

there-fore not surprising that TCP has received a lot of attention and fairly large number of

researchers have tried to optimize and improve TCP for different environments characterized

by heterogeneous subnetworks with widely different bandwidths and latencies (for instance

TCP over wireless links, satellite links, slow serial links, etc.).

In the following, we first outline the problems with TCP in mobile environments. Next,

we summarize the proposed solutions, indicating their strengths and weaknesses, and the

current status of TCP enhancements/modifications and our solution will be Freeze TCP.
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3.6.1 TCP window management and mobile environment

TCP uses a sliding window mechanism to accomplish reliable, in-order delivery and flow/congestion

control. Figure 3.14 shows this graphically, with the window sliding towards the right. The

window size (W) is determined as the minimum of receiver’s advertised buffer space, and

the perceived network congestion. The sender allows up to W outstanding or unacknowl-

edged packets at a time. This results in a “usable window ”size equal to W minus the number

of outstanding packets.

Figure 3.14: TCP Window Management

Under normal conditions, the right edge of the window stays fixed (when the packets in the

current window remain unacknowledged), or advances to the right along with the left edge

of the window, as packets are acknowledged. If the consuming process at the receiver end

is slower than the sender, the receiver’s buffers will begin to fill causing it to advertises pro-

gressively smaller and smaller window sizes. Eventually the receiver may run out of buffer

space in which case it advertises a window size of zero.

Upon seeing an advertised window size of zero, the sender should freeze all re-transmit

timers and enter a persist mode. This involves sending probes (called the Zero Window

Probes or ZWPs) until the receiver’s window opens up. In a strict sense, each ZWP should

contain exactly one byte of data but many TCP implementations including those in Linux

and FreeBSD do not include any data in their ZWPs. The interval between successive probes

grows exponentially (exponential back-off) until it reaches 1 minute, where it remains con-

stant. Because these probes are not delivered reliably, the sender does not drop its congestion
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window if a Zero Window Probe itself gets lost. Eventually the receiver responds to a ZWP

with a non-zero window size, and the sender will continue transmission using a window size

consistent with the advertised value.

An exception to this normal window management operation occur if the receiver “shrinks”its

advertised window, that is moves the right edge towards the left. This can suddenly create

a negative usable window size which might confuse the sender. While this behavior is dis-

couraged, the sender must recover if it occurs. The sender is allowed to retransmit any

outstanding packets (up to W), but should not send new data. Also, any lost packets from

within the old window (and now to the right of the new window because the right edge

moved leftward) should not cause the congestion window to drop. This means that if the

receiver shrinks its window to zero, all outstanding packets can be lost without affecting the

sender’s congestion window and the sender should enter the persist mode described above.

3.6.2 Problems with TCP in mobile environments

TCP was conceived for wired, fixed topologies which are fairly reliable. Hence it operates

on the assumption that any losses are due to congestion, which is reasonable for a reliable

infrastructure. In mobile environments, however, losses are more often caused by

1. The inherently higher bit error rates of the wireless links, and

2. Temporary disconnections (due to signal fading or other link errors; or because a

mobile node moves, etc).

To better illustrate the second item above, it should be noted that mobility is distinct from

wireless connectivity. For instance, a user working in the office on a notebook wants to

move (with the notebook) to a laboratory or a meeting room at the other end of a building

or in the next building, where the IP addresses can be on different subnets; possibly across

one or more firewalls. FTP, Telnet sessions and other connections can certainly remain alive

for a few minutes it might take to go from one end of a building to another. The idea behind

mobility is that such open connections should be retrieved seamlessly despite the move and

a change of the underlying IP address.

32



Even if a single packet is dropped for any reason, the current standard implementation of

TCP assumes that the loss was due to congestion and throttles the transmission by bringing

the congestion window down to the minimum size. This, coupled with the TCP’s slow-start

mechanism means that the sender unnecessarily holds back, slowly growing the transmission

rate, even though the receiver often recovers quickly form the temporary, short disconnec-

tion. This is illustrated in Figure 3.15. where it is seen that the network capacity can remain

unutilized for a while even after a reconnection.

Figure 3.15: TCP Slow Start

3.6.3 Existing solutions

Several approaches have been proposed to overcome these shortcomings of standard TCP.

The Berkeley Snoop module resides on an intermediate host (preferably the base station),

near the mobile user. It caches packets from the sender and inspects their TCP headers.

Using the snooped information, if the module determines that a packet has been lost, it re-

transmits a buffered copy to the mobile node. It maintains it’s own timers for retransmission

of buffered packets, implements selective retransmissions, etc.

Indirect TCP (I-TCP) proposes to split the connection between a fixed sender host (FS) and

mobile host (MH) at a mobility support station. The data sent to MH is received, buffered

and ACKed by BS. It is then the responsibility of BS to deliver the data to MH. On the

link between BS and MH, it is not necessary to use TCP. One can use any other protocol

optimized for wireless links. MTCP proposed in is similar to I-TCP and also splits a TCP

connection into two: one from MH to BS and the other from BS to FH. The MH to BS
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connection passes through a session layer protocol which can employ a selective repeat

protocol (SRP) over the wireless link. In a method it is proposed to delay the duplicate

ACKs for a missing packet (which could trigger a fast retransmission from the sender) in

order to allow any special local retransmissions on the wireless links to work, before forcing

the sender to fast-retransmit the missing packet(s) and more other method are exists.

3.6.4 Strengths and Drawbacks of Existing Solutions

Next we consider major factors (not necessarily in the order of importance) that should be

considered in assessing any TCP enhancement scheme.

1. One of the main considerations is inter-operation with the existing infrastructure. To

realize this goal, ideally, there should not be any change required at intermediate

routers or the sender because these are likely to belong to other organizations, making

them unavailable for modifications. All approaches that split the connection into two

parts require substantial modification and processing at an intermediate node (BS).

2. The second important issue is encrypted traffic. As network security is taken more and

more seriously, encryption is likely to be adopted very widely. For instance, IPSEC is

becoming an integral part of IPv6, the next generation IP protocol. In such cases the

whole IP payload is encrypted, so that the intermediate nodes (be it the base station

or another router) may not even know that the traffic being carried in the payload is

TCP. Any approach (such as SNOOP, I-TCP, MTCP, M-TCP) which depends on the

base station doing a lot of mediation will fail when the traffic is encrypted.

3. Even more serious, sometimes data and ACKs can take different paths (for instance,

in satellite networks). Schemes based on “intermediary”involvement will have serious

problems such a case.

4. Yet another consideration is maintaining true end-to-end semantics. I-TCP and MTCP

do not maintain true end-to-end semantics.

5. Even if one assumes that issues (1)-(4) above are not relevant, and that an intermediary

(such as a base station) can be brought in for performance enhancements; there is

34



still a need to consider whether the intermediary will become the bottle-neck. It is

clear that the base stations (BS) in SNOOP, I-TCP, MTCP, M-TCP will all have to

buffer at least some amount of data and do some extra processing for each connection

going through them. If hundreds or thousands of nodes are mobile in the domain

of a base station, it could get overwhelmed with the processing of traffic associated

with each connection. When a mobile node moves from the domain of one BS to

another, the entire “state”of the connection (including any data that was buffered for

retransmissions) needs to be handed over to the new base station. This can cause

significant amount of overhead and might lead to the loss of some packets and the

sender dropping congestion window, which would defeat the original purpose behind

the whole endeavor.

3.6.5 Main Idea

The main idea behind Freeze-TCP is to move the onus of signaling an impending discon-

nection to the client. A mobile node can certainly monitor signal strengths in the wireless

antennas and detect an impending handoff; and in certain cases, might even be able to pre-

dict a temporary disconnection (if the signal strength is fading, for instance). In such a case,

it can advertise a zero window size, to force the sender into the ZWP mode and prevent it

from dropping its congestion window. As mentioned earlier, even if one of the zero window

probes is lost, the sender does not drop the congestion window. To implement this scheme,

only the client’s TCP code needs to change and there is no need for an intermediary (no

code changes are required at the base station or the sender).

If the receiver can sense an impending disconnection, it should try to send out a few (at least

one) acknowledgements, wherein it’s window size is advertised as zero (let an ACK with a

zero receiver window size be abbreviated “ZWA”, i.e., Zero Window Advertisement). The

question is: how much in advance of the disconnection should the receiver start advertising

a window size of zero? This period is in a sense the “warning period”prior to disconnection.

Ideally, the warning period should be long enough to ensure that exactly one ZWA gets

across to the sender. If the warning period is any longer, the sender will be forced into Zero

Window Probe mode prematurely, thereby leading to idle time prior to the disconnection.
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If the warning period is too small, there might not be enough time for the receiver to send

out a ZWA which will cause the sender’s congestion window to drop due to packets lost

during the disconnection (which, in turn leads to some idle-time/underutilization after the

reconnection).

Given this, a reasonable warning period is the round-trip-time (RTT). During periods of

continuous data transfer, this allows the sender to transmit a packet and then receive its

acknowledgment. Experimental data corroborates this: warning periods longer or shorter

than RTT led to worse average performance in most cases we tested. Note that Freeze-TCP

is only useful if a disconnection occurs while data is being transferred (as op-posed to when

the receiver is idle for some time and then gets disconnected), which is the most interesting

case anyway.

Since the ZWPs are exponentially backed off, there is the possibility of substantial idle time

after a reconnection. This could happen, for instance, if the disconnection period was long

and the reconnection happened immediately after losing a ZWP from the sender. In that case,

the sender will go into a long back-off before sending the next probe. Meantime the receiver

has already reconnected, but the connection remains idle until the sender transmits its next

probe. To avoid this idle time, we also implement the scheme. As soon as a connection is

re-established, the receiver sends 3 copies of the ACK for the last data segment it received

prior to the disconnection. This scheme is henceforth abbreviated as “TR-ACKs”(Triplicate

Reconnection ACKs). Note that even in standard TCP, packet retransmissions are exponen-

tially backed off. Therefore the post reconnection idle time can occur there as well. For

a fair comparison, the Standard TCP on the receiver side was also modified to optionally

send TR-ACKs. This way, the effect of only the Freeze-TCP mechanism (i.e., forcing the

sender into ZWP mode prior to a disconnection) can be isolated. Unlike M-TCP, there is

no advantage to holding back the ACK to the last byte. For M-TCP it was useful because

even when the mobile client was disconnected, the base station could still signal the sender

on behalf of the client. In the case of Freeze-TCP, since changes are restricted to the client

end, holding back the ACK for the last byte does not help. Note that Freeze-TCP will avoid

any repacketization penalty at the sender end (which M-TCP might incur because it holds

back the ACK to the last byte). Figures 3.16 and 3.17 help estimate the performance gain

possible due to the Freeze-TCP technique.
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Figure 3.16: Relation between ts,RTT,W

In Figure 3.16, ts is the time required to “put or write the packet on the wire”, RTT is the

total round trip delay including the ts delays at sending, receiving as well as any intermediate

nodes; and W is the senders window. From the figure, it is seen that if any idle periods are

to be avoided:

W . ts ≥ RTT . . . . . . (1)

Since; ts = packet-size/bandwidth;

(ignoring processing/queuing delays internal to the host, collisions in case of shared medium,

etc.) it is seen that the [delay bandwidth] product is important in determining how big the

congestion windowW needs to be if underutilization of network capacity is to be avoided.

Assuming; RTT /ts � 1; W � 1 . . . . . . (2)

is required for (2) full network capacity utilization. Figure 3.17 pictorially illustrates the

increased throughput under this condition, when Freeze-TCP prevents sender side window,

W, from dropping and regrowing (due to packet losses). From the figure it can be seen that

the (approximate) number of extra packets transferred by the Freeze-TCP scheme is given

by

Extra Segments = W2/8+WlgW-5W/4+1 . . . . . . (3)

37



Figure 3.17: Freeze TCP

In addition to (2), the above expression (3) also assumes that upon a disconnection (and the

loss of packets), regular TCP drops the congestion window all the way down to 1, and first

grows it by a factor of 2 each time an ACK is received, until it reaches W=2. From there

on, it is incremented by 1 each time an ACK is received until it reaches the same size W

prior to disconnection. This congestion window growth mechanism is dubbed“slow-start

congestion avoidance”. It should be noted that (3) is an approximate expression, ignoring

collisions, and other factors that might affect the traffic.

3.6.6 Final Words

Freeze-TCP is a connection migration scheme that lets the MH ‘freeze’or stop an existing

TCP connection during handoff by advertising a zero window size to the CN, and unfreezes

the connection after handoff. This scheme reduces packet losses during handoff at the cost

of higher delay. Although it provides transparency to applications, It is a true end-to-end

signaling scheme and does not require any intermediaries (such as base stations) to partic-

ipate in the flow control. Freeze-TCP only deals with connection migration, but does not

consider handoff or location management. It can be employed with some other schemes like

Migrate to implement a complete mobility management scheme.
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3.7 MIGRATE TCP

Todays Internet services are commonly built over TCP, the standard Internet connection-

oriented reliable transport protocol. The endpoint naming scheme of TCP, based on network

layer (IP) addresses, creates an implicit binding between a service and the IP address of a

server providing it, throughout the lifetime of a client connection. This makes a TCP client

prone to all adverse conditions that may affect the server endpoint or the internetwork in

between, after the connection is established: congestion or failure in the network, server

overloaded, failed or under DOS attack. Studies that quantify the effects of network sta-

bility and route availability demonstrate that connectivity failures can significantly impact

Internet services. As a result, although highly available servers can be deployed, sustaining

continuous service remains a problem. Service continuity can be defined as the uninter-

rupted delivery of a service, from an end users perspective. The TCPs ability to support it is

limited by its error recovery scheme based on retransmissions to the same server endpoint

of the connection (bound to a specific IP address). In practice, the end user might be more

interested in receiving continuous service rather than statically binding to a given server. As

server identity becomes less important than the service, it is desirable for a client to switch

servers during a service session, e.g., if a server cannot sustain the service. We propose

the cooperative service model, in which a pool of similar servers, possibly geographically

distributed across the Internet, cooperate in sustaining a service by migration of client con-

nections within the pool. The control traffic between servers, needed to support migrated

connections, can be carried either over the Internet or over a private network. From clients

viewpoint, at any point during the lifetime of its service session, the remote endpoint of its

connection may transparently migrate between servers.

3.7.1 Migratory TCP

To enable the cooperative service model for service continuity we have designed Migratory

TCP (M-TCP), a reliable connection-oriented transport layer protocol that supports efficient

migration of live connections. The protocol enables stateful servers to seamlessly resume

service on migrated connections by transferring an application controlled amount of specific

state. Although fine-grained connection migration solutions have been proposed before by
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exploiting features of application-level protocols like HTTP, to our best knowledge M-TCP

is the first solution that provides generic migration support through a TCP-compatible trans-

port protocol. The M-TCP design assumes that the state of the server application can be

logically split among connections by defining fine-grained state associated with each con-

nection. The M-TCP service interface can be best described as a contract between the server

application and the transport protocol. According to this contract, the application must exe-

cute the following actions:

1. Export a state snapshot at the old server, when it is consistent with data sent/received

on the connection;

2. Import the last state snapshot at the new server after migration, to resume service to

client. In exchange, the protocol: transfers the per-connection state to the new server

and synchronizes the per connection application state with the protocol state.

The migration mechanism of M-TCP (Figure 3.18) ensures that the new server resumes ser-

vice while preserving the exactly-once delivery semantics across migration, without freezing

or otherwise disrupting the traffic on the connection. The client application does not need to

change. A client contacts the service through a connection Cid to a preferred server S1. At

connection setup, S1 supplies the addresses of its cooperating servers, along with migration

certificates. The client-side M-TCP initiates migration of Cid by opening a new connection

to an alternate server S2, sending the migration certificate in a special option. To reincarnate

Cid at S2, M-TCP transfers associated state (protocol state and the last snapshot) from S1.

Depending on the implementation, the state transfer can be either

1. Lazy (on-demand), i.e., it occurs at the time migration is initiated.

2. Eager, i.e., it occurs in anticipation of migration, e.g., when a new snapshot is taken.

Figure 3.18 shows the lazy transfer version: S2 sends a request (b) to S1 and receives

the state (c). If the migrating endpoint is reinstated successfully at S2, then C and S2

complete the handshake, which ends the migration (d). Upon accepting the migrated

connection, the server application at S2 imports the state snapshot. It then resumes

service using the snapshot as a restart point, and performs execution replay for a log-

based recovery supported by the protocol. The execution replay restores the state of
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Figure 3.18: Migration mechanism in M-TCP

the service at the new server and synchronizes it with the protocol state. To support

the replay, M-TCP logs and transfers from S1 data received and acknowledged since

the last snapshot. It also transfers unacknowledged data sent before the last snapshot,

for retransmission from S2.

3.7.2 Applications

We have implemented M-TCP in FreeBSD as an extension to the TCP/IP stack, compatible

and inter-operable with the standard TCP. M-TCP is decoupled from and can work with

various migration policies. We identify two classes of services that can benefit from M-

TCP:

1. Applications that use long-lived connections, e.g., multimedia streaming services, ap-

plications in the Internet core etc.;

2. Critical applications from which end users expect both correctness and good response

time, e.g., Internet banking, e-commerce, etc.

To demonstrate the potential of M-TCP in providing service continuity, we have imple-

mented and evaluated two applications. The first one is a synthetic (generic) media stream-

ing server, for which we use M-TCP in conjunction with a migration policy based on esti-
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mated inbound data rate. Migration is triggered when the throughput perceived on the client

side falls under a fraction of the maximum observed. We show that, for the same profile of

performance degradation at a server, M-TCP can sustain effective throughput close to the

average server profile by migrating the connection between servers. The second application

is remote access over the Internet to a transactional database server. We have augmented

a PostgreSQL database back-end with support for migratory front-end contexts and used

M-TCP between clients and front-end hosts. The resulting system allows a client to start

a sequence of transactions with one front-end, then migrate and continue the execution on

other front-ends if necessary. The system ensures that ACID semantics are preserved and

that the execution is deterministic across migration.
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CHAPTER 4

COMPARATIVE STUDIES

4.1 Introduction

The components of a complete mobility management scheme consist of handoff, connection

migration, and location management. Evaluation criteria have to be developed to compare

the effectiveness of mobility schemes. The criteria could include handoff, packet loss and

delay, fault tolerance, requirement for change in network infrastructure, mobility type, sup-

port for IP diversity, security, scalability, etc. In this paper, we use the above criteria to

classify the proposed mobility schemes.

4.2 Fundametal of Mobility Management

Mobility management in data networks involves changing the point of attachment, and hence

the IP addresses, of a mobile host (MH). A change in IP address gives rise to the challenges

in maintaining an uninterrupted data flow while the MH is changing its address, minimiz-

ing loss of packets, maintaining security, identification of the newer location, etc. Some

fundamentals are discussed below

4.2.1 Connection Migration

An MH acquires a new IP address when it changes its subnet. Since the old IP address is

retained, a natural question to answer is how the CN will continue communicating with the

MH which now has multiple IP addresses. Connection Migration, which involves notifying

the CN about this change and migrating the connection from the old to the new address, is a

possible scheme. To avoid data flow through the old address of MH, connection migration

43



may result in a temporary stop in the data flow during the migration process. A gateway

in the middle of the connection may be used to handle the connection switching. Some

protocols support multiple IP addresses for a single MH having multiple interfaces, thus

enabling a smooth transition from one interface to another when changing subnets.

4.2.2 Packet Loss and Latency

When an MH acquires a new IP address, unless the MH and the underlying protocols support

multiple addresses, the MH can only be contacted via the new address. Packets destined to

the MH via the old address cannot reach the destination, resulting in packet loss, latency and

wastage of internet bandwidth. Mobility schemes must come up with techniques to mitigate

packet losses and latency during handoffs.

4.2.3 Infrastructure Requirement

The Internet was no initially designed with mobility in mind. Consequently many of the

proposed schemes require changes in the existing Internet infrastructure, such as gateway or

proxy in the middle of the connection, to support mobility.

4.2.4 Location Management

Following the change of IP address of an MH, a CN should be able to locate the MH. A

location manager keeps track of the current IP address of an MH, and provides the current

address to any entity trying to initiate communication with the MH.

4.3 Evaluation Criteria

When an MH decides to detach itself from one subnet and connect to another one based

on the signal strength of neighboring subnets, the MH obtains a new IP address from the

new subnet. The data already in transit to the MH’s old IP address may be lost, resulting
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in increased delay due to retransmission of the lost packets. The change in point of attach-

ment may be confined to a single subnet or a group of neighboring subnets. The handoff

may require applications running on MH and CN to be aware of mobility, thereby reducing

application transparency. Additionally, handoff between subnets may also result in conflict

with standard network security solutions, and may require additional hardware/software to

be deployed in the existing network infrastructure.

4.3.1 Handoff Process

The performance of a mobility management scheme depends on the type of handoff which

can be either soft or hard. Soft handoff (also called seamless handoff) permits a smooth

handoff by allowing a mobile to communicate and exchange data with multiple interfaces

simultaneously during handoff. Communication through the old interface is dropped when

the signal strength from the corresponding access point drops below a certain threshold. On

the contrary, hard handoff results in disconnecting from the old access point when the signal

strength is below a threshold before connecting to the new access point.

4.3.2 Scalability and Fault Tolerance

Scalability refers to the ability of a mobility management scheme to handle a large number

of MHs and CNs. A scheme is scalable when its performance does not drop with an increase

in the size of the network size or the number of MHs and CNs. A system is said to be fault

tolerant when it can function in the presence of system failures. For example, a scheme with

a single point of failure in said to be faulting intolerant.

4.3.3 Application Transparency

A mobility scheme is transparent to an application when the application does not need to

know about handoff taking place in the lower layers, and hence does not require any modi-

fication to the application.
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4.3.4 Loss/Delay

Packets in flight may not be delivered to the MH during the handoff period. This may result

in packet losses, packet delay, and a false indication of congestion in the network.

4.3.5 Security Solutions

Internet is vulnerable to many security threats. Many of the solutions, such as ingress filter-

ing and firewalls, to the threats do not allow network entities to process packet headers as

may be required by some of the mobility schemes.

4.3.6 Path Diversity/IP Diversity

Increasing number of mobile devices nowadays comes with multiple communication inter-

faces. During handoff, an MH may be able to take advantage of multiple IP addresses (called

IP diversity), obtained from separate subnets, associated with the multiple interfaces.

4.3.7 Change in Infrastructure

A mobility management scheme may require additional software agents (such as Home/Foreign

agents in the case of MIP) or hardware to be deployed in the existing network infrastruc-

ture. Such additional agents/hardware may result in scalability and deployment issues for

the scheme to be implemented in the real world.

4.3.8 Change in Protocol

A transport layer mobility management scheme may require change in the transport proto-

col, or may require applications to use a new transport protocol or API.
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4.4 Summary of different Transport Layer Schemes

4.4.1 MSOCKS

In MSOCK TCP Splice to split a TCP connection at a proxy by dividing the host-to-

host communication into host-proxy and proxy-host communications. MSOCKS uses TCP

Splice for connection migration. During handoff, it obtains a new IP address from the new

subnet, and establishes a new connection with the proxy using its second interface. The

handoff proceess is hard. The communication between proxy and CN, however, remains

unchanged. The data low between MH and CN thus continues, with the CN being unaware

of the mobility. Location management is done through the proxy who is always aware of

the location of the MH; this limits the mobility within the coverage of the proxy. Only the

flying packets are lost here. But a single point of failure, if the proxy fails then the whole

system breaks. The distadvantage of this protocol is it needs to change the infrastructure of

the existing network and as well as the protocol stack.

4.4.2 SIGMA

SIGMA is a complete mobility management scheme implemented at the transport layer,

and can be used with any transport protocol that supports IP diversity. SIGMA supports IP

diversity-based soft handoff. As an MH moves into the overlapping region of two neighbor-

ing subnets, it obtains a new IP address from the new subnet while still having the old one

as its primary address. When the received signal at the MH from the old subnet goes below

a certain threshold, the MH changes its primary address to the new one. When it leaves

the overlapping area, it releases the old address and continues communicating with the new

address thus achieving a smooth handoff across subnets. Location management in SIGMA

is done using DNS as almost every Internet connection starts with a name lookup. When-

ever an MH changes its address, the DNS entry is updated so that subsequent requests can

be served with the new IP address. The handoff it supports is soft. There is less delay/loss

of packets than the other protocols. New connection will fail if the location manager fails.

Here, it is not needed to change the infrastucture but need to change in the protocol stack.
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4.4.3 Migrate TCP

Migrate TCP is a transparent mobility management scheme which is based on connection

migration using Migrate TCP, and uses DNS for location management . In Migrate TCP,

when an MH initiates a connection with a CN, the end nodes exchange a token to identify the

particular connection. A hard handoff takes place when the MH reestablishes a previously

established connection using the token, followed by migration of the connection. Similar

to SIGMA , this scheme proposes to use DNS for location management. The handoff it

supports is soft. It avoids data transfer during handoff so that no packet is loss. Here, it is

not needed to change the infrastructure. It needs to change the protocol stack in CN but not

in MH.

4.4.4 Freeze-TCP

Freeze-TCP is a connection migration scheme that lets the MH ‘freeze’or stop an existing

TCP connection during handoff by advertising a zero window size to the CN, and unfreezes

the connection after handoff. This scheme reduces packet losses during handoff at the cost

of higher delay. Although it provides transparency to applications, Freeze TCP requires

changes to the transport layer at the end nodes. Freeze-TCP only deals with connection

migration, but does not consider handoff or location management. It can be employed with

some other schemes like Migrate to implement a complete mobility management scheme.

It supports hard hand-off. New connections would fail if location manager fails. Here, it is

not needed to change the infrastucture but need to change in the protocol stack.

4.4.5 RCP

RCP moves the responsibility for performing reliability and congestion control from the

sender to the receiver. It allows for better congestion control, loss recovery, and power

management mechanisms compared to sender-centric approaches. The handoff is soft. It

does not conflict with the security solution. It supports IP diversity. Here, it needs to change

in the infrastructure. With further improvement next come R2CP.
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4.4.6 R2CP

R2CP is based on Reception Control Protocol (RCP), a TCP clone in its general behav-

ior but moves the congestion control and reliability issues from sender to receiver on the

assumption that the MH is the receiver and should be responsible for the network parame-

ters. R2CP has some added features over RCP like the support of accessing heterogeneous

wireless connections and IP diversity that enables a soft handoff and bandwidth aggregation

using multiple interfaces. A location management scheme might be integrated with R2CP

to deploy a complete scheme. The handoff is soft. It does not conflict with the security

solution. It supports IP diversity. Here, it does not need to change in the infrastucture.

4.5 Classification of Transport Layer Schemes

The mobility management schemes described before can be classified, based on their ap-

proach towards mobility, into four groups as shown in Table 4.3 and described below.

4.5.1 Handoff Protocol

Rather than being complete mobility management schemes, schemes belonging to this class

are enhancements of transport layer protocols that aim at improving the performance, such

as low latency and reduced data loss, of mobile hosts during handoff. This class consists

of R2CP, MMSP, mSCTP each of which supports IP diversity and seamless handoff. They

can aid handoff, but are not complete mobility management schemes because of their lack

of mobility management components, such as location management.

4.5.2 Connection Migration Protocol

The mobility schemes in this class are based on migrating connections which have been

stopped or put under waiting during handoff in order to ensure a single unbroken connection

between CN and MH. They do not deal with handoff issues. Examples are Freeze-TCP,

TCP-R which are enhancements of TCP to allow a connection to be stopped and restarted
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Table 4.1: Transport Layer Mobility Schemes Classified By Approach

Class Description Example

Handoff protocol Transport Layer Protocol that has

features to support mobility

R2CP,MMSP,mSCTP

Connection migration proto-

col

Transport Layer Protocol that can

migrate multiple connections

Freeze TCP,TCP-R

Gateway-based mobility

scheme

Provides mobility by putting a in-

frastructure between CN and MH

and splitting the connection

MSOCKS, I-TCP,M-TCP, M-

UDP, BARWAN

Mobility manager Complete mobility schemes with

handoff and location management

Migrate TCP and SIGMA

before and after a handoff, respectively.

4.5.3 Gateway based Mobility Scheme

Schemes in this class handle mobility with a special gateway in the Internet infrastructure.

The connection between CN and MH is split at the gateway, with the connection between

the gateway and CN being fixed while allowing the MH to roam and change its connec-

tion with the gateway. MSOCKS, I-TCP,M-TCP, M-UDP,BARWAN which belong to this

class, requires special entities that split the connection between the MH and CN. The do

not provide details about implementation of location managers, and hence are not complete

mobility management schemes.

4.5.4 Mobility Management:

Schemes in this class provide complete end to end mobility management schemes at the

transport layer. Migrate TCP and SIGMA , which belong this group, provide complete end-

to-end mobility management schemes by implementing handoff and location management.
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4.6 Comparison among the protocols based on different criteria

We, so far discussed about different transport layer mobility protocols and many evaluation

criteria on which we will differentiate them. Hand-off, loss/delay, Fault tolerance, change

in infrstructure, conflict with security solutions, IP diversity, change in protocol stack etc

are the main evaluation criteria that we have used to differentiate between the protocols.

MSOCKS, M-TCP supports hard hand-off, where RCP and R2CP supports soft hand-off.

There is minimum loss/delay in SIGMA, RCP and R2CP but the flying packets are lost in

MSOCKS. Freeze TCP avoids data transfer during hand-off to prevent loss. If the proxy fails

then the whole connection fails in MSOCKS, new connection will fail if location manager

fails in SIGMA, RCP and R2CP have high fault tolerance. MSOCKS and R2CP needs to

change in the infrastructure but the other protocols need not to do so. SIGMA and RCP

supports IP diversity but the others does not. Many other criteria are illustrated in details in

table 4.2
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Table 4.2: Comparison among the protocols based on different criteria

Criteria MSOCK SIGMA FREEZE

TCP

MIGRATE

TCP

R2CP RCP

Handoff Hard Soft N/A Hard Soft Soft

Loss/Delay Only the fly

packets are

lost

No Avoids data

transfer

during

hand-off to

prevent loss

No, but

stops trans-

mission If

MH is the

server

No No

Fault toler-

ance

Single

point of

failure:

proxy

New con-

nections

would fail

if location

manager

fails

Yes would fail

if location

manager

fails

Yes Yes

Change in

infrastruc-

ture

Yes No No No No Yes

Transparency Yes Yes Yes Yes Yes Yes

Conflicts

with se-

curity

solution

Yes No No No No No

IP Diver-

sity

No Yes No No Yes No

Change in

protocol

stack

Yes Yes No in CN,

Yes in MH

Yes Yes Yes
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CHAPTER 5

CONCLUSION

IP Mobility can be handled at different layers at the protocol stack. Previous solution like

TCP sliding window has more drawbacks like, infrastructure, encrypted traffic, unsecure,

erroneous data, confliction etc. To get rid of these problems, some mobility protocol at

transport layer has been proposed and some are developed. But, it needs to compare the

protocols to best choose and identify the lacking to more improve. We discussed six mobil-

ity scheme of transport layer.

At a glance, MSOCKS is built around a proxy that is inserted into the communication path

between a mobile node and its correspondent hosts. An ideal MSOCKS proxy would add

minimal latency to the path of packets traveling to or from mobile nodes. It is a flexible

system that mobile nodes can continue connections between different interfaces.

SIGMA provides seamless handover for mobile hosts and it can greatly reduce the handover

latency, packet loss, signaling costs and improve the whole systems throughput. Basic idea

of SIGMA is to decouple location management from data transfer and achieve seamless

handover by exploiting IP diversity to keep the old path alive during the process.

RCP performs reliability and congestion control from the sender to the receiver. The advan-

tages are when the receiver decides to switch to another interface specific congestion control

mechanism after handoffs, such decision does not need to involve the sender and at a time

can control flow and seamless handoff.

R2CP is the extension of RCP. When a mobile host handoffs from one interface to another

during a live connection, it can benefit from functionalities like, seamless handoffs with-

out relying on infrastructure support, server migration for achieving service continuity and

bandwidth aggregation using multiple active interfaces.

Freeze-TCP is a connection migration scheme that lets the MH freeze or stop an existing

TCP connection during handoff by advertising a zero window size to the CN, and unfreezes

the connection after handoff. This scheme reduces packet losses during handoff at the cost
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of higher delay.

Migratory TCP is a reliable connection-oriented transport layer protocol that supports effi-

cient migration of live connections. The migration mechanism ensures that the new server

resumes service while preserving the exactly once delivery semantics across migration,

without freezing or otherwise disrupting the traffic on the connection. The client appli-

cation does not need to change.

We also discussed some mobility management fundamentals which needs to change in IP

address gives rise to the challenges in maintaining an uninterrupted data flow like, con-

nection migration, packet loss and latency, location management, require infrastructure etc.

We also discussed some other complete mobility scheme that supports IP diversity and soft

handoff, behavior, transparency to applications, and can be deployed without any change

in the network infrastructure is very suitable for handling mobility of hosts in the Internet.

Finally we evaluate the schemes compare the schemes based on different criteria. The dis-

cussed evaluation criteria are handoff process, scalability and fault tolerance, transparency,

loss and delay, path diversity, security, change in infrastructure, change in protocols etc.
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