
B.Sc. in Computer Science and Engineering Thesis

Bangla Character Recognition using Artificial Neural Network
Step:Feature Selection

Submitted by

Deepon Debnath
201014038

Maj Md. Abdullah Al Mamun
201014010

Maj Md. Sarwar Hossain
201014003

Supervised by

Dr. Hasan Sarwar
Professor and Head of the Department, CSE

United International University

.

Department of Computer Science and Engineering
Military Institute of Science and Technology

CERTIFICATION

This thesis paper titled “Bangla Character Recognition using Artificial Neural Network

Step:Feature Selection”, submitted by the group as mentioned below has been accepted

as satisfactory in partial fulfillment of the requirements for the degree B.Sc. in Computer

Science and Engineering on December 2013.

Group Members:

Deepon Debnath
Maj Md. Abdullah Al Mamun
Maj Md. Sarwar Hossain

Supervisor:

———————————-
Dr. Hasan Sarwar
Professor and Head of the Department, CSE
United International University
House: 80, Road: 8/A, Sat Masjid Road, Dhanmondi, Dhaka-1209

ii

CANDIDATES’ DECLARATION

This is to certify that the work presented in this thesis paper is the outcome of the inves-

tigation and research carried out by the following students under the supervision of Dr.

Hasan Sarwar, Professor and Head of the Department of Computer Science and Engineer-

ing, United International University, House: 80, Road: 8/A, Sat Masjid Road, Dhanmondi,

Dhaka, Bangladesh.

It is also declared that neither this thesis paper nor any part thereof has been submitted any-

where else for the award of any degree, diploma or other qualifications.

———————————-
Deepon Debnath
201014038

———————————-
Maj Md. Abdullah Al Mamun
201014010

———————————-
Maj Md. Sarwar Hossain
201014003

iii

ACKNOWLEDGEMENT

We are thankful to Almighty Allah for his blessings for the successful completion of our

thesis. Our heartiest gratitude, profound indebtedness and deep respect go to our supervisor

Dr. Hasan Sarwar, Professor and Head of the Department, CSE, United International Uni-

versity, House: 80, Road: 8/A, Sat Masjid Road, Dhanmondi, Dhaka, Bangladesh, for his

constant supervision, affectionate guidance and great encouragement and motivation. His

keen interest on the topic and valuable advices throughout the study was of great help in

completing thesis.

We are especially grateful to the Department of Computer Science and Engineering (CSE)

of Military Institute of Science and Technology (MIST) for providing their all out support

during the thesis work.

Finally, we would like to thank our families and our course mates for their appreciable

assistance, patience and suggestions during the course of our thesis.

Dhaka Deepon Debnath

December 2013 Maj Md. Abdullah Al Mamun

. Maj Md. Sarwar Hossain

iv

ABSTRACT

Feature selection is an essential step of Optical Character Recognition. Accurate and dis-

tinguishable feature plays a significant role to leverage the performance of a classifier. The

complexity level of feature identification algorithm differs for alphabet sets of different lan-

guages. Apart from generic algorithms to find features of different alphabet sets, these

algorithms take care of individual characteristic common for a particular alphabet set. Dom-

inant features of one alphabet set might completely differ from that of another set. Since

there always remains the chance that inaccurate features may cause inefficient recognition,

special attention should be given to identify the set of optimal features of a character set.

Bengali characters also have some specific issues apart from the existing issues of other

character sets. For example, there are about 300 basic, modified and compound character

shapes in the script, the characters in a word are topologically connected, and Bengali is

an inflectional language. Literature survey shows that several authors have used different

features and classification algorithms. We have extensively reviewed all these feature sets.

In order to identify an optimal feature set, variability analysis has been proposed here. We

focused on the specific peculiarities of Bengali alphabet sets, its different usage as vowel

and consonant signs, compound, complex and touching characters. We also took care to

generate easily computable features that take less time for generation.

v

TABLE OF CONTENT

vi

LIST OF FIGURES

vii

LIST OF TABLES

viii

LIST OF ABBREVIATION

OCR : Optical Character Recognition

ANN : Artificial Neural Network

MLP : Multi Layer Perceptron

KNN : Kohenen Neural Network

ix

CHAPTER 1

INTRODUCTION

1.1 Overview

Recognition of printed and handwritten documents is still one of the most challenging areas

in pattern recognition with profound implications for the machine vision field. Although

many different methods have been reported and some have shown very high performance,

none has been able to achieve the accuracy and speed of human readers, which is the ulti-

mate target. So there is ample scope for improvement in this well-researched problem.

Optical Character Recognition (OCR) System, has emerged as a major research area since

1950. Now it is becoming a more challenging issue all over the world to have efficient and

more accurate recognizers. As we all know, Bangla is one of the richest languages of the

world, ranking 5th in the world. More than 200 million people use Bangla as their medium

of communication. 21st February is observed as the international mother language day to

pay homage to the martyrs fought for the establishment of Bangla as the mother tongue of

Bangladesh. With the automation everywhere, it is a burning issue to digitize huge, volume

of Bangla documents by using an efficient OCR. Moreover, with the rapid growth and adver-

tisement of the use of computers in Bangladesh, a digitized method for recognizing Bangla

characters is started to receive attention for OCR related research in the recent years.

The selection of feature is very important for Optical Character Recognition.The objective

of feature extraction is to capture the essential characteristics of the symbols and it is gener-

ally accepted that this is one of the most difficult problems of pattern recognition. Literature

survey shows that several authors have used different features and classification algorithms.

We have extensively reviewed all these feature sets.We focused on the specific peculiari-

ties of Bengali alphabet sets, its different usage as vowel and consonant signs, compound,

complex and touching characters.

1

1.2 What is OCR?

Optical character recognition, usually abbreviated to OCR, is the mechanical or electronic

conversion of scanned images of handwritten, typewritten or printed text into machine-

encoded text. It is widely used as a form of data entry from some sort of original paper

data source, whether documents, sales receipts, mail or any number of printed records. It

is a common method of digitizing printed texts so that they can be electronically searched,

stored more compactly, displayed on-line and used in machine processes such as machine

translation, text-to-speech and text mining. OCR is a field of research in pattern recognition,

artificial intelligence and computer vision [1].

OCR systems require calibration to read a specific font; early versions needed to be pro-

grammed with images of each character and worked on one font at a time. “Intelligent”

systems with a high degree of recognition accuracy for most fonts are now common. Some

systems are capable of reproducing formatted output that closely approximates the original

scanned page including images, columns and non-textual components.

1.2.1 The History of OCR

Figure 1.1: A short OCR chronology

Methodically, character recognition is a subset of the pattern recognition area. However,

it was character recognition that gave the incentives for making pattern recognition and

image analysis matured fields of science. Although, OCR machines became commercially

2

available already in the 1950’s, only a few thousand systems had been sold worldwide up

to 1986. The main reason for this was the cost of the systems. However, as hardware was

getting cheaper and OCR systems started to become available as software packages, the sale

increased considerably.

1.2.2 Structure of OCR System

Figure 1.2: Typical structure of OCR system

Although OCR system can be develop for different purposes, for different languages, an

OCR system contains some basic steps. Figure-1.2, describes the basic steps of an OCR. A

basic OCR system has the following particular processing steps:

1. Scanning.

2. Preprocessing.

3. Feature extraction or pattern recognition.

4. Recognition using one or more classifier.

5. Contextual verification or post processing.

3

1.3 A Brief on Bangla Alphabet

The origin of character recognition can be found in 1870 when Carey invented the retina

scanner; an image-transmission system using a mosaic of photocells [2]. Later in 1890,

Nipkow invented the sequential scanner which was a major breakthrough both for modern

television and reading machines. Character recognition as an aid to the visually handicapped

was at first attempted by the Russian scientist Tyurin in 1900. The OCR technology took a

major turn in the middle of 1950s, with the development of digital computer and improved

scanning devices. We are concerned here with the recognition of Bangla, the second most

popular script and language in the Indian sub-continent. About 200 million people of East-

ern India and Bangladesh use this language, making it the fourth most popular in the world .

The structure of Bangla language is quite different than any other European language. It

consists of 50 basic characters including 11 vowel and 39 consonant characters. Again, there

are vowel and consonant modifiers, touching and compound characters which are formed by

touching the adjacent characters and by combining 2 or more characters in the word accord-

ingly. So when they are used to form words, we find that thousands of various combinations

(both simple and complex) are formed. Most of the characters have a horizontal line at the

upper part. This horizontal line is called ‘Headline’ or ‘Matra- line’. If the first character of

a word is a vowel, then it remains in its independent form [3].

1.3.1 Characters of Bangla Script

Figure 1.3: Vowels (Basic Characters)

4

Figure 1.4: Consonants (Basic Characters), Vowel Modifiers, Consonant Modifiers, Some

Compound Characters

Figure 1.5: Bangla Digits

5

1.3.2 Distinct Features of Bangla Characters

Some common properties in Bengali language are given below [4]:

• Bengali script flows from left to right.

• Characters are not classified as uppercase or lowercase.

• A vowel with a consonant takes a modified shape known as vowel modifier.

• A consonant with a consonant takes a modified shape known as consonant modifier.

• The vowel always occurs at the beginning of the word.

• There are about 250 compound characters.

• Many characters have “matra” or headline with them. Some characters have a signa-

ture extended above the head line.

• In a standard text piece, 95.63% percent of the characters are basic characters and the

rest 4.27% are compound characters. Fig-1.6, shows a simple example explaining the

construction of a Bangla word.

Figure 1.6: Dissection of Bangla word

6

1.4 Status of Bangla OCR

Researchers have been working on Bangla OCR since 1990. Institutes of India and Bangladesh

have conducted different projects and research works, but commercially standard Bangla

OCR is not available still now. The available OCR systems are: BORCA[2006], AponaP-

athak[2006], BanglaOCR[2007]. BanglaOCR are a complete OCR framework, and has a

recognition rate of up to 98% (in limited domains) but it also have many limitations.

7

CHAPTER 2

CHARACTER RECOGNITION SYSTEM

2.1 Introduction

Optical character recognition has become one of the most successful applications of tech-

nology in the field of pattern recognition and artificial intelligence. A typical OCR system

contains three logical components: an image scanner, OCR software and hardware and an

output interface. The image scanner optically captures text images to be recognized. Text

images are processed with OCR software and hardware. The process involves three opera-

tions: document analysis (extracting individual character images), recognizing these images

(based on shape), and contextual processing (either to correct misclassifications made by the

recognition algorithm or to limit recognition choices). OCR software attempts to identify

characters by comparing shapes to those stored in the software library or database. The soft-

ware tries to identify words using character proximity and will try to reconstruct the original

page layout. High accuracy can be obtained by using sharp, clear scans of high-quality orig-

inals. The output interface is responsible for communication of OCR system results to the

outside world.

8

2.2 Steps of Bangla Character Recognition Process

Figure 2.1: Steps of Bangla character recognition process

2.3 Input Variation

There are many forms of inputs which are fed into the segmentation phase of the Bangla

OCR system. The types are shown in Figure-2.2, we have picked up Handwritten Bangla

documents in this research work.

Figure 2.2: Input Categories of a Bangla OCR

9

2.4 Scanning and Image Digitization

Before going into the OCR process, one must scan the paper through a flat-bed scanner. It is

better not to use hand-held scanner, which may create local fluctuation for hand movement.

It is crucial to have good quality printed document scanning. If the quality is poor and the

color contrast is too low, it will be hard for the OCR software to read the text and to make

correct interpretation. The scanned image is stored, for example, as a jpeg/bmp format

file which is converted to a binary image. In order to improve the quality of the image to

make the OCR correct interpretation, noise reduction and elimination and skew detection

and correction processes are performed.

2.5 Binarization Methods

Binarization of scanned gray scale images is the first step in most document image analysis

systems. Selection of an appropriate binarization method for an input image domain is a

difficult problem. Different Binarization algorithm gives different performances on different

data sets. This is especially true in the case of historical documents with variation in contrast

and illumination, smearing and smudging of text. The quality of the image has a significant

impact on the OCR performance. Noise is detected and eliminated during Binarization.

So, selection of appropriate binarization algorithm is very important for OCR performance.

Some binarization methods are-

1. Global Fixed Threshod.

2. Local Threshold Approach.

3. Bernsen Method.

4. Niblack Method.

5. Adaptive Niblack’s Algorithm (New Approach).

6. Parker Method.

7. Sauvola Binarization.

8. Chang’s Method.

10

2.5.1 Global Fixed Threshold

A natural way of binarization is through threshold. Threshold creates binary images from

grey-level ones by turning all pixels below some threshold to zero and all pixels about that

threshold to one. The simplest binarization technique is to use a global fixed threshold. If

g(x, y) is a threshold version of f(x, y) at some global threshold T,

g(x,y) =

 1; i f f (x,y) ≥ T

0; otherwise

Global threshold method chooses a fixed intensity threshold value T based on the histogram

analysis. The major problem with threshold is that we consider only the intensity, not any

relationships between the pixels. There is no guarantee that the pixels identified by the

threshold process are contiguous.

Another problem with global threshold is that most of the images do not have a bi-model

distribution in histogram due to high illumination changes. For such images finding a single

threshold value to binarize using global binarization method is difficult

2.5.2 Local Threshold Approach

We can avoid uneven illumination of an image by determining thresholds locally. That is,

instead of having a single global threshold, we allow the threshold itself to smoothly vary

across the image.

2.5.3 Bernsen Method

For each pixel (x, y), the threshold T(x, y) = (Zlow + Zhigh) / 2 is used, where Zlow and Zhigh

are the lowest and highest gray scale pixel value in a square r x r neighborhood centered at

(x, y). However, if the contrast measure C(x, y) = (Zhigh - Zlow) < l, then the neighborhood

consists only one class, print or background. In our images, wide print areas rarely occur,

so the pixel is labeled background in such cases. l = 15 and r = 15 to be good choices [5].

11

Figure 2.3: Binarization using Bernsen method

2.5.4 Niblack Method

Niblack’s algorithm [6] calculates a pixel wise threshold by sliding a rectangular window

over the grey level image. The threshold T is computed by using the mean m and standard

deviation s, of all the pixels in the window, and is denoted as:

TNiblack = m + k * s

= m + k *
√

∑(Pi−m)2/NP

= m + k *
√

∑Pi2/NP−m2

= m + k
√

B

Where k is a constant, which determines how much of the total print object edge is retained,

and has a value between 0 and 1. The value of k and the size SW of the sliding window

define the quality of binarization, where NP is the number of pixels in the gray image, m

is the average value of the pixels pi, and k is fixed to -0.2 by the authors. Advantage of

Niblack is that it always identifies the text regions correctly as foreground but on the other

hand tends to produce a large amount of binarization noise in non-text regions also.

12

2.5.5 Sauvola Method

The Sauvola method [7] for local binarization does quite well. The basic idea behind

Sauvola is that if there is a lot of local contrast, the threshold should be chosen close to

the mean value, whereas if there is very little contrast, the threshold should be chosen below

the mean, by an amount proportional to the normalized local standard deviation. Sauvola

is implemented efficiently by using “integral image” accumulators for the mean and mean-

squared pixel values. The latter requires 64 bit floating point arrays, which are expensive for

large images.

Sauvola’s algorithm is a modification of Niblack’s which is claimed to give improved per-

formance on documents in which the background contains light texture, big variations and

uneven illumination. In this algorithm, a threshold is computed with the dynamic range of

the standard deviation, R, using the equation:

T = m∗ (1+ k(s/R−1))

where m and s are again the mean and standard deviation of the whole window and k is a

fixed value.

2.6 Noise Removing

2.6.1 Median Filter

The Median Filter [8] is a nonlinear filtering technique, often used to remove noise. Such

noise reduction is a typical pre-processing step to improve the results of later processing.

This filtering procedure is used to examine a sample of the input. It is performed using a

window consisting of an odd number of input data samples. Median filtering is very widely

used in digital image processing, particularly useful to reduce noise, salt and pepper noise.

It is one kind of smoothing technique as well. All smoothing techniques are effective at

removing noise in smooth patches or smooth regions of a signal, but adversely affect edges.

13

2.6.2 Gaussian Filter

A Gaussian filter [9] is a filter whose impulse response is a Gaussian function. Gaussian

filters are designed to give no overshoot to a step function input while minimizing the rise

and fall time. This behavior is closely connected to the fact that the Gaussian filter has

the minimum possible group delay. Gaussian filtering is a linear convolution algorithm

unrelated to Median filter. The one dimensional Gaussian filter has an impulse response

given by,

g(x) =
√ a

π
. e−a.x2

Or, with the standard deviation as parameter:

g(x) = 1√
2πσ

.e−
x2

2σ2

In two dimensions, it is the product of two such Gaussians, one per direction:

g(x,y) = 1
2πσ2 .e

− x2+y2

2σ2

Where x is the distance from the origin in the horizontal axis, y is the distance from the origin

in the vertical axis, and σ is the standard deviation of the Gaussian distribution. Gaussian

filtering allows user to make fine adjustment to the amount of partial averaging that occurs

in the image.

2.7 Skew Detection and Correction

Skew is basically an angle that is created due to an angular placement of document in the

scanner. B.B. Chaudhuri [10] says that it can be corrected in two steps-

• Estimation of skew angle θs and

• Rotation of image by θs in the opposite direction.

Many skew detection and correction algorithms are available. At present, skew detection

methods can be roughly classified as follows:

14

• The method based on Hough transforms.

• The skew detection method based on the analysis of the texture complexity.

• The method based on Cross Correlation.

• The method based on the Projection profile.

• The method based on Fourier transformation.

• The K nearest neighbor (K-NN) cluster method.

Figure 2.4: An example of skew detection approach (Bangla)

2.8 Segmentation

This is the most vital and important portion for designing an efficient Bangla OCR because

feature extraction and recognition process depends on this phase to make the recognition

process successful. The output of this phase consists of individual images of basic, modified

and compound characters. Segmentation process includes the following steps. They are-

• Line Detection.

• Matraline or Headline detection.

• Baseline Detection.

• Word Segmentation.

15

• Character Segmentation.

2.9 Feature Extraction

Feature extraction is an important and challenging part for any character recognition process.

It is the process of extracting essential information content from the image segment. It

plays an important role in the whole recognition process.By generating a fixed size matrix

according to the height and weight of the bitmap image by the color value of the pixels.

The black pixels are considered as 1’s and the white pixels are as 0’s. Figure-2.5, shows a

converted feature matrix.

Figure 2.5: Feature Matrix

2.10 Classification

This is the last phase of the whole recognition process. Several approaches have been used

to identify a character based on the features extracted using algorithms described in chapter

three. However, there is no benchmark databases of character sets to test the performance

of any algorithm developed for Bengali character recognition. In choosing classification

algorithms, use of Artificial Neural Network (ANN) is a popular popular practice because

it works better when input data is affected with noise. Since a detailed definition of dif-

ferent Neural Network is outside the scope of this chapter, the readers are suggested to see

established literature for detailed description of these methods. However a brief overview is

provided for Decision tree and MLP classifier with some other neural networks.

16

2.10.1 Decision Tree

Figure 2.6: A flow chart representation of a certain portion of tree classifier for basic char-

acter recognition

B.B. Chaudhuri [10] used a binary tree classification. Only one feature is tested at each non

terminal node. The decision rules are mostly binary e.g. Presence or absence of the feature.

Here, the features are positional strokes. As one goes down the tree, the number of features

to choose from gets reduced. Most basic characters can be recognized by the principle

features alone. In some cases, more than one characters share the same non-terminal node

of the tree. To separate them additional features are used. Compound character recognition

is done in 2 stages. In the first stage, the characters are grouped into small subsets by a

feature-based tree classifier. At the second stage, characters in each group are recognized

by a sophisticated run-based template matching approach. A terminal node of this tree

corresponds to a subset of about 20 characters. These character templates are ranked in

terms of their bounding box width and stored during the training phase of the classifier.

When a character reaches the terminal node in search phase, firstly bounding box width is

17

matched, and then a matching score is completed by superimposing the candidate on the

template. Different algorithms have been prescribed to compute matching score. In this

process, a reasonable amount of character size variation can be accommodated by rescaling.

2.10.2 MLP (Multi-Layer Perceptron)

Subhadip Basu [11] has used Multi-Layer Perceptron (MLP) classifier to classify handwrit-

ten alphabetic characters. It is a special kind of ANN, a feed-forward neural network with

artificial neurons. An MLP consists of one input layer, one output layer and a number of

hidden layers. The output of each neuron is connected to each neuron of the immediate next

layer as input. Neurons in the input layer are used to simply pass the information to the next

layer. Supervised training is applied. Back Propagation has been used here which minimizes

the sum of square error for the training samples by conducting a gradient descent search in

weight space. It is found that the recognition performance is increased as the number of

neurons in the hidden layer is increased. All samples were scaled to 64x64 pixel images

first and then converted to binary images through threshold.

Figure 2.7: A block diagram of MLP shown as a feed forward neural network

2.10.3 Kohenen Neural Network (KNN)

KNN differs from the feed forward back propagation neural network architectures [12]. The

first difference is that the Kohonen network in Figure-2.8, does not contain hidden layers;

secondly, training and recognition processes are significantly different, that is, it is trained in

unsupervised mode; thirdly, it does not use an activation function, and finally, the Kohonen

18

Network does not use any bias weight in the network. For a particular feature vector of a

given pattern, a single neuron will be fired. Input data is first resized to 250x250 pixels,

regardless of whether the input image is a single word or character. Skew detection was

not taken into consideration. Both computer generated image and scanned image have been

used to train the network. A character is converted into a vector of length 625, which also

determines the number of input neurons.

Figure 2.8: Kohenen Neural network Design for Bangla Character Recognition

19

CHAPTER 3

FEATURE SELECTION

3.1 What is Feature Extraction?

Feature selection is the main focusing point of our thesis work. In feature extraction stage,

each character is represented as a feature vector, which becomes its identity. The major goal

of feature extraction is to extract a set of features, which maximizes the recognition rate with

the least amount of elements and to generate similar feature set for variety of instances of

the same symbol. Due to the nature of handwriting with its high degree of variability and

imprecision obtaining these features, is a difficult task. Feature extraction methods analyze

the input document image and select a set of features that uniquely identifies and classifies

the character. Considering the complexity of the problem, we try to give an overview about

different feature selection algorithms.

3.2 Types of Features

There are many types of features. This part is the only component of an OCR which has to

deal with the specific peculiarities of the shape of each character. So naturally authors have

suggested many different features in their corresponding works. Among all the papers on

both printed and handwritten characters, the major features identified are curvature based

stroke features (Dutta & Chaudhury, 1993), linear stroke features (Chaudhuri & Pal, 1998),

shadow, longest run (Das N., Das B., Sarkar, Basu, Kundu & Nasipuri, 2010), quad tree

based center of gravity (Das N. et al., 2010), chain code (Alam & Kashem, 2010) , curvelet

coefficient (Dutta & Chaudhury, 1993), structural or topological feature (Dutta & Chaud-

hury, 1993), fuzzy feature (Hoque & Rahman, 2007), the binary image itself, etc. Some of

the features have been used for hand written scripts, while some others have been used for

printed characters. Here a compilation of most of the features is given.

20

3.2.1 Stroke Features (Curvature Based)

A stroke is a set of dark pixels such that for all except two of its members there are two dark

neighbors from among the members of the set itself [13].

Figure 3.1: DE, AC, BC are segments; ACB, DE are strokes; DEG is a loop; C and D are

junctions

A stroke consists of one or more segments. A segment is also a set of dark pixels. Except

two pixels, all the other pixels have two dark neighbors from the same set. Of those two

pixels, at least one has a junction. There will be no other junction pixel. A junction is a dark

pixel, which has at least three dark 8-neighbors. A character may be represented in terms of

the structural constraints imposed by junction points and the primitives/segments meeting at

junctions. A stroke generates eight feature vectors. Values are-

1. Number of points of curvature maxima: If the curvature of a point along a stroke

is greater (in magnitude) than that of its two immediate neighbors on both sides, the

count of curvature maxima is increased by one.

2. Number of points of curvature minima: If the curvature of a point along a stroke is

less (in magnitude) than that of its two immediate neighbors on both sides, the count

of curvature minima is increased by one.

3. Number of points of inflexion from -ve to +ve curvature: For each pixel of a stroke,

a count is incremented if its two predecessor points’ curvature is non-negative and

non-zero and two successor points’ curvature is non-positive and non-zero.

4. Number of points of inflexion from +ve to -ve curvature: For each pixel of a stroke,

21

a count is incremented if its two predecessor points’ curvature is non-positive and non-

zero and two successor points’ curvature is non-negative and non-zero.

5. Normalized positions with respect to the stroke-length for the points considered in 1.

(Number of components = 4)

6. Normalized positions with respect to the stroke-length for the points considered in 2.

(Number of components = 4)

7. Normalized positions with respect to the stroke-length for the points considered in 3.

(Number of components = 4)

8. Normalized positions with respect to the stroke-length for the points considered in 4.

(Number of components = 4)

3.2.2 Stroke Features (Mostly Linear)

Chaudhuri and Pal [4] have elaborated another way of identifying strokes from a character.

These stroke features are mostly linear in structure. A total of 8 stroke features have been

used here shown in the Figure-3.2. The information of existence or non-existence of these

strokes is used in classification. These strokes are described below-

1. A horizontal continuous line over the character, known as matra line, and assumed to

occupy 75% of character width.

2. A vertical continuous line assumed to occupy approximately 75% of the character

middle zone.

3. A diagonal line along +45◦ with horizontal, occupies 40% of the height of middle

zone.

4. A diagonal line in the lower half part of middle zone along 45◦ direction.

5. Existence of both stroke 3 and stroke 4.

6. Length of the arms is assumed to be 30% of the width of the middle zone of the

character and the angle between them is 315◦.

22

7. Stroke 7 is a cup-shaped feature where the bottom of the cup touches the base line.

8. A combination of stroke 1 and stroke 2, whose length is 40% of the height of the

middle zone.

9. It is in the lower part of the middle zone.

Figure 3.2: Stroke features used for character recognition (Shaded portions in the character

represent the features)

3.2.3 Shadow Features

Figure 3.3: An illustration for shadow features. (a-d) Direction of fictitious light rays as

assumed for taking the projection of an image segment on each side of all octants, (e) Pro-

jection of a sample image

Nibaran et al. [14] used shadow features in recognizing handwritten bangle basic and com-

pound character. Here, an image box is divided into 8 octants as shown in Figure-3.3 . On

each side of an octant, length of projection of the image is calculated. Thus 24 shadow

23

features are extracted from each digit image. These values are normalized by dividing the

maximum possible length of projection on a particular side.

3.2.4 Longest Run Features

Along with Shadow features, Nibaran et al. [14] also used Longest Run Features. Within a

rectangular image region of a character, longest run features are computed row wise, column

wise and two major diagonal wise. Row-wise longest run feature corresponds to the sum

of the lengths of the longest bars of consecutive dark pixels along each of all the rows of

the region. In fitting a bar with a number of consecutive black pixels within a rectangular

region, the bar may extend beyond the boundary of the region if the chain of black pixels

is continued there. The three other longest run features within the rectangle are computed

in the same way. Each of the longest run feature values is to be normalized by dividing it

with the product of the height (h) and the width (w) of the entire image. The product, h ×

w, represents the sum of the lengths of the bars that fit consecutive black pixels individually

in each of the four directions within the region completely filled with black pixels.

Figure 3.4: An illustration for computation of the row-wise longest run feature. (a) The

portion of a binary image enclosed within a rectangular region, (b) Every pixel position in

each row of the image is marked with the length of the longest bar that fits consecutive black

pixels along the same row

24

3.2.5 Quad-tree Based Features

A quad-tree is a tree data structure in which each node except the leaf nodes has up to four

children. Quad-trees are most often used for representation of a two dimensional space by

recursively subdividing it into four equal quadrants or regions. Here, partitioning a character

pattern (or a subpart of it) into 4 regions is done by drawing a horizontal and a vertical line

through the Centre of Gravity (CG) of black pixels in that region. If the depth of the quad-

tree structure is d, then total number of sub images for each digit pattern at leaf nodes would

be 4d. The coordinates of the CG of any image frame, (Cx, Cy), is calculated as follows:

Cx= 1
mn ∑x f (x,y) and Cy= 1

mn ∑y f (x,y)

f (x,y) =

 1; f or all black pixels

0; otherwise

Where x and y are the pixel coordinates of an image of size m x n pixels. Both equal

partitioning and CG based partitioning may be used to generate quad-tree.

Figure 3.5: An illustration of quad-tree based features

3.2.6 Structural and Topological Features

In recognizing Bangla numerals, Bhattacharya et al. [13] have used the topological feature

set for handwritten Bengali numerals. Numerals are represented as graphs. Different parts

or units of the graphs, such as, junction, terminal vertex, lowest vertex, lowest terminal

vertex, open arm, right open arm, cycle volume, character height, cycle centroid and some

more have been used in order to calculate the feature vectors.

25

Figure 3.6: Structural features

3.2.7 Watershed Features

Pal and Chaudhuri [14] have used water-flow model from the concept of water overflow.

They have used it to find features of hand-written numerals. The principle is, if we pour

water from the above of numeral, the position where water is stored as reservoir, the shape

of the reservoir as hole, etc are noticed in Figure-3.7. Feature vectors found from this model

are-

1. Existence of holes and its number.

2. Position of holes with respect to its bounding box.

3. Ratio of hole length to height of the numerals.

4. Center of gravity of the holes.

5. Number of crossings in a particular region of the numeral.

6. Convexity of holes etc.

Figure 3.7: Feature using Water Flow Model

26

3.2.8 Chain Code

Mahmud et al. used chain code to extract feature for connected components of Bengali

characters [15]. Each connected component has been divided into four regions indicating

four quadrants in 2-D geometric system. There are several chain code convention used for

image representation, but the most popular one is Freeman chain code. Freeman Chain Code

is based on the observation that each pixel has eight neighborhood pixels.

Figure 3.8: (a) Slope convention for Freeman Chain code, (b) 8 directional slopes divided

into 4 direction zones for searching

A connected component is divided into 4 regions by a horizontal and a vertical line that go

through the center of mass. In each zone, contour of the connected component is traversed.

The frequency of each directional slope is counted. There are 8 directional slopes in a

region, shown in Figure-3.8. As a result, in total, 32 directional slopes are found. These 32

values are the feature vectors, which are normalized by dividing them with square root of

the sum of squares of all feature values. Maintaining an anti clock wise order of searching,

zonal information is used to modify the chain coded position of the next selected pixel. The

algorithm selects the next pixel if it fulfils all of the following criteria:

• The pixel is Black, i.e. it is a part of the character.

• The pixel is within the bounded rectangle of the connected component.

• The pixel is still not visited.

• The pixel is in a zone.

Figure-3.9, (a) shows the chain code generation of an image marked by gray pixels. When

the algorithm starts from the hatched pixel (absolute coordinate, x=1, y=3), it marks the cur-

rent black pixel as visited and initiates its directional zone as DOWN zone. So it searches for

27

Figure 3.9: (a) Chain code generation for an image, (b) Searching order in the four zones

an unvisited black pixel in the directional order: 3,4,5,6,7,0,1,2 (Searching order is shown

in Figure-3.9, (b) for each zone). In this way the process continues and finally produces the

chain code, 06700132454.

3.3 Optimal Feature Identification

Selection of features may be based on some of the points mentioned below-

Thinning independence - Thinning is a process which has been used by some author. The

purpose of thinning is to create a character that contains a broader width for each stroke.

Some feature values may become dependent on thinned or thickened character. It should be

noted that a thinning independent feature may avoid the process of thinning, thereby, reduc-

ing the time required in the process of thinning.

Computational Complexity - This is another parameter which might be a matter of con-

cern. For example, an algorithm that produces features at a cost of more time compared to

another algorithm that produces a less qualified feature at an equivalent time period should

be taken for consideration. Of course, the differential ability of those features also should

be taken care of.

Usage during classification - Features should be chosen depending on their use in the clas-

sification scheme. For example, in the first phase of classification where only clusters are

identified and where a decision tree can be the choice of tool, a feature capable enough to

distinguish two clusters of similar characters, known as Existential Feature, can be used

easily.

28

3.3.1 Choice of Features Having Values

Features that have numeric values can be used as input parameter for different types of

classifier. However, no standard way of measuring the distinguishable capacity of these

features have been proposed so far. In chapter four we performed some analysis on some

of the features and showed their effectiveness. The features we have considered here are

longest run features, quad-tree based features and shadow features.

29

CHAPTER 4

EXPERIMENTAL RESULT ANALYSIS

4.1 Image Dataset

Figure 4.1: Handwritten Bangla Vowels, Consonants, Numerals

30

4.2 Experimental Results for Longest Run Features

Longest run features are computed here row-wise within a rectangular image region of a

character. It corresponds to the sum of the lengths of the longest bars of consecutive dark

pixels along each of all the rows of the region. Each of the longest run feature values is to be

normalized by dividing it with the product of the height (h) and the width (w) of the entire

image.

Table 4.1: Longest Run Features (Bangla Vowels)

Samples Longest Sum (Row-wise) Feature Vectors

1 33 0 0 0 1 1 0 4 1 2 4 0 0 0 0 0 2

0 0 2 1 1 1 1 2 1 0 0 0 0 0 0 0

2 33 0 0 0 0 0 0 0 3 3 2 2 2 1 2 3 2

2 1 2 3 2 1 1 1 0 0 0 0 0 0 0 0

3 71 0 1 0 1 9 1 0 1 0 5 7 8 1 2 1 1

1 2 1 1 2 2 2 4 2 2 2 2 3 3 3 1

4 29 0 0 0 0 0 0 1 1 0 0 7 2 1 2 0 1

2 2 0 2 2 1 1 0 1 1 2 0 0 0 0 0

5 49 0 0 0 3 3 3 2 0 0 0 1 0 12 1 0 1

1 0 0 1 1 1 1 7 1 1 2 7 0 0 0 0

6 56 0 0 0 1 6 2 2 0 0 0 0 1 2 7 1 2

1 1 2 1 1 1 1 2 2 2 3 5 1 3 6 0

7 31 0 0 0 0 0 0 1 2 2 2 1 1 2 1 1 6

2 0 1 2 1 1 1 2 1 0 1 0 0 0 0 0

8 39 0 0 0 0 6 2 2 5 1 1 1 1 0 1 1 1

1 0 1 2 5 3 2 2 1 0 0 0 0 0 0 0

9 60 0 0 1 1 1 1 2 2 1 1 1 1 2 3 2 3

2 4 1 1 1 2 2 1 1 2 7 8 4 2 0 0

10 63 0 0 5 3 3 2 2 3 3 1 1 1 1 1 1 6

4 2 1 2 2 2 2 1 1 2 2 9 0 0 0 0

11 72 0 1 2 1 3 2 2 2 3 3 2 4 3 2 2 3

3 4 3 4 3 1 2 1 1 1 1 2 2 2 7 0

31

Table 4.2: Longest Run Features (Bangla Consonants (1-10))

Samples Longest Sum (Row-wise) Feature Vectors

1 94 0 0 0 0 0 0 8 18 4 3 3 2 2 2 3 3

3 3 3 4 4 4 4 3 4 3 3 4 3 1 0 0

2 65 0 0 0 0 0 0 3 5 8 2 2 2 2 2 5 5

4 3 2 1 1 4 5 5 2 1 1 0 0 0 0 0

3 71 0 0 0 0 0 5 8 3 3 3 3 3 3 4 3 2

3 1 2 2 2 3 10 3 2 2 1 0 0 0 0 0

4 61 0 0 0 0 0 0 2 5 6 2 2 2 2 3 2 1

1 1 2 2 2 4 2 3 3 3 3 4 3 1 0 0

5 83 0 1 2 2 2 2 2 2 1 2 5 2 2 3 3 7

3 2 2 2 1 2 3 7 3 2 2 2 3 8 3 0

6 77 0 0 0 0 14 16 1 1 1 1 1 1 2 2 2 2

3 4 4 2 2 2 1 2 1 1 1 2 2 2 4 0

7 99 0 0 0 5 25 3 2 2 2 2 2 1 1 1 5 3

2 2 2 2 2 3 3 5 2 3 3 4 5 4 3 0

8 73 0 0 0 0 18 4 2 2 2 2 2 3 2 2 4 2

3 3 2 7 2 1 1 1 1 1 1 1 1 2 1 0

9 80 0 0 0 0 0 0 0 7 6 9 2 3 3 4 4 4

6 3 3 5 4 3 4 3 4 3 0 0 0 0 0 0

10 55 0 0 0 0 0 0 0 0 0 0 0 8 4 2 1 1

3 2 1 1 2 12 4 3 3 8 0 0 0 0 0 0

32

Table 4.3: Longest Run Features (Bangla Numerals)

Samples Longest Sum (Row-wise) Feature Vectors

1 43 0 3 2 1 2 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 2 2 2 2 2 6 0

2 16 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0

1 1 1 3 0 1 1 1 1 0 0 0 0 0 0 0

3 44 0 7 1 1 1 1 0 1 1 1 1 1 2 1 1 1

0 1 1 2 2 5 2 1 1 2 2 1 1 1 1 0

4 59 0 0 0 1 2 5 7 4 3 3 2 2 2 2 2 2

2 2 2 2 1 2 2 1 1 2 2 3 0 0 0 0

5 57 0 0 0 7 3 1 1 2 2 2 1 1 2 1 2 1

2 1 1 2 2 2 2 2 1 1 1 2 2 5 5 0

6 76 0 0 8 4 3 3 2 2 2 1 2 1 1 2 1 1

1 1 1 3 8 1 1 1 1 1 1 2 2 12 7 0

7 48 0 0 0 0 0 0 0 1 1 0 1 1 2 1 2 2

2 2 2 2 10 3 2 2 2 4 6 0 0 0 0 0

8 48 4 2 2 2 1 3 2 3 6 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 69 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 8

21 1 1 1 2 1 2 1 2 2 2 2 1 2 2 2

10 59 0 1 1 1 1 1 2 3 3 3 2 2 2 1 1 1

1 1 1 0 1 1 2 2 2 3 5 3 4 4 3 1

33

4.3 Experimental Results for Quad-tree based Features

Quad-tree based features are calculated by dividing the image into four quadrants. Center

of gravity for each quad is calculated by using the formula mentioned above in this paper.

Finally, average of these values are calculated which are shown in the last column. The

effectiveness of quadrature center of gravity has been analyzed below:

Table 4.4: Center of Gravity (Bangla Consonants (1-20))

Samples 1st Quad 2nd Quad 3rd Quad 4th Quad Center of Gravity

1 (1.19,1.87) (1.15,1.49) (1.62,1.19) (0.91,0.57) (1.22,1.11)

2 (1.66,1.39) (0.27,0.96) (1.19,0.93) (0.73,0.73) (0.96,1.01)

3 (1.24,1.16) (0.62,1.06) (1.51,1.48) (0.45,0.61) (0.96,1.08)

4 (0.93,0.74) (0.53,0.78) (0.82,0.89) (0.97,0.69) (0.81,0.77)

5 (0.64,0.48) (0.99,1.05) (1.99,1.16) (1.47,1.17) (1.27,0.96)

6 (1.12,1.29) (0.72,1.28) (0.33,0.49) (0.83,0.39) (0.75,0.87)

7 (1.42,1.66) (0.52,1.26) (0.72,0.42) (1.50,1.06) (1.04,1.09)

8 (0.89,1.11) (0.18,0.56) (1.87,1.26) (0.60,0.62) (0.89,0.87)

9 (1.78,1.62) (0.83,1.66) (1.87,1.11) (0.72,0.97) (1.29,1.34)

10 (0.23,0.28) (0.69,0.52) (1.46,0.93) (0.61,1.13) (0.75,0.72)

11 (0.79,1.13) (0.56,1.04) (1.06,0.37) (0.99,0.39) (0.85,0.73)

12 (1.43,1.66) (0.71,1.12) (0.98,0.23) (0.68,0.54) (0.95,0.89)

13 (0.72,1.08) (0.57,0.90) (0.89,0.75) (1.22,1.34) (0.85,1.02)

14 (0.88,1.28) (0.54,0.69) (0.64,0.51) (0.85,0.86) (0.72,0.83)

15 (1.06,0.81) (0.34,0.67) (1.11,0.77) (0.45,0.24) (0.74,0.62)

16 (1.04,1.01) (0.38,0.52) (1.47,0.91) (0.48,0.41) (0.84,0.71)

17 (1.11,1.14) (0.51,1.01) (0.88,1.14) (0.67,0.52) (0.79,0.95)

18 (1.24,1.57) (0.33,0.98) (0.43,0.13) (0.86,0.66) (0.71,0.84)

19 (1.32,1.64) (0.92,1.41) (1.72,0.82) (1.26,0.88) (1.31,1.19)

20 (0.91,1.01) (0.78,1.33) (1.29,1.11) (0.38,1.35) (0.84,0.94)

34

Table 4.5: Center of Gravity (Bangla Vowels)

Samples 1st Quad 2nd Quad 3rd Quad 4th Quad Center of Gravity

1 (0.30,0.67) (0.07,0.11) (0.52,0.44) (0.20,0.36) (0.27,0.39)

2 (0.26,0.12) (0.14,0.42) (1.32,1.01) (0.27,0.59) (0.50,0.54)

3 (0.61,0.90) (0.32,0.49) (1.23,0.75) (0.90,0.52) (0.76,0.67)

4 (0.42,0.55) (0.07,0.16) (0.60,0.24) (0.38,0.52) (0.37,0.37)

5 (0.56,0.77) (0.43,0.65) (0.59,0.21) (0.66,0.34) (0.27,0.49)

6 (0.03,0.09) (0.88,0.86) (0.93,0.71) (0.98,0.78) (0.71,0.61)

7 (1.03,0.58) (0.29,0.61) (0.12,0.07) (0.21,0.15) (0.41,0.35)

8 (0.00,0.00) (0.34,0.41) (0.81,1.28) (0.29,0.54) (0.36,0.56)

9 (0.00,0.00) (0.85,0.71) (1.41,1.04) (1.06,1.28) (0.83,0.76)

10 (0.56,1.03) (0.63,0.88) (1.21,0.65) (0.69,0.65) (0.77,0.81)

11 (0.46,0.73) (0.55,0.66) (1.65,1.06) (1.02,0.94) (0.92,0.85)

Table 4.6: Center of Gravity (Bangla Numerals)

Samples 1st Quad 2nd Quad 3rd Quad 4th Quad Center of Gravity

1 (0.31,0.42) (0.67,0.58) (0.58,0.65) (0.80,0.62) (0.58,0.57)

2 (0.03,0.06) (0.23,0.45) (0.29,0.14) (0.17,0.59) (0.18,0.21)

3 (0.07,0.28) (0.32,0.59) (0.51,0.45) (0.55,0.27) (0.36,0.39)

4 (0.91,0.44) (0.39,0.62) (1.16,1.26) (0.57,0.82) (0.76,0.79)

5 (0.67,0.99) (1.01,1.21) (0.79,0.35) (0.65,0.37) (0.78,0.73)

6 (0.78,0.89) (1.07,0.91) (0.66,0.47) (1.20,1.04) (0.93,0.83)

7 (0.51,0.22) (0.54,0.89) (0.36,0.15) (1.00,0.89) (0.61,0.54)

8 (0.28,0.73) (0.00,0.00) (0.89,0.78) (0.53,0.44) (0.42,0.49)

9 (1.01,0.78) (1.69,2.03) (1.49,0.80) (0.51,0.84) (1.17,1.12)

10 (0.39,0.64) (0.97,0.92) (0.53,0.26) (1.34,1.22) (0.81,0.76)

35

4.4 Experimental Results for Shadow Features

Shadow features are calculated by dividing the image into 8 octants within minimal square.

Lengths of all projections on each of the 24 sides of all octants are summed up to produce

24 shadow features for each character.

Bangla Vowels

Figure 4.2: Sample:1

Shadow Feature Vectors

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 0 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 0 1

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

36

Figure 4.3: Sample:2

Shadow Feature Vectors

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1

0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1

0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 0 1 1

1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1

1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1

1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

37

Figure 4.4: Sample:3

Shadow Feature Vectors

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0

0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0

0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 1

0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1

1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1

1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

38

Figure 4.5: Sample:4

Shadow Feature Vectors

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1

1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

39

Figure 4.6: Sample:5

Shadow Feature Vectors

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1

0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1

0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 1

1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

40

Bangla Consonants

Figure 4.7: Sample:6

Shadow Feature Vectors

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1

0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1

0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1

0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1

0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 0 1

0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1

0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1

1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1

1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1

1 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1

1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

41

Figure 4.8: Sample:7

Shadow Feature Vectors

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1

0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0

0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 1

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 1

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 1

0 1 1 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1

0 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1

0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1

1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1

1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

42

Figure 4.9: Sample:8

Shadow Feature Vectors

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0

0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 0

0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 0

0 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0

0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 0 1 0

0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1

1 1 1 1 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1

1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1

1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1

1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

43

Figure 4.10: Sample:9

Shadow Feature Vectors

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1

0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 1

0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0

0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0

0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0

1 1 1 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 1 0 0 1

1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1

1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1

1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 1 0 1 1

1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

44

Figure 4.11: Sample:10

Shadow Feature Vectors

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1

0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1

0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1

0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1

0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1

1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1

1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

45

Bangla Numerals

Figure 4.12: Sample:11

Shadow Feature Vectors

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1

0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1

0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0

0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

46

Figure 4.13: Sample:12

Shadow Feature Vectors

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0

0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

47

Figure 4.14: Sample:13

Shadow Feature Vectors

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1

48

Figure 4.15: Sample:14

Shadow Feature Vectors

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1

1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 0

1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 1 1

1 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1

1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

49

Figure 4.16: Sample:15

Shadow Feature Vectors

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0

1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 0

1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0

1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0

1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0

1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1

0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

50

4.5 Neural Network Testing Output

Neural Network have been trained with feature vectors resulted from feature extraction al-

gorithm and tested with individual characters. Sample outputs of some characters are shown

below:

Table 4.7: Test for 1st Bangla Vowel

Training Sample Feature Set 1 Feature Set 2 Feature Set 3 Decider

1 1.015342 0.788991 0.985174 1

2 0.124139 0.124130 -0.010840 0

3 0.102138 0.119756 -0.006071 0

4 0.001780 0.261951 0.013090 0

5 -0.048485 -0.775356 0.000452 0

6 0.058636 -0.607053 0.021240 0

7 -0.062347 -0.146250 0.005501 0

8 -0.092818 0.020854 0.008499 0

9 0.048418 0.083895 -0.001970 0

10 -0.047663 0.283794 0.008785 0

11 -0.002465 0.143186 0.006284 0

51

Table 4.8: Test for 1st Bangla Consonant

Training Sample Feature Set 1 Feature Set 2 Feature Set 3 Decider

1 0.993652 0.775908 1.009660 1

2 -0.064340 0.127957 -0.112392 0

3 0.044930 0.021575 -0.160095 0

4 0.030812 -0.021314 0.004965 0

5 0.119977 0.060678 0.109448 0

6 0.252205 -0.096063 0.107831 0

7 0.030292 -0.080495 0.142268 0

8 -0.079425 -0.029955 -0.135517 0

9 -0.078727 0.032368 -0.250091 0

10 -0.091589 -0.097475 -0.102950 0

Table 4.9: Test for 1st Bangla Numeral

Training Sample Feature Set 1 Feature Set 2 Feature Set3 Decider

1 1.015342 0.581498 1.003273 1

2 0.124139 -0.024589 0.196220 0

3 0.102138 0.510759 -0.108005 0

4 0.001780 0.367731 0.035329 0

5 -0.048485 -0.125310 0.010606 0

6 0.058636 0.147033 0.078735 0

7 -0.062347 0.262405 -0.003842 0

8 -0.092818 0.057164 -0.169264 0

9 0.048418 0.066272 0.062760 0

10 -0.047663 0.087971 0.089598 0

52

4.5.1 Performance Curve in Neural Network

Figure 4.17: Training state curve

Figure 4.18: Curve based on Longest run feature set

53

Figure 4.19: Curve based on Quad-tree feature set

Figure 4.20: Curve based on Shadow feature set

54

CHAPTER 5

CONCLUSION

The pattern recognition opened the horizon of optical character reading in front of us which

is now on use and immensely helping our day to day job at present. OCR software allows

us to save a lot of time and effort when creating, processing and repurposing various docu-

ments. As being the 5th most spoken language, it is now the demand of the time for Bangla

OCR at commercial basis. The rich culture, literary works and much of the documents can

be integrated with the flow of modern digital world easily by Bangla OCR. It would then

be possible to increases the efficiency and effectiveness of our office work. This faster and

cheaper way of digitizing would help our country to advance in a rapid way. Especially

the greater accessibility would help all of us. If the accuracy can be ensured then it would

decrease the amount of manual labour and time needed. We all will definitely be benefitted

by that. The day is not very far when we will have a accurate Bangla OCR in our hand.

5.1 Limitations of the Research Work

We have extensively reviewed most of the features so far found in the literature . Tests of

variability among feature values have been performed on some chosen features. Problems

that we have identified are summarized below:

Little dataset are available as sample. So rigorous testing of an implementation is not pos-

sible. No compound characters have been considered. We have already understood that

Bangla has not only basic characters; it is rich with modifiers and compound characters.

Again lack of standard or benchmark samples do not allow us to make a comprehensive

testing of our algorithm. This suggests that careful investigation would reveal the best pos-

sible combination of feature selection algorithms and processes for all the phases of Bangla

OCR. It is evident that a full commercial OCR is a demand of the time in this era of digiti-

55

zation.

5.2 Recommendation for Further Research Work

• More dataset, depending on the availability, need to be collected as sample.

• Rigorous testing of an implementation should have been made.

• We have already understood that Bangla has not only basic characters; it is rich with

modifiers and compound characters, so compound characters need to be considered

more.

• Comprehensive testing of algorithm should be made basing on the availability of stan-

dard or benchmark samples.

• Careful investigation should be made to reveal the best possible combination of feature

selection algorithms.

56

REFERENCES

[1] http://en.wikipedia.org/wiki/Optical character recognition, [Last visited: 8/11/2013].

[2] J. Mantas, “An overview of character recognition methodologies”, Pattern Recogni-

tion, pp. 425-430, 1986.

[3] Md. Abdul Hasnat, Muttakinur Rahman Chowdhury, Mumit Khan, “Integrating

Bangla script recognition support in Tesseract OCR”, Conference on Language &

Technology , 2009.

[4] B.B. Chaudhuri and U. Pal, “A Complete Printed Bangla OCR System”, Pattern

Recognition, vol. 31, no. 5, pp. 531-549, 1998.

[5] J.Bernsen, “Dynamic thresholding of gray-level images”, In proc. 8th Int’l Conf. on

pattern recognition, Paris, France, pp. 1251-1255, 1986.

[6] W.Niblack, “An Introduction to Digital Image Processing”, Prentice Hall, pp. 115-116,

1986.

[7] T. V. Ashwin and P. S. Sastry, “A font and size-independent OCR system for printed

Kannada documents using support vector machines”, Journal (Sadhana), vol. 27,

2002.

[8] Nasreen Akter, Saima Hossain, Md. Tajul Islam & Hasan Sarwar, “An Algorithm For

Segmenting Modifies From Bangla Text”, ICCIT, IEEE, Khulna, Bangladesh, pp. 177-

182, 2008.

[9] M. E. Hoque, S. Lahiri, S. Sarkar, “Bangla Academy Byabaharik Bangla Abhidhan”,

Bangla Academi Press, Dhaka, Bangladesh, September 2003.

[10] B.B. Chaudhuri & U. Pal, “Skew Angel Detection Of Digitized Indian Scripts Docu-

ments”, Transactions On Pattern Analysis And Machine Intelligence, IEEE, pp. 182-

186, 1997.

57

[11] Subhadip Basu, Nibaran Das, Ram Sarkar, MahantapasKundu, Mita Nasipuri & Di-

pakKumarBasu, “Handwritten ‘Bangla’ Alphabet Recognition Using an MLP Based

Classifier”, NCCPB, Bangladesh, pp. 285-291, 2005.

[12] Adnan Mohammad, Shoeb Shatil and Mumit Khan, “Minimally Segmenting High Per-

formance Bangla Optical Character Recognition using Kohonen Network”, Computer

Science and Engineering, BRAC University, Dhaka, Bangladesh, 2007.

[13] Dutta, A. & Chaudhury, S., “Bengali alpha-numeric character recognition using cur-

vature features”, Pattern Recognition, 26(12), pp. 1757-1770, 1993.

[14] Das N., Das B., Sarkar, Basu, Kundu & Nasipuri, “Handwritten bangla basic and com-

pound character recognition using MLP and SVM classifier”, Journal of Computing,

2(2), pp. 109-115, 2010.

[15] Abdullah, A.B. M. & Rahman, A., “A Survey on Script Segmentation for Bangla OCR:

An implementation Perspective”, Proc. of 6th International Conference on Computer

and Information Technology (ICCIT), pp. 856-860, 2003.

[16] Alam, M. M. & Kashem, D. M. A., “A complete bangla OCR system for printed char-

acters”, Journal of Computer and Information Technology, 1(1), pp. 30-35, 2010.

[17] http://www.ijera.com/papers/Vol3 issue1/EN31919926.pdf, [Last visited: 7/12/2013].

[18] U.Pal & B.B Chaudhuri, “Computer Recognition of Printed Bangla Script”, Interna-

tional Journal of Systems Science, vol. 26, pp. 2107-2123, 1995.

APPENDIX A

