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ABSTRACT

There are two different notations for queries over relational databases throughout

the thesis. The first is SQL, which is the language used to query relational data in

commercial relational systems. SQL is a very complex language. For our discussion,

we typically used only its most basic features such as selecting specific rows from a

table, selecting specific columns from a table, combining data from multiple tables

using the join operator, taking the union of two tables and computing basic aggregation

functions. Secondly, we used the notation of Conjunctive Queries, which is based on

mathematical logic.

Lexical analysis is the extraction of individual words or lexemes from an input

stream of symbols and passing corresponding tokens back to the parser. If we consider

a statement in a programming language, we need to be able to recognize the small

syntactic units (tokens) and pass this information to the Yacc generator. We need to

also store the various attributes in the symbol or literal tables for later use, e.g., if we

have an variable, the tokenizer would generate the token var and then associate the

name of the variable with it in the symbol table. In this case, the variable name is

the lexeme. The tokenization process takes input and then passes this input through a

keyword recognizer, an identifier recognizer, a numeric constant recognizer and a string

constant recognizer, each being put in to their own output based on disambiguating

rules.

Our goal was to unfold Conjunctive Queries. We successfully implemented our

production rules and tokenization process. The rest of our task is to implement unfold-

ing Conjunctive Queries with C language and merge with Yacc generator. So, we are

hopeful that we will be able to unfold Conjunctive Queries in future.
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CHAPTER 1
INTRODUCTION

1.1 Review of Our Topic

Structure Query Language abbreviated as SQL [1] is a widely-used programming language
for working with relational databases. A relational database is a digital database whose
organization is based on the relational model of data, as proposed by E.F. Codd [2] in 1970.
This model organizes data into one or more tables of rows and columns, with a unique key
for each row. Generally, each entity type described in a database has its own table, the
rows representing instances of that entity and the columns representing the attribute values
describing each instance. Because each row in a table has its own unique key, rows in other
tables that are related to it can be linked to it by storing the original row’s unique key as
an attribute of the secondary row. The various software systems used to maintain relational
databases are known as Relational Database Management Systems.

We used two different notations for queries over relational databases throughout the thesis.
The first is SQL, which is the language used to query relational data in commercial rela-
tional systems. Unfortunately, SQL is not known for its aesthetic aspects and hence not
convenient for more formal expositions. Hence, in some of the more formal discussions, we
use the notation of Conjunctive Queries, which is based on mathematical logic. SQL is a
very complex language. For our discussion, we typically use only its most basic features:
selecting specific rows from a table, selecting specific columns from a table, combining data
from multiple tables using the join operator, taking the union of two tables and computing
basic aggregation functions. A Conjunctive Query is a restricted form of first-order queries.
Many first-order queries can be written as Conjunctive Queries. In particular, a large part of
queries issued on relational databases can be expressed in this way. Datalog is a truly declar-
ative logic programming language that syntactically is a subset of Prolog. It is often used
as a query language for deductive databases. In recent years, Datalog has found new ap-
plication in data integration. The semantics of Datalog Programs are based on Conjunctive
Queries. So, for our purpose we used Datalog Program.

Lex [3] helps write programs whose control flow is directed by instances of regular expres-
sions in the input stream. The lexical analysis programs written with Lex accept ambiguous
specifications and choose the longest match possible at each input point. If necessary, sub-
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stantial lookahead is performed on the input, but the input stream will be backed up to the
end of the current partition, so that the user has general freedom to manipulate it. Lex can
generate analyzers in C. Lex is turning the rules into a program. Any source not intercepted
by Lex is copied into the generated program.

A Yacc generator is a software component that takes input data (frequently text) and builds
a data structure often some kind of parse tree, abstract syntax tree or other hierarchical
structure giving a structural representation of the input, checking for correct syntax in the
process. Lexical and syntactical analysis can be simplified to a machine that takes in some
program code and then returns syntax errors, parse trees and data structures. We can think
of the process of description transformation, where we take some source description, apply
a transformation technique and end up with a target description, this is inference mapping
between two equivalent languages, where the destination is a machine executable.

1.2 Method Summary

There are two methods that we used for our task. First one is lexical analysis and second
one is syntax analysis. From source code, lexical analysis produces tokens, the words in
a language which are then parsed to produce a syntax tree. It checks that tokens conform
with the rules of a language. Semantic analysis is then performed on the syntax tree to
produce an annotated tree. In addition to this, a literal table which contains information on
the strings and constants used in the program and a symbol table which stores information
on the identifiers occurring in the program (e.g., variable names, constant names, procedure
names etc) are produced by the various stages of the process. An error handler also exists
to catch any errors generated by any stages of the program (e.g., a syntax error by a poorly
formed line). The syntax tree forms an intermediate representation of the code structure and
has links to the symbol table.

1.3 Organization of Rest of the Thesis

Chapter 2 discusses about Conjunctive Query and SQL. As, SQL is complex language so we
used Conjunctive Query for our purpose. Actually, we used Datalog for Conjunctive Query.
These connect with relational database.

Chapter 3 discusses basic concept about lexical analysis and lexical generator. Here, we
define identifiers. Chapter 4 discusses basic concept about syntax analysis and syntax gen-
erator.

Chapter 5 discusses about our lexical code. Chapter 6 discusses about our syntax code.
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Chapter 7 discusses about experiment and results of lexical and syntax code. Chapter 8 is
discussion and conclusion of whole thesis. All references and codes are included at the end
of thesis.
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CHAPTER 2
SQL AND CONJUNCTIVE QUERY

We used Conjunctive Query [4] in our experiment. As it connects with the relational
databases, it also connects with the SQL. SQL and Conjunctive Query both are large area of
knowledge. So, it is not possible to describe all. Here, we discuss the related topics about
our thesis.

2.1 SQL

SQL is a complex language so we didn’t use this language for our purpose. But there is a
relation between SQL and Conjunctive Query.

SQL is a special-purpose programming language designed for managing data held in a re-
lational database management system, or for stream processing in a relational data stream
management system. Originally based upon relational algebra and tuple relational calculus,
SQL consists of a data definition language and a data manipulation language. The scope
of SQL includes data insert, query, update, delete, schema creation, modification and data
access control. Although SQL is often described as, and to a great extent is, a declarative
language, it also includes procedural elements. This review has been prepared using the
sources [1] [5].

The SQL language has several parts:

Data-definition language: The SQL Data-definition language provides commands for defin-
ing relation schemas, deleting relations and modifying relation schemas.

Interactive data-manipulation language: The SQL data-manipulation language includes
a query language based on both the relational algebra and the tuple relational calculus.
It includes also commands to insert tuples into, delete tuples from and modify tuples
in the database.

View definition: The SQL Data-definition language includes commands for defining views.

Transaction control: SQL includes commands for specifying the beginning and ending of
transactions.
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Embedded SQL and dynamic SQL: Embedded and dynamic SQL define how SQL state-
ments can be embedded within general-purpose programming languages, such as C,
C++, Java, PL/I, Cobol, Pascal and Fortran.

Integrity: The SQL Data-definition language includes commands for specifying integrity
constraints that the data stored in the database must satisfy. Updates that violate in-
tegrity constraints are disallowed.

Authorization: The SQL Data-definition language includes commands for specifying ac-
cess rights to relations and views.

A relational database consists of a collection of relations, each of which is assigned a unique
name. The basic structure of an SQL expression consists of many important clauses such as
select, from and where.

• The select clause corresponds to the projection operation of the relational algebra. It
is used to list the attributes desired in the result of a query.

• The from clause corresponds to the Cartesian-product operation of the relational
algebra. It lists the relations to be scanned in the evaluation of the expression.

• The where clause corresponds to the selection predicate of the relational algebra. It
consists of a predicate involving attributes of the relations that appear in the from
clause.

• The group by clause is used to project rows having common values into a smaller
set of rows. The group by clause is often used in conjunction with SQL aggregation
functions or to eliminate duplicate rows from a result set. The where clause is applied
before the group by clause.

• The having clause includes a predicate used to filter rows resulting from the group by
clause. Because it acts on the results of the group by clause, aggregation functions
can be used in the having clause predicate.

• The order by clause identifies which columns to use to sort the resulting data and in
which direction to sort them (ascending or descending). Without an order by clause,
the order of rows returned by an SQL query is undefined.

2.1.1 Example

To give an example, imagine a relational database for storing information about students,
their addresses, the courses they visit and their gender. Finding all male students and their
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addresses who attend a course that is also attended by a female student is expressed by the
following SQL query:

select l.student, l.address

from attends a1, gender g1,

attends a2, gender g2,

lives l

where a1.student=g1.student

and a2.student=g2.student

and l.student=g1.student

and a1.course=a2.course

and g1.gender=’male’

and g2.gender=’female’;

2.1.2 Another Example

The following query asks for pairs of recruiters and candidates where the recruiter got a low
grade on their performance review. The answer to this query may reveal candidates who we
may want to reinterview.

SELECT recruiter, candidate

FROM Interview, EmployeePerformance

WHERE recruiter = name AND EmployeePerformance.grade < 2.5

2.1.3 Subqueries

Queries can be nested so that the results of one query can be used in another query via
a relational operator or aggregation function. A nested query is also known as a subquery.
While joins and other table operations provide computationally superior alternatives in many
cases, the use of subqueries introduces a hierarchy in execution that can be useful or neces-
sary. In the following example, the aggregation function AVG receives as input the result of
a subquery:

For example,

SELECT isbn,

title,

price

FROM Book
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WHERE price < (SELECT AVG(price) FROM Book)

ORDER BY title;

Nested Subqueries

SQL provides a mechanism for nesting subqueries. A subquery is a select-from-where
expression that is nested within another query. A common use of subqueries is to perform
tests for set membership, make set comparisons and determine set cardinality.

As we need to generate more and more functions in real life, so that we face some constraints
such as functional dependency.

2.1.4 Functional Dependencies

Functional dependencies play a key role in differentiating good database designs from bad
database designs. A functional dependency is a type of constraint that is a generalization of
the notion of key. Functional dependencies are constraints on the set of legal relations. They
allow us to express facts about the enterprise that we are modeling with our database. we
defined the notion of a superkey as follows.

Let R be a relation schema. A subset K of R is a superkey of R if, in any legal relation r(R),
for all pairs t1 and t2 of tuples in r such that t1 6= t2 then t1[K] 6= t2[K]. That is, no two
tuples in any legal relation r(R) may have the same value on attribute set K. The notion of
functional dependency generalizes the notion of superkey.

Consider a relation schema R and let α ⊆ R and β ⊆ R. The functional dependency α → β

holds on schema R if, in any legal relation r(R), for all pairs of tuples t1 and t2 in r such
that t1[α] = t2[α], it is also the case that t1[β] = t2[β]. Using the functional-dependency
notation, we say that K is a superkey of R if K → R. That is, K is a superkey if, whenever
t1[K] = t2[K], it is also the case that t1[R] = t2[R] (that is, t1 = t2). We shall use functional
dependencies in two ways:

1. To test relations to see whether they are legal under a given set of functional depen-
dencies. If a relation r is legal under a set F of functional dependencies, we say that r
satisfies F.

2. To specify constraints on the set of legal relations. We shall thus concern ourselves
with only those relations that satisfy a given set of functional dependencies. If we
wish to constrain ourselves to relations on schema R that satisfy a set F of functional
dependencies, we say that F holds on R.
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To remove these constraints, we used Conjunctive Query.

2.2 Conjunctive Query

In database theory, a Conjunctive Query is a restricted form of first order queries. Many first-
order queries can be written as Conjunctive Queries. In particular, a large part of queries
issued on relational databases can be expressed in this way. Conjunctive Queries also have
a number of desirable theoretical properties that larger classes of queries do not share. Con-
junctive Queries without distinguished variables are called boolean Conjunctive Queries.

As an example of why the restriction to domain independent first order logic is important,
consider x1.∃x2.R(x2) which is not domain independent; see Codd’s theorem [6]. This
formula can not be implemented in the select-project join fragment of relational algebra and
hence should not be considered a Conjunctive Query.

2.2.1 Example

To give an example, imagine a relational database for storing information about students,
their addresses, the courses they visit and their gender. Finding all male students and their
addresses who attend a course that is also attended by a female student is expressed by the
following Conjunctive Query:

(student, address) . ∃(student2, course) . attends(student,

course) ∧ gender(student, ’male’) ∧ attends(student2, course) ∧
gender(student2, ’female’) ∧ lives(student, address)

The above query can be written as an SQL query of the Conjunctive Query fragment as
example 2.1.1.

We briefly review the formalism for Conjunctive Queries. A Conjunctive Query has the
following form:

Q(X’):-R1(X1’),....,Rn(Xn’),c1,...,cm

In the query,

R1(X1’),....,Rn(Xn’)

are the subgoals (or conjuncts) of the query and together form the body of the query.

The Rj
′s are database relations and the X’s are tuples of variables and constants. Note

that the same database relation can occur in multiple subgoals. Unless we explicitly give
the query a different name, we refer to it as Q. The variables in X’ are called distinguished
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variables or head variables and the others are existential variables. The predicate Q denotes
the answer relation of the query. Arity is the number of elements in X’. We denote by
Vars(Q) the set of variables that appear in its head or body.

The Cj
′s are interpreted atoms and are of the form X θ Y where X and Y are either variables

or constants and at least one of X or Y is a variable. The operator θ is an interpreted predicate
such as =, ≤, 6=, or ≥. We assume the obvious meaning for the interpreted predicates
and unless otherwise stated, we interpret them over a dense domain. The semantics of a
Conjunctive Query Q over a database instance D is as follows. Consider any mapping ψ that
maps each of the variables in Q to constants in D. Denote by ψ (Rj) the result of applying
ψ to Ri(X ′

i), by ψ (Ci) the result of applying ψ to (Cj) and by ψ(Q) the result of applying ψ
to Q(X′) , all resulting in ground atoms. If

• each of ψ (R1),...,ψ (Rn) is in D and

• for each 1 ≤ j ≤ m,ψ(Cj) is satisfied,

then (and only then) ψ(Q) is in the answer to Q over D.

To illustrate the correspondence between SQL queries and Conjunctive Queries, the follow-
ing Conjunctive Query is the same as the SQL query in 2.1.2.

Q1 (Y,X) :- Interview (X,D,Y,H,F),

EmployeePerformance (E,Y,T,W,Z), W < 2.5

Note that the join in the Conjunctive Query is expressed by the fact that the variable Y
appears in both subgoals. The predicate on the grade is expressed with an interpreted atom.

Conjunctive Queries must be safe that is, every variable appearing in the head also appears
in a non-interpreted atom in the body. Otherwise, the set of possible answers to the query
may be infinite (i.e., the variable appearing in the head but not in the body can be bound to
any value).

We can also express disjunctive queries in this notation. To express disjunction, we write
two (or more) Conjunctive Queries with the same head predicate.

The following query asks for the recruiters who performed the best or the worst:

Q1 (E,Y) :- Interview (X,D,Y,H,F),

EmployeePerformance (E,Y,T,W,Z), W < 2.5

Q1 (E,Y) :- Interview (X,D,Y,H,F),

EmployeePerformance (E,Y,T,W,Z), W > 3.9
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For queries with negation, we extend the notion of safety as follows: any variable appearing
in the head of the query must also appear in a positive subgoal. This review has been
prepared using the source [4].

As discussed by author in [7] we can further show how this affects Description Logic [8].

A serious shortcoming of many Description Logic based knowledge representation systems
is the inadequacy of their query languages. In this paper we present a novel technique that
can be used to provide an expressive query language for such systems. One of the main ad-
vantages of this approach is that, being based on a reduction to knowledge base satisfiability,
it can easily be adapted to most existing (and future) Description Logic implementations.
We believe that providing Description Logic systems with an expressive query language for
interrogating the knowledge base will significantly increase their utility.

2.2.2 Datalog Programs

A Datalog Program is a set of rules, each of which is a Conjunctive Query. Instead of com-
puting a single answer relation, a Datalog Program computes a set of intensional relations
(called IDB relations), one of them being designated as the query predicate.

In Datalog, we refer to the database relations as the EDB relations (extensional database).
Intuitively, the extensional relations are given as a set of tuples (also referred to as ground
facts), while the intensional relations are defined by a set of rules. Consequently, the EDB
relations can occur in only the body of the rules, whereas the IDB relations can occur both
in the head and in the body.

For example, Consider a database that includes a simple binary relation representing the
edges in a graph:

edge (X,Y) holds if there is an edge from X to Y in the graph.

The following Datalog query computes the paths in the graph, edge is an EDB relation and
path is an IDB relation.

r1 path (X,Y) :- edge (X,Y)

r2 path (X,Y) :- edge (X,Z), path (Z,Y)

The first rule states that all single edges form paths. The second rule computes paths that
are composed from shorter ones. The query predicate in this example is path. Note that
replacing r2 with the following rule would produce the same result.

r3 path (X,Y) :- path (X,Z), path (Z,Y)

The semantics of Datalog Programs are based on Conjunctive Queries. We begin with empty
extensions for the IDB predicates. We choose a rule in the program and apply it to the current
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extension of the EDB and IDB relations. We add the tuples computed for the head of the
rule to its extension. We continue applying the rules of the program until no new tuples are
computed for the IDB relations.

The answer to the query is the extension of the query predicate. When the rules do not
contain negated subgoals, this process is guaranteed to terminate with a unique answer,
independent of the order in which we applied the rules.

In data integration we are interested in Datalog Programs mostly because they are sometimes
needed in order to compute all the answers to a query from a set of data sources.

We know that Datalog is a subset of Prolog. All SQL queries can not be expressed in
Datalog. In particular, there is no support in datalog for grouping and aggregation and for
outer joins. SQL does support limited kinds of recursion but not arbitrary recursion.

Datalog Programs, i.e., Prolog programs without function symbols are considered. It is
assumed that a variable appearing in the head of a rule must also appear in the body of the
rule. The input of a program is a set of ground atoms (which are given in addition to the
program’s rules) and therefore, can be viewed as an assignment of relations to some of the
program’s predicates.

Two programs are equivalent if they produce the same result for all possible assignments
of relations to the extensional predicates (i.e., the predicates that do not appear as heads
of rules). Two programs are uniformly equivalent if they produce the same result for all
possible assignments of initial relations to all the predicates (i.e., both extensional and in-
tentional). The equivalence problem for Datalog Programs is known to be undecidable. It is
shown that uniform equivalence is decidable and an algorithm is given for minimizing a Dat-
alog Program under uniform equivalence. A technique for removing parts of a program that
are redundant under equivalence (but not under uniform equivalence) is developed. A pro-
cedure for testing uniform equivalence is also developed for the case in which the database
satisfies some constraints.

Example Datalog Program:

parent(bill,mary).

parent(mary,john).

These two lines define two facts. They can be intuitively understood that the parent of mary
is bill and the parent of john is mary.

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z),ancestor(Z,Y).

These two lines describe the rules that define the ancestor relationship. A rule consists of
two main parts separated by the :- symbol. The part to the left of this symbol is the head and
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the part to the right is the body of the rule. A rule is read (and can be intuitively understood)
as (head) if it is known that (body). Uppercase letters stand for variables. Hence in the
example the first rule can be read as X is the ancestor of Y if it is known that X is the parent
of Y. And the second rule as X is the ancestor of Y if it is known that X is the parent of some
Z and Z is the ancestor of Y. The ordering of the clauses is irrelevant in Datalog in contrast
to Prolog which depends on the ordering of clauses for computing the result of the query
call.

Datalog distinguishes between extensional and intensional predicate symbols. Extensional
predicate symbols are defined by facts and intensional predicate symbols are defined by
rules. In the example above ancestor is an intensional predicate symbol and parent is ex-
tensional. Predicates may also be defined by facts and rules and therefore neither be purely
extensional nor intensional but any Datalog Program can be rewritten into an equivalent
program without such predicate symbols with duplicate roles.

?- ancestor(bill,X).

Features

Unlike in Prolog, statements of a Datalog Program can be stated in any order. Furthermore,
Datalog queries on finite sets are guaranteed to terminate, so Datalog does not have Prolog’s
cut operator. This makes Datalog a truly declarative language.

In contrast to Prolog, Datalog

• disallows complex terms as arguments of predicates, e.g., p(1, 2) is admissible but
not p(f(1), 2),

• imposes certain stratification restrictions on the use of negation and recursion,

• requires that every variable that appears in the head of a clause also appears in a
nonarithmetic positive (i.e. not negated) literal in the body of the clause,

• requires that every variable appearing in a negative literal in the body of a clause also
appears in some positive literal in the body of the clause

Query evaluation with Datalog is based on first order logic and is thus sound and complete.
However, Datalog is not Turing complete and is thus used as a domain-specific language that
can take advantage of efficient algorithms developed for query resolution. Indeed, various
methods have been proposed to efficiently perform queries, e.g., the Magic Sets algorithm,
tabled logic programming or SLG resolution.
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Some widely used database systems include ideas and algorithms developed for Datalog.
For example, the SQL:1999 standard includes recursive queries and the Magic Sets algo-
rithm (initially developed for the faster evaluation of Datalog queries) is implemented in
IBM’s DB2. Moreover, Datalog engines are behind specialized database systems such as
Intellidimension’s database for the semantic web.

Several extensions have been made to Datalog, e.g., to support aggregate functions, to allow
object-oriented programming or to allow disjunctions as heads of clauses. These extensions
have significant impacts on the definition of Datalog’s semantics and on the implementation
of a corresponding Datalog interpreter.
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CHAPTER 3
LEXICAL ANALYSIS AND LEXER GENERATOR

Lex [9] is a program generator designed for lexical processing of character input streams. It
accepts a high-level, problem oriented specification for character string matching and pro-
duces a program in a general purpose language which recognizes regular expressions. The
regular expressions are specified by the user in the source specifications given to Lex. The
Lex written code recognizes these expressions in an input stream and partitions the input
stream into strings matching the expressions. At the boundaries between strings program
sections provided by the user are executed. The Lex source file associates the regular ex-
pressions and the program fragments. As each expression appears in the input to the program
written by Lex, the corresponding fragment is executed.

3.1 Lexical Analysis

Lexical analysis is the process of converting a sequence of characters into a sequence of to-
kens, i.e. meaningful character strings. A program or function that performs lexical analysis
is called a lexical analyzer, lexer, tokenizer or scanner, though ‘scanner’ is also used for the
first stage of a lexer. A lexical analyzer is generally combined with a parser which together
analyze the syntax of programming languages such as in compilers.

A lexical analyzer is itself a kind of parser-syntax of some programming language is divided
into two pieces: the lexical syntax (token structure), which is processed by the lexer and the
phrase syntax, which is processed by the parser.

The lexical syntax is usually a regular language, whose alphabet consists of the individual
characters of the source code text. The phrase syntax is usually a context-free language,
whose alphabet consists of the tokens produced by the lexer. While this is a common sep-
aration, alternatively, a lexer can be combined with the parser in scannerless parsing. This
review has been prepared using the source [3]. Lexical analyzer is most often used for com-
pilers . A lexer itself can be divided into two stages: the scanner, which segments the input
sequence into groups and categorizes these into token classes and the evaluator, which con-
verts the raw input characters into a processed value. Lexical analyzers are generally quite
simple, with most of the complexity deferred to the parser or semantic analysis phases and
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can often be generated by a lexer generator . However, lexers can sometimes include some
complexity, such as phrase structure processing to make input easier and simplify the parser
and may be written partially or completely by hand, either to support additional features or
for performance.

3.1.1 Token

A token is a string of one or more characters that is significant as a group. The process of
forming tokens from an input stream of characters is called tokenization. The characters that
form a token are called a lexeme. When a token represents more than one possible lexeme,
the lexer saves the string representation of the token, so that it can be used in semantic
analysis. The parser typically retrieves this information from the lexer and stores it in the
abstract syntax tree. This is necessary in order to avoid information loss in the case of
numbers and identifiers.

Tokens are identified based on the specific rules of the lexer. Some methods used to iden-
tify tokens include: regular expressions, specific sequences of characters known as a flag,
specific separating characters called delimiters and explicit definition by a dictionary. Spe-
cial characters, including punctuation characters, are commonly used by lexers to identify
tokens because of their natural use in written and programming languages.

Tokens are often categorized by character content or by context within the data stream.
Categories are defined by the rules of the lexer. Categories often involve grammar elements
of the language used in the data stream. Programming languages often categorize tokens
as identifiers, operators, grouping symbols or by data type. Written languages commonly
categorize tokens as nouns, verbs, adjectives or punctuation. Categories are used for post-
processing of the tokens either by the parser or by other functions in the program.

A lexical analyzer generally does nothing with combinations of tokens, a task left for a
parser. For example, a typical lexical analyzer recognizes parentheses as tokens, but does
nothing to ensure that each ‘(’ is matched with a ‘)’.

Consider this expression in the C programming language:

sum = 3 + 2;

Tokenized are represented by the following Table 3.1

When a lexer feeds tokens to the parser, the representation used is typically an enumerated
list of number representations. For example ‘Identifier’ is represented with 0, ‘Assignment
operator’ with 1, ‘Addition operator’ with 2 etc.

Tokens are frequently defined by regular expressions, which are understood by a lexical
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Table 3.1: Token Example
Lexeme Token
sum ‘Identifier’
= ‘Assignment operator’
3 ‘Integer literal’
+ ‘Addition operator’
2 ‘Integer literal’
; ‘End of statement’

analyzer generator such as Lex. The lexical analyzer (either generated automatically by a
tool like Lex, or hand-crafted) reads in a stream of characters, identifies the lexemes in the
stream and categorizes them into tokens. This is called ‘tokenizing’. If the lexer finds an
invalid token, it will report an error.

3.1.2 Tokenization

Tokenization is the process of demarcating and possibly classifying sections of a string of
input characters. The resulting tokens are then passed on to some other form of processing.
The process can be considered a sub-task of parsing input.

For example,

The quick brown fox jumps over the lazy dog.

The tokens could be represented in XML,

<sentence>

<word>The</word>

<word>quick</word>

<word>brown</word>

<word>fox</word>

<word>jumps</word>

<word>over</word>

<word>the</word>

<word>lazy</word>

<word>dog</word>

</sentence>
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3.1.3 Scanner

The first stage, the scanner, is usually based on a finite-state machine (FSM). It has encoded
within it information on the possible sequences of characters that can be contained within
any of the tokens it handles (individual instances of these character sequences are known
as lexemes). For instance, an integer token may contain any sequence of numerical digit
characters. In many cases, the first non-whitespace character can be used to deduce the kind
of token that follows and subsequent input characters are then processed one at a time until
reaching a character that is not in the set of characters acceptable for that token (this is known
as the maximal munch rule, or longest match rule). In some languages, the lexeme creation
rules are more complicated and may involve backtracking over previously read characters.
For example, in C, a single ‘L’ character is not enough to distinguish between an identifier
that begins with ‘L’ and a wide-character string literal.

3.1.4 Evaluator

A lexeme, however, is only a string of characters known to be of a certain kind (e.g., a
string literal, a sequence of letters). In order to construct a token, the lexical analyzer needs
a second stage, the evaluator, which goes over the characters of the lexeme to produce a
value. The lexeme’s type combined with its value is what properly constitutes a token,
which can be given to a parser. Some tokens such as parentheses do not really have values
and so the evaluator function for these can return nothing, only the type is needed. Similarly,
sometimes evaluators can suppress a lexeme entirely, concealing it from the parser, which is
useful for whitespace and comments. The evaluators for identifiers are usually simple. The
evaluators for integer literals may pass the string on or may perform evaluation themselves,
which can be involved for different bases or floating point numbers. For a simple quoted
string literal, the evaluator only needs to remove the quotes, but the evaluator for an escaped
string literal itself incorporates a lexer, which unescapes the escape sequences. For example,
in the source code of a computer program, the string

net_worth_future = (assets - liabilities);

might be converted into the following lexical token stream; note that whitespace is sup-
pressed and special characters have no value:

NAME net_worth_future

EQUALS

OPEN_PARENTHESIS

NAME assets

MINUS

NAME liabilities
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CLOSE_PARENTHESIS

SEMICOLON

Though it is possible and sometimes necessary, due to licensing restrictions of existing
parsers or if the list of tokens is small, to write a lexer by hand, lexers are often gener-
ated by automated tools. These tools generally accept regular expressions that describe the
tokens allowed in the input stream. Each regular expression is associated with a production
rule in the lexical grammar of the programming language that evaluates the lexemes match-
ing the regular expression. These tools may generate source code that can be compiled
and executed or construct a state table for a finite-state machine. Regular expressions com-
pactly represent patterns that the characters in lexemes might follow. For example, for an
English-based language, a NAME token might be any English alphabetical character or an
underscore, followed by any number of instances of ASCII alphanumeric characters and/or
underscores. The Lex programming tool and its compiler is designed to generate code for
fast lexical analyzers based on a formal description of the lexical syntax. It is not gener-
ally considered sufficient for applications with a complicated set of lexical rules and severe
performance requirements; for instance, the GNU Compiler Collection uses hand-written
lexers.

Lex turns the users expressions and actions into the host general-purpose language; the
generated program is named yylex. The yylex program will recognize expressions in a
stream and perform the specified actions for each expression as it is detected.

Source→ Lex→ yylex

input→ yylex→ output

Lex can be used alone for simple transformations, or for analysis and statistics gathering on
a lexical level. Lex can also be used with a parser generator to perform the lexical analysis
phase, it is particularly easy to interface Lex and Yacc. Lex programs recognize only regular
expressions. Yacc writes parsers that accept a large class of context free grammars but
require a lower level analyzer to recognize input tokens. Thus, a combination of Lex and
Yacc is often appropriate. When used as a preprocessor for a later parser generator, Lex is
used to partition the input stream and the parser generator assigns structure to the resulting
pieces.

For example, Lex cannot be used to recognize nested structures such as parentheses. Nested
structures are handled by incorporating a stack. Whenever we encounter a ‘(’ we push it
on the stack. When a ‘)’ is encountered we match it with the top of the stack and pop the
stack. However, Lex only has states and transitions between states. Since it has no stack it
is not well suited for parsing nested structures. Yacc augments an FSA with a stack and can
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Table 3.2: Pattern Matching Primitives
Metacharacter Matches
· any character except newline
∗ zero or more copies of the preceding expression
+ one or more copies of the preceding expression
? zero or one copy of the preceding expression
∧ beginning of line
[ ] character class
(ab)+ one or more copies of ab (grouping)
‘(a+b)’ literal ‘a+b’ (C escapes still work)

process constructs such as parentheses with ease. The important thing is to use the right tool
for the job. Lex is good at pattern matching (see Table 3.2). Yacc is appropriate for more
challenging tasks.

3.2 Lexer Generator

Lexers are often generated by a lexer generator, analogous to parser generators and such
tools often come together. The most established is Lex, paired with the Yacc parser gen-
erator and the free equivalents flex/bison. These generators are a form of domain-specific
language, taking in a lexical specification generally regular expressions with some markup
and outputting a lexer.

These tools yield very fast development, which is particularly important in early develop-
ment, both to get a working lexer and because the language specification may be changing
frequently. Further, they often provide advanced features, such as pre condition and post
conditions which are hard to program by hand. However, automatically generated lexer may
lack flexibility and thus may require some manual modification or a completely manually
written lexer.

Lexer performance is a concern and optimization of the lexer is worthwhile, particularly in
stable languages where the lexer is run very frequently. Lex generated lexers are reasonably
fast, but improvements of two to three times are possible using more tuned generators. Hand-
written lexers are sometimes used, but modern lexer generators produce faster lexers than
most hand-coded ones. The Lex family of generators uses a table-driven approach which is
much less efficient than the directly coded approach.

There are many lexer generators. Such as,

ANTLR - Can generate lexical analyzers and parsers.
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Figure 3.1: Compilation Sequence.

DFASTAR - Generates DFA matrix table-driven lexers in C++.

Flex - Alternative variant of the classic ‘Lex’ (C/C++).

JFlex - A rewrite of JLex.

Ragel - A state machine and lexer generator with output in C, C++, Objective-C, D, Java,
Go and Ruby.

Lex generates a deterministic finite automaton from the regular expressions in the source.
The automaton is interpreted, rather than compiled, in order to save space. The result is still
a fast analyzer. In particular, the time taken by a Lex program to recognize and partition
an input stream is proportional to the length of the input. The number of Lex rules or the
complexity of the rules is not important in determining speed, unless rules which include
forward context require a significant amount of rescanning. What does increase with the
number and complexity of rules is the size of the finite automaton and therefore the size of
the program generated by Lex.
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In the program written by Lex, the users fragments are gathered as cases of a switch. The
automaton interpreter directs the control flow. Opportunity is provided for the user to insert
either declarations or additional statements in the routine containing the actions, or to add
subroutines outside this action routine. Lex is not limited to source which can be interpreted
on the basis of one character lookahead. For example, if there are two rules, one looking
for ab and another for abcdefg and the input stream is abcdefh , Lex will recognize aabb

and leave the input pointer just before cd. Such backup is more costly than the processing
of simpler languages.

The patterns in the Figure 3.1 is a file we create with a text editor. Lex will read your
patterns and generate C code for a lexical analyzer or scanner. The lexical analyzer matches
strings in the input, based on your patterns and converts the strings to tokens. Tokens are
numerical representations of strings and simplify processing. When the lexical analyzer
finds identifiers in the input stream it enters them in a symbol table. The symbol table
may also contain other information such as data type (integer or real) and location of each
variable in memory. All subsequent references to identifiers refer to the appropriate symbol
table index.
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CHAPTER 4
SYNTAX ANALYSIS AND SYNTAX GENERATOR

Syntax analysis [10] is alternatively known as parsing. It is roughly the equivalent of check-
ing that some ordinary text written in a natural language is grammatically correct. The
purpose of syntax analysis or parsing is to check that we have a valid sequence of tokens.
Tokens are valid sequence of symbols, keywords, identifiers etc. Note that this sequence
need not be meaningful; as far as syntax goes, a phrase such as ‘true + 3’ is valid but
it doesn’t make any sense in most programming languages. The parser takes the tokens
produced during the lexical analysis stage and attempts to build some kind of in-memory
structure to represent that input. This review has been prepared using the sources [11] [12].

4.1 Syntax Analysis

A parser is a software component that takes input data (frequently text) and builds a data
structure often some kind of parse tree, abstract syntax tree or other hierarchical structure
giving a structural representation of the input, checking for correct syntax in the process. The
parsing may be preceded or followed by other steps, or these may be combined into a single
step. The parser is often preceded by a separate lexical analyzer, which creates tokens from
the sequence of input characters; alternatively, these can be combined in scannerless pars-
ing. Parsers may be programmed by hand or may be automatically or semi-automatically
generated by a parser generator. Parsing is complementary to templating, which produces
formatted output. These may be applied to different domains but often appear together, such
as the scanf/printf pair or the input (front end parsing) and output (back end code generation)
stages of a compiler.

We take an example of simple variable declaration in C language Example:-

int a, b, c;

float x, y;

In syntax analysis, this example will be Figure 4.1. Different Formalisms are

• Syntax diagram (SD)

• Backus−Naur form (BNF)
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Figure 4.1: Syntax analyzer.

• Context−free grammar (CFG)

Different styles of specification have different purpose. SD is good for human understanding
and visualization. The BNF is very compact. It is used for theoretical analysis and also in
automatic parser generating softwares. But for most of our discussion we shall consider
structural specification in the form of a context-free grammar (CFG).

4.2 The Role of the Parser

In our compiler model Figure 4.2, the parser obtains a string of tokens from the lexical ana-
lyzer. It then verifies that the string of token names can be generated by the grammar for the
source language. We expect the parser to report any syntax errors in an intelligible fashion
and to recover from commonly occurring errors to continue processing the remainder of the
program.

Conceptually, for well-formed programs, the parser constructs a parse tree and passes it to
the rest of the compiler for further processing. In fact, the parse tree need not be constructed
explicitly. Since checking and translation actions can be interspersed with parsing. Thus,
the parser and the rest of the front end could well be implemented by a single module.
There are three general types of parsers for grammars (universal, top-down and bottom-
up). Universal parsing methods such as the Cocke-Younger-Kasami algorithm [13] and
Earleys algorithm [14] can parse any grammar. These general methods are, however, too
inefficient to use in production compilers. The methods commonly used in compilers can
be classified as being either top-down or bottom-up. As implied by their names, top-down
methods build parse trees from the top (root) to the bottom (leaves). Bottom-up methods
start from the leaves and work their way up to the root. In either case, the input to the parser
is scanned from left to right, one symbol at a time. The most efficient top-down and bottom-
up methods work only for subclasses of grammars. But several of these classes, particularly,
LL and LR grammars, are expressive enough to describe most of the syntactic constructs
in modern programming languages. Parsers implemented by hand often use LL grammars.
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Figure 4.2: Parser Sequence.

The predictive-parsing approach works for LL grammars. Parsers for the larger class of LR
grammars are usually constructed using automated tools.

4.3 Parsing Representative Grammars

Some of the grammars that will be examined are presented here for ease of reference. It
constructs that begin with keywords like while or int are relatively easy to parse. The key-
word guides the choice of the grammar production that must be applied to match the input.
We therefore concentrate on expressions which present more of challenge, because of the
associativity and precedence of operators. Associativity and precedence are captured in the
following grammar. E represents expressions consisting of terms separated by + signs. F

represents factors that can be either parenthesized expressions or identifiers.

1. E → E + T |T

2. T → T ∗ F |F

3. F → (E)|id

The above grammar belongs to the class of LR grammars that are suitable for bottom-up
parsing. This grammar can be adapted to handle additional operators and additional levels
of precedence. However, it cannot be used for top-down parsing because it is left recursive.

4.4 Derivation

The basic idea of derivation is to consider productions as rewrite rules. Whenever we have
a nonterminal, we can replace this by the right-hand side of any production in which the
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nonterminal appears on the left-hand side. We can do this anywhere in a sequence of sym-
bols (terminals and nonterminals) and repeat doing so until we have only terminals left. The
resulting sequence of terminals is a string in the language defined by the grammar. Formally,
we define the derivation relation by the three rules:

1. αNβ ⇒ αγβ if there is a production N → γ

2. α⇒ α

3. α→ γ if there is a β such that α→ β and β → γ

where α, β and γ are (possibly empty) sequences of grammar symbols (terminals and non-
terminals ). The first rule states that using a production as a rewrite rule (anywhere in a
sequence of grammar symbols) is a derivation step. The second states that the derivation
relation is reflexive, i.e., that a sequence derives itself. The third rule describes transitivity,
i.e., that a sequence of derivations is in itself a derivation.

4.4.1 Example Grammar

T → R

T → aTc

R→

R→ RbR

Derivation of the string aabbbcc using Grammar:

T

⇒ aTC

⇒ aaTcc

⇒ aaRcc

⇒ aaRbRcc

⇒ aaRbcc

⇒ aaRbRbcc

⇒ aaRbRbRbcc

⇒ aaRbbRbcc
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⇒ aabbRbcc

⇒ aabbbcc

4.5 Syntax Trees and Ambiguity

We can draw a derivation as a tree. The root of the tree is the start symbol of the grammar,
and whenever we rewrite a nonterminal we add as its children the symbols on the right-
hand side of the production that was used. The leaves of the tree are terminals which,
when read from left to right, form the derived string. If a nonterminal is rewritten using an
empty production, an ∈ is shown as its child. This is also a leaf node, but is ignored when
reading the string from the leaves of the tree. When we write such a syntax tree, the order of
derivation is irrelevant: We get the same tree for left derivation, right derivation or any other
derivation order. Only the choice of production for rewriting each nonterminal matters.

As an example, the derivations in 4.4.1 yield the same syntax tree, which is shown in new
Figure 4.3. The syntax tree adds structure to the string that it derives. It is this structure that
we exploit in the later phases of the compiler. For compilation, we do the derivation back-
wards: We start with a string and want to produce a syntax tree. This process is called syntax
analysis or parsing. Even though the order of derivation does not matter when constructing a
syntax tree, the choice of production for that nonterminal does. Obviously, different choices
can lead to different strings being derived, but it may also happen that several different syn-
tax trees can be built for the same string. When a grammar permits several different syntax
trees for some strings we call the grammar ambiguous. If our only use of grammar is to
describe sets of strings, ambiguity is not a problem. However, when we want to use the
grammar to impose structure on strings, the structure had better be the same every time.
Hence, it is a desirable feature for a grammar to be unambiguous. In most (but not all)
cases, an ambiguous grammar can be rewritten to an unambiguous grammar that generates
the same set of strings, or external rules can be applied to decide which of the many possible
syntax trees is the ‘right one’.

Unambiguous version of Grammar 4.4.1

T → R

T → aTc

R→

R→ bR
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Figure 4.3: Alternative syntax tree for the string aabbbcc using Grammar.

4.6 Syntax Error Handling

If a compiler had to process only correct programs, its design and implementation would
be simplified greatly. However, a compiler is expected to assist the programmer in locating
and tracking down errors that inevitably creep into programs, despite the programmers best
efforts. Strikingly, few languages have been designed with error handling in mind, even
though errors are so common place. Our civilization would be radically different if spoken
languages had the same requirements for syntactic accuracy as computer languages. Most
programming language specifications do not describe how a compiler should respond to
errors. Error handling is left to the compiler designer. Planning the error handling right
from the start can both simplify the structure of a compiler and improve its handling of
errors. Common programming errors can occur at many different levels.

Lexical errors: include misspellings of identifiers, keywords, or operators - e.g., the use of
an identifier elipsesize instead of ellipsesize - and missing quotes around text intended
as a string.

Syntactic errors: include misplaced semicolons or extra or missing braces, that is, ‘f’ or
‘g’. As another example, in C or Java, the appearance of a case statement without an
enclosing switch is a syntactic error. However, this situation is usually allowed by the
parser and caught later in the processing, as the compiler attempts to generate code.
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Semantic errors: include type mismatches between operators and operands. An example
is a return statement in a Java method with result type void.

Logical errors: can be anything from incorrect reasoning on the part of the programmer
to the use in a C program of the assignment operator = instead of the comparison
operator ==. The program containing = may be well formed; however, it may not
reflect the programmers intent.

The precision of parsing methods allows syntactic errors to be detected very efficiently. Sev-
eral parsing methods, such as the LL and LR methods, detect an error as soon as possible.
That is, when the stream of tokens from the lexical analyzer cannot be parsed further accord-
ing to the grammar for the language. More precisely, they have the viable-prefix property,
meaning that they detect that an error has occurred as soon as they see a prefix of the input
that cannot be completed to form a string in the language. Another reason for emphasizing
error recovery during parsing is that many errors appear syntactic, whatever their cause, and
are exposed when parsing cannot continue. A few semantic errors, such as type mismatches,
can also be detected efficiently. However, accurate detection of semantic and logical errors
at compile time is in general a difficult task. The error handler in a parser has goals that are
simple to state but challenging to realize:

1. Report the presence of errors clearly and accurately.

2. Recover from each error quickly enough to detect subsequent errors.

3. Add minimal overhead to the processing of correct programs.

Fortunately, common errors are simple ones. A relatively straightforward error-handling
mechanism often suffices. How should an error handler report the presence of an error? At
the very least, it must report the place in the source program where an error is detected.
There is a good chance that the actual error occurred within the previous few tokens. A
common strategy is to print the offending line with a pointer to the position at which an
error is detected.

4.7 Syntax-Directed Definitions

A syntax-directed definition (SDD) is a context-free grammar together with attributes and
rules. Attributes are associated with grammar symbols and rules are associated with pro-
ductions. For example: If X is a symbol and a is one of its attributes, then we write X:a to
denote the value of a at a particular parse-tree node labeled X.
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If we implement the nodes of the parse tree by records or objects, then the attributes of X can
be implemented by data fields in the records that represent the nodes for X. Attributes may
be of any kind: numbers, types, table references, or strings, for instance. The strings may
even be long sequences of code, say code in the intermediate language used by a compiler.
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CHAPTER 5
LEXICAL CODE

Lex is a program generator designed for lexical processing of character input streams. It
accepts a high-level, problem oriented specification for character string matching and pro-
duces a program in a general purpose language which recognizes regular expressions. The
regular expressions are specified by the user in the source specifications given to Lex. Lex
written code recognizes these expressions in an input stream and partitions the input stream
into strings matching the expressions. At the boundaries between strings program sections
provided by the user are executed. Lex source file associates the regular expressions and
the program fragments. As each expression appears in the input to the program written by
Lex, the corresponding fragment is executed. We have done our experiment with lexical
analysis. Lex generator generates tokens. Yacc generator uses these tokens. Here is a brief
description of our Lex code for unfolding queries.

5.1 Explanation of Our Lex Code

A Lex program has three parts, these are

declarations

%%

translation rules

%%

auxiliary functions

In a Lex code, declaration part is to declare identifiers for tokenization. Before doing
tokenization this part is needed. Our declaration part is given here,

WS -> [\t]+

DIGIT -> [0-9]

CAPITAL -> [A-Z]

SMALL -> [a-z]

Q -> Q{DIGIT}+

Where, WS is an identifier for white space, DIGIT is for numbers from 0-10, CAPITAL is
an identifier which indicates capital letter from A-Z, SMALL is an identifier which indicates
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small letter from a-z, Q is an identifier which is followed by capital Q and infinite number of
digits.

Translation rules are to return tokens to Yacc generator.

{Q} {return Q;}

{SMALL}+ {return SMALL;}

{CAPITAL} {return CAPITAL;}

"(" {return LPAREN;}

")" {return RPAREN;}

":-" {return COLONDASH;}

"," {return COMMA;}

"\n" {return NEWLINE;}

{WS} {}

Here, we are sending all these as tokens for parsing. These tokens are named as Q, SMALL,
CAPITAL, LPAREN, RPAREN, COLONDASH, COMMA, NEWLINE.

Auxiliary functions are built functions in Lex code.

main()

{

freopen("input.txt","r",stdin);

yylex();

}

This part is written in main function. An input file, which we call input.txt, is written in
the Lex language and describes the lexical analyzer to be generated. The Lex compiler
transforms input.txt to a C program, in a file that is always named lex.yy.c .

input.txt→ LEX Compiler→ lex.yy.c

lex.yy.c→ C compiler→ Output.out

input stream→ Output.out → sequence of tokens

Our experimental Lex code is given in Code A.1.

5.1.1 Example

Consider the following example, where Q3 is defined in terms of Q1 and Q2. The relation
Flight stores pairs of cities between which there is a direct flight and the relation Hub stores
the set of hub cities of the airline. The query Q1 asks for pairs of cities between which
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there is a flight that goes through a hub. The query Q2 asks for pairs of cities that are on
the same outgoing path from a hub.

Q1(X,Y) :- Flight (X,Z), Hub (Z), Flight (Z,Y)

Q2(X,Y) :- Hub (Z), Flight (Z,X), Flight (X,Y)

Q3(X,Z) :- Q1 (X,Y), Q2 (Y,Z)

First, the predicate are Q3 (X,Z), Q1 (X,Y), Q2 (Y,Z) and the subgoals are Flight(X,
Z), Hub (Z), Flight(Z,Y), Flight(Z,X), Flight(X,Y). In our Lex code,
we define identifiers as Q3, Q1, Q2 and small and capital letters. Then we define tokens
as Q1, Q2, Q3, Flight, Hub, ( , ) , :- .

We described this example and result in Chapter 7.
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CHAPTER 6
YACC CODE

Yacc is available as a command on the UNIX system and has been used to help implement
many production compilers. Yacc generator is used to facilitate the construction of the front
end of a compiler. It provides a general tool for describing the input to a computer program.
Yacc user specifies the structures of it’s input, together with code to be invoked as each
such structure is recognized. Yacc turns such a specification into a subroutine that handles
the input process; frequently, it is convenient and appropriate to have most of the flow of
control in the user’s application handled by this subroutine.

6.1 Explanation of Our Yacc Code

A Yacc source program has three parts :

declarations

%%

translation rules

%%

supporting C routines

There are two sections in the declarations part of a Yacc program. Both are optional. In the
first section, we put ordinary C declarations, delimited by

%{ and %}.

Here we place declarations of any temporaries used by the translation rules or procedures of
the second and third sections. This section contains the include−statement

#include<stdio.h>

#include<stdlib.h>

that causes the C preprocessor to include the standard header file of input and output. Also
in the declarations part are declarations of grammar tokens. The statement

%token COLONDASH COMMA LPAREN RPAREN SMALL CAPITAL Q NEWLINE
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declares COLONDASH, COMMA, LPAREN, RPAREN, SMALL, CAPITAL, Q, NEWLINE to be
tokens, we declared in Chapter 5 in lexical analysis phase. Tokens declared in this section
can then be used in the second and third parts of the Yacc specification. If Lex is used to
create the lexical analyzer that passes token to the Yacc parser, then these token declarations
are also made available to the analyzer generated by Lex.

A set of productions that we have been writing:

<head> -> <body>1|<body>2|...|<body>n

would be written in Yacc as

<head> :<body>1 {<semantic action>1}

|<body>2 {<semantic action>2}

|<body>n {<semantic action>n}

;

In our experimental code, we declared production rules as

line: NEWLINE

|predicate NEWLINE

sub: SMALL LPAREN CAPITAL COMMA CAPITAL RPAREN

In supporting C routines,

main()

{

yyparse();

exit(0);

}

Our experimental Yacc code is given in Code A.2.

6.1.1 Example

Consider the following example, where Q3 is defined in terms of Q1 and Q2. The relation
Flight stores pairs of cities between which there is a direct flight and the relation Hub stores
the set of hub cities of the airline. The query Q1 asks for pairs of cities between which there
is a flight that goes through a hub. The query Q2 asks for pairs of cities that are on the same
outgoing path from a hub.

Q1 (X,Y) :- Flight (X,Z), Hub (Z), Flight (Z,Y)

Q2 (X,Y) :- Hub (Z), Flight (Z,X), Flight (X,Y)
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Q3 (X,Z) :- Q1 (X,Y), Q2 (Y,Z)

In Section 5.1.1, tokens are declared. The production rules are

sub: SMALL LPAREN CAPITAL COMMA CAPITAL RPAREN

which defines a subgoal, such as

Flight (X, Z).

Again,

predicate: Q LPAREN CAPITAL COMMA CAPITAL RPAREN COLONDASH Q

LPAREN CAPITAL COMMA CAPITAL RPAREN

This one defines that,

Q3(X,Z) :- Q1(X,Y), Q2(Y,Z)

Applying other production rules, on Example 6.1.1

predicate: Q LPAREN CAPITAL COMMA CAPITAL RPAREN COLONDASH sub

This production rule defines that a predicate can be subgoal. Such as

Q1(X,Y) :- Flight(X,Y)

In addition to,

predicate : Q LPAREN CAPITAL COMMA CAPITAL RPAREN COLONDASH sub

COMMA Q LPAREN CAPITAL COMMA CAPITAL RPAREN

This production rule defines that a predicate can be subgoal. Such as

Q2(X,Y) :- Q1(X,Z), Flight(X,Y)

We described this example and its result in Chapter 7.
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CHAPTER 7
EXPERIMENT AND RESULT

We know, a Conjunctive Query has the following form:

Q(X’):-R1(X1’),....,Rn(Xn’),c1,...,cm

Our main goal of this experiment was to unfold Conjunctive Queries (see in Section 2.2).
For this experiment, we need to implement a parse tree. To generate a parse tree, we need
grammar rules and tokens. We generated our grammar rules in Yacc generator and we sent
tokens from lexical analyzer. But our parse tree is not completed yet.

7.1 Example

Consider the following example, where Q3 is defined in terms of Q1 and Q2. The relation
Flight stores pairs of cities between which there is a direct flight and the relation Hub stores
the set of hub cities of the airline. The query Q1 asks for pairs of cities between which there
is a flight that goes through a hub. The query Q2 asks for pairs of cities that are on the same
outgoing path from a hub.

Q1 (X,Y) :- Flight (X,Z), Hub (Z), Flight (Z,Y)

Q2 (X,Y) :- Hub (Z), Flight (Z,X), Flight (X,Y)

Q3 (X,Z) :- Q1 (X,Y), Q2 (Y, Z)

In our Lex code, we define identifiers as Q3, Q1, Q2 and small and capital letters. Then
we define tokens as Q1, Q2, Q3, Flight, Hub, ( , ) , :- .

Then in Yacc generator, tokens are again declared so that it can merge with lexical analyzer.
In translation rule phase, we defined a set of production rules for parsing tree. We can
successfully compile our code. As there is no error, we can assure that our grammatical
rules are correct and we can use these rules for our future expansion. In syntax analysis,
parse trees are used to show the structure of the sentence, but they often contain redundant
information due to implicit definitions. Due to short time we could not make our parse tree
for this experiment.
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7.2 Conditional Query Example

The following query asks for the recruiters who performed the best or the worst:

Q1 (E,Y) :- Interview (X, D, Y, H, F),

EmployeePerformance (E, Y, T, W, Z), W < 2.5

Q1 (E,Y) :- Interview (X, D, Y, H, F),

EmployeePerformance (E, Y, T, W, Z), W > 3.9

Where we define identifiers as Q1 and small and capital letters. And Q1, Interview,

EmployeePerformance, W are tokens.
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CHAPTER 8
DISCUSSION AND CONCLUSION

8.1 Discussion

Lexical and syntax analysis can be simplified to a machine that takes in some program code
and then returns syntax errors, parse trees and data structures. We can think of the process of
description transformation, where we take some source description, apply a transformation
technique and end up with a target description - this is inference mapping between two
equivalent languages, where the destination is a machine executable.

Lexical analysis is the extraction of individual words or lexemes from an input stream of
symbols and passing corresponding tokens back to the parser.

If we consider a statement in a programming language, we need to be able to recognise the
small syntactic units (tokens) and pass this information to the parser. We need to also store
the various attributes in the symbol or literal tables for later use, e.g., if we have an variable,
the tokeniser would generate the token var and then associate the name of the variable with
it in the symbol table - in this case, the variable name is the lexeme.

Other roles of the lexical analyzer include the removal of whitespace and comments and
handling compiler directives (i.e., as a preprocessor).

In our code, the tokenization process takes input and then passes this input through a key-
word recognizer, an identifier recognizer, a numeric constant recognizer and a string constant
recognizer, each being put in to their own output based on disambiguating rules.

We can assure that our generated grammar rule will make an unambiguous parse tree and
able to make simple and not redundant queries which is discussed in Section 8.1.1.

8.1.1 Future Expansion

As we already made our grammar rules in Yacc generator and tokenized in lexical analyzer
and our rest of the work is unfolding Conjunctive Queries. So that, we have to make parse
tree. Here, we gave a Figure 8.1, which is an example of simple calculator. The following
parse tree corresponds to a leftmost derivation. This gives us a view of our future parse tree
which is related to our experiment.
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Figure 8.1: Parse Tree.

8.2 Conclusion

Structure Query Language is a widely-used programming language for working with rela-
tional databases. A relational database is a digital database whose organization is based
on the relational model of data. We use two different notations for queries over relational
databases throughout the thesis. The first is SQL, which is the language used to query
relational data in commercial relational systems. The second is Conjunctive Query. A Con-
junctive Query is a restricted form of first-order queries. Many first-order queries can be
written as Conjunctive Queries. Datalog is a truly declarative logic programming language
that syntactically is a subset of Prolog.

Lex helps write programs whose control flow is directed by instances of regular expressions
in the input stream. The lexical analysis programs written with Lex accept ambiguous spec-
ifications and choose the longest match possible at each input point. From source code,
lexical analysis produces tokens, the words in a language, which are then parsed to produce
a syntax tree, which checks that tokens conform with the rules of a language.

Yacc generator is then performed on the syntax tree to produce an annotated tree. In addition
to this, a literal table, which contains information on the strings and constants used in the
program and a symbol table, which stores information on the identifiers occurring in the
program (e.g., variable names, constant names, procedure names, etc), are produced by the
various stages of the process. An error handler also exists to catch any errors generated by
any stages of the program.

Our goal was to unfold Conjunctive Queries. We successfully implemented our production
rules and tokenization process. The rest of our task is to implement unfolding Conjunctive
Queries with C language and merge with Yacc generator. So, we are hopeful that we will be
able to unfold Conjunctive Queries in future.
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APPENDIX A
CODES

A.1 Lexical Code

We use this code to take large queries as input by using lexical analyzer.

1 %{

2 #include <malloc.h>

3 #include <stdlib.h>

4 #include"y.tab.h"

5 %}

6 WS [ \t]+

7 DIGIT [0-9]

8 CAPITAL [A-Z]

9 SMALL [a-z]

10 Q Q{DIGIT}+

11 %%

12 {Q} {return Q;}

13 {SMALL}+ {return SMALL;}

14 {CAPITAL} {return CAPITAL;}

15 "(" {return LPAREN;}

16 ")" {return RPAREN;}

17 ":-" {return COLONDASH;}

18 "," {return COMMA;}

19 "\n" {return NEWLINE;}

20 {WS} {}

21 %%

22 main()

23 {

24 freopen("input.txt","r",stdin);

25 yylex();

26 }
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A.2 Yacc Code

We use this code to tokenize and parsing by using syntax analyzer.

1 %{

2 #include<stdio.h>

3 #include<stdlib.h>

4 extern yylex();

5 extern yyerror();

6 %}

7

8 %token COLONDASH COMMA LPAREN RPAREN SMALL CAPITAL Q NEWLINE

9

10 %%

11 input: /* empty string */

12 |input line

13

14 line: NEWLINE

15 |predicate NEWLINE

16

17 sub: SMALL LPAREN CAPITAL COMMA CAPITAL RPAREN

18

19 predicate : Q LPAREN CAPITAL COMMA CAPITAL RPAREN COLONDASH

20 sub

21 |Q LPAREN CAPITAL COMMA CAPITAL RPAREN COLONDASH

22 sub COMMA Q LPAREN CAPITAL COMMA CAPITAL RPAREN

23 |Q LPAREN CAPITAL COMMA CAPITAL RPAREN COLONDASH Q

24 LPAREN CAPITAL COMMA CAPITAL RPAREN

25 |Q LPAREN CAPITAL COMMA CAPITAL RPAREN COLONDASH Q

26 LPAREN CAPITAL COMMA CAPITAL RPAREN COMMA sub

27 %%

28

29 main()

30 {

31 yyparse();

32 exit(0);

33 }
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