MILITARY INSTITUTE OF SCIENCE & TECHNOLOGY (MIST)

Prospect of tidal energy in Bangladesh

A thesis submitted to the Department of Mechanical Engineering, Military Institute of Science and Technology, Dhaka, on December 2013 in partial fulfillment of the requirements for the degree of B.Sc. in Mechanical Engineering.

SUBMITTED BY

Md. Mahbubur Rahman Md. Minul Hasan Walid S.M. Mahmudul Hasan Md. Ariful Islam ID: 201018030 ID: 201018050 ID: 201018055 ID: 200818034

SUPERVISED BY

Prof Dr. Muhammed Mahbubur Razzaque Ph.D. (Japan), M.Sc.Engg. (BUET), B.Sc. (BUET) Dept. of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka 1000, Bangladesh.

SUPERVISOR'S DECLARATION

I hereby declare to the Department of Mechanical Engineering, Military Institute of Science & Technology, Dhaka, Bangladesh that I have checked this thesis "**Prospect of tidal energy in Bangladesh**" and in my opinion this thesis is satisfactory in terms of scope and quality for the partial achievement of the degree of Bachelor of Science in Mechanical Engineering.

Signature:

.....

Prof Dr. Muhammed Mahbubur Razzaque

Ph.D. (Japan), M.Sc.Engg. (BUET), B.Sc. (BUET)

Dept. of Mechanical Engineering

Bangladesh University of Engineering & Technology (BUET)

Dhaka 1000, Bangladesh.

Date:

.....

STUDENT'S DECLARATION

This is to certify that the work presented in this thesis titled "**Prospect of tidal energy in Bangladesh**" is an outcome of the investigation carried out by the authors under the supervision of **Prof Dr. Muhammed Mahbubur Razzaque**, Dept. of Mechanical Engineering, Bangladesh University of Engineering & Technology (BUET), Dhaka 1000, Bangladesh. This thesis or any part of it has not been submitted elsewhere for the award of any other degree or other similar title.

Submitted By

Signature: Name: Md. Mahbubur Rahman ID Number: 201018030

Signature: Name: Md. Mainul Hasan Walid ID Number: 201018050

Signature: Name: S.M. Mahmudul Hasan ID Number: 201018055

Signature:

Name: Md. Ariful Islam

ID Number: 200818034

ACKNOWLEDGEMENT

First of all, praise is due to almighty ALLAH with his compassion and mercifulness to allow us finalizing this undergraduate thesis. We express sincerest gratitude to our supervisor, **Prof Dr. Muhammed Mahbubur Razzaque**, Dept. of Mechanical Engineering, Bangladesh University of Engineering & Technology (BUET), Dhaka 1000, Bangladesh, who has supported us throughout our thesis with his patience and knowledge. We attribute the level of our Bachelor degree to his encouragement and effort and without him this thesis would not have been completed and written.

We are grateful to MIST for funding. It would not be possible to complete this thesis without the financial co-operation of this organization. Finally, we thank our parents for supporting us throughout all our studies at University. We are also grateful to different persons who helps us in different stages of the thesis work.

The Authors Department of Mechanical Engineering, Military Institute of Science & Technology, Mirpur Cantonment, Dhaka-1216, Bangladesh December, 2013.

ABSTRACT

Tidal energy is one of the cheapest energy that we find naturally like wind energy & solar energy. The source of this energy is water tide. Tidal energy conversion techniques exploit the natural rise and fall of the level of the oceans caused principally by the interaction of the gravitational fields in the planetary system of the Earth, the Sun and the Moon. The main periods of these tides are diurnal at about 24 h and semidiurnal at about 12 h 25 min. A tidal turbine is a device for extracting energy from marine currents, and functions in a manner similar like wind turbine. There are different types of tidal turbine basically they are classified based on their turbine blade orientation. Some of them are called horizontal axis, vertical axis, helical horizontal axis, and helical vertical axis tidal turbine. Turbine shaft is connected with the generator. A generator mainly produce power, changing the kinetic energy of current into a turning force by setting a water turbine in the direction of tidal current. Because of the massive size of the oceans and the prediction accuracy of tidal, it is more preferable than any other renewable sources. While the discussion in this paper focuses mainly on Sandwip, Khepupara and Hiron point. The messages are relevant for other areas that have the potential to engage in Tidal Power. So the main objective of our project is to find which one is best for harnessing potential energy among these three areas.

TABLE OF CONTENTS

LIST OF FIGURESIX
NOMENCLATUREXI
CHAPTER I
1.1 Background1
1.2 Problem statement
1.3 Objectives
CHAPTER II
2.1 Basic definition
СНАРТЕК III
3.1 The modest forerunners
3.2 Past proposals & researches
3.3 Existing Tidal Power Projects
3.3.1 Seaflow project
3.3.2 SeaGen
3.3.3 Hammerfest Strom AS
3.3.4 La Rance Tidal Power Plant10
3.3.5 Stingray11
3.3.6 Annapolis Royal Generating Station12
3.3.7 Jiangxia Tidal Power Station13
3.3.8 The Kislaya Guba Tidal Power Station13
3.3.9 Sihwa Lake Tidal Power Station14
3.3.10 Uldolmok Tidal Power Station15
3.4 Power Plant under Construction
3.4.1 Incheon Tidal Power Station
3.5 Power Plant planned by different countries

3.5.1 Dalupiri Blue Energy Project	16
3.5.2 Garorim Bay Tidal Power Station	16
3.5.3 Severn Tidal Power Group – 1989	17
3.5.4 Penzhin Tidal Power Plant Project	
3.6 Projects in Progress	19
CHAPTER IV	20
4.1 Introduction	20
4.2 Potential Sites in Bangladesh	20
4.3 Drawback of our countries	24
CHAPTER V	25
5.1 Calculation of potential energy	25
5.2 Geographical & data analysis	48
5.2.1 Sandwip Channel	48
5.2.2 Khepupara	49
5.2.3 Hiron point	
5.3 Result	51
CHAPTER VI	
6.1 Shape or type number	
6.2 Turbine selection for small low-head	53
6.2.1 Inclined axis, very low head Kaplan gear turbine	54
CHAPTER VII	55
7.1 Corrosion	55
7.2 Cavitation	55
7.3 Extreme Loading conditions	56
CHAPTER VIII	57
8.1 Conclusions	
8.2 Recommendations	

8.2.1 Insufficient proper data	
8.2.3 Channel selection	58
8.2.4 Environmental concerns	58
8.2.5 High capital costs	
8.2.6 Turbine selection	58
8.2.8 Resolving the Problems with Tidal Power	59
8.2.8.1 Using small scale technologies	59
8.2.8.2 Resolving environmental concerns	59
REFERENCES	60
APPENDIXES	62
AI: Calculation for Sandwip Channel during Year 2009	62
AII: Calculation for Sandwip Channel during Year 2005	74
BI: Calculation for Hiron Point during Year 2013	86
BII: Calculation for Hiron Point during Year 2009	
BIII: Calculation for Hiron Point during Year 2005	110
CI: Calculation for Khepupara during Year 2013	122
CII: Calculation for Khepupara during Year 2009	134
CIII: Calculation for Khepupara during Year 2005	146

LIST OF FIGURES

Figure 2.1: CO-OPS representation of tidal datum	4
Figure 3.1: Design of the Seaflow project developed by Marine Current Turbines Limited	8
Figure 3.2: SeaGen installed by Marine Current Turbine in Strangford Lough in Northern Ireland	9
Figure 3.3: synthesis photo of the turbine developed by Hammerfest Strom AS	10
Figure 3.4: La Rance Tidal Power Plant	11
Figure 3.5: Explanatory diagram of the Stingray turbine developed by HIC Engineering Business Ltd. Published in a survey about Ocean Energy from the French Observatory of Renewable Energy	12
Figure 3.6: Tidal power station located on the Annapolis River	12
Figure 3.7: Jiangxia Tidal Power Station, China	13
Figure 3.8: The Kislaya Guba Tidal Power Station, Russia	14
Figure 3.9: Sihwa Lake Tidal Power Station, satellite projection, Korea	15
Figure 3.10: Uldolmok Tidal Power Station, Korea	15
Figure 3.11: Dalupiri Blue Energy Project	16
Figure 3.12: Garorim Bay Tidal Power Station project, South Korea	17
Figure 3.13: Severn Tidal Power Group, animated projection	18
Figure 3.14: The Penzhin Tidal Power Plant Project, Russia	18
Figure 4.1: Chart Datum at different place	22
Figure 4.2: Mean low water spring at different place	22
Figure 4.3: Mean Low water neap at different place	23
Figure 4.4: Mean high water neap at different place	23
Figure 4.5: Mean high water spring at different place	24
Figure 5.1: Google map view of Sandwip channel	48
Figure 5.2: Google earth view of Sandwip channel	49
Figure 5.3: Google earth view of Khepupara	50

Figure 5.4: Google map view of Khepupara	.50
Figure 5.5: Google earth view of Hiron point	.51
Figure 5.6: Google map view of Hiron point	.51
Figure 6.1: Choice of turbine in terms of head h and volume flow rate Q	.52
Figure 6.2: Illustration of inclined axis, very low head Kaplan gear turbine unit	.54

NOMENCLATURE

NOTATION

DEFINATION

CD	Chart Datum
MLWS	Mean low water spring
MLWN	Mean Low water neaps
MHWS	Mean high water spring
MHWN	Mean high water neap
MSL	Mean see level
MTL	Mean tide level
НАТ	Highest Astronomical Tide
LAT	Lowest Astronomical Tide
MHW	Mean High Water
MLW	Mean Low Water
MHHW	Mean Higher High Water
MLLW	Mean Lower Low Water
DTL	Diurnal Tide Level
MN	Mean Range of Tide
DHQ	Mean Diurnal High Water Inequality
DLQ	Mean Diurnal Low Water Inequality
GT	Great Diurnal Range