
 

 

 

 

 

 

 

December 2013 

Rahid-uz-Zaman 

Miftahur Rahman 

Yeasin Arafat Bhuiyan 

Development of an Integrated 

Control System for a Humanoid 

Robot 
 

201018042 

201018043 

201018053 

Supervised and Approved by 

Dr. Engr. Md. Alamgir Hossain 

Associate Professor 

ME Dept. (MIST) 

 

Department of Mechanical Engineering 

Military Institute of Science and Technology (MIST) 

Mirpur Cantonment, Dhaka, Bangladesh. 

By 



(i) 

 

Abstract 
 

Humanoid robot is a huge field for modern robotics research. Many 

renowned organizations and intellectuals are still working on it. Some 

outcome of their long term   research are ASIMO by Honda, NAO by 

Aldebaran, HUBO by KAIST, WABIAN by Waseda University etc. For the 

implementation of an idea, it is essential to have a full engineering system 

design, simulation and analysis. MISTBOY, is such a dream bot consist of 

19 DoF, 45 cm height and 3.5 kg weight. Mechanical Engineering 

department of Military Institute of Science and Technology aims to design 

and built a humanoid that is capable of balancing, walking, turning, standing 

from a prostrate position and finally can play soccer autonomously. 

The first purpose, on the of making a soccer playing robot, is to develop a 

stable and universal humanoid platform on which can be implement various 

theories and algorithms such as forward kinematics, trajectory planning, 

dynamic walking, AI, Vision and Image recognition and navigation.  

Forward kinematics is helpful for balancing the robot and trajectory planning 

optimizes the motion of the robot. Forward kinematics calculates the 

position and orientation of the joint while trajectory planning is one of the 

fundamental issue in robot design and analysis which relates position, 

velocity and acceleration for each degree of freedom of manipulator with 

time. Soccer playing humanoid robot requires a minimum amount of energy 

to pass the ball to a certain distance which can be determined by analyzing 

the force and torque produced by the kick. This paper is focused on forward 

kinematics, trajectory planning, balancing, force and torque calculation and 

kick analysis. 

Machine vision (MV) is developed from the concept of human vision. It 

works on the basis of pattern and color matching like human. MV is nothing 

but digital image processing which involves extraction of information from 

an image. It is the young discipline of modern technology, widely used for 

industrial purposes, security purposes, medical diagnostics, weapon 

i 



 

ii 

 

engineering and so on because of its significant level of accuracy and 

reliability. Now-a-days, in the field of robotics, MV is expanding its area of 

research like in ASIMO, HUBO, NAO.  

Intelligent vision algorithm is one of the most reliable and effective way to 

develop the control system of an autonomous robot as it can extracts 

maximum amount of real time data from the environment. Integration of 

vision data with other measurement unit, can make the control system more 

reliable, accurate and stable. Such kind of integrated control system has 

been implemented on MISTBOY, ongoing humanoid robot project. The 

vision system of MISTBOY is based on the NI LabVIEW Vision. National 

Instruments introduced a graphical programming platform LabVIEW for the 

engineers and scientist to solve problem easily, accurate the productivity 

and innovate continually.  Various approach has been analyzed to find out 

the best method for faster and accurate tracking system of a robot. In this 

paper, the integrated vision based control system is also presented with 

analyzed result through mathematical derivation and simulation.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 

 

Acknowledgement 
 

We are thankful to Almighty Allah for his blessings for the successful 

completion of our thesis. Our heartiest gratitude, profound indebtedness 

and seep respect go to our supervisor Dr. Engr. Md. Alamgir Hossain, 

Associate Professor, MIST, Dhaka, Bangladesh, for his constant 

supervision, affectionate guidance and encouragement and motivation. His 

keen interest on the topic and valuable advices throughout the study was of 

great help in completing thesis. 

We are especially grateful to the Department of Mechanical Engineering 

(ME) of Military Institute of Science and Technology (MIST) for providing 

their all put support during the thesis work. 

Finally, we would like to thank our course mates for their appreciable 

assistance, patience and suggestions during the course of our thesis.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iv 

 

 

Declaration by Candidates 
 

This is to certify that the work presented in this thesis paper is the outcome 

of the investigation and research carried out by the following students under 

the supervision of Dr. Engr. Md. Alamgir Hossain, Associate Professor, 

MIST, Dhaka, Bangladesh. 

It is also declared that neither this thesis paper nor any part thereof has 

been submitted anywhere for the award of any degree, diploma or other 

qualifications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rahid-uz-zaman  
201018042 
 
 
 
 
 
Miftahur Rahman 
201018043 
 
 
 
 
 
Yeasin Arafat Bhuiyan 
201018053 



 

v 

 

Supervisor certificate 
 

This is to certify that, Rahid-uz-Zaman, student ID: 201018042; Miftahur 

Rahman, student ID: 201018043; Yeasin Arafat Bhuiyan, student ID: 

201018053 have completed their undergraduate project and thesis entitled 

“Development of an Integrated Control system for a Humanoid Robot”. This 

paper embodies original work done under my supervision. 

 

 

 

 

  Dr. Engr. Md. Alamgir Hossain 

Associate Professor 

Department of Mechanical Engineering 

Military Institute of Science and Technology 



 

vi 

 

Nomenclature 

DMP Digital Motion Processing 

ICS Integrated Control System 

α Pan Angle 

Ѳ Tilt Angle 

λ Focal length of Camera 

x,y,z Camera Axis 

X,Y,Z World Axis 

NI National Instrument 

C Camera point 

P World point 

Wh Homogeneous co-ordinates of 
world 

P-1 Inverse Imaging Transformation 

Ch Camera Homogeneous 
Transformation 

De Euclidian Distance 

D4 City-Block Distance 

D8 Chess-Board Distance 

S Transformed Image 

T Transformation Function 

r Input image 

INS Inertial navigation system 

IMU Inertial measurement unit 

DoF Degree of freedom 

MEMs Micro electro-mechanical system 

ARM Adaptive Resolution Method 

AI Artificial Intelligence 

 

 

 



 

vii 

 

Table of Contents 
Abstract ....................................................................................................... i 

Acknowledgement ...................................................................................... iii 

Declaration by Candidates ......................................................................... iv 

Supervisor certificate ................................................................................. v 

Nomenclature............................................................................................. vi 

Table of Contents ...................................................................................... vii 

List of Figures ............................................................................................ ix 

Chapter 1: Introduction ............................................................................ (1-7) 

1.1 Robot and robotics ........................................................................ 2 

1.2 History of robot and robotics .......................................................... 3 

1.3 Essential characteristics and components of robot ....................... 5 

1.4 Applications of Robots ................................................................... 6 

Chapter 2: Literature Overview ............................................................. (9-17) 

2.1 What is humanoid robot? ............................................................... 9 

2.2 Vision system in humanoid robot ................................................. 10 

2.3 Control system in humanoid robot ............................................... 11 

2.4 Current research Projects ............................................................ 11 

2.5 Ethical considerations .................................................................. 17 

Chapter 3: Balancing with Sensors .....................................................(19-26) 

3.1 Inertia measurement unit ............................................................. 19 

3.2 Accelerometer ............................................................................. 19 

3.3 Gyro............................................................................................. 20 

3.4 Accelerometer and Gyro combination ......................................... 22 

3.5 Filter ............................................................................................ 24 

Chapter 4: Vision ...................................................................................(28-50) 

4.1 Imaging geometry ........................................................................ 28 

4.2 Automatic camera calibration ...................................................... 35 

4.3 Image processing ........................................................................ 36 

4.3.1 Basic concepts ...................................................................... 37 

4.3.2 Techniques of Image processing .......................................... 41 

4.4 Enhancement .............................................................................. 44 



 

viii 

 

4.4.1 Histogram .............................................................................. 45 

4.4.2 Making edges more prominent .............................................. 46 

4.5 Methods of matching ................................................................... 46 

4.6 Interfacing and mapping with Arduino ......................................... 49 

Chapter 5: Distance Measurement .......................................................(52-56) 

5.1 Vision system .............................................................................. 52 

5.2 Sonar ........................................................................................... 53 

5.3 IR (Infrared Ray) .......................................................................... 54 

Chapter 6: Experimental Procedure for Methodology Assessment ..(58-62) 

6.1 LabVIEW vision procedure .......................................................... 58 

6.2 Power calculation ........................................................................ 61 

Chapter 7: Experimental Results and Observation .............................(63-76) 

7.1 Vision analysis from LabVIEW .................................................... 63 

7.1.1 Color Matching: ..................................................................... 63 

7.1.2 Pattern matching ................................................................... 64 

7.1.3 Color pattern matching: ......................................................... 66 

7.2 Histogram .................................................................................... 69 

7.3 Accelerometer and Gyro results .................................................. 70 

7.4 Integrated Control system (ICS) .................................................. 72 

7.5 Walking mechanism .................................................................... 74 

Chapter 8: Conclusion and Recommendations ..................................(78-81) 

8.1 Conclusion ................................................................................... 78 

8.2 Recommendations ...................................................................... 79 

8.3 Future Work ................................................................................. 80 

Bibliography ...................................................................................... (81-84) 

Appendix – A.................................................................................... A1-A21 

A list of publications produced by candidate as a result of the project ..... 85 

 

 

 

 

 



 

ix 

 

List of Figures 
Figure 2.1 KHR humanoid robot .............................................................. 13 

Figure 2.2 HUBO humanoid robot ............................................................ 13 

Figure 2.3 HRP-4 humanoid robot ........................................................... 14 

Figure 2.4 NAO humanoid robot .............................................................. 15 

Figure 2.5 ASIMO humanoid robot .......................................................... 16 

Figure 3.1 Accelerometer IC MMA7455L ................................................. 20 

Figure 3.2 Draper tuning fork gyroscope .................................................. 22 

Figure 3.3 Gyroscope IC MPU 6050 ........................................................ 23 

Figure 4.1 Imaging geometry ................................................................... 28 

Figure 4.2 Relation between camera axis and world axis ........................ 31 

Figure 4.3 Transformation of camera axis. .............................................. 32 

Figure 4.4 Relation of 2 camera axis with world axis. .............................. 34 

Figure 4.5 Neighborhood pixels ............................................................... 37 

Figure 4.6 Neighborhood pixels ............................................................... 38 

Figure 4.7 Distance between pixels. ........................................................ 40 

Figure 4.8 Mixed connectivity pixels distance .......................................... 41 

Figure 4.9 Template of an image ............................................................. 42 

Figure 4.10 Intensity transformation ......................................................... 43 

Figure 4.11 Transformed function after Fourier transform ....................... 43 

Figure 4.12 Histogram (a) Original, (b) transformed, (c) comparison ....... 45 

Figure 4.13 Algorithm for color matching ................................................. 49 

Figure 4.14 Integrated Vision system. ...................................................... 50 

Figure 5.1 Basic principle of sonar sensor ............................................... 53 

Figure 5.2 Phong Model ........................................................................... 55 

Figure 5.3 Emission and reflection of an infrared signal by sensor .......... 55 

Figure 7.1 Color matching algorithm ........................................................ 63 

Figure 7.2 NI Color Matching can detect the desired red object. ............. 63 

Figure 7.3 NI Color Matching wrong detection. ........................................ 64 

Figure 7.4 Pattern matching algorithm. .................................................... 64 

Figure 7.5 Original real time RGB image from NI Image Processing…….65 

Figure 7.6 Gray scale image………………………………………………….65 

file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072191
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072192
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072193
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072194
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072195
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072196
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072197
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072198
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072199
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072200
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072201
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072203
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072204
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072205
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072206
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072207
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072208
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072209
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072210
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072211
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072212
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072213
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072214
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072215
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072216
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072217
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072218
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072219


 

x 

 

Figure 7.7 Color pattern matching algorithm……………………………....6.5 

Figure 7.8 Original RGB real time image……………………………………...6.6 

Figure 7.9 NI Color Pattern Matching cannot detect the red ball………...67 

Figure 7.10 Calibration for white background………………………………67 

Figure 7.11 NI Color pattern matching correct detection………………….68 

Figure 7.12 Correct detection of red ball .................................................. 68 

Figure 7.11 NI Color pattern matching correct detection .......................... 68 

Figure 7.13 Image of (a) Red ball, (b) White ball. .................................... 69 

Figure 7.14 Histogram of white ball where intensity is decreased. ........... 69 

Figure 7.15 Histogram of red ball where intensity is increased. ............... 70 

Figure 7.16 Graph in stable condition. ..................................................... 71 

Figure 7.17 Graph in vibrating condition. ................................................. 71 

Figure 7.18 Characteristics graph after filtering. ...................................... 72 

Figure 7.19 Integrated Control System of MISTBOY. .............................. 73 

Figure 7.20 Walking mechanism. ............................................................. 76 

 

 

 

 

 

 

file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072220
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072221
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072222
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072223
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072224
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072225
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072226
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072227
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072228
file:///C:/Users/SHIBLY/Desktop/Control%206.docx%23_Toc375072229


 

1 

 

1) Chapter 1: Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1 

1.1 Robot and robotics  

1.2 History of robot and robotics 

1.3 Essential characteristics and components of robot 

1.4 Applications of Robots  

 

 



 

2 

 

    Chapter 1: Introduction 

 

1.1 Robot and robotics  

The meaning of robot is a mechanical man or a more than humanly efficient 

automation. It is an automatic apparatus or device that performs functions 

described to human beings or operates with what appears to be almost 

human intelligence. But this defamation does not give a human shape to the 

robot. The robot does the work of a human being. 

The Robot Institute of America has given a very interesting definition on an 

Industrial robot. Industrial robots are usually used at industries. "An 

Industrial robot is a reprogrammable, multifunctional manipulator designed 

to move materials, parts, tools or special devices through variable 

programmed motions for the performance of a variety of tasks" [9]. 

So, a robot is capable of being reprogrammed. This characteristic 

distinguishes it from a fixed automation. A fixed automation is designed to 

do one and only one specific task. If the specification of task changes even 

slightly the fixed automation becomes incapable of performing the task. It is 

designed to perform according to one fixed specification. 

However, a robot can be reprogrammed to perform even when 

specifications are changed drastically. The original programme is simply 

erased and the new programme takes care of the changed tasks. This 

feature that a robot can be reprogrammed makes the robot a flexible device. 

Hence, manufacturing systems which use robots are called flexible 

manufacturing system (FMS) due to this flexibility. 

Karle Capek was the first person to introduce the word 'robot' and Sir Isaac 

Asimov coined first time the word 'robotics'. According to 

Asimov, robotics is the science of dealing with robots. Hence robotics 

involves a scientific study of robots. 

Introduction Robot and robotics 



 

3 

 

The study includes design, selections of materials of proper quality for the 

components, fabrication, study of various motors required for moving the 

components, design of electronic circuits, computers and computer 

programming and control of robots.  

Since robots and robotics are still in the developing stages, a considerable 

amount of research is being pursued in this line. Depending on the area in 

which robots are to be used, robotics includes disciplines such as biology, 

medical science, psychology, agriculture, mining, outer space engineering 

etc. 

Mainly two types of robots are there, i.e. fixed robot and mobile robot. The 

fixed type robot is fixed to a particular location while doing his work with his 

hands. A mobile robot moves from place to place. Mobility is given to robots 

by providing wheels or legs or other crawling mechanisms. 

1.2 History of robot and robotics 

This segment is deliberated to offer you with a summary of the history of 

robotics. As you may have presumed, the robotics history is entangled with 

the history of science, technology and the fundamental principles of 

progress in technology employed in electronics, computers, even 

pneumatics & hydraulics can all be measured as a fraction of the robotics 

history [2]. Robotics at present symbolizes one of the mankind’s supreme 

achievements and is the only best endeavor of mankind to create an 

artificial, electronic being. 

Though robots are regarded as a 20th century discovery, their origins lie in 

the far history. From the initial time, public have shaped myths regarding 

automatic beings built-in their individual likeness with extraordinary human 

powers. The prehistoric age around 270BC Greeks & Egyptians 

manufactured mechanical machines to execute easy tasks. In modern 

times, automatic toys amuse and ever more complex machinery was 

invented. The thought of a realistic motorized humanoid monster named as 

“Frankenstein” in the year 1818 surveys what occurs when a man-made 

Introduction History of robot and robotics 



 

4 

 

giant is gifted life by a knowledgeable scientist (Dr. Frankenstein). As the 

advancement in the computer technology progressed at a great pace, 

scientists became more fascinated in construction of intellectual machines 

that can ultimately have some logic to work themselves. At present, robots 

of all types occupy our globe and are brought into play for diverse 

applications in space discovery, the armed forces, medication industry, 

exploration, police work and of course movies. 

Though the division of Robotics is new, the making of Robots initiated in the 

year 1250 when the first man-made automated human (Robot) was 

developed. In the phase from 1250 to 1950 the Robots were created for 

entertaining rather than for applications [3]. 

Here are a number of highlights in the history of robotics in the 20th century: 

 In the year 1921, the Czech dramatist “Karel Capek” coins the world by 

using the word robot in his play Rossum’s Universal Robots (R.U.R). This 

word robot is derived from a Czech word which means “compulsory 

labor.” 

 “Runaround” was composed by Asimov about robots in the year 1942, it 

held the “Three rules for robots” 

o Robots are not harmful to the humans, or through working, permit a 

human to come and damage. 

o A robot must follow the commands given by human beings apart from 

where such instructions would conflict with the First Law of Robotics. 

o A robot must defend its own survival providing such safety does not 

clash with the First and the Second Law of Robotics. 

 In the year 1956, George Devol and Joseph Engelberger established the 

first robot company. 

 In the year 1959, computer assisted manufacturing was verified at MIT. 

Introduction Robot and robotics 



 

5 

 

 UNIMATE- The first industrialized robot was online in a General Motors 

automobile plant, in the year 1961. 

 1963 was a revolutionary year, first computer controlled robotic arm was 

designed and it was named as Rancho Arm. The invention was basically 

for the handicapped peoples. 

The inventions in the field of Robotics were never ending and gave human 

beings a sudden surprising gift as & when launched. After Rancho’s Arm 

various other inventions too were done, but all of the above was the first 

among all. 

1.3 Essential characteristics and components of robot  

There are some essential characteristics that a robot must have and this 

might help you to decide what is and what not a robot is. It will be also helpful 

to decide what features what will be needed to build into a machine before 

it can count as a robot [4]. 

A robot has these essential characteristics: 

 Sensing: First of all your robot would have to be able to sense its 

surroundings. It would do this in ways that are not similar to the way 

that you sense your surroundings. Giving your robot sensors: light 

sensors (eyes), touch and pressure sensors (hands), chemical 

sensors, hearing and sonar sensors (ears) and taste sensors 

(tongue) will give your robot awareness of its environment. 

 Movement: A robot needs to be able to move around its 

environment. Whether rolling on wheels, walking on legs or 

propelling by thrusters a robot needs to be able to move. To count as 

a robot either the whole robot moves, like the Sojourner or just parts 

of the robot moves, like the Canada Arm. 

 Energy: A robot needs to be able to power itself. A robot might be 

solar powered, electrically powered, battery powered. The way your 

robot gets its energy will depend on what your robot needs to do. 

Introduction Essential characteristics and components of robot 



 

6 

 

 Intelligence: A robot needs some kind of "smarts." This is where 

programming enters the pictures. A programmer is the person who 

gives the robot its 'smarts.' The robot will have to have some way to 

receive the program so that it knows what it is to do. 

Basically robot has five major components such as, 

(a) The Manipulator, 

(b) The End effectors 

(c) The Locomotion Device 

(d) The Controller and 

(e) The Sensors. 

In a robot system, all the above five components are interfaced properly so 

that each component can work in a co-coordinated fashion for the effective 

and efficient functioning of the robot. In an industrial robot system, a mini 

computer is being used as the controller. Sensors are measuring 

instruments that measure quantities such as position, velocity, force, torque, 

proximity, temperature etc. 

1.4 Applications of Robots 

Currently, robots perform a number of different jobs in numerous fields and 

the amount of tasks delegated to robots is rising progressively. The best 

way to split robots into types is a partition by their application. 

1. Industrial robots – These robots bring into play in an industrialized 

manufacturing atmosphere. Typically these are articulated arms particularly 

created for applications like- material handling, painting, welding and others. 

If we evaluate merely by application then this sort of robots can also consist 

of some automatically guided automobiles and other robots. 

2. Domestic or household robots – Robots which are used at home. This 

sort of robots consists of numerous different gears for example- robotic pool 

cleaners, robotic sweepers, robotic vacuum cleaners, robotic sewer 

Introduction Applications of robot 



 

7 

 

cleaners and other robots that can perform different household tasks. Also, 

a number of scrutiny and tele-presence robots can also be considered as 

domestic robots if brought into play in that sort of environment. 

3. Medical robots – Robots employed in medicine and medicinal institutes. 

First & foremost surgical treatment robots. Also, a number of robotic 

directed automobiles and perhaps lifting supporters. 

4. Service robots – Robots that cannot be classed into any other types by 

practice. These could be various data collecting robots, robots prepared to 

exhibit technologies, robots employed for research, etc. 

5. Military robots – Robots brought into play in military & armed forces. 

This sort of robots consist of bomb discarding robots, various shipping 

robots, exploration drones. Often robots at the start produced for military 

and armed forces purposes can be employed in law enforcement, 

exploration and salvage and other associated fields. 

6. Entertainment robots – These types of robots are employed for 

entertainment. This is an extremely wide-ranging category. It begins with 

model robots such as robosapien or the running photo frames and 

concludes with real heavy weights like articulated robot arms employed as 

movement simulators. 

7. Space robots – I would like to distinct out robots employed in space as 

a split apart type. This type of robots would consist of the robots employed 

on Canadarm that was brought into play in space Shuttles, the International 

Space Station, together with Mars explorers and other robots employed in 

space exploration & other activities. 

8. Hobby and competition robots – Robots that is created by students. 

Sumo-bots, Line followers, robots prepared merely for learning, fun and 

robots prepared for contests. Now, as you can observe that there are a 

number of examples that fit well into one or more of these types.

Introduction Applications of robot 



 

8 

 

  

CHAPTER 2 

2.1 What is humanoid Robot?  

2.2 Vision system in humanoid Robot 

2.3 Control system in humanoid Robot 

2.4 Current research projects 

2.5 Ethical considerations  

 



 

9 

 

2) Chapter 2: Literature Overview 

 

2.1 What is humanoid robot? 

Humanoid Robotics includes a rich diversity of projects where perception, 

processing and action are embodied in a recognizably anthropomorphic 

form in order to emulate some subset of the physical, cognitive and social 

dimensions of the human body and experience. Humanoid Robotics is not 

an attempt to recreate humans. The goal is not, nor should it ever be, to 

make machines that can be mistaken for or used interchangeably with real 

human beings. Rather, the goal is to create a new kind of tool, fundamentally 

different from any we have yet seen because it is designed to work with 

humans as well as for them. Humanoids will interact socially with people in 

typical, everyday environments.  

At present, Humanoid Robotics is not a well-defined field, but rather an 

underlying impulse driving collaborative efforts that crosscut many 

disciplines. Mechanical, electrical and computer engineers, roboticists, 

computer scientists, artificial intelligence researchers, psychologists, 

physicists, biologists, cognitive scientists, neurobiologists, philosophers, 

linguists and artists all contribute and lay claim to the diverse humanoid 

projects around the world. Inevitably, some projects choose to emphasize 

the form and mechanical function of the humanoid body. Others may focus 

on the software to animate these bodies. There are projects that use 

humanoid robots to model the cognitive or physical aspects of humans. 

Other projects are more concerned with developing useful applications for 

commercial use in service or entertainment industries. At times, there are 

deep ideological and methodological differences. For example, some 

researchers are most interested in using the human form as a platform for 

machine learning and online adaptation, while others claim that machine 

intelligence is not necessary.  

Literature Overview What is humanoid robot? 



 

10 

 

2.2 Vision system in humanoid robot 

Robots can see the world in three dimensions with vision systems already 

used at least on a limited scale in robotics. A more accurate vision means 

high details for the environment and this could be reached with stereo vision 

camera and the new entry in 3D interior mapping the MatterPort mapping 

camera. 

A vision system that allows robots to see the world in 3D will be primarily 

used in advanced robotic application in the future and this is a good reason 

to invest time and money in developing new advanced 3D vision systems. 

The optical vision system was designed to be able to detect obstacles in the 

path of the robot. The vision system also tracks moving objects. Each eye 

consists of a lens in front of a 4×4 array of light dependent resistors. The 

resistance values are sampled at 30 frames per second. A single servo 

motor enables the two eyes to converge. The left eye analyses the image 

for verticals, horizontals, top right to bottom left edges and top left to bottom 

right edges. The right eye detects movement of dark to bright edges and 

can pan and tilt, with the left eye, to make such edges fall on the center of 

the sensor array. Compensation is provided for low and high levels of 

ambient lighting giving an automatic iris effect. The system reliably tracks 

moving objects but is currently confused by very high contrast lighting such 

as spotlights. The system is however working more reliably than an 

ultrasonic system which was tried on the earlier prototypes. Difficulties 

encountered with that system were multiple reflections resulting from low 

angular resolution (a consequence of the wide beam width due to using 

small diameter transducers), specular reflection from smooth objects, 

absorption from soft objects and motor interference (sound and electrical). 

Some of the difficulties are experienced. The difficulties are greater with 

electromagnetic and sonar range measurement systems in low cost 

autonomous mobile robots where lightness and low current consumption is 

particularly important. It is hoped that implementing stereoscopic vision 

using convergence of the two 16 sensor arrays will give adequate range 

resolution for obstacle avoidance. 

Literature Overview Vision system of humanoid robot 



 

11 

 

2.3 Control system in humanoid robot 

The on board control system uses interconnected microprocessors 

communicating in a hierarchical structure The master processor controls all 

the robot functions. The sensor and drive signals are processed in parallel. 

Each eye, arm and leg and has its own dedicated processor. The three 

balance sensor groups share two processors. Communication between 

processors is serial at 9600 Baud. Each servo motor is driven to a resolution 

of 256 steps. Each microprocessor has an individual resonator to control its 

clock speed and each processor is run at a speed appropriate to its task. 

The only significant restraint was the minimum of 4 MHz which is required 

to run the 9600 Baud serial communications. The range of clock speeds 

used is from 8 MHz to 50 MHz. As much processing as possible, especially 

for the basic functions, is done close to the sensors. There have been 

difficulties associated with the inter-processor communications, electrical 

interference, the time taken to process the input sensor signals and 

generate command signals, and difficulties setting up a synchronized 

command structure. The objective was to produce a scale humanoid at near 

minimal cost.  

2.4 Current research Projects 

The research of autonomous robots is one of the most important challenges 

in recent years. Among the numerous robot researches, the humanoid robot 

soccer competition is very popular. The robot soccer players rely on their 

vision systems very intensively when they are in the unpredictable and 

dynamic environments. This vision system can help the robot to collect 

various environment information as the terminal data to complete the 

functions of robot localization, robot tactic, barrier avoiding, etc. It can 

reduce the computing complexity by using our proposed approach, adaptive 

resolution method (ARM), to recognize the critical objects in the contest field 

by object features which can be obtained easily. The experimental results 

indicate that the proposed approach can increase the real-time and 

accurate recognition efficiency. 

Literature Overview Control system humanoid robot 



 

12 

 

Humans interact with continuously flowing, diverse stimulation. Likewise, 

humanoids must have multi-modal perceptual systems that can seamlessly 

integrate sensors. One way to do this is to allow sensors to continually 

compete for dominance. At the Electro Technical Laboratory in Japan, 

G.Cheng and Y. Kuniyoshi have developed a humanoid with 24 degrees of 

freedom, joint receptors with encoders and temperature sensing. The 

humanoid uses 6 PCs for control of hearing, vision, motor output and 

integration. The robot itself is lightweight and flexible, allowing it to interact 

comfortably and safely with humans. Throughout a visual and auditory 

tracking task, the robot tracks a person by sight and/or sound while 

mimicking the upper body motion of a person. The focus of the work was in 

showing that the robot can track people using a multiple sensory approach 

that is not task-specific and does not need to switch between sensor 

modalities. The key is that perceptual subsystems necessary for mimicry, 

tracking, vision and auditory processing should not be thought of as 

separate tasks and pursued separately, but as essential capabilities that 

must together contribute to high-utility humanlike behavior. 

This said, humanoid roboticists agree that vision is the most crucial sensing 

modality for enabling rich, humanlike interactions with the environment. Of 

course, computer vision has long been a hard problem and an essential 

study in and of itself. The first main problem is that many factors are 

confounded into image data in a many-to-one mapping. Another problem is 

the amazing amount of data to be processed. For a long time, computer 

vision research assumed that the goal was to acquire as much data about 

the environment as possible. This approach proved computationally 

intractable.  

Literature Overview Current research project 



 

13 

 

KHR 

KHR-3 [6] is our latest humanoid robot. Its 

height and weight are 125cm and 55Kg. The 

robot has been upgraded from KHR-2. Its 

mechanical stiffness of links and reduction 

gear capacity of joints have been modified 

and improved. Increased stiffness makes 

the robot have low uncertainty in joint angle 

and link position, which can affect its stability 

Joint and link shape are seriously designed 

to fit with its art design concept. The joint 

controller, motor drive, battery, sensors and 

main controller (PC) are designed to be 

installed in the robot itself. 

HUBO  

HUBO [3] is a biped walking humanoid robot 

developed by the Humanoid Robot Research 

Centre at KAIST. It is 125cm tall and weighs 

55kg. The inside frame is composed of 

Aluminum alloy and its exterior is composite 

plastic. A lithium polymer battery located inside 

of HUBO allows the robot to be run for nearly 

90 minutes without external power source. All 

electrical and mechanical parts are located in 

the body, and the operator can access HUBO 

using wireless communications. HUBO can 

walk forward, backward, sideways, and it can 

turn around. Its maximum walking speed is 

1.25km/h and it can walk on even ground or on 

slightly slanted ground. HUBO has enough 

degrees of freedom (DOF) to imitate human 

motions. In particular, with five independently 

Literature Overview Current research project Literature Overview Current research project 

Figure 2.1 KHR humanoid 

robot 

Figure 2.2 HUBO humanoid 

robot 



 

14 

 

moving fingers, it can imitate difficult human motions such as sign language 

for deaf people. Additionally, with its many sensors HUBO can dance with 

humans. It has two CCD cameras in its head that approximate human eyes, 

giving it the ability to recognize human facial expressions and objects. It can 

also understand human conversation, allowing it to talk with humans. . 

HUBO is an upgraded version of KHR-2. The mechanical stiffness in the 

links was improved through modifications and the gear capacity of the joints 

was readjusted. The increased stiffness improves the stability of the robot 

by minimizing the uncertainty of the joint positions and the link vibration 

control. In the design stage, features of the exterior, such as the wiring path, 

the exterior case design and assembly, and the movable joint range were 

critically reconsidered. 

HRP 

Kawada Industries, Inc., a subsidiary of Kawada 

Technologies, Inc., has developed HRP-4 [9], a 

new research and development platform for 

working humanoid robots, in collaboration with 

the National Institute of Advanced Industrial 

Science and Technology. In this joint project, 

Kawada Industries developed the humanoid 

robot hardware, while Fumio Kaneshiro (Senior 

Research Scientist), Humanoid Research Group 

(Leader: Kazuhiro Yokoi), the Intelligent Systems 

Research Institute of AIST and other members 

developed the motion control software. 

There high-density implementation technology 

used for HRP-4C, the cybernetic human 

developed by AIST, is applied to HRP-4 [w]. 

HRP-4 has a total of 34 degrees of freedom, 

including 7 degrees of freedom for each arm to 

facilitate object handling and has a slim, 

lightweight body with a height of 151 cm and weight of 39 kg. Furthermore, 

Literature Overview Current research project 

Figure 2.3 HRP-4 

humanoid robot 



 

15 

 

the HRP-4 control system adopts a software platform OpenRTM-aist and 

the Linux kernel with the RT-Preempt patch. Therefore, many domestic and 

international software assets for robot systems, including OpenHRP3, an 

open-source robot simulator, can be utilized. HRP-4 is expected to 

accelerate the research and development of next-generation robot systems 

necessary for the future robot industry, such as human-cooperative robots 

capable of operating under various environments. 

NAO 

NAO [8] is a humanoid robot created by 

French company Aldebaran Robotics. It is 

also an official robot for RoboCup Standard 

Platform League. NAO is about 58 cm tall, 

and has a variety of sensors: 2 axis 

gyrometer, 3 axis accelerometer, Hall 

Effect sensors, tactile sensor, bumpers, 

channel sonars, I/R, but also microphone, 

loudspeakers, CMOS cameras, and 

Ethernet and Wi- connection. The "heart" 

of the robot is 500MHz x86 AMD GEODE 

processor, with 256MB SDRAM and 2GB 

memory. It runs an embedded Linux OS, 

and can be programmed with C, C++, Urbi, 

Python, and .NET. NAO is the most widely 

used humanoid robot for academic purposes worldwide. 

It is a versatile platform used to explore a wide variety of research topics in 

robotics as well as computer science, human-machine interaction, and the 

social sciences. NAO’s many sensors and actuators, convenient size, and 

attractive appearance, combined with sophisticated embedded software, 

makes it a unique humanoid robot ideal for many research fields. 

Literature Overview Current research project 

Figure 2.4 NAO humanoid 

robot 



 

16 

 

ASIMO 

ASIMO [9] is the world's most 

advanced humanoid robot, developed 

by the Japanese company Honda. The 

first ASIMO was completed after 15 

years of research, and it was officially 

unveiled on October 31, 2000. The 

robot resembles a small astronaut 

wearing a backpack, and is capable of 

performing a variety of tasks, including 

running, kicking a ball, walking up and 

down stairs, and recognizing people by 

their appearance and voice. The name 

is short for "Advanced Step in 

Innovative Mobility" and is also known 

as a abbreviation of ashita no mobility, 

meaning 'mobility in the future.' It was 

named in reference to Isaac Asimov, an 

American professor and science fiction writer who is credited with coining 

the term robotics and proposing the three laws of robotics. Based on this 

concept, ASIMO's design concerns three main elements, which are human-

friendliness, adaptability to the human environment, and engineering 

feasibility. 

The robot's height was set at 120 cm (or 130 cm in the case of second-

generation ASIMO), which is similar to a child's, as this would be practical 

both on the engineering aspect (since a smaller and lighter robot is less 

challenging than an adult-sized robot such as the P2 prototype) and the 

question of operability in the environment, where light switches are normally 

located 110 cm from the floor. With less bulk, the robot would be able to 

move more efficiently in handling obstacles and narrow passages, and it 

would also be less overwhelming presence to humans and, in case of 

accidents, less hazardous.  

Literature Overview Current research project 

Figure 2.5 ASIMO humanoid 

robot 

http://en.citizendium.org/wiki?title=Humanoid&action=edit&redlink=1
http://en.citizendium.org/wiki/Japan
http://en.citizendium.org/wiki/Honda
http://en.citizendium.org/wiki/Isaac_Asimov


 

17 

 

2.5 Ethical considerations 

The world's population of real humans continues to steadily grow. One might 

ask why it is necessary to make a machine that looks, thinks and emotes 

like a human when there are of humans already, many of whom do not have 

jobs or good places to live. It is important to re-emphasize that humanoids 

cannot and will not ever replace humans. Computers and humans are good 

at fundamentally different things. Calculators did not replace 

mathematicians. They did change drastically the way mathematics was 

taught. For example, the ability to mentally multiply large numbers, although 

impressive, is no longer a highly valued human capability. Calculators have 

not stolen from us part of what it means to be human, but rather, free our 

minds for more worthy efforts. As humanoids change the contours of our 

workforce, economy and society, they will not encroach on our sovereignty, 

but rather enable us to explore and further realize the very aspects of our 

nature we hold most dear. 

Speaking in purely utilitarian terms, emotion is the implementation of a 

motivational system that propels us to work, improve, reproduce and 

survive. In reality, many of our human "weaknesses" actually serve powerful 

biological purposes. Thus, if it is wanted to be useful, human-like robots, 

some motivational system can be given in robots.   

Most likely, two distinct species of humanoids will arise: those that respond 

to and illicit human emotions and those are wished to simply to do work, day 

in and day out, without stirring our feelings. Some ethicists believe this may 

be a difficult distinction to maintain. On the other hand, many consider 

ethical concerns regarding robot emotion or intelligence to be moot. 

According to this line of reasoning, no robot really feels or knows anything 

that have been not told to feel or know. From this perspective, it seems 

unnecessary to give a second thought to our treatment of humanoids. They 

are not 'real.' They are merely machines. 

 

 

Literature Overview Ethical Consideration 



 

18 

 

  

CHAPTER 3 

3.1 Inertia measurement unit  

3.2 Accelerometer 

3.3 Gyro 

3.4 Accelerometer and Gyro combination 

3.5 Filter  

 



 

19 

 

3) Chapter 3: Balancing with Sensors 

 

3.1 Inertia measurement unit 

The creation of autonomous robots is a task that many have undertaken for 

military, medical or other reasons. But no matter the reason, measurements 

of the position of the system relative to its environments are needed for it to 

act accordingly without an external intervention. A technique that humans 

have used to navigate through their environment is dead reckoning [10]. 

This approach consists of the calculation of current position with the use of 

the following: knowledge of an initial position, and measurements of speed 

and direction. The INS uses an equivalent approach with the help of 

Newton’s laws.  

A control loop systems is used that take readings of the IMU to allow the 

platform to return to its original position. Some application for this type of 

system could be a platform that holds a camera so that in case of undesired 

movements the camera continues filming in the same direction.  

3.2 Accelerometer 

Accelerometers allow the measurement of the acceleration on a single axis 

to be ascertainable thanks to Newtown’s second law, F=ma where a could 

be represented as the sum of g (gravitational forces) and f, the acceleration 

produced by external forces of the object, thus a=g+f. Typically in NS there 

are three accelerometers orthogonal to each other to provide the 

acceleration reading in three different directions. It is not practical to use the 

entire mass of a system to determine its acceleration. Instead, a proof mass 

connected to a set of springs is used to measure the acceleration is found 

to be more efficient in discerning the acceleration. With the help of the Hook 

law, F= x.k where k is a constant, a property of the spring and x it’s the 

stretch displacement of the spring the acceleration of the object on a single 

axis can be measured. This is the simplest type of accelerometers there far 

more accurate and expensive accelerometers that involve technology such 

Balancing with Sensors Gyro 



 

20 

 

as Solid-state ferroelectric accelerometer and Solution electrolytic 

accelerometer.  

MMA7455L Accelerometer: 

The MMA7455L [11] is a Digital 

Output, low power, low profile 

capacitive micro machined 

accelerometer featuring signal 

conditioning, a low pass filter, 

temperature compensation, self-

test, configurable to detect 0g 

through interrupt pins (INT1 or 

INT2), and pulse detect for quick 

motion detection. 0g offset and 

sensitivity are factory set and 

require no external devices. The 0g offset can be customer calibrated using 

assigned 0g registers and g-Select which allows for command selection for 

3 acceleration ranges (2g/4g/8g). The MMA7455L includes a Standby Mode 

that makes it ideal for handheld battery powered electronics. 

3.3 Gyro 

A gyroscope is a device used primarily for navigation and measurement of 

angular velocity. Gyroscopes are available that can measure rotational 

velocity in 1, 2, or 3 directions. 3-axis gyroscopes are often implemented 

with a 3-axis accelerometer to provide a full 6 degree-of-freedom (DoF) 

motion tracking system. 

Technically, a gyroscope is any device that can measure angular velocity. 

As early as the 1700ís, spinning devices were being used for sea navigation 

in foggy conditions. The more traditional spinning gyroscope was invented 

in the early 1800ís, and the French scientist Jean Bernard Leon Foucault 

coined the term gyroscope in 1852. In the late 1800ís and early 1900 ís 

gyroscopes were patented for use on ships. Around 1916, the gyroscope 

found use in aircraft where it is still commonly used today.  

Figure 3.1 Accelerometer IC 

MMA7455L 

Balancing with Sensors Gyro 



 

21 

 

Throughout the 20th century improvements were made on the spinning 

gyroscope. In the 1960’s, optical gyroscopes using lasers were first 

introduced and soon found commercial success in aeronautics and military 

applications. In the last ten to fifteen years, MEMS gyroscopes have been 

introduced and advancements have been made to create mass-produced 

successful products with several advantages over traditional macro-scale 

devices. 

Traditional Gyroscope Function  

Gyroscopes function differently depending on their type. Traditional pinning 

gyroscopes work on the basis that a spinning object that is tilted 

perpendicularly to the direction of the spin will have a precession. The 

precession keeps the device oriented in a vertical direction so the angle 

relative to the reference surface can be measured. Optical gyroscopes are 

most commonly ring laser gyroscopes. These devices send two lasers 

around a circular path in opposite directions. If the path spins, a phase shift 

can be detected since the speed of light always remain constant. Usually 

the rings are triangles or rectangles with mirrors at each corner.  

Optical gyroscopes are a great improvement to the spinning mass 

gyroscopes because there is no ear, greater reliability and smaller size and 

weight.  

MEMS Gyroscope 

Even after the introduction of laser ring gyroscopes, a lot of properties were 

desired. MEMS vibrating mass gyroscopes aimed to create smaller, more 

sensitive devices. The two main types of MEMS gyroscope, discussed in 

Micro machined Vibrating Gyroscopes: Design and Fabrication, are the 

tuning fork gyroscope and the vibrating ring gyroscope.  

 

 

Draper Tuning Fork Gyroscope  

Balancing with Sensors Gyro 



 

22 

 

One of the most widely used micro-machined gyroscopes is the tuning fork 

design from the Charles Stark Draper Lab. The design consists of two tines 

connected to a junction bar.  

Which resonate at certain 

amplitude. When the tines rotate, 

Coriolis force causes a force 

perpendicular to the tines of the 

fork. The force is then detected as 

bending of the tuning fork or a 

torsional force. These forces are 

proportional to the applied angular 

rate, from which the displacements 

can be measured in a capacitive fashion. Electrostatic, electromagnetic, or 

piezoelectric mechanisms can be used to detect the force.  

Since the development of their first tuning fork gyroscope in 1993, the 

Draper [12] Laboratory has made significant improvements to the device. 

Their first gyroscope was developed for the automobile industry. The 

gyroscope had command of 1 degree/hr drift, and possessed 4000 deg/hr 

resolution. These devices eventually functioned as the yaw rate sensor for 

skid control in. The first working prototype of the Draper Lab comb drive 

tuning fork anti-lock braking applications. Tests run on these sensors 

involve the examining the change in bias and error of such over a number 

of variables. Proper data could be retrieved in 0.8 s and sent to the 

necessary actuator to cause proper breaking in due time. These systems 

need to operate in a range of temperatures, specifically from -40 to 80 

degrees Celsius. Over this range, both the bias error and the scale factor 

error are both quite stable. The bias error is approximately 2200 deg/h. 

Scale factor error was approximately 0.08%.  

3.4 Accelerometer and Gyro combination 

To measure the acceleration of a body, inertial sensors are used: 

accelerometers and gyroscopes. The accelerometer is used to measure 

Figure 3.2 Draper tuning fork 

gyroscope 

Balancing with Sensors Accelerometer and Gyro combination 



 

23 

 

acceleration in a single direction. By placing three accelerometers 

orthogonally to each other it is possible to sense the acceleration in any 

direction. From the gyroscope, the angular velocity can be obtained on a 

single axis. These two inertial sensors together can help to identify the 

change of position of a system. Inertial sensors are often attached to a fixed 

part of the vehicle or system so that the measurements that it senses are 

due to the system movement and not the movement of the sensor itself. 

3-Axis Gyro/Accelerometer IC - MPU-

6050 

The MPU-6050 [11] is a serious little piece 

of motion processing tech. By combining a 

MEMS 3-axis gyroscope and a 3-axis 

accelerometer on the same silicon die 

together with an onboard Digital Motion 

Processor™ (DMP™) capable of 

processing complex 9-axis Motion Fusion 

algorithms, the MPU-6050 does away with 

the cross-axis alignment problems that can 

creep up on discrete parts. The parts’ 

integrated 9-axis Motion Fusion algorithms 

can even access external magnetometers 

or other sensors through an auxiliary master I2C bus, allowing the devices 

to gather a full set of sensor data without intervention from the system 

processor. 

For precision tracking of both fast and slow motions, the MPU-6050 features 

a user-programmable gyro full-scale range of ±250, ±500, ±1000, and 

±2000°/sec (dps) and a user-programmable accelerometer full-scale range 

of ±2g, ±4g, ±8g, and ±16g. 

Features: 

 Digital-output of 6 or 9-axis Motion Fusion data in rotation matrix, 

quaternion, Euler Angle, or raw data format 

Figure 3.3 Gyroscope IC MPU 

6050 

Balancing with Sensors Filter 



 

24 

 

 Tri-Axis angular rate sensor (gyro) with a sensitivity up to 131 

LSBs/dps and a full-scale range of ±250, ±500, ±1000, and ±2000dps 

 Tri-Axis accelerometer with a programmable full scale range of ±2g, 

±4g, ±8g and ±16g 

 Reduced settling effects and sensor drift by elimination of board-level 

cross-axis alignment errors between accelerometers and 

gyroscopes 

 Digital Motion Processing™ (DMP™) engine offloads complex 

Motion Fusion, sensor timing synchronization and gesture detection 

 Embedded algorithms for run-time bias and compass calibration. No 

user intervention required 

 Digital-output temperature sensor 

 Digital input on FSYNC pin to support video Electronic Image 

Stabilization and GPS 

 Programmable interrupt supports gesture recognition, panning, 

zooming, scrolling, free fall interrupt, high-G interrupt, zero-motion 

detection, tap detection, and shake detection 

 VDD Supply voltage range of 2.375V–3.46V; VLOGIC at 1.8V±5% or 

VDD 

 On-chip timing generator with ±1% frequency variation over full 

temperature range 

3.5 Filter 

Measured sensor data usually consists of noise which reduces accuracy.  

In order to get accurate estimates of the true value, the sensor data needs 

to be filtered. A good filtering [13] algorithm can eliminate noise from the 

data and retain useful information. Many types of filter used for IMU MPU 

6050. Kalman filter and complementary filter are most popular and useful.  

Kalman Filter:  

It is an optimal recursive data processing algorithm depends on the criteria 

chosen to evaluate the performance. Since it does not require storage of all 

previous data and also does not require the previous data to be 

Balancing with Sensors Filter 



 

25 

 

reprocessed, it is called a recursive sensor. Kalman Filter [14] is used in 

many system estimation applications like state estimation, digital signal 

processing, sensor integration, Navigational Systems, etc. Kalman Filter is 

frequently used for the purpose of filtering accelerometer data to give 

position and velocity coordinates. 

Kalman filter has two phases: 

 PREDICT: Predicts the state estimate of the current time using the 

state estimate of the previous time. The current measured values are 

not considered. 

 UPDATE: Update phase combines the current time state estimate 

with the current measured values and updates the current state 

estimate. 

The algorithm works by using a weighted average model on the predicted 

value and the current value. The more certain measurement is given more 

weight. The filter works in the discrete time domain.  

The underlying concept of Kalman filter is a discrete time linear dynamic 

system [15]. This system depends on the following equations: 

 𝑥𝑘 = 𝐴𝑥𝑘−1 (3.1) 

 𝑍𝑘 = 𝐵𝑥𝑘 (3.2)  

Here,  

 Xk is the state of the system at time k. It is based on the state of the 

system at time k-1.  It is simply defined by its position, velocity and 

acceleration. 

 𝑥𝑘 = |
𝑥
𝑑𝑥
𝑑2𝑥

| (3.3)  

 A is in the form of a matrix. It is an operation used to calculate the 

current state of the system from the previous state with assumption 

of constant acceleration. 

Balancing with Sensors Filter 



 

26 

 

 Zk is the measured value of the system and it relates to the calculated 

value xk. In perfect world, Zk = xk. But, in real life this may not happen 

because of noise. 

Complementary filter: 

Complementary filter [16], is in fact a combination of filters which manage 

both high-pass and low-pass filters simultaneously. The low pass filter filters 

high frequency signals (such as the accelerometer in the case of vibration) 

and low pass filters that filter low frequency signals (such as the drift of the 

gyroscope). This filter is widely used for inertial measurement sensor. The 

formula used for this filter is: 

𝑎𝑛𝑔𝑙𝑒 = 0.98 ∗ (𝑎𝑛𝑔𝑙𝑒 + 𝑔𝑦𝑟𝑜 ∗ 𝑑𝑡) + (0.02 ∗ 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟)  (3.4) 

Here, first portion of the right side (angle+gyro*dt) resembles a high pass 

filter on the gyro integrated angle estimation. It will have the same time 

constant as the low pass filter. Second portion of the right side 

(0.02*accelerometer) is the low pass filter acting on the accelerometer. The 

function "Complementary Filter" has to be used in a infinite loop. Every 

iteration the pitch and roll angle values are updated with the new gyroscope 

values by means of integration over time. The filter then checks if the 

magnitude of the force seen by the accelerometer has a reasonable value 

that could be the real g-force vector. If the value is too small or too big, it is 

surely known that it is a disturbance and don't need to take into account. 

Afterwards, it will update the pitch and roll angles with the accelerometer 

data by taking 98% of the current value, and adding 2% of the angle 

calculated by the accelerometer. This will ensure that the measurement 

won't drift, but that it will be very accurate on the short term. 

 

 

 



 

27 

 

  

CHAPTER 4 

4.1 Imaging geometry 

4.2 Automatic camera calibration 

4.3 Image processing 

4.4 Enhancement 

4.5 Methods of matching 

4.6 Interfacing and mapping with Arduino 

 



 

28 

 

4) Chapter 4: Vision 

 

4.1 Imaging geometry 

z = axis of lens or camera axis 

x, y = image plane  

P(x, y, z) = world point 

C= camera point 

C (x, y, z) is point on the image plane 

X, Y, Z = world co-ordinate 

x, y, z = camera co-ordinate 

 
𝑥

𝜆
=

𝑋

𝑍−𝜆
(−1)  (4.1) 

 
𝑥

𝜆
=

𝑋

𝜆−𝑍
  (4.2) 

 
𝑦

𝜆
=

𝑌

𝜆−𝑍
(−1)  (4.3) 

 [
𝑥
𝑦
𝑧
] = 𝑃 [

𝑋
𝑌
𝑍
]  (4.4) 

  [
𝑋
𝑌
𝑍
] = 𝑃−1 [

𝑥
𝑦
𝑧
]  (4.5) 

 𝑊ℎ = 𝑃−1𝐶ℎ  (4.6) 

Figure 4.1 Imaging geometry 

Vision Imaging geometry 



 

29 

 

 [

𝑥
𝑦
𝑧
1

] = [

𝑘𝑥
𝑘𝑦
𝑘𝑧
𝑘

]  (4.7) 

To get real co-ordinates divided by the last vector 

 𝑥 =
𝜆𝑋

𝜆−𝑍
    (4.8) 

 𝑦 =
𝜆𝑌

𝜆−𝑍
   (4.9) 

 𝑧 =
𝜆𝑍

𝜆−𝑍
   (4.10) 

But z = 0 because as only the image plane are taken 

 

[
 
 
 
1 0 0 0
0 1 0 0
0 0 1 0

0 0 −
1

𝜆
1]
 
 
 

[

𝑋
𝑌
𝑍
1

] =

[
 
 
 

𝑋
𝑌
𝑍

𝜆−𝑍

𝜆 ]
 
 
 

   (4.11) 

Inverse Imaging Transformation: 

 𝑃−1 =

[
 
 
 
1 0 0 0
0 1 0 0
0 0 1 0

0 0
1

𝜆
1]
 
 
 

  (4.12) 

 𝑊ℎ = 𝑃−1𝐶ℎ  (4.13) 

Here, Wh = homogeneous co-ordinates of world 

P-1 = inverse imaging transformation and 

Ch = camera homogeneous transformation 

Let us consider, 

 𝑃−1 =

[
 
 
 
1 0 0 0
0 1 0 0
0 0 1 0

0 0
1

𝜆
1]
 
 
 

  (4.14) 

 𝐶ℎ = [

𝑥
𝑦
0
1

]  (4.15) 

So, 

Vision Imaging geometry Vision Imaging geometry 



 

30 

 

 

[
 
 
 
1 0 0 0
0 1 0 0
0 0 1 0

0 0
1

𝜆
1]
 
 
 

× [

𝑥
𝑦
0
1

] =  [

𝑥
𝑦
0
1

] = 𝑊ℎ  (4.17) 

 𝑊ℎ = 𝐶ℎ  (4.18) 

But, world coordinate and camera coordinate are co-incident, which are not 

very useful. 

Without taking zero, consider z has a value. 

 Ch
∗  =  [

𝑥
𝑦
𝑧
1

]  (4.19) 

 Wh
∗ =

[
 
 
 
1 0 0 0
0 1 0 0
0 0 1 0

0 0
1

𝜆
1]
 
 
 

× [

𝑥
𝑦
𝑧
1

] = [

𝑥
𝑦
𝑧

𝑧

𝜆
+ 1

]  (4.20) 

 [
𝑋
𝑌
𝑍
] =

[
 
 
 
 

𝜆𝑥

𝜆+𝑧
𝜆𝑦

𝜆+𝑧
𝜆𝑧

𝜆+𝑧]
 
 
 
 

  (4.21) 

So, 

𝑍 =
𝜆𝑧

𝜆+𝑧
 𝑜𝑟, 𝑍(𝜆 + 𝑧) = 𝜆𝑧  𝑜𝑟, 𝑍𝜆 = 𝑧(𝜆 − 𝑍) 𝑜𝑟, 𝑧 =  

𝜆𝑍

𝜆−𝑍
   (4.22) 

Now, 

 𝑋 =
𝜆𝑥

𝜆+𝑧
=

𝜆𝑥

𝜆+
𝜆−𝑍

𝜆−𝑍

=
𝜆𝑥(𝜆−𝑍)

𝜆2−𝜆𝑍+𝜆𝑍
   (4.23) 

Finally, 

  𝑋 =
𝑥

𝜆
(𝜆 − 𝑍)  (4.24) 

And 

  𝑌 =
𝑦

𝜆
(𝜆 − 𝑍)  (4.25) 

So, if Z of world coordinate is known, can know other two world coordinates. 

Z is necessary. 



 

31 

 

World coordinate may not co-inside with camera coordinate system, camera 

plane may not also be the same.    

Now, consider a point in global coordinate Wh is given and the camera is 

mounted on a gimbal located at W0(x0, y0, z0) having an offset, 𝑟 ̅, with pan 

angle θ and tilt angle α. 

 

Camera axis transforms in the following sequence like in Figure 11, 

a) Original co-ordinates, b) rotation of world axis along Z, c) rotation of world 

axis along X axis, d) translation of world axis to camera point, f) coincidental 

camera and world axis. 

To find the image coordinate, it can be assumed that G.F.C = C.F.C 

because of pan tilt camera for arbitrary rotation it is not possible. 

Translation, 𝑇 = [

1 1 0 −𝑥0

0 1 0 −𝑦0

0 0 1 −𝑧0

0 0 0 1

] 

 

Figure 4.2 Relation between camera axis and world axis 

Vision Imaging geometry 



 

32 

 

 

Pan rotation (rotation with respect to Z), 𝑅𝜃 = [

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0 0

0 0 1 0
0 0 0 1

]  

Translation, 𝑇 = [

1 1 0 −𝑥0

0 1 0 −𝑦0

0 0 1 −𝑧0

0 0 0 1

] 

Pan rotation (rotation with respect to Z), 𝑅𝜃 = [

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0 0

0 0 1 0
0 0 0 1

] 

Tilt rotation (rotation wt. X), 𝑅𝛼 = [

1 0 0 0
0 𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼 0
0 −𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0
0 0 0 1

] 

Translation of offset, 𝐶 = [

1 0 0 −𝑟1
0 1 0 −𝑟2
0 0 1 −𝑟3
0 0 0 1

] 

(a) (b) 
(c) 

(d) (e) 

Figure 4.3 Transformation of camera axis. 

Vision Imaging geometry 



 

33 

 

So, the final transformation, 

 𝐶ℎ = 𝑃. 𝐶. 𝑅𝛼. 𝑅𝜃. 𝑇  (4.26) 

If camera coordinate and axis are not in line with real world axis: 

 𝐶ℎ = (𝑃𝐺𝑅𝑇)𝑊ℎ  (4.27) 

Ch = camera coordinate system 

P = perspective transformation 

G = gamble offset  

R = rotation (pan and tilt) 

T = translation of global axis to the gamble center 

Wh = world homogeneous coordinates 

𝑥 =
𝜆(𝑋−𝑋0)𝑐𝑜𝑠𝜃+(𝑌−𝑌0)𝑠𝑖𝑛𝜃−𝑟1

−(𝑋−𝑋0)𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝛼+(𝑌−𝑌0)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝛼−(𝑍−𝑍0)𝑐𝑜𝑠𝛼+𝑟2+𝜆
  (4.28) 

Here, 

X, Y, Z = global axis 

x = position of a point in x axis 

λ = focal length of camera 

(X-X0), (Y-Y0), (Z-Z0) defines the offset of gimbal center 

Θ = pan angle 

α = tilt angle 

r1, r2, r3 = offset of the gimbal of the image plane center wt. to the gimbal 

center 

𝑦 =
𝜆{−(𝑋−𝑋0)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛼+(𝑌−𝑌0)𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝛼+(𝑍−𝑍0)𝑠𝑖𝑛𝛼−𝑟2}

{−(𝑋−𝑋0)𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝛼+(𝑌−𝑌0)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝛼−(𝑍−𝑍0)𝑐𝑜𝑠𝛼+𝑟2+𝜆}
  (4.29) 

For 2 camera: 

If 2 camera is used instead of 1 then one camera has to be coincidental. 

Let, 1st camera co-ordinates are coincidental (coincidental means that 

camera axis and global axis are same) 

Vision Imaging geometry 



 

34 

 

 

Figure 4.4 Relation of 2 camera axis with world axis. 

 

 𝑋 =
𝑥1

𝜆
(𝜆 − 𝑧1)  (4.30) 

And X0 = -B 

 𝑋2 = 𝑋1 + 𝐵 =
𝑥2

𝜆
(𝜆 − 𝑧2)  (4.30) 

Here, z1 = z2 =Z 

 𝑋2 − 𝑋1 = 𝐵  (4.31) 

Or,  
𝑥2

𝜆
(𝜆 − 𝑍) −

𝑥1

𝜆
(𝜆 − 𝑍) = 𝐵  (4.32) 

Or,  𝜆𝑥2 − 𝑍𝑥2 − 𝜆𝑥1 + 𝑍𝑥1 = 𝜆𝐵   (4.33) 

Or,  𝜆(𝑥2 − 𝑥1) + 𝑍(𝑥1 − 𝑥2) = 𝜆𝐵 (4.34) 

Or,  𝑍(𝑥1 − 𝑥2) = 𝜆𝐵 − 𝜆(𝑥2 − 𝑥1) (4.35) 

Or,  𝑍 =
𝜆𝐵

−(𝑥2−𝑥1)
−

𝜆(𝑥2−𝑥1)

−(𝑥2−𝑥1)
 (4.36) 

So,   𝑍 = 𝜆 −
𝜆𝐵

(𝑥2−𝑥1)
 (4.37) 

Now,  𝑋1 =
𝑥1

𝜆
(𝜆 − 𝜆 +

𝜆𝐵

(𝑥2−𝑥1)
) (4.38) 

Vision Imaging geometry 



 

35 

 

=
𝑥1

𝜆
.

𝜆𝐵

(𝑥2 − 𝑥1)
=

𝑥1𝐵

𝑥2 − 𝑥1
 

Similarly,    𝑌1 =
𝑦1𝐵

𝑥2−𝑥1
  (4.39) 

So, global location of the point will be (X1, Y1 and Z1) if 2 camera are used 

instead of 1 camera. 

4.2 Automatic camera calibration 

In geometrical camera calibration, the objective is to determine a set of 

camera parameters that describe the mapping between 3-D reference 

coordinates and 2-D image coordinates. Camera calibration in the context 

of three-dimensional machine vision is the process of determining the 

internal camera geometric and optical characteristics (intrinsic parameters) 

or the 3-D position and orientation of the camera frame relative to a certain 

world coordinate system (extrinsic parameters) [9]. Sometimes, both the 

parameters can be determined from the calibration. In many cases, the 

overall performance of the machine vision system strongly depends on the 

accuracy of the camera calibration. 

Here, calibration of the camera using a 3D object is discussed. This 

technique is applicable if and only if the following conditions are satisfied: 

a. Calibration target: 2 planes are at right angle 

b. positions of pattern corners only with respect to a coordinate 

system of the target is known 

 𝐶ℎ
̅̅ ̅ = (𝑃𝐶𝑅𝑇)𝑊ℎ = 𝐴𝑊ℎ  (4.40) 

 𝑊ℎ = [

𝑋
𝑌
𝑍
1

] , 𝐴 = [

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33 𝑎34

𝑎41 𝑎42 𝑎43 𝑎44

]  (4.41) 

𝐶ℎ
̅̅ ̅ = [

𝐶ℎ1

𝐶ℎ2

𝐶ℎ3

𝐶ℎ4

] = 𝐴𝑥𝑊ℎ = [

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33 𝑎34

𝑎41 𝑎42 𝑎43 𝑎44

] × [

𝑋
𝑌
𝑍
1

]  (4.42) 

Vision Image processing Vision Automatic camera calibration 



 

36 

 

And   [

𝐶ℎ1

𝐶ℎ2

𝐶ℎ3

𝐶ℎ4

] = [

𝑥𝑘
𝑦𝑘
𝑧𝑘
𝑘

] (4.43) 

 

So,  𝑥 =
𝑥𝑘

𝑘
=

𝐶ℎ1

𝐶ℎ4
 𝑎𝑛𝑑 𝑦 =

𝐶ℎ2

𝐶ℎ4
 (4.44) 

Now,  𝑥𝑘 = 𝑥𝐶ℎ4 = 𝑎11𝑋 + 𝑎12𝑌 + 𝑎13𝑍 + 𝑎14  (4.45) 

 𝑦𝐶ℎ4 = 𝑎21𝑋 + 𝑎22𝑌 + 𝑎23𝑍 + 𝑎24  (4.46) 

 𝐶ℎ4 = 𝑎41𝑋 + 𝑎42𝑌 + 𝑎43𝑍 + 𝑎44  (4.47) 

Putting value of Ch4 in Equation 4.45, 

𝑎11𝑋 + 𝑎12𝑌 + 𝑎13𝑍 + 𝑎14 = 𝑥(𝑎41𝑋 + 𝑎42𝑌 + 𝑎43𝑍 + 𝑎44)  (4.48) 

Or, 

𝑎11𝑋 + 𝑎12𝑌 + 𝑎13𝑍 + 𝑎14 − 𝑥(𝑎41𝑋 + 𝑎42𝑌 + 𝑎43𝑍 + 𝑎44) = 0 

(4.49) 

For Equation 4.46 

 𝑎21𝑋 + 𝑎22𝑌 + 𝑎23𝑍 + 𝑎24 − 𝑦(𝑎41𝑋 + 𝑎42𝑌 + 𝑎43𝑍 + 𝑎44) = 0 
(4.50) 

All the co-efficient are unknown in Equations 4.49 and 4.50. 

X, Y, Z value for the 6 points of box are known from the camera. 

Writing Equations 4.49 and 4.50 for the 6 points, it is possible to get 12 

equations which are linear. By solving these 12 linear equations, easily the 

12 unknown constant values can be found. 

4.3 Image processing 

Image processing is a method to convert an image into digital form and 

perform some operations on it, in order to get an enhanced image or to 

extract some useful information from it. It is a type of signal dispensation in 

which input is image, like video frame or photograph and output may be 

image or characteristics associated with that image. Usually Image 

Processing system includes treating images as two dimensional signals 

while applying already set signal processing methods to them. 

Vision Image processing 



 

37 

 

The purpose of image processing is divided into 5 groups. They are: 

a. Visualization - Observe the objects that are not visible 

b. Image sharpening and restoration - To create a better image 

c. Image retrieval - Seek for the image of interest 

d. Measurement of pattern – Measures various objects in an image 

e. Image Recognition – Distinguish the objects in an image 

Image processing consists of following steps:  

a. Image acquisition (sensing)  

b. Preprocessing (reduction in noise and enhancement) 

c. Segmentation (separating region) 

d. Description (characteristics features) 

e. Recognition (identify regions) 

f. Interpolation (Assign meaning) 

4.3.1 Basic concepts 

4.3.1.1 Neighborhood of a pixel 

4-neighbors: 

Any pixel P(x, y) has two vertical and two horizontal neighbors, given by 

(x+1, y), (x-1, y), (x, y+1), (x, y-1). This set of pixels are called the 4-

neighbors of P, and is denoted by N4(P).  Each of them are at a unit distance 

from P.  

Diagonal Neighbors: 

The four diagonal neighbors of P(x, y) are given by, (x+1, y+1), (x+1, y-1), 

(x-1, y+1), (x-1, y-1). This set is denoted by ND(P).  Each of them are at 

Euclidean distance of 1.414 from P. 

 

 

 

 

 

Figure 4.5 Neighborhood pixels 

Vision Image processing 



 

38 

 

 

The points N4(P) and ND(P) are together known as 8-neighbors of the point 

P, denoted by N8(P). Some of the points in the N4, ND and N8 may fall outside 

image when P lies on the border of image.  

4.3.1.2 Connectivity 

Two pixels are connected if they are neighbors and their gray levels satisfy 

some specified criterion of similarity. For example, in a binary image two 

pixels are connected if they are 4-neighbors and have same value (0/1).To 

determine the connectivity, a set of gray levels values or intensity levels 

value is defined. 

3 types of connectivity:  

 4-connectivity: Two pixels P and Q with values from V are 4-adjacent 

if Q is in the set N4(P). 

 8-Connectivity: Two pixels P and Q with values from V are 8-adjacent 

if Q is in the set N8(P). 

 m-adjacency: Two pixels P and Q with values from V are m adjacent 

if and only if the following conditions are satisfied: 

a. Q is in N4(P),  

b. Q is in ND(P), 

c. No common N4 of both P and Q. 

 

P 

(a

) 

(b) 

A 

B 

Figure 4.6 Neighborhood pixels 

Vision Image processing 



 

39 

 

In Fig (a) and (b), the black pixels are connected with P. But, in Fig 2, A and 

B pixels are not m-connected as they have common N4. 

4.3.1.3 Distance 

 Euclidean Distance: The Euclidean Distance between p and q is 

defined as: 

 𝐷𝑒 (𝑝, 𝑞) =
[(𝑥 – 𝑠)2 + (𝑦 − 𝑡)2]1

2
  (4.51) 

 

Pixels having a distance less than or equal to some value r from (x, 

y) are the points contained in a disk of radius r centered at (x, y). 

 

 City-block distance: The D4 distance (also called city-block 

distance) between p and q is defined as: 

 𝐷4 (𝑝, 𝑞)  =  | 𝑥 –  𝑠 |  + | 𝑦 –  𝑡 |  (4.52) 

 

Pixels having a D4 distance from (x, y), less than or equal to some 

value r form a diamond centered at (x, y). 

 chessboard distance: The (also called D8 distance) between p and 

q is defined as: 

 𝐷8 (𝑝, 𝑞) =  𝑚𝑎𝑥( |𝑥 –  𝑠 |, |𝑦 –  𝑡 | )  (4.53) 

Pixels having a D8 distance from (x, y), less than or equal to some 

value r form a square centered at (x, y). 

Vision Image processing 



 

40 

 

 Dm distance: It is defined as the shortest m-path between the 

points. In this case, the distance between two pixels will depend on 

the values of the pixels along the path, as well as the values of their 

neighbors. 

 

Figure 14, (a) represents Euclidean distance, (b) represents City block 

distance, (c) represents Chessboard distance (d) represents the m-

distance. 

Example: Consider the following arrangement of pixels and assume that p, 

p2, and p4 have value 1 and that p1 and p3 can have can have a value of 0 

or 1. Suppose that the adjacency of pixels values is 1 (i.e. V = {1}). 

Now, to compute the Dm between point’s p and p4, there are 4 cases: 

Case1: If p1 =0 and p3 = 0 

p (x, y) 

q (s, t) 

q (s, t) 

p (x, y) 

D
4
 

q (s, t) 

D
8 

 

p (x, y) D
8 

 
D

8 
= max (D

8 (a),D8(b)
) 

(a) (b) 

q 

p

(d) 

(c) 

Figure 4.7 Distance between pixels. 

Vision Techniques of image processing Vision Techniques of image processing 



 

41 

 

The length of the shortest m-path (the Dm distance) is 2 (p, p2, p4) 

Case2: If p1 =1 and p3 = 0 

 

Now, p1 and p will no longer be adjacent (see m-adjacency definition) then, 

the length of the shortest path will be 3 (p, p1, p2, p4). 

Case3: If p1 =0 and p3 = 1 

The same applies here, and the shortest –m-path will be 3 (p, p2, p3, p4) 

Case4: If p1 =1 and p3 = 1 

The length of the shortest m-path will be 4 (p, p1, p2, p3, p4). 

4.3.2 Techniques of Image processing 

 There are mainly two types of Image processing techniques. 

a) Spatial Domain Processing 

b) Frequency Domain Processing 

Some basic things of Image processing are explained here. 

(a) Initial 

Orientation 
(b) Case 1  (c) Case 2 (d) Case 3  (e) Case 4  

Figure 4.8 Mixed connectivity pixels distance 

Vision Image processing 



 

42 

 

For all different values of x and y belonging to the image- 

Function or Filter depends on the properties of P, as well as neighboring 

pixels. 

Pre-processing steps: 

∑ 𝑊𝑗𝑘  𝑓(𝑥 + 𝑗 , 𝑦 + 𝑘)
𝑗= −1,0,1
𝑘= −1,0,1

 

=𝑊−1−1  𝑓(𝑥 − 1 , 𝑦 − 1) +

  𝑊−1 0 𝑓(𝑥 − 1 , 𝑦) + 𝑊−1 1 𝑓(𝑥 − 1, 𝑦 +

1) + ⋯ 

 

 

= 𝑊1 𝑓(𝑥 − 1, 𝑦 − 1) + 𝑊2 𝑓(𝑥 − 1, 𝑦) 𝑊3  𝑓(𝑥 − 1, 𝑦 + 1) + 𝑊4𝑓(𝑥, 𝑦 − 1)

+ 𝑊5  𝑓(𝑥, 𝑦) + 𝑊6  𝑓(𝑥, 𝑦 + 1) + 𝑊7 𝑓(𝑥 + 1, 𝑦 + 1)

+ 𝑊8 𝑓(𝑥 + 1, 𝑦) + 𝑊9 𝑓(𝑥 + 1, 𝑦 + 1) 

The sum is the new pixel value of P. This process will be continued to the 

whole image and will not be replaced by the value until the calculations of 

all pixels are done. 

Special case: 

 If the template is 1*1 then the transformation of input pixel does not depend 

on the neighboring pixels. 

 𝑆 = 𝑇(𝑟)  (4.54) 

Figure 4.9 Template of an 

image 

Vision Techniques of image processing 



 

43 

 

Where,  

S= Transformed Image 

T= transformation function 

r = Input image 

This is called Image Intensity 

Transformation (Mapping) 

If the line in Fig 20 is straight then 

the all pixels variation of input and 

output will be same. As a result 

there will not be any significant change. Deviation of the graph line change 

the image like contrast increasing or decreasing.   

Frequency Domain Approach: 

Frequency Domain approach works based on the Fourier Transformation. 

It transformed a function to another function. 

 

Discrete Fourier Transformation: 

If F(u) is a function of Frequency and f(x) is a function of x then, 

 𝐹(𝑢) =
1

𝑁
∑ 𝑓(𝑥) 𝑒

−2𝜋𝑗𝑢𝑥

𝑁𝑁−1
𝑥=0   (4.55) 

And the Inverse Transformation is  

Figure 4.10 Intensity transformation 

Transformation 

Figure 4.11 Transformed function after Fourier transform 

Vision Techniques of image processing 



 

44 

 

  𝑓(𝑥) = ∑ 𝐹(𝑢) 𝑒
2𝜋𝑗𝑢𝑥

𝑁𝑁−1
𝑥=0  (4.56) 

2-D discrete Fourier Transformation: 

 The 2-D transformation is according to x and y .So, 

 𝐹(𝑢, 𝑣) =
1

𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝑁−1

𝑦=0 𝑒
−2𝜋𝑗(𝑢𝑥+𝑣𝑦)

𝑁𝑁−1
𝑥=0   (4.57) 

And the Inverse Transformation is  

 𝑓(𝑥, 𝑦) =
1

𝑁
∑ ∑ 𝐹(𝑢, 𝑣)𝑁−1

𝑦=0 𝑒
2𝜋𝑗(𝑢𝑥+𝑣𝑦)

𝑁𝑁−1
𝑥=0   (4.58) 

4.4 Enhancement 

The principal objective of image enhancement is to process a given image 

so that the result is more suitable than the original image for a specific 

application. It accentuates or sharpens image features such as edges, 

boundaries, or contrast to make a graphic display more helpful for display 

and analysis. The enhancement doesn't increase the inherent information 

content of the data, but it increases the dynamic range of the chosen 

features so that they can be detected easily. 

The greatest difficulty in image enhancement is quantifying the criterion for 

enhancement and, therefore, a large number of image enhancement 

techniques are empirical and require interactive procedures to obtain 

satisfactory results. 

Vision Enhancement 



 

45 

 

4.4.1 Histogram 

The histogram of a digital image with grey levels in a certain range, is a 

discrete function [17]. It is the basic image enhancement process. The 

shape of the histogram of an image gives us useful information about the 

possibility for contrast enhancement. A histogram of a narrow shape 

indicates little dynamic range and thus corresponds to an image having low 

contrast. 

Histogram transformation is nothing but intensity transformation. For 

continuous intensity level, histogram will be a probability density function. 

Intensity transformation: S=T(r) 

Here, S is the new intensity, T is the transformation function and r is original 

pixel intensity. 

To normalize this, let us assume that, 

0 ≤ r ≤ 1 and 0 ≤ s ≤ 1 

This two condition states that, if maximum intensity is 256 then divide 0 to 1 

area into 255 portions so that highest level remain 1. 

T-1 will be possible if and only if: 

a. T is a monotonically increasing function and  

b. Single valued function 

Histogram equalization:  

Equalization is done to get the final image intensity as intensity. 

(a) (c) (b) 

Figure 4.12 Histogram (a) Original, (b) transformed, (c) comparison  

Vision Enhancement 



 

46 

 

 From Equation 4.54, r can be evaluated and the value of r will be T-1(s). 

After transformation image will take different shape. 

4.4.2 Making edges more prominent 

Edge is the place where intensity changes suddenly. 

𝐺𝑥 =
𝜕𝑦

𝜕𝑥
~𝑓(𝑥, 𝑦) − 𝑓(𝑥 − 1, 𝑦) 

𝐺𝑦 =
𝜕𝑦

𝜕𝑥
~𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦 − 1) 

To determine the edges only the gradient of the 

previous pixel is consider. The best way to 

determine the edge is to use SOBEL MASK or SOBEL OPERATOR [18]. If 

the image or pixels are uniform then it will be very near to zero. If the 

intensity changes in x direction, SOBEL MASK will give high value in Gx but 

Gy will not give high value [19]. If the intensity changes in oblique direction 

then the mask will give value in Gx and Gy. 

𝐺𝑦 =
𝜕𝑦

𝜕𝑥
~𝑓(𝑥 − 1, 𝑦 + 1) − 𝑓(𝑥 − 1, 𝑦 − 1) + 2𝑓(𝑥, 𝑦 + 1) − 2𝑓(𝑥, 𝑦 − 1)

+ 𝑓(𝑥 + 1, 𝑦 + 1) − 𝑓(𝑥 + 1, 𝑦 − 1) 

Similarly, Gx can also be determined. 

  

4.5 Methods of matching  

Matching means comparison between two objects. For matching, a 

standard or precedent object has to be set which is compared with the later 

Gx Gy 

Vision Enhancement 



 

47 

 

one. In image processing, the precedent image portion is called template.  

The template [20] selection is the most important part in image processing 

because it works as memory. A template has to be extracted to compare it 

with the real-time images. The image chosen for template extraction must 

have high quality, proper edges and have to be captured by a high resolution 

camera. As the processed image lost its quality, it is preferable to use high 

quality digital camera to get maximum accuracy. According to template 

matching, 3 types of matching is possible: 

1. Color matching: Color matching compares the color content of an image 

or regions in an image to existing color information. The color information in 

the image may consist of one or more colors. To use color matching, regions 

have to be defined in an image that contain the color information for using 

as a reference. Machine vision functions then learn the 3D color information 

in the image and represents it as a 1D color spectrum [21]. MV application 

compares the color information in the entire image or regions in the image 

to the learned color spectrum, calculating a score for each region. This score 

relates how closely the color information in the image region matches the 

information represented by the color spectrum. 

2. Pattern matching: Pattern matching locates regions of grayscale image 

that match a predetermined template. Pattern matching finds template 

matches regardless of poor lighting, blur, noise, shifting of the template or 

rotation of the template. It is used to quickly locate known reference pattern 

in an image. With pattern matching, a model or template is created that 

represents the object for which it is being search. Then, machine vision 

application searches for the model in each acquired image calculating a 

score for each match. The score relates how closely the model matches the 

pattern form. Pattern matching works based on the Cross Correlation and 

pyramid matching method. Mathematical process of image correlation is a 

simple method. Actually the template is laid over the source image and the 

intensity values for each corresponding pixel are individually multiplied. 

Then all of them are summed to produce a single correlation value. The 

template is then moved one pixel and the process is repeated until the whole 

Vision Methods of matching 

 



 

48 

 

source image has been covered and also based on it a matrices of 

correlation values has been created. The cross correlation [22] matrices is 

populated using the following equation:  

Cross Correlation Matrix, j= 

∑ ∑ (𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑥,𝑦 )(𝑆𝑜𝑢𝑟𝑐𝑒(𝑖+𝑥),(𝑗+𝑦))
𝑎−1
𝑦=0

𝑏−1
𝑥=0   (4.59) 

If the images has not been normalized then it must normalized by dividing 

each element in the perspective images by the square root of the sum of its 

square: 

Cross Correlation Matrix, i =  

∑ ∑ (𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑥,𝑦)(𝑆𝑜𝑢𝑟𝑐𝑒(𝑖+𝑥),(𝑗+𝑦))
𝑎−1
𝑦=0

𝑏−1
𝑥=0

√(∑ ∑ (𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑥,𝑦)2)((∑ ∑ (𝑆𝑜𝑢𝑟𝑐𝑒(𝑖+𝑥),(𝑗+𝑦))
𝑎−1
𝑦=0

𝑏−1
𝑥=0 )𝑎−1

𝑦=0
𝑏−1
𝑥=0

 (4.60) 

3. Color pattern matching: Color pattern matching is a unique approach 

that combines color and spatial information to quickly find color patterns in 

an image. Color pattern matching tool locates the reference pattern in an 

image even when the pattern in the image is rotated and slightly scaled. 

When a pattern is rotated or scaled in the image, the color pattern matching 

tool detects the following features of an image: 

 The pattern in the image 

 The position of the pattern in the image 

 The orientation of the pattern 

 Multiple instances of the pattern in the image, if applicable 

When color pattern matching is used to search for a template, the software 

uses the color information in the template to look for occurrences of the 

template in the image. The software then applies grayscale pattern 

matching in a region around each of these occurrences to find the exact 

position of the template in the image. The following figure illustrates the 

general flow of the color pattern matching algorithm. The size of the 

searchable region depends on the provided inputs, such as search strategy 

and color sensitivity. 

Vision Interfacing and mapping with arduino 

 



 

49 

 

4.6 Interfacing and mapping with Arduino 

MISTBOY vision system consists of 2 high definition 8 megapixels camera 

of Genius brand which is capable of 640x480 video capture at 30 frames 

per second. In this paper only the ball detection algorithm using a single 

camera is discussed. The response time of a soccer playing robot should 

be as fast as possible to cope up with the speed of the ball. To decrease 

the response time it is needed to process the continuous inline images 

expeditiously. As the processing needs high definition images instantly, it is 

necessary to use very high configured processor instantly. But, it is not 

possible to use an onboard CPU because of the size and weight problem in 

balancing. So, the idea is to transfer the images through Wi-Fi to an external 

CPU for processing. After processing, the external CPU send the decisions 

to the onboard Arduino for actions. 

Template 

Learn color information and 

information for grayscale 

pattern matching 

Use the first part of the color 

location algorithm to find 

instance of the template in 

the image 

Search a region around each color 

match using grayscale pattern 

matching to obtain final location 

Image 

Template Descriptor 

Learning phase 

Match locations based 

on color 

Matching 

phase 

Score each match according 

to color and grayscale 

information 

Figure 4.13 Algorithm for color matching 

Vision Interfacing and mapping with arduino 

 



 

50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Integrated Vision system. 



 

51 

 

  

CHAPTER 5 

5.1 Vision 

5.2 Sonar 

5.3 IR (Infrared Ray) 

 

 



 

52 

 

5) Chapter 5: Distance Measurement 

 

5.1 Vision system 

Distance measurement is one desired capability for an intelligent robot to 

understand its working environment. Among existing distance-

measurement techniques, one category imitates the human vision and 

evaluates the distance using the spatial disparity of an object point in two 

images. The measurement system typically consists of a pair of cameras. 

The distance is computed using the disparity of two corresponding pixels 

with the triangulation. The two cameras must be carefully aligned and well 

calibrated to minimize the measurement inaccuracy. If the characteristics of 

two cameras are not identical due to a difference in fabrication, an impact 

or aging, a significant measurement error could be hard to avoid. Some 

researchers elaborated on the monocular vision for possibly overcoming the 

shortcomings of the stereo-vision measurement system. With two images 

taken at two different positions by a single camera, the distance information 

can be computed in the similar way as that with the stereo-vision. The 

robotic eye-in-hand system, which has a camera moved by a robot arm, is 

an example. Since the movement of the camera on the robot arm is Omni-

directional, finding the matching points on images could be computationally 

costly. Hazard on the camera is more likely due to the frequent movement 

and impact. Physically moving the robot arm also causes a significant 

amount of delay on distance measurement. Other researchers suggested a 

measurement system with a camera and two fixed plane mirrors. Stereo 

images reflected from the two mirrors are acquired by the single camera. 

With two fixed mirrors, the field of view is reduced and becomes narrower. 

Convex mirrors had been suggested to replace plane mirrors to increase 

the viewable and measurable area. However, image distortion caused by 

the convex mirrors becomes a major problem. Robot vision system and 

image processing is described details with illustration in chapter 4, sub-

section 4.2.1.3.  

Distance measurements Vision system 

 



 

53 

 

5.2 Sonar 

Sound waves are everywhere around us, even when we cannot hear them. 

Human hearing responds to sound frequencies in the range between 20 Hz 

and 20,000 Hz. It is important to make sure we first understand how to 

describe sound waves. The frequency of a wave is defined as the number 

of cycles the wave completes in a unit of time. More specifically, frequency 

of 1Hz, or one hertz, indicates that the wave oscillates one cycle over a time 

period of 1 second. Look at what happens to a sine wave when its frequency 

is increased from 1Hz to 5Hz. The sine wave on the left completes 1 full 

cycle within 1 second or, in other words, has a frequency of 1 Hz. The wave 

on the right oscillates 5 times in 1 second time or has a frequency of 5 Hz. 

For humans, the impact of the frequency limits means our ears cannot 

process sounds that complete less than 20, or more than 20000, oscillations 

per second [23]. 

Ships scanning the ocean floor for sunken submarines, planes or wrecks 

send ultrasonic pings, or ultrasound waves, that reflect off the surfaces and 

return back to the sensor. 

 

Working principal: 

The speed of sound in air varies as a function of temperature by the 

relationship: 

c = 13044√1 +
T

273
 

Figure 5.1 Basic principle of sonar sensor 

Distance measurements Sonar 

 



 

54 

 

The wavelength of sound changes as a function of both the speed of sound 

and the frequency, as shown by the expression: 

𝜆 = 𝑐/𝑓 

Where: 

λ = wave length, c= sound of wave and f= frequency 

5.3 IR (Infrared Ray) 

INFRARED (IR) sensors are extensively used for measuring distances. 

Therefore, they can be used in robotics for obstacle avoidance. They are 

cheaper in cost and faster in response time than US. However, they have 

non-linear characteristics and they depend on the reflectance properties of 

the object surfaces. So knowledge of the surface properties must be known 

prior. In other words, the nature in which a surface scatters, reflects, and 

absorbs infrared energy is needed to interpret the sensor output as distance 

measure. IR sensors using reflected light intensity to estimate the distance 

from an object are reported in the bibliography. Their inherently fast 

response is attractive for enhancing the real-time response of a mobile 

robot. Some IR sensors described in the bibliography are based on the 

measurement of the phase shift, and offer medium resolution from 5 cm to 

10 m, but these are very expensive.  

In an unknown environment, it is important to know about the nature of 

surface properties in order to interpret IR sensor output as a distance 

measurement. Here, US sensor can play an important role in determining 

the surface properties. The co-operation between the US and IR sensors 

are utilized to create a complementary system that is able to give reliable 

distance measurement. They can be used together where the advantages 

of one compensate for the disadvantages of the other. The integration of 

the information supplied by the multiple US and IR sensors can be a means 

to cope with the spatial uncertainty of unknown, unstructured environments 

in several applications of advanced robotics, such as flexible industrial 

automation, service robotics, and autonomous mobility. 

Distance measurements IR (Infrared Ray) 

 



 

55 

 

METHODOLOGY 

The process of measuring distance to an obstacle by using IR sensors can 

be divided into three steps [24]. First, the properties of the surface of the 

obstacle are determined. Secondly, the angle or orientation of the surface 

relative to the sensor is determined. Finally, the distance is calculated by 

using the information obtained in first two steps. 

A. Determination of Surface Properties:  

As light energy hits a surface, some portion of it scattered or absorbed and 

rest of the energy is reflected. Different surfaces scatter, absorb and reflect 

light in different portions. It is obvious that black surface will absorb more 

light than a white surface, and a shiny smooth surface will reflect more 

energy than a rough surface. 

. 

The Phong Model can provide a simplified description of these effects into 

four constants: C0, C1, C2, and n. The Phong equation for intensity of 

energy, I, reflected from a surface is:  

𝐼 = 𝐶0(𝜇𝑠. 𝜇𝑛) + 𝐶1(𝜇𝑟 . 𝜇𝑣)
𝑛 + 𝐶2 

Where, µs, µn, µr and µv are the light source, surface normal, reflected and 

viewing vector, respectively. 

The angle between the source vector and the normal vector of the surface 

is α. Also, if one assumes that the emitter and receiver are in the same 

Figure 5.2 Phong Model 

Figure 5.3 Emission and reflection of 

an infrared signal by sensor 

Distance measurements IR (Infrared Ray) 

 



 

56 

 

position, then the angle between the viewing vector and the reflected vector 

is 2α.  

Therefore, Equation (1) becomes:  

𝐼 = 𝐶0 cos(𝛼) + 𝐶1cos𝑛(2𝛼) + 𝐶2 

Again, the energy absorbed by the phototransistors is a function of Intensity 

(I), distance traveled (2l), and the area (A) of the sensor.  

𝐸 =
𝐼𝐴

(2𝑙)2
 

 𝑙 Can be expressed in terms of d, a and the radius of the sensor (r): 

𝑙 =
𝑑

cos (𝛼)
+ 𝑟(

1

cos(𝛼)
− 1) 

Finally, the energy absorbed by the sensor can be expressed as: 

𝐸 =
𝐶0 cos(𝛼) + 𝐶1cos (2𝛼)

[
𝑑

cos(𝛼)
+ 𝑟(

1
cos(𝛼)

− 1)]
 

B. Determination of the Angle of a Surface  

The relative angle of the sensor to the surface must be determined to 

simplify the calculating the surface properties and the distance of an 

obstacle. The maximum reading of the sensor will occur at α= 0. In Fig. 6, 

the spike occurs where the direction of the IR signal corresponds to the 

surface normal (α = 0).  

C. Calculating the Distance to an Object  

After obtaining the properties of a surface and the relative angle of the 

surface, it becomes easier to calculate the distance. From (5), the distance 

(d) can be expressed as:  

𝑑 = 𝑟(cos(𝛼) − 1) + cos (𝛼)√
𝐶0 cos(𝛼) + 𝐶1cos (2𝛼)

𝐸
 

Thus the infrared readings can be interpreted to distance between the 

obstacle and the sensor. 

Distance measurements IR (Infrared Ray) 

 



 

57 

 

  

CHAPTER 6 

6.1 LabVIEW vision procedure 

6.2 Power calculation 

 

 



 

58 

 

6) Chapter 6: Experimental Procedure for 

Methodology Assessment 

 

6.1 LabVIEW vision procedure 

LabVIEW Vision is a powerful tool for image processing. It is used for 

Industrial, laboratory as well as education purposes. The main benefit of 

LabVIEW Vision is time saving because it is a wire programming. There is 

no need of typing. If anyone know the main mechanism of LabVIEW, he or 

she can complete the programming very quickly. 

1. Vision  Acquisition: 

Creates, and edits acquisitions using the NI Vision Acquisition Express VI. 

The NI Vision Acquisition Wizard is launched by placing the Express VI on 

the block diagram. Select an acquisition source and configure an acquisition 

using NI-IMAQ, NI-IMAQdx, or simulate an acquisition by reading an AVI or 

image files from a folder. After an acquisition is configured, select controls 

and indicators to be able to programmatically set in LabVlEW. Double-click 

the Vision Acquisition Express VI to edit the acquisition. 

Note: Any images created by the Express VI need to be disposed after use. 

Use the IMAQ Dispose.vi to clean up the images output by the Express VI 

when they are no longer needed. 

 

2. Vision Assistance: 

Creates, edits, and runs vision algorithms using NI Vision Assistant. When 

you place this Express VI on the block diagram, NI Vision Assistant 

Experimental procedure for 

methodology assessment 
LabVIEW vision procedure 



 

59 

 

launches. Create an algorithm using the Vision Assistant processing 

functions. After you create an algorithm, you can select the controls and 

indicators that you want to be able to programmatically set in LabVlEW. 

Double-click the Vision Assistant Express VI to edit the algorithm. 

 

When various functions or matching of Image Processing is activated, 

Vision Assistance input and output configuration increase like Figure 2(a) to 

2(b) 

a. Array to Cluster: 

Converts a 1D array to a cluster of elements of the 

same type as the array elements. Right-click the 

function and select Cluster Size from the shortcut 

menu to set the number of elements in the cluster. 

b. Unbundle by Name: 

Experimental procedure for 

methodology assessment 
LabVIEW vision procedure 



 

60 

 

Returns the cluster element whose names are specified. 

3. Build Array: 

Concatenates multiple arrays or appends elements to an n-dimensional 

array. 

 

4. Waveform Graph:  

Waveform Graph is used to make a 

graph or chart from input information. 

Waveform graphs mainly works 

based on array. 

 

 

 

 

5. Image to Matching To display the matched images, first the input 

images are converted into arrays and then arrays to clusters. Overly 

Experimental procedure for 

methodology assessment 
LabVIEW vision procedure 

Experimental procedure for 

methodology assessment 
LabVIEW vision procedure 



 

61 

 

is applied on the Cluster to display the matching point. Then all the 

Clusters are combined together to make it again array. Thus the 

matching point has been shown. 

  

 

6. Combination of whole program: 

Whole program combines all the information coming from Vision Acquisition 

to Vision Assistance. Then it converts the image to appropriate data to apply 

Overlay and Matching on it. Again, the program combine all the data to 

present the result as an real-time image. 

 

6.2 Power calculation 

Required Given; 

In this project, 7 adapters are used. Each adapter provides 2 amp and 5V. 

So, total power supplied is – 

P = (Number of motors*Voltage *Current) that means P= 7*2*5 = 70W  

In this project 17 motors are used. Current drawn by each motor depends 

on the load. Load is maximum on the leg. Normally, 500mA per motor is 

enough. But, as the le motors carry a lot of load, it will carry more current 

too. For this reason, 1A per motor is given for the leg motors. About 10 

Experimental procedure for 

methodology assessment 
Power calculation 



 

62 

 

motors are used for leg motion. So total power absorb by the leg is, P = 10 

*5*1 =50W 

As other motors draw only 500mA per motor, total power absorbed by the 

top side is P = 7*5*0.5 = 17W.  So, about 3W is for extra storage. Arduino 

and sensors need some power which is given from there. 

 

  

CHAPTER 7 

7.1 Vision analysis from LabVIEW 

7.2 Histogram analysis 

7.3 Accelerometer and gyro results 

7.4 Integrated control system (ICS) 

7.5 Walking mechanism 

 



 

63 

 

7) Chapter 7: Experimental Results and 

Observation 

 

7.1 Vision analysis from LabVIEW 

7.1.1 Color Matching: 

Accuracy of color matching depends on target matching score and 

difference between the color threshold values of background and desired 

object.  

 

Figure 7.1 Color matching algorithm 

Figure 7.2 NI Color Matching can detect the desired red object. 

Experimental results and 

observations 
Vision analysis from LabVIEW 



 

64 

 

In Figure 7.2, the robot can easily detect the red ball without any 

interference. But the problem arises when a little bit similarity occurs in color 

matching, even a small amount of background color may affect the decision 

like in Figure 7.3. 

 

7.1.2 Pattern matching 

NI Vision pattern matching accurately locates objects in conditions where 

they vary in size (±5%) and orientation (between 0° and 360°) and when 

their appearance is degraded. Pattern matching is a fast and affective 

technique for object detecting. But pattern matching works only on gray 

scale images. 

Figure 7.3 NI Color Matching wrong detection. 

Figure 7.4 Pattern matching algorithm. 

Experimental results and 

observations 
Vision analysis from LabVIEW 



 

65 

 

  

 

As the gray scale image lost its color properties, so the pattern matching 

cannot identify the deviations in color. As a result, two problem occurs. First 

one is, due to the gray scale affect if the background and the object become 

similar, it is difficult for the vision system to identify the object like Figure 7.6 

(a). Second one is, pattern matching cannot differentiate among similar 

patterned different colored objects like in Figure 7.6 (b).  

Figure 7.5 Original real time RGB image from NI Image Processing. 

Figure 7.6 Gray scale image. 

Experimental results and 

observations 
Vision analysis from LabVIEW 



 

66 

 

7.1.3 Color pattern matching:  

In Figure 7.8, NI Color Pattern Matching cannot detect the red ball when the 

minimum match score is 750 and Color score weight is 500.As the color 

matching score weight is low and pattern matching cannot also give a good 

score on the white background. 

Figure 7.7 Color pattern matching algorithm 

Figure 7.8 Original RGB real time image 

Experimental results and 

observations 
Vision analysis from LabVIEW 



 

67 

 

Color Weight calibration is very important in Color Pattern matching 

because the matching is based on both the color matching score and the 

pattern matching score.  

Color weight matching score has to be increased when the colors of ball 

and the background become similar after greyscale imaging because 

pattern matching works based on the greyscale image. Otherwise, it is not 

possible to track the ball as the pattern matching is giving very small amount 

of score like Figure 7.10.   

Color Weight matching score has to be reduced when the object color and 

the background color match with each other. In this the total score remains  

Figure 7.10 Calibration for white background. 

Figure 7.9 NI Color Pattern Matching cannot detect the red ball. 

Experimental results and 

observations 
Vision analysis from LabVIEW 



 

68 

 

below the Minimum Match Score .As a result NI vision cannot detect the 

desired ball like Figure 7.10. Calibration for white ground may not work on 

green or black background. As a result NI Color Pattern Matching cannot 

detect the desired object. 

As the Color Score Weight is reduced, again the vision system start to track 

the ball like in Figure 7.11.  

In Figure 7.12, NI Color Pattern Matching cannot detect the red ball when 

the minimum match score is 750 and Color score weight is 500.As the color 

matching score weight is low and pattern matching cannot also give a good 

score on the white background , total received matching score remains 

below 750. 

Figure 7.11 NI Color pattern matching correct detection 

Figure 7.12 Correct detection of red ball  

Experimental results and 

observations 
Vision analysis from LabVIEW 



 

69 

 

7.2 Histogram 

Histogram is a powerful tool to represent whether the image is suitable for 

analysis or not.Another benefit is that the pixels intensity of particular color 

can be easily understood. These informations are used for MISTBOY vision 

system to analyze the image and to detect the red ball more accurately. 

Though Red ball has already been detect by color pattern matching 

algorithm,it’s accuracy increases by combining it with histogram.  

 

 

 

Figure 7.14 Histogram of white ball where intensity is decreased. 

(a) (b) 

Figure 7.13 Image of (a) Red ball, (b) White ball. 

Experimental results and 

observations 
Histogram 



 

70 

 

 

In Figure 7.15 and 7.13 (a), when the red ball appears infront of the camera 

,the intensisty as well as the red pixel value increses.On the other hand, in 

Figure 7.14 and 7.13 (b), when the white ball or white things appears ,the  

pixel values beome very low.By observing the histogram MISTBOY vision 

system can easily detects the color of the ball and makes the color pattern 

matching algorithm more accurate. This technique can be used to detect 

other colors also. 

7.3 Accelerometer and Gyro results  

IMU MPU 6050 is used in MISTBOY which is the combination of 

accelerometer, gyroscope. Combination of accelerometer and gyro, gives 

MISTBoy a better stability. Without filter, accelerometer and gyro works 

independently. To combine the data, complementary filter is used. 

Figure 7.15 Histogram of red ball where intensity is increased. 

Experimental results and 

observations 
Accelerometer and gyro result 



 

71 

 

Before Filter 

 

 

From the Figure 7.16, it is the characteristics graph of MPU 6050 when 

MISTBoy is in stable condition. It is seen that the sensor takes only a few 

seconds to give stable data. Gyro and accelerometer data become stable 

at same moment. When MISTBoy is in unstable or vibrating conditions, 

0

50

100

150

200

250

300

350

400

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

MPU 6050 characteristics graph when MISTBoy in 
stable condition

Gyro Characteristics graph

Accelerometer caharacteristics graph

Rising Time 

Time constant 

Figure 7.16 Graph in stable condition. 

0

50

100

150

200

250

300

350

400

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9

1
4

5

1
6

1

1
7

7

1
9

3

2
0

9

2
2

5

2
4

1

2
5

7

2
7

3

2
8

9

3
0

5

3
2

1

3
3

7

3
5

3

3
6

9

3
8

5

4
0

1

4
1

7

4
3

3

4
4

9

4
6

5

4
8

1

MPU 6050 characteristics graph when MISTBoy is in 
vibrating condition

Gyro characteristics grapg

Accelerometer characteristics graph

Figure 7.17 Graph in vibrating condition. 

Experimental results and 

observations 
Accelerometer and gyro result 

 



 

72 

 

MPU 6050 give another characteristics graph which is shown in Figure 7.17. 

From the characteristics graph it is seen that the deviations of data from the 

stable condition. This graph also shows that the sensor is taking a long time 

to give stability.  

After Filter 

 

Though the accelerometer and gyro data are deviating from the standard 

condition, filter gives almost a straight line like in Figure 7.18. 

Complementary filter reduces the noise and pass the useful information 

from the sensor.  

7.4 Integrated Control system (ICS) 

ICS increases the stability of a system.It combines the acquired data from 

various sources and feedback techniques. The most powerful feedback 

technique in a biped robot control system is the combination of Gyro-

Acelerometer,IR and Sonar sensors data with the vision system. 

Accelerometer and Gyro acknowledge the position of the body.These data 

are helpful to maintain the center of gravity (COG) between the two feet to 

keep the Zero Moment Point (ZMP) below the feet surface area.  

-20000

-10000

0

10000

20000

30000

40000

1

3
5

6
9

1
0

3

1
3

7

1
7

1

2
0

5

2
3

9

2
7

3

3
0

7

3
4

1

3
7

5

4
0

9

4
4

3

4
7

7

5
1

1

5
4

5

5
7

9

6
1

3

6
4

7

6
8

1

7
1

5

7
4

9

7
8

3

8
1

7

8
5

1

8
8

5

9
1

9

9
5

3

9
8

7

Characteristics graph of MPU  after using 
complementary filte

Gyro characteristics graph

Accelerometer characteristics graph

Combined graph after using filter

Figure 7.18 Characteristics graph after filtering. 

Experimental results and 

observations 
Integrated control system (ICS) 

 



 

73 

 

Sonar and IR help to detect and measure distance among the obstacles like 

own team players,opponent team players. 

Arduino and LabVIEW are considered as the brain of the robot.Vision data 

are analyzed in LabVIEW using the laptop processor. Camera data can be 

sent there by using the serial or WiFi communication.LabVIEW detects the 

Game field,Field Marekrs,D-box,Goal post, same and oppsite team players  

 

and the ball.Arduino controls all the servo motors according to the vision 

and other sensing system feedback. 

Only a powerful vision system can eliminates the drawback or noises of 

other feedbacks.One of the most challenging step is to control the accuracy 

of the position of the motors according to the vision system.Using Vision 

System,MISTBOY can just detect the desired objects.But,the motors have 

to be mapped with the vision system, to lead the robot towards the desired 

position. The image resoulution is 640*480.That means the whole image is 

devided into 640 pixels towards the X axis and 480 pixels towards the Y 

axis.On the other hand, a typical servo motor can rotate from 00 to 1800. 

So,if the matching occurs at 320 pixels the camera will rotate about 900 .This 

Figure 7.19 Integrated Control System of MISTBOY. 

Experimental results and 

observations 
Integrated control system (ICS) 

 



 

74 

 

mapping is being processsed in  Arduino. The camera is attached with a 

servo motor and the servo is getting the the order from Arduino.Arduino 

takes deision according to the matching happened result. 

7.5 Walking mechanism  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a) Stable position. (b) Bow down 150 

(c) Bending of left leg by 150 (d) Forward motion by 300 

Experimental results and 

observations 
Walking mechanism 



 

75 

 

 

 

 

(e) Bending of right leg by 150 (f) Right leg stable from bending 

(g) Bow down of head by 150 (h) Bending right leg by 150 

Experimental results and 

observations 
Walking mechanism 



 

76 

 

  

 

 

 
 
 
 
 

(i) Forward motion of left leg by 

300 

(j) Bending of left leg by 150 

(k) Right leg came forward (l) Both leg became stable 

Experimental results and 

observations 
Walking mechanism 

Figure 7.20 Walking mechanism. 



 

77 

 

  

CHAPTER 8 

8.1 Conclusion 

8.2 Recommendations 

8.3 Future work 

 



 

78 

 

8) Chapter 8: Conclusion and 

Recommendations 

 

8.1 Conclusion 

 

A systematic approach is presented in this book to derive the parameters 

for the  integrated control system of a humanoid robot, best on its ability to 

sense and take decission. At first, the camera geometry and its calibration 

to integrate it with LabVIEW and Arduino is discussed. The matching 

techniques and algorithms, used in the vision system, are discussed and 

real time images are analyzed to find out the ball in various critical condition 

to find out the best matching technique for humanoid robot. Sensors 

characteristics graph before and after applying filters are also discussed at 

various stable and vibrating condition to experiment and analyze the 

technique to get the best suitable value from the sensor. Therefore, a 

relation among the electrical sensors,vision and actuators is also 

established to make the MISTBOY autonomous. This discussions are very 

useful for designing and increasing the accuracy of vision and control 

system of a humanoid robot. 

 

 

 

 

 

 

 

 

 

 

 

Conclusion and 

Recommendations 
Conclusion 



 

79 

 

8.2 Recommendations 

 

To make a robot behave like human is a very complex task. To make it 

possible, it is compulsory to combine the theory and practical. First of all 

static and dynamic balance are necessary to make the robot capable of 

smooth walking. There are some robotics theory like D-H parameters and 

inverse kinematics to analyze this motion though it is tough job because the 

matrices have to be use in C programming. Researchers and professionals 

use this theories in industrial level. So, it is recommended to apply those 

theories in programming. 

Second recommendation about the project is to use high torque motor. To 

hold the robot, the motors need to be very powerful. The motor torque 

should be more than 20 kg-cm. In this project Modified TowerPro MG996R 

is used whose torque is 16 kg-cm. The best and safe way is to use 

Dynamixel motor because it is precise and powerful though it is very costly. 

Third recommendation is about the power. 1 amp 6V per motor should be 

used. Otherwise, motor will not give its maximum torque. Numbers of 

adapter may be used in parallel. It will be great if Li-Po battery can be used. 

Next recommendation is about Sensor. In this project, Complimentary filter 

is used to remove the noise from the values of MPU 6050. There are also 

some other filter like Kalman Filter. It is recommended to try other filters to 

find out which is suitable for balancing of a humanoid robot. 

Final recommendation is about Vision System. LabVIEW is a powerful tool 

for image processing as well as for Robotics projects. There are a lot of 

facilities for image processing in LabVIEW. There was not enough time to 

go to deep of LabVIEW image processing. A lot of filters and techniques are 

given in LabVIEW which are recommended. There are some problem in 

LabVIEW and Arduino serial communication. The problem should be found 

out. An open source and popular vision software is OpenCV (Open Source 

Computational Vision) .It is also recommended for them who wants to work 

with this project in future. 

Conclusion and 

Recommendations 
Recommendations 



 

80 

 

8.3 Future work 
 
The design and function of MISTBoy can be simulated to analyse the 

dynamic motion of the system and thereby the design can be optimized. 

Then the artificial intelligence and the vision system can be introduced to 

give MISTBoy the intelligence of a soccer player. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion and 

Recommendations 
Future work 



 

81 

 

Bibliography 
 

1. http://www.preservearticles.com/201107158722/robots-and-

robotics.html. Visited on 28-11-2013. 

2. http://www.elprocus.com/robots-types-applications. 03-12-2013. 

3. http://www.sciencekids.co.nz/sciencefacts/technology/historyofrobot

ics.html. Visited on 03-12-2013 

4. http://www.galileo.org/robotics/intro.html. Visited on 06-12-2013. 

5. J. Yamaguchi, A. Takanishi and I. Kato: “Development of a bipedal 

walking robot compensating for three-axis moment by trunk motion”, 

Proc. IEEE RSJ Int. Conf. on Intelligent Robots and Systems, (1993), 

Pages 561 – 566. 

6. Y. Sakagami, R. Watenabe, C. Aoyama, S. Matsunaga, N. Higaki 

and K. Fujimura: “The intelligent ASIMO : System overview and 

integration”, Proc. IEEE RSJ Int. Conf. on Intelligent Robots and 

Systems, (2002), Pages  2478 – 2483. 

7. http://global.kawada.jp/mechatronics/hrp4.html. Visited on 07-12-

2013 

8. E. Hashemi, M.G. Jadid, M. Lashgarian, M. Yaghobi, M Shafiei.: 

”Particle Filter Based Localization of the Nao Biped Robots”, Proc. 

IEEE Southeastern symposium on System Theory, University of 

North Florida, Jacksonvile, FL, (2012). 

9. W. Park, J-Y. Kim, J. Lee and J-H. Oh: “Mechanical Design of 

Humanoid Robot Platform KHR-3 (KAIST Humanoid Robot – 3 : 

HUBO)”,  Proc. IEEE – RAS Int. Conf. on Humanoid Robots, (2005), 

Pages 321 – 326. 

10. Dr. Daniel D Lee,“Stability Control System for a Bioloid Humanoid 

Robot“. 

http://www.galileo.org/robotics/intro.html


 

82 

 

11. http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code

=MMA745xL. Visited on 07-12-2013. 

12. http://www.scribd.com/doc/42528503/Gyroscope. 08-12-2013. 

13. http://www.scribd.com/doc/89663365/A-Comparison-of-

Complementary-and-Kalman-Filtering. Visited on 08-12-2013. 

14. Niofer Mehta, “Kalman filtering of sensor data“. 

15. Toshak Singhal, Akshat Harit, and D N Vishwakarma,“Kalman Filter 

Implementation on an Accelerometer sensor data for three state 

estimation ofa a dynamic system“, International Journal of Research 

in Engineering and Technology Vol. 1, Nov 6,2012 ISSN 2277-4378, 

Pages 330-334. 

16. Shane Colton,“A simple solution for integrating Accelerometer and 

gyroscope measurements for a Balancing Platform“, Chief Delphi 

White paper,June, 2007. 

17. Ms Shewta Tyagi, Mr. Hemant Amhia, Mr. Shivdutt 

Tyagi,“Comparative Study of Image Enhancement and Analysis of 

Therman Images Using Image Processing and Wavelet 

Techniques“, International Journal of Computational Engineering 

Research, Vol. 03, April 2013, Pages 32-38. 

18. http://dasl.mem.drexel.edu/alumni/bGreen/www.pages.drexel.edu/_

weg22/edge.html. Visited on 09-12-2013. 

19. http://www.tutorialspoint.com/dip/Sobel_operator.htm. 09-12-2013 

20. Gaurav Sharma, Sonali Sood, Gurjot Sing Gaba and Nancy Gupta , 

“Image Recognition System using Geometry Matching and Contour 

Detection ,” in Proc. Int. Journal of Computer Applications (0975-

8887), vol. 51-No. 17, August 2012. 

21. http://zone.ni.com/reference/en-X/help/372916L01/nivisionco ncepts 

/color_pattern_matching. Visited on 10-12-2013. 

22. Christopher G. Relf, “Image Acquisition and Processing with 

LabVIEW,” ISBN- 0-8493-1480-1. 

http://www.scribd.com/doc/42528503/Gyroscope


 

83 

 

23. http://www.teachengineering.org/view_activity.php?url=collection/ny

u_/activities/nyu_soundwaves/nyu_soundwaves_activity1.xml. 

Visited on 11-12-2013. 

24. G Benet, F. Blanes, J.E. Simo, P. Perez,“Using Infrared Sensors for 

Distance Measurement in Mobile Robots“, Robotics and 

Autonomous Systems 1006(2002), Pages 1-12.  



 

1 

 

Appendix – A 
 

#include <Wire.h> //Include the Wire library 

#include <MMA_7455.h> //Include the MMA_7455 library 

#include <Servo.h> 

#include "I2Cdev.h" 

#include "MPU6050.h" 

 

Servo waistServoR; 

Servo thighServoR; 

Servo kneeServoR; 

Servo ankleServoR; 

Servo feetServoR; 

 

Servo waistServoL; 

Servo thighServoL; 

Servo kneeServoL; 

Servo ankleServoL; 

Servo feetServoL; 

Servo headServo; 

 

int RwaistPin =11; 

int RthighPin = 10; 

int RkneePin = 9; 

int RanklePin = 8; 

int RfeetPin = 7; 

 

 

int LwaistPin = 6; 

int LthighPin = 5; 

int LkneePin = 12; 

int LanklePin = 3;  

A-1 



 

2 

 

int LfeetPin = 2; 

 

int headPin =13; 

 

int flag = 0; 

 

MMA_7455 mySensor = MMA_7455(); //Make an instance of MMA_7455 

//char xVal, yVal, zVal; //Variables for the values from the sensor 

MPU6050 accelgyro; 

 

int16_t ax, ay, az; 

int16_t gx, gy, gz; 

#define LED_PIN 13 

bool blinkState = false; 

 

//*****//KALMAN FILTER-START// 

unsigned long timer; 

 

double zeroValue[5] = {950, -400, 13500, -100, -500};  

 

/* All the angles start at 180 degrees */ 

double gyroXangle = 180; 

double gyroYangle = 180; 

 

double compAngleX = 180; 

double compAngleY = 180; 

double comppAngleX, comppAngleY; 

 

//******////KALMAN FILTER -FINISH 

 

void setup() 

                    {     Wire.begin(); 

                          Serial.begin(38400);  

A-2 



 

3 

 

                        // MPU 6050 setup 

                        // initialize device 

                         

                        Serial.println("Initializing I2C devices...");  

                        accelgyro.initialize(); 

                        // verify connection 

                        Serial.println("Testing device connections..."); 

           Serial.println(accelgyro.testConnection() ? "MPU6050 

connection successful" : "MPU6050 connection failed"); 

                     

                        // configure Arduino LED for 

                        pinMode(LED_PIN, OUTPUT); 

                         

                      //*****////KALMAN FILTER-START 

                       

                      timer = micros(); 

                       

                     // ****///KALMAN FILTER-FINISH 

                                    

                          //"Attach" the servo object 

                         rahidservo.attach(servoPin); 

                         waistServoR.attach(RwaistPin); 

                         thighServoR.attach(RthighPin); 

                         kneeServoR.attach(RkneePin); 

                         ankleServoR.attach(RanklePin); 

                         feetServoR.attach(RfeetPin); 

                      

                         waistServoL.attach(LwaistPin); 

                         thighServoL.attach(LthighPin); 

                         kneeServoL.attach(LkneePin); 

                         ankleServoL.attach(LanklePin); 

                         feetServoL.attach(LfeetPin); 

                         headServo.attach(headPin);  

A-3 



 

4 

 

                    } 

                     

          //******   Variable declaration   ***** 

                          float s=0; 

                           float xVal, yVal, zVal; //Variables for the values from the 

sensor 

                           float y_val[20],x_val[1000]; 

                           float avg_y ,avg_x; 

                           float sum; 

                     

                            //Speed Control 

                          float robot_speed = 20; 

                          float pos_delay = 20; 

                           //Waist bend 

                      //Expres the angles by using  GLOBAL variables 

                        

         //******  Stable angles variables 

                          float rws= 95; //95 

                          float rts= 70; //70 

                          float rks= 75; //75 

                          float ras = 58; //55 

                          float rfs= 80 ; //80 

                          

                          float lws = 120; //120 

                          float lts= 90;  //90 

                          float lks= 70 ;  //70 

                          float las = 77;  //80 

                          float lfs= 100 ;  //100 

                           

                          float wb=10;  

                          float fb = 15; 

                          float kb = 20; 

                          float tb =40; 

A-4 



 

5 

 

                       

                       //Forward angles variables 

           //****** thigh angles 

                        

                          float rtf = rts -tb; 

                          float rtb; 

                          float ltf; 

                          float ltb; 

                           

                         //float ltf= ; 

                              

            //****** ankle angles 

                          float raf; 

                          float rab = ras + 20; 

                          float laf; 

                          float lab; 

                           

           //******* waist angles 

                          float lwl = lws - 20; 

                          float rwr = rws - 10; 

                           

          //******* feet angles 

                          float rfr= rfs + 10; 

                          float rfl = rfs - 20;  

                          float lfl= lfs - 10; 

                          //float lfl= ; 

                           

         //*******knee angles 

                          float rkf; 

                          float rkb= rks-kb;  

                          float lkf = lks - 10; 

                          //float lkb= ; 

                           

A-5 



 

6 

 

float stable () //1 

                { 

                    //STABLE CONDITION 

                      lts= 90; 

                      rts = 70; 

                      ras = 58; 

                      las = 77;        

                   waistServoL.write(lws); 

                   thighServoL.write(lts);   //110 

                   kneeServoL.write(lks);     //95 

                   ankleServoL.write(las); 

                   feetServoL.write(lfs);     //90 

                   waistServoR.write(rws); 

                   thighServoR.write(rts);    //85 

                   kneeServoR.write(rks);     //90 

                   ankleServoR.write(ras); 

                   feetServoR.write(rfs);     //75 

                   Serial.print("STABLE"); 

                   delay(1000); 

               } 

 

void left_feet_bend(int lfl,float lwl)//2 

               { 

                     // waistServoL.write(lwl); 

                      //delay(100); 

                      feetServoL.write(lfl); 

                      delay(100); 

               } 

 

void right_leg_forward() //3  //float rts,float rtf,float rks,float rkb,float rfs,float 

rfr 

               {           

                          for(int l=rws; l> rwr; l--)   

A-6 



 

7 

 

                            { 

                             waistServoR.write(l); 

                             float k = map(l,rws,rwr,rfl,rfs); 

                             feetServoR.write(k); 

                             delay(robot_speed); 

                             Serial.println("Hello"); 

                                

                            } 

                              

                            for(int i = rts; i>=rtf ;i--) 

                              { 

                               thighServoR.write(i); 

                               float j = map(i,rts,rtf,rks,rkb); 

                               kneeServoR.write(j); 

                               float m = map(i,rts,rtf,ras,rab); 

                               ankleServoR.write(m); 

                               float n = map(i,rts,rtf,lks,lkf); 

                               kneeServoL.write(n); 

                              float p= map(i,rts,rtf,rfs,rfr); 

                                feetServoR.write(p); 

                               delay(robot_speed); 

                                }   

              } 

               

void left_feet_stable(int lfs)  //4 

                          { 

                                      for( float i =lfl; i < lfs; i++) 

                                     { 

                                       feetServoL.write(i); 

                                       delay(pos_delay); 

                                       Serial.print("LEFT side"); 

                                     

                                   } 

A-7 



 

8 

 

                          } 

 

void right_feet_stable_after_forward_motion()  //5 

                        { 

                            waistServoR.write(rwr); 

                            delay(100); 

                            feetServoR.write(rfr); 

                             for(int i = rtf; i<=rts ;i++) 

                             

                              { 

                               thighServoR.write(i); 

                               float j = map(i,rtf,rts,rkb,rks); 

                               kneeServoR.write(j); 

                               float m = map(i,rtf,rts,rab,ras); 

                               ankleServoR.write(m); 

                               float n = map(i,rtf,rts,lkf,lks); 

                               kneeServoL.write(n); 

                              float p= map(i,rtf,rts,rfr,rfs); 

                                feetServoR.write(p); 

                               delay(pos_delay); 

                             } 

                      } 

void left_leg_forward() 

                    { 

                          for(int l=lws; l> lwl;l--)   

                            { 

                             waistServoL.write(l); 

                             float k = map(l,lws,lwl,lfs,lfl); 

                             feetServoL.write(k); 

                             delay(robot_speed); 

                             Serial.println("Hello"); 

                            } 

                             thighServoL.write(10); 

A-8 



 

9 

 

                             delay(3000); 

                           /* 

                            for(int i = lts; i>=ltf ;i--) 

                              { 

                               thighServoL.write(i); 

                               float j = map(i,lts,ltf,lks,lkb); 

                               kneeServoR.write(j); 

                               delay(robot_speed); 

                              }*/ 

                          } 

void right_feet_stable() 

                          { 

                            feetServoR.write(rfs); 

                          } 

 

void right_leg_stable()//change the angle nmes and sign 

                        { 

                            for(int l=rws; l> rwr;l--)   

                            { 

                             waistServoR.write(l); 

                             float k = map(l,rws,rwr,rfs,rfr); 

                             feetServoR.write(k); 

                             delay(robot_speed); 

                             Serial.println("Hello"); 

                            } 

                             thighServoR.write(10); 

                             delay(3000); 

                           /* 

                            for(int i = rts; i>=rtf ;i--) 

                              { 

                               thighServoR.write(i); 

                               float j = map(i,rts,rtf,rks,rkb); 

                               kneeServoR.write(j);  

A-9 



 

10 

 

                               delay(robot_speed); 

                              }*/ 

                      } 

void left_leg_stable() 

                      { 

                            for(int l=lws; l> lwl;l--)   

                            { 

                             waistServoL.write(l); 

                             float k = map(l,lws,lwl,lfs,lfl); 

                             feetServoL.write(k); 

                             delay(robot_speed); 

                             Serial.println("Hello");   

                            } 

                             

                             thighServoL.write(10); 

                             delay(3000); 

                           /* 

                            for(int i = lts; i>=ltf ;i--) 

                              { 

                               thighServoL.write(i); 

                               float j = map(i,lts,ltf,lks,lkb); 

                               kneeServoR.write(j); 

                               delay(robot_speed); 

                              }*/ 

                        } 

void right_leg_bend(); 

void left_leg_forward(); 

void right_feet_table(); 

void left_leg_bend(); 

void right_leg_forward(); 

void left_leg_stable(); 

void left_leg_stable(); 

void print_acc_value() 

A-10 



 

11 

 

                { 

                                xVal = mySensor.readAxis('x'); //Read out the 'x' Axis 

                                yVal = mySensor.readAxis('y'); //Read out the 'y' Axis 

                                zVal = mySensor.readAxis('z'); //Read out the 'z' Axis 

                   

                    Serial.print(xVal,DEC); 

                    Serial.print("    "); 

                    Serial.print(yVal,DEC); 

                    Serial.print("    "); 

                    Serial.print(zVal,DEC); 

                    Serial.println(); 

                    delay(100); 

                   // return (xVal,yVal,zVal);                                                                               

                } 

 

void balance () 

                { 

                  while(1) 

                {      

                    print_gyro();    

                    xVal =comppAngleX; 

                               xVal = mySensor.readAxis('x'); //Read out the 'x' Axis 

                               yVal = mySensor.readAxis('y'); //Read out the 'y' Axis 

                               zVal = mySensor.readAxis('z'); //Read out the 'z' Axis 

                   

                    Serial.print("Inside baance Loop, yVal: "); 

                    Serial.print(xVal, DEC); 

                    Serial.print("    "); 

                    Serial.print(yVal, DEC); 

                    Serial.print("    "); 

                    Serial.print(zVal, DEC);  

                    Serial.print("    ");*/ 

                   

A-11 



 

12 

 

                 float m = avg_x + 5; 

                 float n = avg_x - 5; 

                              if (xVal > m) 

                                { 

                                                      rtb = 

map(comppAngleY,226,132,180,0); 

                                                      ltb = map(comppAngleY,226,132,0,180); 

                                                     

                                                       if(ltb > 180 || rtb < 0) 

                                                           { 

                                                           stable(); 

                                                          //Serial.print("RTB"); 

                                                          Serial.print(" "); 

                                                          Serial.print(rtb,DEC); 

                                                          Serial.print(" "); 

                                                          //Serial.print("LTB:"); 

                                                          Serial.print(" "); 

                                                          Serial.print(ltb,DEC); 

                                                          Serial.print(" "); 

                                                          //Serial.print("BACKWARD CROSS 

180 OR 0"); 

                                                          Serial.print("    "); 

                                                             //ltb =180; 

                                                           } 

if(rtb<0) 

                                                          { 

                                                             stable(); 

                                                           //rtb = 0;  

                                                          } 

                                                          else 

                                                        { 

                                                           rtb = rts - 1; // previous (rts-1) 

                                                           ltb = lts + 1;  

A-12 



 

13 

 

                                                           rab = ras - .5; 

                                                           rab = las + .5; 

 

                                                         thighServoR.write(rtb); 

                                                         thighServoL.write(ltb); 

                                                          Serial.print(" "); 

                                                          Serial.print(rtb,DEC); 

                                                          Serial.print(" "); 

                                                          Serial.print(" "); 

                                                          Serial.print(ltb,DEC); 

                                                          Serial.print(" "); 

                                                          //Serial.print("FALLING 

BACKWARD"); 

                                                          Serial.print("    "); 

                                                                     rts=rtb; 

                                                                     lts=ltb; 

                                                         } 

                                            ankleServoR.write(rab); 

ankleServoL.write(lab); 

                                         

                                                   ras=rab; 

        las=lab; 

                                                     } 

                                                         else if(xVal < n) 

                             {                   

                                                rtb = map(comppAngleX,226,132,180,0); 

                                                ltb = map(comppAngleX,226,132,0,180); 

                                                if(rtf > 180 || ltf < 0) 

                                                           { 

                                                            stable(); 

                                                            Serial.print(" "); 

                                                            Serial.print(rtf,DEC); 

                                                            Serial.print("LTF:");  

A-13 



 

14 

 

                                                            Serial.print(" "); 

                                                            Serial.print(ltf,DEC); 

                                                            Serial.print(" "); 

                                                            Serial.print("FORWARD CROSS 0 

or 180"); 

                                                            Serial.print("    "); 

                                                           } 

                                              if(ltf<0) 

                                                          { 

                                                           stable(); 

                                                          } 

                                                else 

                                                {    

                                                   rtf = rts + 1; //previouss(rts+1) 

                                                   ltf = lts - 1; 

                                                   raf = ras + .5; 

                                                   laf = las - .5; 

                                                  

                                                  thighServoR.write(rtf); 

                                                  thighServoL.write(ltf); 

                                                  ankleServoR.write(raf); 

                                                 // ankleServoL.write(laf); 

                                                  

                                                Serial.print("RTF:"); 

                                                Serial.print(" "); 

                                                Serial.print(rtf,DEC); 

                                                Serial.print("LTF:"); 

                                                Serial.print(" "); 

                                                Serial.print(ltf,DEC); 

                                                Serial.print(" "); 

                                                Serial.print("FALLING FORWARD"); 

                                                Serial.print("    "); 

                                                          rts=rtf;  

A-14 



 

15 

 

                                                          lts=ltf; 

                                                          } 

                                                ras=raf; 

                                                las=laf; 

                        } 

                           else 

                            { 

                                              lts = 90; 

                                              rts = 70; 

                                              ras = 58; 

                                              las = 77; 

                                       thighServoL.write(lts); 

                                       thighServoR.write(rts); 

                                       kneeServoL.write(las); 

                                       kneeServoR.write(ras); 

                                    Serial.print("RTS: "); 

                                    Serial.print(" "); 

                                    Serial.print(rts,DEC); 

                                    Serial.print(" "); 

                                    Serial.print("LTS:"); 

                                    Serial.print(" "); 

                                    Serial.print(lts,DEC); 

                                    Serial.print(" "); 

                                    Serial.print("STAND STRAIGHT"); 

                                    Serial.print("    "); 

                    } 

                    Serial.println(); 

                    delay(50); 

                } 

                } 

float find_average() 

                    {  sum=0;  

                      for(int i=0;i<1000;i++) 

A-15 



 

16 

 

                       { 

                         print_gyro(); 

                            yVal = mySensor.readAxis('y'); //Read out the 'y' Axis 

                            y_val[i] = yVal; 

                          xVal = comppAngleX; 

                          x_val[i]= xVal; 

                          sum += x_val[i]; 

                       

                        Serial.print("comppAngleX = "); 

                         Serial.print(comppAngleX, DEC); 

                         Serial.print("    "); 

                         Serial.print("    "); 

    Serial.print("xVal["); 

                         Serial.print(i,DEC); 

                         Serial.print("] =  "); 

                        Serial.print(x_val[i],DEC); 

                         Serial.print("    "); 

                          

                         Serial.print(sum,DEC); 

                         Serial.print(x_val[1000],DEC); 

                         Serial.println(); 

                         delay(20); 

                          

                       } 

                        avg_x = sum/ 1000; 

                        Serial.print("Sum is:"); 

                        Serial.print(sum,DEC); 

                        Serial.print("    "); 

                        Serial.print("The average of 1000 values is: "); 

                        Serial.print("    "); 

                        Serial.print(avg_x,DEC); 

                        Serial.print("    "); 

                        Serial.println(); 

A-16 



 

17 

 

                        delay(20); 

                    } 

void print_gyro() 

                    { 

                        accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz); 

                       double gyroXrate = -((gx-zeroValue[3])/131); //Change the 

sensitivity after your sensor 

                        gyroXangle += gyroXrate*((double)(micros()-

timer)/1000000); // Without any filter 

                         

                        double gyroYrate = ((gy-zeroValue[4])/131); 

                        gyroYangle += gyroYrate*((double)(micros()-

timer)/1000000); // Without any filter 

                         

                        /////////////////////////// 

                        //The acc X and Y angle/// 

                        ////////////////////////// 

   

                        double accXval = ax-zeroValue[0]; 

                        double accZval = ay-zeroValue[2];     

                        double accXangle = 

(atan2(accXval,accZval)+PI)*RAD_TO_DEG; 

                         

                        double accYval = ay-zeroValue[1]; 

                        accZval = ay-zeroValue[2];     

                        double accYangle = 

(atan2(accYval,accZval)+PI)*RAD_TO_DEG; 

                                                 

                        compAngleX = 

(0.93*(compAngleX+(gyroXrate*(double)(micros()-

timer)/1000000)))+(0.07*accXangle);  

A-17 



 

18 

 

                        compAngleY = 

(0.93*(compAngleY+(gyroYrate*(double)(micros()-

timer)/1000000)))+(0.07*accYangle); 

                         

                       comppAngleX = compAngleX; 

                       comppAngleY = compAngleY; 

                       timer = micros(); 

                       

                      Serial.print("    ");  

                      Serial.print(compAngleX); 

                      Serial.print("\t");   

                      Serial.print(compAngleY); 

                      Serial.print("\t"); 

                      Serial.print(timer); Serial.print("\t"); 

                      Serial.print("\n"); 

                         

                       delay(10); 

                        if(compAngleX <180) 

                        { 

                        comppAngleX = map (compAngleX,0,180,180,0);  

                        } 

                        else 

                        { 

                         comppAngleX = map (compAngleX,181,360,360,181);  

                        }   

                    } 

void loop() 

{ 

                       //RECEIVE VALUE FROM MMA_7455 

                      xVal = mySensor.readAxis('x'); //Read out the 'x' Axis 

                      yVal = mySensor.readAxis('y'); //Read out the 'y' Axis 

                      zVal = mySensor.readAxis('z'); //Read out the 'z' Axis 

                        

A-18 



 

19 

 

Serial.print("BEFORE LOOP, Values : "); 

                      Serial.print(xVal, DEC); 

                      Serial.print("    "); 

                       Serial.print(yVal, DEC); 

                      Serial.print("    "); 

                       Serial.print(zVal, DEC); 

                      Serial.print("    "); 

                      Serial.println(); 

                      delay(100); 

                      stable(rws,rts,rks,ras,rfs,lws,lts,lks,las,lfs); 

                      delay(pos_delay); 

 

                      print_acc_value(); 

                       Serial.print("AFTER LOOP, Values : "); 

                      Serial.print(xVal, DEC); 

                      Serial.print("    "); 

                       Serial.print(yVal, DEC); 

                      Serial.print("    "); 

                       Serial.print(zVal, DEC); 

                      Serial.print("    "); 

                      Serial.println(); 

                      delay(100); 

                balance (yVal); 

                      Serial.println(); 

                      delay(100); 

                       

                    //*******START TAKING VALUE ******* 

                     

                        // read raw accel/gyro measurements from device 

                    //*****    accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz); 

                     

                        // these methods (and a few others) are also available 

                        //accelgyro.getAcceleration(&ax, &ay, &az);  

A-19 



 

20 

 

                        //accelgyro.getRotation(&gx, &gy, &gz); 

                        // display tab-separated accel/gyro x/y/z values 

                         

   Serial.print("a/g:\t"); 

                        Serial.print(ax); Serial.print("\t"); 

                        Serial.print(ay); Serial.print("\t"); 

                        Serial.print(az); Serial.print("\t"); 

                        Serial.print(gx); Serial.print("\t"); 

                        Serial.print(gy); Serial.print("\t"); 

                        Serial.println(gz); 

                         

                       //***** // KALMAN FILTER-START // **** 

                        

                          // **** //GYRO *** 

      if(flag == 0) 

      { 

      stable();  

      delay(3000); 

      print_gyro(); 

      Serial.println("next"); 

      find_average(); 

       

      flag =1; 

      } 

      else 

      {   

        stable(); 

        delay(pos_delay); 

        left_feet_bend(lfl,lwl); 

        delay(pos_delay); 

        right_leg_forward();//rts,rtf,rks,rkb 

        delay(pos_delay); 

        left_feet_stable(lfs);  

A-20 



 

21 

 

        delay(500); 

        right_feet_stable_after_forward_motion(); 

        delay(pos_delay); 

       right_feet_bend(); 

        delay(pos_delay); 

       delay(3000); 

         

       left_leg_forward(); 

        delay(pos_delay); 

        Serial.print("Else"); 

       left_feet_stable(int lfs) 

         

        delay(pos_delay); 

        delay(pos_delay); 

        balance(); 

        Serial.println("previous"); 

       }                       

} 

 

A-21 



 

85 

 

 

A list of publications produced by 

candidate as a result of the project 
 

Journal paper: 

1. Alamgir Hossain, Rahid Zaman, Miftahur Rahman, Raihan Masud , 

Niloy Arafat and Fardan Abdullah, “Design and kick analysis of a 

Soccer Robot,” in ”Applied Mechanics and Materials 

Journal “(ISSN: 1660-9336).), Sydney Australia, 2013. 

Conference Paper: 

1. Alamgir Hossain, Rahid Zaman, Miftahur Rahman, Raihan Masud , 

Niloy Arafat and Fardan Abdullah, Mizanur Rahman, Aziz Rahman  

“Development of  an Integrated Vision system to Control a 

Soccer Playing Humanoid Robot ”(accepted) in Proc 4th Global 

Engineering, Science and Technology  Conference (ISSN 2201-

6848), Dhaka, Bangladesh, 2013. 

 

 

http://www.ttp.net/1660-9336.html
http://www.ttp.net/1660-9336.html

