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ABSTRACT 

 

RADAR, which is an abbreviation for Radio Detection And Ranging, is an 

electromagnetic system for the detection and location of reflecting objects such as 

aircraft, ships, spacecraft, vehicles, people and natural environment. Delectability of an 

object or target depends on range resolution of reflected signal from the object or target. 

The range resolution of Radar is defined as the minimum separation (in range) of two 

targets or equal cross section that can be resolved as separate targets. It is determined by 

the bandwidth of the reflected signal. As spectral bandwidth of a pulse is inversely 

proportional to its width, the bandwidth of a short pulse is large. Range resolution for 

given radar can be significantly improved by using very short pulses. As short pulses 

decreases the average transmitted power, pulse compression allows us to achieve the 

average transmitted power of a relatively long pulse, while obtaining the range 

resolution corresponding to a short pulse.  

 

Pulse compression technique is generally used in Radar system in order to improve the 

target detection and range resolution. A Problem arises in pulse compression technique 

because of masking of small targets by the range side lobes of large nearby targets. 

Another problem is for multiple targets-main lobes of the compressed pulses overlap 

each other.   

 

This thesis has proposed a technique to suppress the side lobes and eradicate the 

problem of overlapping by comparing different pulse compression techniques. In the 

simulation, we compared the result of analog pulse compression output by applying 

different weighting function. For multiple targets we compare the output of stretch 

processor technique with Barker Codes of different lengths. It is revealed that Barker 

Code of length thirteen (𝐵13) is better both for reduction of side lobes and detecting 

multiple targets. 
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Chapter 1 

                     INTRODUCTION                                              

 

1.1. Radar Fundamentals  

1.1.1. Definition and Basic Function  

The word RADAR is an abbreviation for Radio Detection And Ranging. Radar is an 

electromagnetic system for the detection and location of reflecting objects such as 

aircraft, ships, spacecraft, vehicles, people and the natural environment. In general, radar 

systems use modulated waveforms and directive antennas to transmit electromagnetic 

energy into a specific volume in space to search for targets. Objects (targets) within a 

search volume will reflect portions of this energy (radar returns or echoes) back to the 

radar. This small echo signal along with noise is processed by high sensitivity signal 

processor to determine the exact location, range, velocity, angular position, size and 

other target identifying information varying according to the type of radar used.  Radar 

can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather 

formations, and terrain. The modern uses of radar are highly diverse, including air traffic 

control, radar astronomy, air-defense systems, antimissile systems, marine radars to 

locate landmarks and other ships; aircraft anti-collision system, ocean surveillance 

system, outer space surveillance and rendezvous systems, meteorological precipitation 

monitoring, altimetry and flight control systems; guided missile target locating systems; 

and ground-penetrating radar for geological observations. High tech radar systems are 

associated with digital signal processing and are capable of extracting useful information 

from very high noise levels. There are no competitive techniques that can accurately 

measure long ranges in both clear and adverse weather as well as can radar.   

Conventional radars operate using radio waves or microwaves. Radar can also make use 

of other parts of the electromagnetic spectrum. 
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 The most important functions that radar can perform are  

 Resolution  

 Detection  

 Measurement  

 Tracking  

 

Resolution corresponds to radar‟s ability to resolve (separate) one target signal from 

another. Larger bandwidths give better resolution in the range parameter, while long 

transmitted pulses give better resolution in frequency.  

  

Detection function is the ability of the radar to be able to sense the presence of the 

reflected target signal in the radar receiver. The function is complicated by the unwanted 

reflected signal (clutter) and the receiver noise.   

 Noise is reduced by better receiver design and transmitting signals with larger 

energy per pulse.  

 Clutter is reduced by proper signal design and appropriate signal-processing 

methods.  

 

Measure function is radar‟s ability to measure a targets position in 3-D space, its 

velocity vector, angular direction, and vector angular velocity. Advanced radars even 

can measure target extent (size), shape, and classification (truck, tank etc.). With the 

advancement of technology classification of target may become the fourth most 

important function of radar.  Tracking function enables radar not only to recognize the 

presence of a target but to determine the target‟s location in range and in one or two 

angle coordinates. As it continues to observe a target over time, the radar can provide the 

target‟s trajectory, or track and predict where it will be in the future.       

  

1.1.2. Basic Radar Block Diagram  

A simplified pulsed radar block diagram is illustrated in Fig. 1.1. This shows a Radar 



3 | P a g e  

 

where the transmitter and the receiver are in same place.   

    

                           

 

Figure 1.1. Radar Block Diagram 

 

A modulated signal is generated and sent to the antenna by the modulator/transmitter 

block. Switching the antenna between the transmitting and receiving modes is controlled 

by the duplexer. The duplexer allows one antenna to be used to both transmit and 

receive. During transmission it directs the radar electromagnetic energy towards the 

antenna. Alternatively, on reception, it directs the received radar echoes to the receiver. 

The receiver amplifies the radar returns and prepares them for signal processing. 

Extraction of target information is performed by the signal processor block.  The target‟s 

range, R, is computed by measuring the time delay 𝑡; it takes a pulse to travel the two-

way path between the radar and the target. Since electromagnetic waves travel at the 

speed of light, c = 3×108 m/s, then  

 

                       𝑅 =
𝑐𝑡

𝜏
                                                                                                 (1.1)          

 

Where R is in meters and 𝑡 is in seconds. 
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1.1.3. Classification of Radar 

Radar systems have different qualities and technologies. There are many points for radar 

Classifications.  

 

A- The Separation Between Tx and Rx 

 Monostatic Radar: Both transmitter and receiver in the same location.  

 Bistatic Radar: The transmitter and receiver are placed in different locations.  

 Multistatic Radar: There are one transmitter and several receivers placed in                                                                                            

different locations  

 

B- Installation or Location:  

 Ground based radar:   

         This type of radar is characterized by:  

    a) Very large antenna.  

    b) Great size and weight.  

    c) Long detection range.  

    d) Used as long range surveillance radar. 

  

 Naval Radars: They are used as navigation aids and safety device to locate 

buoys, shore lines, and other ships.  

 

 Airborne Radars: They are usually used on aircrafts so they have as possible as 

small size and weight, they are used in navigation, terrain following and 

avoidance, weather warning radar and surface mapping radar.  

 

 Space Based Radars: They may be used to assist in guidance of spacecraft and 

for remote sensing of the land and sea.  
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C- Measured Coordinates 

 One Dimensional (1-D) Radar: (Range finder measures the range) or 

(Altimeter measures the height).  

  Two Dimensional (2-D) Radar: measures both range and azimuth.  

  Three Dimensional (3-D) Radar: measures range, azimuth and elevation.  

 

 D- Transmission Waveform  

 Continuous Wave (CW) Radar 

It is based on transmission of CW radio frequency energy. When CW energy is 

reflected from moving target, the return is Doppler shifted. It is used as speed 

traps and speed meters. It is inexpensive short ranges systems but in long  range  

systems it becomes difficult to separate between transmitter and receiver 

operation.  

 

 Frequency Modulated Continuous Wave (FMCW) 

CW radar cannot indicate target range. One way to solve the problem is to 

modulate the transmitter output frequency. A triangular or sinusoidal modulating 

wave form is commonly  used by measuring the difference of frequency between 

the instantaneous transmitter frequency and the frequency of the received echo. 

Thus it is possible to obtain the range of the target.   

 

  Pulsed Radar:  

Electromagnetic energy is transmitted as a series of pulses. Target range is found 

by measuring the time for echoes to return to the receiver. There are several 

forms of pulse radar such as:  
 

          

a) MTI (Moving Target Indication): This radar is developed for 

discrimination in favor of aircraft and other moving target. 
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b) Pulse Doppler Radar: The difference between MTI and pulse doppler radar is 

that MTI uses PRF low enough to avoid range ambiguity, while pulse doppler 

radar avoids velocity ambiguity using higher PRF. In Practice MTI pulse radar 

is more common.  

 

E- Type of Processing: 

 Coherent.  

 MTI and Pulse Doppler.  

 Non coherent.  

 Phased Array Radar.  

 

1.2. Continuous Wave (CW) and Pulsed Radars  

1.2.1. CW Radar   

Continuous wave radar systems are those which use a stable frequency continuous wave 

for transmission and reception. CW radars depend on the doppler frequency shift of the 

echo signal, caused by a moving target, to separate in the frequency domain the weak 

echo signal from the large transmitted signal and the echoes from fixed clutter (land, sea 

or weather), as well as to measure the radial velocity of the target. This  doppler  shift  is 

related  to the target velocity by the relation:        

                                      

                                              𝑓𝐷 =
2𝑉𝑟

𝜆
                                                                         (1.2)              

 

  The main advantages of the CW radars are:   

 Simple to manufacture.  

 No minimum or maximum range (broadcast power level imposes a practical limit 

on range).  

 Maximize power on a target due to continuous broadcasting.  

 

    However they also have the following disadvantages:   
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 They can only detect moving targets, as stationary targets (along the line of 

sight) will not cause a Doppler shift.  

 They cannot measure range. Range is normally measured by timing the delay 

between a pulse being sent and received, but as CW radars are always 

broadcasting, there is no delay to measure. Ranging can be implemented, 

however, by use of a technique known as frequency modulated continuous-wave 

radar.  

 

1.2.2. Pulsed Radar 

Pulsed Radars use a train of pulsed waveforms with modulation. Basing on pulse 

repetition frequency or PRF (definition given in the next section), Pulsed radars are 

classified as low PRF, medium PRF and High PRF. Low PRF radars are used primarily 

for ranging where target velocity is not needed. High PRF radars are used for measuring 

target velocity (Doppler Shift).  

 

             

Figure 1.2. Pulse radar in operation. 

 

One of pulse radar advantages is that the transmitter is turned off most of the time. The 

receiver can listen for returning echoes without any interference from the transmitter. 

Pulsed radars which extract the doppler frequency shift are called either moving target 

indication (MTI) or pulse doppler radars depending on their particular values of pulse 

repetition frequency and duty cycle. MTI radar has a low PRF and a low duty cycle. A 
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pulse doppler radar on the other hand has a high PRF and a high duty cycle.  

 

1.3. Radar Terminologies  

1.3.1. PRF  

Pulsed radar uses a train of pulse for transmission and reception as illustrated Fig. 1.3. 

The time interval between any two transmitted pulses is known as the Pulse Repetition 

Interval (PRI) or Inter Pulse Period (IPP) denoted by T. The inverse of PRI is called 

Pulse Repetition Frequency (PRF) denoted by𝑓𝑟.  During each PRI radar radiates energy 

only for τ (pulse width) seconds and listens for target returns for rest of the PRI. Here  

    

                                   𝐹𝑟 =
1

𝑃𝑅𝐼
=

1

𝑇
                                                                          (1.3)            

  

Radar transmitting duty cycle is  

    

                                    𝑑𝑡 =
𝜏

𝑇
                                                                                     (1.4)                    

   

And the radar average transmitted power is  

          

                             𝑃𝑎𝑣𝑔 = 𝑃𝑡 ∗ 𝑑𝑡                                                                               (1.5)      

 

Figure 1.3. PRF and IPP. 
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From the above equations it is clear that increasing the pulse width means increasing the 

transmitting duty cycle which in turn increases the radar average transmitted power 

thereby increasing the SNR.  

  

1.3.2. Maximum Unambiguous Range 

Once a pulse is transmitted sufficient time must elapse to allow all echo signals to return 

to the radar before the next pulse is transmitted. The rate at which pulses maybe 

transmitted, therefore, is determined by the longest range at which targets are expected. 

If the time between pulses 𝑇𝑝  is too short an echo signal from a long-range target might 

arrive after the transmission of the next pulse and be mistakenly associated with that 

pulse rather than the actual pulse transmitted earlier. This can result in an incorrect or 

ambiguous measurement of the range.  The range beyond which targets appear as 

second-time around echoes is the maximum unambiguous range, 𝑅𝑢  and is given by    

 

                                                        𝑅𝑢 =
𝑐𝑇

2
                                                               (1.6)                               

 

Where 𝑇𝑝  = pulse repetition period = 1/𝑓𝑝  and 𝑓𝑝  = pulse repetition frequency (prf).  

Therefore the maximum unambiguous range (𝑅𝑢 ) corresponds to half of PRI.  

 

1.3.3. Range Resolution (ΔR) 

It is the radar`s ability to detect targets in close proximity to each other as distinct 

objects. Radars have a minimum range 𝑅𝑚𝑛  and a maximum range 𝑅𝑚𝑥 . The whole 

range area is divided into number of range bins or gates (M) each of width ΔR.  Targets 

separated by at least ΔR can be completely resolved in range.  Targets within the same 

range bin can be resolved in cross range (horizontally) utilizing signal processing 

techniques.  To find the minimum ΔR let us assume two targets separated by 
𝑐𝜏

4
   as 

shown in Fig. 1.4(a). In this case, when the pulse trailing edge strikes target 2 the 

leading-edge would have traveled backwards a distance  𝑐𝜏 and the returned pulse would 



10 | P a g e  

 

be composed of returns from both targets (i.e., unresolved return).  

 

Figure 1.4. Range resolutions (a) Two unresolved targets, (b) Two resolved targets. 

 

 

However, if the two targets are at least cτ/2 apart, then as the pulse trailing edge strikes 

the first target the leading edge will start to return from target 2, and two distinct 

returned pulses will be produced, as illustrated by Fig. 1.4(b). Thus, ΔR should be 

greater or equal to 𝑐𝜏/2 . And since the radar bandwidth B is equal to 1/τ, then        

 

                                              𝑅 =
𝑐𝜏

2
=

𝑐

2𝐵
                                                               (1.7)                                  

 

In general, radar users and designers alike seek to minimize in order to enhance the radar 

performance. As suggested by Eq. 1.5, in order to achieve fine range resolution one must 

minimize the pulse width. However, this will reduce the average transmitted power and 

increase the operating bandwidth. Achieving fine range resolution while maintaining 

adequate average transmitted power can be accomplished by using pulse compression 

techniques.   
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1.3.4. Doppler Shift 

Doppler shift is an apparent change in frequency (or wavelength) due to the relative 

motion of two objects. When the two objects are approaching each other, the doppler 

shift causes a shortening of wavelength or increase in frequency. When the two objects 

are moving away from each other, the doppler shift causes a lengthening of wavelength 

or decrease in frequency.  

 

 

Figure 1.5. Effect of target motion on the reflected equiphase waveforms. 

      

For a Doppler radar system to measure speed, an accurate sample of the original phase 

of the transmitted signal must be maintained for comparison against the reflected signal. 
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Figure 1.6. Doppler shift due to moving radar and targets 

 

Angle shown (θ) is for elevation differences only; if there is also an azimuthal angle, it 

must be factored into the equation as cos(𝛼), where α is the azimuth angle relative to the 

radar antenna bore sight direction. For fixed radar with moving target: 

 

                  𝑓𝐷 = 2𝑉𝑇𝑐𝑜𝑠𝜃 
𝑓𝑇

𝑐
                                        (1.8a)                                                                                             

 

For moving radar with moving target:         

                                                    𝑓𝐷 = 2(𝑉𝑅 + 𝑉𝑇)𝑐𝑜𝑠𝜃 
𝑓𝑇

𝑐
                                  (1.8b)                        

Where 𝑓𝐷  = doppler frequency, 𝑓𝑇  = transmitted frequency, 𝑉𝑇  = target velocity, 𝑉𝑅  = 

radar velocity, c =speed of light.  
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1.3.5. Coherence   

A Radar is coherent if there is continuity in phase from one transmitted pulse to another. 

It is radar‟s ability to maintain an integer multiple of wavelengths between the equiphase 

wave fronts of any two successive pulses. Coherence is a requirement to measure 

(extract) the received signal phase. Since Doppler represents a frequency shift in the 

received signal, then only coherent or coherent-on-receive radars can extract Doppler 

information. This is because the instantaneous frequency of a signal is proportional to 

the time derivative of the signal phase. More precisely if 𝑓𝑖  is the instantaneous 

frequency and υ(t) is the signal phase.      

Figure 1.7. (a) Phase continuity between consecutive pulses. 

(b) Maintaining an integer multiple of wavelengths between the equiphase wave 

fronts of any two successive pulses guarantees coherency. 

  

1.4. Objective of the Thesis 

The main objective of this thesis is to analyze the performance of pulse compression 

technique with different methods. The main purposes of the thesis are:   

 

 To develop the mathematical model for basic radar system using relevant 

parameters.  
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 To study on side lobe reduction using pulse compression  

 Increasing the resolution of a RADAR by this method. 

 Achieving the energy of long pulse using short pulse.  

 To study on decreasing average transmitted power    

 To study on Analog & Digital pulse compression technique. 

 Analysis the effects of noise, sampling rate and signal sparsity for pulse 

compression both in analog and digital system. 

 To evaluate optimum result of various technique & compare among them.  

 

1.5. Organization of the Thesis   

Chapter 1 is an introductory chapter. It contains the origin and fundamentals of radar 

system.  

 

Chapter 2 depicts the basic radar equations for both mono and bistatic radar. 

 

Chapter 3 presents pulse compression fundamentals with necessary analysis. Different 

kind of weighting functions is also discussed here. 

 

Chapter 4 deals with different kind of pulse compression techniques with necessary 

block diagram, simulations and mathematical models. 

 

Chapter 5 analyzes the roles of weighting functions on matched filters. A cooperative 

study between different pulse compression techniques is shown here with necessary 

simulations. The improvement of range resolution performance for multiple targets by 

using Frank Code of length thirteen is identified. 

 

Chapter 6 contains the concluding remarks and the scope of future works as well 
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 Chapter 2  

RADAR EQUATIONS AND PARAMETRS 

 

 2.1. Basic Radar Equation 

 2.1.1. Mono-static Radar Equation 

The basic radar equation has many forms varying according to the parameters being 

used. The equation parameters vary according to the type and configuration of the radar 

in use. However, the most common form of the basic radar used is the monostatic radar 

where the same antenna is used for both transmitting and receiving. The basic radar 

equation for such monostatic radar system is developed below. First we consider a 

noiseless case and then we add the effects of noise to the basic equation. 

 

 2.1.2. Noiseless Case 

Peak power density (power per unit area), 𝑃𝐷  at range R from an Omni-directional radar 

with peak transmission power (Pt ) is given by 

                                               𝑃𝐷 =
Pt

4πR2 
                                                                                   (2.1) 

 

When using directional antenna with gain G, the power density at a distance R is given 

by

𝑃𝐷 =
Pt G

4πR2
 

(2.2) 

  

Here, gain depends on the effective aperture Ae  of the antenna. Relation between gain 

and effective aperture area is 

Ae =
Gλ

2

4π
 

(2.3) 

 

The reflected power back to the target depends upon the target cross section σ. σ is also 
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called the radar cross section (RCS). σ is the ratio of the power reflected back to the 

radar (Pr) to the power density incident on the target (PD), 

𝜎

4𝜋𝑅2
=

Pr

PD
 

(2.4) 

 

Using Eq. 2.2 and Eq. 2.4, we can find the power delivered to the radar signal processor 

by the antenna (𝑃𝐷𝑟
) 

𝑃𝐷𝑟
= PrAe = PD

σ

4πR2
Ae =

PtGσAe

(4πR2 )2
 

(2.5) 

 

Substituting the value of 𝐴𝑒 from Eq. 2.3 we get 

𝑃𝐷𝑟
=

𝑃𝑡𝐺
2𝜆2𝜎

(4𝜋)3𝑅4
 

(2.6) 

 

Power delivered is the minimum when target is at maximum range (𝑅𝑚𝑎𝑥 ). If we denote 

the minimum detectable power by  𝑆𝑚𝑖𝑛  then from Eq. 2.6 

𝑅𝑚𝑎𝑥 =  
𝑃𝑡𝐺

2𝜆2𝜎

(4𝜋)3𝑆𝑚𝑖𝑛
 

1
4

 

(2.7) 

 

This is the maximum range that can be achieved if we consider a noiseless medium and 

a lossless receiver. 

 

2.1.3. With the Presence of Noise 

In practical situations the returned signal is corrupted by noise which is a function of 

radar operating bandwidth, B. The input noise power to a lossless antenna is 

𝑁𝑖 = 𝑘𝑇𝑒𝐵 (2.8) 

 

Where, 𝑇𝑒  is the total effective system noise temperature in Kelvin. The fidelity of a 

receiver is its ability to accurately reproduce, in its output, the signal that appears at its 
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input. The broader the band passed by frequency selection circuits, the greater is the 

receiver fidelity. The fidelity of a radar receiver is normally described by a figure of 

merit called the noise figure F. 

𝐹 =
 𝑆𝑁𝑅 𝑖
 𝑆𝑁𝑅 𝑜

=

𝑆𝑖

𝑁𝑖

𝑆𝑜

𝑁𝑜

 

(2.9) 

 

Here  𝑆𝑁𝑅 𝑖and  𝑆𝑁𝑅 𝑜  are SNR at input and output of receiver. 𝑆𝑖  and 𝑁𝑖  are input 

signal and noise power whereas 𝑆𝑜  and 𝑁𝑜  are output signal and noise power. 

𝑆𝑖 = 𝑁𝑖 𝑆𝑁𝑅 𝑜 = 𝑘𝑇𝑒𝐵𝐹 𝑆𝑁𝑅 𝑜  (2.10) 

Hence, the minimum detectable signal power can be written as 

𝑆𝑚𝑖𝑛 = 𝑘𝑇𝑒𝐵𝐹 𝑆𝑁𝑅 𝑜𝑚𝑖𝑛
 (2.11) 

The radar detection threshold is set equal to this minimum output SNR,  𝑆𝑁𝑅 𝑜𝑚𝑖𝑛
 

.Substituting Eq. 2.11 in Eq. 2.7 and considering radar losses  as L. 

𝑅𝑚𝑎𝑥 =  
𝑃𝑡𝐺

2𝜆2𝜎

 4𝛱 3𝑘𝑇𝑒𝐵𝐹𝐿 𝑆𝑁𝑅 𝑜𝑚𝑖𝑛

 

1
4

 

(2.12) 

Radar losses denoted as reduce the overall SNR, and hence 

 𝑆𝑁𝑅 𝑜 =
𝑃𝑡𝐺

2𝜆2𝜎

 4𝛱 3𝑘𝑇𝑒𝐵𝐹𝐿𝑅4
 

(2.13) 

Eq. 2.13 represents the basic equation for mono-static radar system. 
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2.2. Variations of Basic Equation 

2.2.1. Bistatic Radar Equation 

Bistatic radars uses transmit and receive antennas those are placed in different locations. 

A synchronization link between the transmitter and receiver is necessary to provide 

following information.  

 The transmitted frequency in order to compute the Doppler shift.  

 The transmit time or phase reference in order to measure the total scattered path.  

 

Frequency and phase reference synchronization can be maintained through line-of-sight 

communications between the transmitter and receiver. However, if this is not possible, 

the receiver may use a stable reference oscillator for synchronization. 

 

 

Figure 2.1.  Bistatic radar geometry. 

 

Fig. 2.1 shows the bistatic radar configuration. The angle ß is called the bistatic angle. 

When β approaches 180𝑜 , the bistatic RCS becomes very large compared to the mono 
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static RCS which causes a change in the basic radar equation as given below 

 

𝑃𝐷𝑟
=

𝑃𝑡𝐺𝑡𝐺𝑟𝜆
2𝜎𝐵

(4𝜋)3𝑅𝑡
2𝑅𝑟

2𝐿𝑡𝐿𝑟𝐿𝑝

 
(2.14) 

 

Here, 𝑃𝐷𝑟
= total power delivered to the signal processor by the receiving antenna, 𝑃𝑡  = 

peak transmitted power, 𝐺𝑡 = Gain of transmitting antenna, 𝐺𝑟 = Gain of receiving 

antenna, 𝑅𝑡 = range from transmitter,  𝑅𝑟  = range from receiver,  𝐿𝑡  = transmitter 

losses, 𝐿𝑟  = receiver losses, 𝐿𝑝  = medium propagation loss. Here, a noiseless condition 

is assumed. 

 

2.2.2. Low PRF Radar Equation  

Consider a pulsed radar with pulse width , PRI T, and peak transmitted power 𝑃𝑡 . The 

average transmitted power is 𝑃𝑎𝑣 = 𝑃𝑡𝑑𝑡, where 𝑑𝑟 the transmission duty factor is 𝑑𝑡 =

/𝑇. We can define the receiving duty factor as 

𝑑𝑟 =
𝑇 − 

𝑇
= 1 − 𝑓𝑟 = 1 −



𝑇
 

(2.15) 

 

Hence, for low PRF where, 𝑇 ≫  𝜏, the receiving duty factor  𝑑𝑟 = 1. Hence ignoring 

the impact of receiving duty factor low PRF radar equation for 𝑛𝑝  coherent pulses 

(𝑛 𝑝 = 𝑇𝑖  𝑓𝑟 ) can be written as following: 

 𝑆𝑁𝑅 𝑛𝑝
=

𝑃𝑡𝐺
2𝜆2𝜎𝑇𝑖𝑓𝑟

 4𝜋 3𝑅4𝑘𝑇𝑒𝐵𝐹𝐿
=

𝑃𝑡𝐺
2𝜆2𝜎𝑇𝑖𝑓𝑟

 4𝜋 3𝑅4𝑘𝑇𝑒𝐹𝐿
 

(2.16) 

 

Here 𝑇𝑖 = Time on target (time that a target is illuminated by the beam) and bandwidth 

𝐵 =  1/𝜏. Since transmission duty factor is negligible compared to the receiving duty 

factor low PRF radars result in maximum unambiguous range thereby increasing overall 

range of the radar. We already defined time on target 𝑇𝑖  =  𝑛𝑝/𝑓𝑟 ; therefore, as the PRF, 

𝑓𝑟  is decreased time of the scanning beam on target is increased resulting in better output 

SNR. As a result low PRF radars give better SNR for targets at longer ranges. 
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2.2.3. High PRF Radar Equation 

The central power spectrum line (DC component) for high PRF pulse train contains most 

of the signal‟s power. Its value is 𝜏 𝑇  2, and it is equal to the square of the transmit 

duty factor. Thus, using Eq. 2.13, the single pulse radar equation for high PRF radar is 

 𝑆𝑁𝑅 𝑜 =
𝑃𝑡𝐺

2𝜆2𝜎𝑑𝑡
2

 4𝛱 3𝑘𝑇𝑒𝐵𝐹𝐿𝑅4𝑑𝑟
 

(2.17) 

For high PRF radar, we cannot ignore 𝑑𝑟  since  𝑑𝑟= 𝑑𝑡  =𝜏𝑓𝑟  . Again, for high PRF radar, 

B =𝑇𝑖  . Additionally, if we replace 𝑃𝑎𝑣𝑒  =𝑃𝑡𝜏𝑓𝑟 , then Eq. 2.17 becomes 

𝑆𝑁𝑅 =
𝑃𝑎𝑣𝑒𝑇𝑖𝐺

2𝜆2𝜎

 4𝛱 3𝑘𝑇𝑒𝐹𝐿𝑅4
 

(2.18) 

Since 𝑃𝑎𝑣𝑒𝑇𝑖  in Eq. 2.17 is a kind of energy product therefore it indicates that high PRF 

radars can enhance detection performance by using relatively low power and longer 

integration time. Low PRF radars are used primarily for ranging where target velocity is 

not needed. High PRF radars are used for measuring target velocity (Doppler Shift).
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Chapter 3 
PULSE COMPRESSION FUNDAMENTALS 

 

3.1. Matched Filter 

The matched filter is the optimal linear filter for maximizing the signal to noise ratio 

(SNR) in the presence of additive stochastic noise. Matched filters are commonly used 

in radar, in which a signal is sent out, and we measure the reflected signals, looking for 

something similar to what was sent out. Two-dimensional matched filters are commonly 

used in image processing, e.g., to improve SNR for X-ray pictures. 

 

The most unique characteristic of the matched filter is that it produces the maximum 

achievable instantaneous SNR at its output when a signal plus additive white noise are 

present at the input. The noise does not need to be Gaussian. The peak instantaneous 

SNR at the receiver output can be achieved by matching the radar receiver transfer 

function to the received signal. When the peak instantaneous signal power divided by 

the average noise power at the output of a matched filter is equal to twice the input 

signal energy divided by the input noise power, regardless of the waveform used by the 

radar. This is the reason why matched filters are often referred to as optimum filters in 

the SNR sense. Here the peak power used in the derivation of the radar equation (SNR) 

represents the average signal power over the duration of the pulse, not the peak 

instantaneous signal power as in the case of a matched filter. In practice, it is sometimes 

difficult to achieve perfect matched filtering. In such cases, sub-optimum filters may be 

used. Due to this mismatch, degradation in the output SNR occurs. Considering a radar 

system that uses finite duration energy signal 𝑠𝑖(𝑡) , the pulse width as 𝜏′ and a matched 

filter receiver is utilized. The matched filter input signal can then be represented by 
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                                                   𝑥 𝑡 = 𝐶 + 𝑠𝑖 𝑡 − 𝑡1 +  𝑛𝑖 𝑡                                   (3.1)                                     

 

Where C is a constant, 𝑡1 is an unknown time delay proportional to the target range, and 

𝑛𝑖 𝑡  is input white noise. 

Since the input noise is white, its corresponding autocorrelation and Power Spectral 

Density (PSD) functions are given, respectively, by                                               

                                                 𝑅 𝑛 𝑖
 𝑡 =  

𝑁0

2
 𝛿 𝑡                                                          

(3.2)                                                                                

 

                                                  𝑆 𝑛 𝑖
 𝜔 =   

𝑁0

2
                                                               (3.3)                                                                                                             

 

 where 𝑁0   is a constant. 𝑠0 𝑡  and 𝑛0 𝑡   are denoted as the signal and noise filter 

outputs. More precisely, we can define   

                              

                                             𝑦 𝑡 = 𝐶𝑠0 𝑡 − 𝑡1 + 𝑛0 𝑡                                              (3.4)                                             

                                                                         

Where, 

                                            𝑆0   𝑡 =  𝑆𝑖 𝑡 ●(𝑡)                                                         (3.5) 

                                            𝑛0  𝑡 =  𝑛𝑖 𝑡 ●(𝑡)                                                        (3.6) 

 

The operator (●) indicates convolution, and  (𝑡) is the filter impulse response (the filter 

is assumed to be linear time invariant). 

 

3.1.1. Matched Filter Replica   
The coded signal can be described either by the frequency response 𝐻(𝜔) or as an 

impulse response (𝑡) of the coding filter. The received echo is fed into a matched filter 

whose frequency response is the complex conjugate 𝐻 ∗ (𝜔) of the coding filter. The 



23 | P a g e  

 

output of the matched filter, 𝑦(𝑡) is the compressed pulse which is just the inverse 

Fourier transform of the product of the signal spectrum and the matched filter response. 

                                 

                                  𝑦 𝑡 =
1

2𝜋
  𝐻 𝜔  2 exp 𝑗𝜔𝑡 𝑑𝑤

∞

−∞
                                             (3.7)         

                            

A filter is also matched if the signal is the complex conjugate of the time inverse of the 

filter‟s impulse-response. This is often achieved by applying the time inverse of the 

received signal to the pulse-compression filter. 

 

The output of this matched filter is given by the convolution of the signal (𝑡)  with the 

conjugate impulse response  ∗ (−𝑡) of the matched filter,                                                                                

                                                𝑦 𝑡 =  ()

∞

−∞

∗ 𝑡 −  𝑑                                                    (3.8) 

 

In essence the matched filter results in a correlation of the received signal with a delayed 

version of the transmitted signal as shown below. 

 

              Input Output 

 

  

  

Figure 3.1. A block diagram of Pulse Compression based on FFT and Inverse FFT. 

 

The range resolution of a sensor is defined as the minimum separation (in range) of two 

targets or equal cross section that can be resolved as separate targets. It is determined by 

the bandwidth of the transmitted signal. The range resolution is determined from the 

matched filter processing of the rectangular pulse. Considering the case that the 

transmitted signal consists of a constant frequency signal modulated by a rectangular 

FFT Multipli

er 

IFF

T 

FFT of Matched 

filter response 

response 
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pulse of width, τ. The sharp edges of the rectangular function in time generate an infinite 

frequency spectrum.  
In the continuous frequency (CF) example, the matched filter (correlation) response 

shows the triangular envelope. However, in the chirp example with the same duration, 

the matched filter generates a 𝑠𝑖𝑛𝑐 function with a much narrower peak, and hence a 

superior range resolution. Also, the range resolution is inversely proportional to the 

chirp bandwidth, 𝛥𝑓. 

 

Figure 3.2. Comparison between the ultimate resolution of a rectangular constant                    

frequency pulse and a chirp pulse of the same duration 

 

3.2. The Radar Ambiguity Function 

The radar ambiguity function represents the output of the matched filter, and it describes 

the interference caused by range and/or Doppler of a target when compared to a 
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reference target of equal RCS. The ambiguity function evaluated at (𝜏,𝑓𝑑 ) is equal to the 

matched filter output that is matched perfectly to the signal reflected from the target of 

interest. In other words, returns from the nominal target are located at the origin of the 

ambiguity function. Thus, the ambiguity function at nonzero 𝜏 and  𝑓𝑑  represents returns 

from some range and Doppler different from those for the nominal target. 

 

The radar ambiguity function is normally used by radar designers as a means of studying 

different waveforms. It can provide insight about how different radar waveforms may be 

suitable for the various radar applications. It is also used to determine the range and 

Doppler resolutions for a specific radar waveform. The three-dimensional (3-D) plot of 

the ambiguity function versus frequency and time delay is called the radar ambiguity 

diagram. The radar ambiguity function for the signal s(𝑡) is defined as the modulus 

squared of its 2-D correlation function, i.e.,∣ 𝜒(𝝉;𝑓𝑑 ) 2. More precisely, 

 

                   ∣ 𝜒(𝝉;𝑓𝑑 ) ∣ 2 =∣  𝑠(𝑡)2∞

−∞
𝑠∗(𝑡 + 𝜏)𝑒𝑗2𝜋𝑓𝑑 𝑡𝑑𝑡 ∣                                        (3.9)                         

 

In this notation, the target of interest is located at (𝜏,𝑓𝑑) = (0,0)  and the ambiguity 

diagram is centered at the same point. Note that some define the ambiguity function 

as∣ 𝜒(𝜏; 𝑓𝑑 ) ∣. Here  ∣ 𝜒(𝜏; 𝑓𝑑) ∣ is called the uncertainty function. We denote 𝐸 as the 

energy of the signal  𝑠(𝑡) , 
                                           𝐸 =  ∣ 𝑠(𝑡) ∣ ²

∞

−∞
 𝑑𝑡                                                       (3.10)                                           

 

3.2.1. Properties of Radar Ambiguity Function 

 The maximum value for the ambiguity function occurs at (𝜏,𝑓𝑑) = (0,0)   

and is equal to 4𝐸². 

                    

                  𝑚𝑎𝑥 ∣ 𝜒(𝜏;𝑓𝑑 ) ∣2 =∣ 𝜒 0; 0 ∣2= (2E)2                                   (3.11)                      
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                 ∣ 𝜒(𝜏; 𝑓𝑑) ∣ 2 ≤ ∣ 𝜒(0; 0 ∣ ²                                                               (3.12) 

 

 

 The ambiguity function is symmetric, 

 

                                          ∣ 𝜒(𝜏; 𝑓𝑑) ∣ 2 =  ∣ 𝜒(−𝜏;−𝑓𝑑 ) ∣ 2                               (3.13)                                     

 

 

 The total volume under the ambiguity function is constant, 

 

                                                    ∣ 𝜒(𝜏;𝑓𝑑 ) ∣ 2 𝑑𝜏𝑑𝑓𝑑 = (2𝐸)²                                    (3.14) 

 

 If the function 𝑆(𝑓)  is the Fourier transform of the signal 𝑠(𝑡) , then by 

using Parseval‟s theorem we get, 

 

                     ∣ 𝜒(𝜏; 𝑓𝑑) ∣ 2 = ∣    𝑆∗ 𝑓 𝑆(𝑓 − 𝑓𝑑  )𝑒−𝑗2𝜋𝑓𝜏 𝑑𝑓 ∣2                    (3.15)             

 

 

3.3. Correlation 

Correlation is a mathematical relationship between two random variables or signals. In 

Statistics, correlation can be thought of as a normalized covariance. Correlation can be 

linear or circular. Generally speaking, linear correlation should be used when the input 

signals contain impulses, while circular correlation should be used when the signals 

repeat periodically.  

Strength of correlation is expressed by a correlation coefficient. Let 𝑓(𝑛) and 𝑔(𝑛) be 

two signals of the same length, 𝑀. Their correlation coefficient can be defined as:  

                                            𝑦 𝑚 =  𝑓 𝑛 𝑔 𝑛 − 𝑚 𝑀−1
𝑛=0                                       (3.16)                                                                                             
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 If the input signals are not of the same length, the shorter one will be zero-padded to the 

length of the other signal. For linear correlation, the length of the result sequence is 

2𝑀 − 1 , while the length of the result sequence for circular correlation is 𝑀 . The 

magnitude of the computed correlation coefficient shows the degree of similarity 

between the signals. If the magnitude is large, the two signals have a strong linear 

relationship. Alternatively, if the magnitude is small, the two signals can be considered 

to have little or no linear relationship.  

If the correlation coefficient is normalized (the Normalize checkbox is selected), its 

absolute value will range from 0 to 1, making it easier to judge the similarity between 

the signals. If the normalized correlation coefficient is equal to either 1 or -1, the two 

signals are perfectly correlated.The sign of the correlation coefficient indicates the 

direction of association. A positive correlation suggests that the change of one signal 

will cause the other signal to change in the same direction; a positive linear relationship. 

If the correlation is negative, a negative linear relationship exists; an increase in one 

signal will cause a decrease in the other.  

 

3.3.1. To Use Correlation  

 Make a workbook or a graph active.  

 Select Analysis: Signal Processing: Correlation from the Origin menu 

 

3.3.2. Cross-correlation 

In signal processing, cross-correlation is a measure of similarity of two waveforms as a 

function of a time-lag applied to one of them. This is also known as a sliding dot product 

or sliding inner-product. It is commonly used for searching a long signal for a shorter, 

known feature. It has applications in pattern recognition, single particle analysis, 

electron tomographic averaging, cryptanalysis, and neurophysiology. For continuous 

functions f and g, the cross-correlation is defined as: 
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                                        (𝑓 ∗ 𝑔)(𝑡)  ≝   𝑓∗∞

−∞
(𝜏) 𝑔(𝑡 + 𝜏) 𝑑𝜏                                (3.17)                                                         

 where 𝑓* denotes the complex conjugate of 𝑓. 

Similarly, for discrete functions, the cross-correlation is defined as: 

                                 (𝑓 ∗ 𝑔)[n]  ≝   𝑓∗ 𝑚  𝑔[𝑛 + 𝑚]∞
𝑚 =−∞                                     (3.18)                               

The cross-correlation is similar in nature to the convolution of two functions. 

 

3.3.2.1. Properties 

 The cross-correlation of functions 𝑓(𝑡)  and 𝑔(𝑡)  is equivalent to the 

convolution  of 𝑓 ∗ (−𝑡) and 𝑔(𝑡).   

                              𝑓 ∗  𝑔 = 𝑓∗ −𝑡 ∗ 𝑔                                                          (3.19)                                                         

   If f is Hermitian, then         𝑓 ∗  𝑔 = 𝑓 ∗  𝑔 

  𝑓 ∗ 𝑔 ∗  𝑓 ∗ 𝑔 =  𝑓 ∗ 𝑓 ∗ (𝑔 ∗ 𝑔)                                                        

(3.20) 

                               

   Analogous to the convolution Theorem, the cross-correlation satisfies: 

                   𝐹 𝑓 ∗  𝑔 = (F {f } ) ∗ . F {g }                                                (3.21)                                      

where 𝐹 denotes the Fourier Transform, and an asterisk again indicates the complex 

conjugate. Coupled with Fast Fourier Transform algorithms, this property is often 

exploited for the efficient numerical computation of cross-correlations.  

 The cross-correlation is related to the spectral density. 

  



29 | P a g e  

 

 The cross correlation of a convolution of f and h with a function g is the 

convolution of the cross-correlation of  f and g with the kernel h: 

                     𝑓 ∗   ∗ 𝑔 =  − ∗  𝑓 ∗  𝑔                                                         (3.22) 

 

3.3.3. Auto-correlation 

Autocorrelation is the cross-correlation of a signal with itself. Informally, it is the 

similarity between observations as a function of the time lag between them. It is a 

mathematical tool for finding repeating patterns, such as the presence of a periodic 

signal obscured by noise, or identifying the missing fundamental frequency in a signal 

implied by its harmonic frequencies. It is often used in signal processing for analyzing 

functions or series of values, such as time domain signals.In signal processing, the above 

definition is often used without the normalization, that is, without subtracting the mean 

and dividing by the variance. When the autocorrelation function is normalized by mean 

and variance, it is sometimes referred to as the autocorrelation coefficient. 

Given a signal 𝑓(𝑡), the continuous autocorrelation 𝑅𝑓𝑓  𝜏 is most often defined as the 

continuous cross-correlation integral of f(t) with itself, at lag 𝜏. 

                                 𝑅𝑓𝑓  𝜏 =  𝑓 𝑡 ∗ 𝑓  −t   𝜏 =  𝑓(𝑡)
∞

−∞
𝑓  𝑡 − 𝜏 𝑑𝑡                   (3.23)              

where 𝑓  represents the complex conjugate and * represents convolution. For a real 

function,       𝑓  =𝑓. 

The discrete autocorrelation R at lag j for a discrete signal 𝑥𝑛   is 

                              𝑅𝑥𝑥  𝑗 =   𝑥𝑛   𝑥𝑛−𝑗      𝑛                                                                        (3.24)                                                                           
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3.3.3.1. Properties 

In the following, we will describe properties of one-dimensional autocorrelations only, 

since most properties are easily transferred from the one-dimensional case to the multi-

dimensional cases. 

 A fundamental property of the autocorrelation is symmetry, 𝑅(𝑖)  =  𝑅(−𝑖), 

which is easy to prove from the definition. In the continuous case, the 

autocorrelation is an  even function 𝑅𝑓 −𝜏 =  𝑅𝑓(𝜏)when f  is a real function, 

and the autocorrelation is a Hermitian function 𝑅𝑓 −𝜏 =  𝑅𝑓
∗(𝜏)  when f is a 

complex function. 

 The continuous autocorrelation function reaches its peak at the origin, where it 

takes a real value, i.e. for any delay𝜏, ⃓𝑅𝑓(𝜏)⃓≤ 𝑅𝑓 0 .  This is a consequence of 

the Rearrangement inequality.  The same result holds in the discrete case. 

 The autocorrelation of a periodic function is, itself, periodic with the same 

period. 

 The autocorrelation of the sum of two completely uncorrelated functions (the 

cross-correlation is zero for all 𝜏) is the sum of the autocorrelations of each 

function separately. 

 Since autocorrelation is a specific type of cross-correlation , it maintains all the 

properties of cross-correlation. 

 The autocorrelation of a continuous-time white-noise signal will have a strong 

peak (represented by a Dirac Delta Function) at 𝜏 = 0and will be absolutely 0 for 

all other 𝜏. 

The transmitted sequence is loaded into the reference register, and the input 

sequence is continuously clocked through the signal shift register. A comparison 

counter forms a sum of the matches and subtracts the mismatches between 
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corresponding stages of the shift registers on every clock cycle to produce the 

correlation function. 

 

Figure 3.3. Cross correlation showing two targets with different amplitudes and at                                  

different  ranges:  BPSK radar noise sequence generated using a 12bit shift register 

with 4096 points. 

The Maximal Length series must be an odd number, and by padding with zeros degrades 

the range sidelobe performance. To test this, the correct (unpadded) series was generated 

and the correct correlation function performed on 4095 points with the following 

incredible results. 
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Figure 3.4. Cross correlation showing two targets with different amplitudes and at 

different ranges: BPSK radar noise sequence generated using a 12bit shift register 

with 4095 points 

 

If the figure is examined carefully, it can be seen that the side lobe level is constantly 

flat with a value slightly smaller than zero (−1.22𝑥10−4). 

 

3.4. Weighting Functions 

In signal processing, a window function (also known as an apodization function or 

tapering function) is a mathematical function that is zero-valued outside of some chosen 

interval. When another function or waveform/data-sequence is multiplied by a window 

function, the product is also zero-valued outside the interval: all that is left is the part 

where they overlap; the "view through the window". Applications of window functions 

include spectral analysis, filter design, and beam forming. In typical applications, the 
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window functions used are non-negative smooth "bell-shaped" curves, though rectangle, 

triangle, and other functions can be used. 

A more general definition of window functions does not require them to be identically 

zero outside an interval, as long as the product of the window multiplied by its argument 

is square integrable, that is, that the function goes sufficiently rapidly toward zero. 

Windowing of a simple waveform like 𝑐𝑜𝑠 𝜔𝑡 causes its Fourier transform to develop 

non-zero values (commonly called spectral leakage) at frequencies other than ω. The 

leakage tends to be worst (highest) near ω and least at frequencies farthest from ω. If the 

waveform under analysis comprises two sinusoids of different frequencies, leakage can 

interfere with the ability to distinguish them spectrally. If their frequencies are dissimilar 

and one component is weaker, then leakage from the larger component can obscure the 

weaker one‟s presence. But if the frequencies are similar, leakage can render them 

irresolvable even when the sinusoids are of equal strength. 

 

3.4.1. Rectangular Window 

A function that is constant inside the interval and zero elsewhere is called a rectangular 

window, which describes the shape of its graphical representation. The rectangular 

window has excellent resolution characteristics for sinusoids of comparable strength, but 

it is a poor choice for sinusoids of disparate amplitudes. This characteristic is sometimes 

described as low-dynamic-range. 

 Definition (M odd): 

                                               𝑤𝑅 𝑛 ≜  
1,⃓𝑛⃓ ≤ (𝑀 − 1)/2                           
0,    𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒                                    

            (3.25) 
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Transform: 

                                             𝑊𝑅 𝜔 = 𝑀.𝑎𝑠𝑖𝑛𝑐𝑀(𝜔) ≜
sin  𝑀

𝜔

2
 

sin  𝑀
𝜔

2
 
                    (3.26)                                                    

                    

 

Figure3.5. Rectangular Window 
 

3.4.1.1. Properties 

 Zero crossings at integer multiples of  

                                Ω𝑀  ≜
2𝜋

𝑀
 = frequency sampling interval for a length 𝑀 DFT       (3.27)            

 Main lobe width is . 2Ω𝑀 =
4𝜋

𝑀
                                                                       (3.28)                                   

 As 𝑀 increases, the main lobe narrows (better frequency resolution).  

 𝑀 has no effect on the height of the side lobes  

 First side lobe only 13 dB down from the main-lobe peak.  

 Side lobes roll off at approximately 6dB per octave.  

 A phase term arises when we shift the window to make it causal, while the 

window transform is real in the zero-phase case (i.e., centered about time 0) 
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3.4.2. Kaiser Window 

The Kaiser window, also known as the Kaiser-Bessel window, was developed by James 

Kaiser at Bell Laboratories. It is a one-parameter family of window functions used for 

digital signal processing, and is defined by the formula, 

                                                 𝑤 𝑛 =
𝐼0 2𝜋 1 − (2𝑛/𝑁)2  

𝐼0   2𝜋 
                                           3.29  

Where, 

 N is the length of the sequence. 

 I0   is the zeroth order Modified Bessel function of the first kind. 

 α is an arbitrary, non-negative real number that determines the shape of the 

window. In the frequency domain, it determines the trade-off between main-

lobe width and side lobe level, which is a central decision in window design. 

When N is an odd number, the peak value of the window is  𝑤 [(𝑁 − 1)/2] = 1   and 

when N is even, the peak values are 𝑤[(𝑁/2) − 1]= 𝑤  
𝑁

2
 < 1   
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Figure 3.6. Kaiser Window 
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3.4.3. Hamming Window 

The window with these particular coefficients was proposed by Richard W. Hamming. 

The window is optimized to minimize the maximum (nearest) side lobe, giving it a 

height of about one-fifth that of the Hanning window. 

                                 𝑤 𝑛 = 𝛼 − 𝛽  1 − 𝑐𝑜𝑠  
2𝜋𝑛

𝑁 − 1
                                                       (3.30) 

Where      α= 0.54     and    β= 1-α=0.46 

Instead of both constants being equal to 1/2 in the Hanning window. The constants are 

approximations of values α = 25/46 and β= 21/46, which cancel the first side lobe of the 

Hanning window by placing a zero at frequency 5𝜋/(𝑁 −  1). Approximation of the 

constants to two decimal places substantially lowers the level of side lobes, to a nearly 

equiripple condition. In the equiripple sense, the optimal values for the coefficients are 

α = 0.53836 and β = 0.4616. 

Figure 3.7. Hamming Window 
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3.4.4. Chebyshev Window 

The Chebyshev window minimizes the mainlobe width, given a particular sidelobe 

height. It is characterized by an equiripple behavior, that is, its sidelobes all have the 

same height. The chebwin function, with length and sidelobe height parameters, 

computes a Chebyshev window. 

 𝑤 𝑛 =
1

𝑁
 
1

𝑟
+ 2  𝑇𝑁−1  𝑥0𝑐𝑜𝑠  

𝑖𝜋

𝑁
  𝑐𝑜𝑠  

2𝜋𝑛𝑖

𝑁
 

 𝑁−1 2 

𝑖=1

                                          (3.31) 

Where 𝐼0 is the zero-order modified Bessel function of the first kind and 

                           𝑥0 = cosh  
1

𝑁−1
cosh−1  

1

𝑟
                                                              (3.32)                                                                                           

If 𝐴 is the side lobe attenuation in dB. Then 

                                
1

𝑟
= 10−𝐴

20                                                                                  (3.33)                                                 

And   

       𝑇𝑁 (𝑥) =  
𝑐𝑜𝑠 𝑛 cos−1 𝑥          |𝑥| ≤ 1 

cosh 𝑛 cosh−1 𝑥      𝑥 > 1
                                                              (3.34)         

Figure 3.8. Chebyshev Window 
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  Chapter 4 
                                    PULSE COMPRESSION                                              

   

4.1. Definition  

Pulse compression is a generic term that is used to describe a wave shaping process that 

is produced as a propagating waveform is modified by the electrical network properties 

of the transmission line. The pulse is frequency modulated, which provides a method to 

further resolve targets which may have overlapping returns. Pulse compression 

originated with the desire to amplify the transmitted impulse (peak) power by temporal 

compression. Range resolution for a given radar can be significantly improved by using 

very short pulses. Unfortunately, utilizing short pulses decreases the average transmitted 

power, which can hinder the radar‟s normal modes of operation, particularly for multi-

function and surveillance radars. Since the average transmitted power is directly linked 

to the receiver SNR, it is often desirable to increase the pulse width (i.e., increase the 

average transmitted power) while simultaneously maintaining adequate range resolution. 

This can be made possible by using pulse compression techniques.  The compression 

ratio is equal to the number of sub pulses in the waveform, i.e., the number of elements 

in the code. The range resolution is therefore proportional to the time duration of one 

element of the code. The radar maximum range is increased by the fourth root of PCR. 

 

Pulse compression is a signal processing technique mainly used in radar, sonar and 

echography to increase the range resolution as well as the signal to noise ratio. This is 

achieved by modulating the transmitted pulse and then correlating the received signal 

with the transmitted pulse. Pulse compression allows us to achieve the average 

transmitted power of a relatively long pulse, while obtaining the range resolution 

corresponding to a short pulse. In this chapter, we will analyze analog and digital pulse 

compression techniques. Two analog pulse compression techniques are discussed in this 

chapter. The first technique is known as “correlation processing” which is dominantly 
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used for narrow band and some medium band radar operations. The second technique is 

called “stretch processing” and is normally used for extremely wide band radar 

operations. Digital pulse compression will also be briefly presented. 

 

4.2. Time-Bandwidth Product 

Consider a radar system that employs a matched filter receiver. Let the matched filter 

receiver bandwidth be denoted as B. Then, the noise power available within the matched 

filter bandwidth is given by 

    𝑁𝑖 = 2 
𝑁𝑜

2
                                               (4.1) 

Where the factor of two is used to account for both negative and positive frequency 

bands, as illustrated in Fig. 4.1 

 

 

     Figure 4.1. Input noise power 

 

The average input signal power over a pulse duration 𝜏 ′   is  

                             𝑆𝑖 =
𝐸

𝜏 ′
                                                           (4.2) 

E is the signal energy. Consequently, the matched filter input SNR is given by 

 

                                 𝑆𝑁𝑅 𝑖 =
𝑆𝑖

𝑁𝑖
 =

𝐸

𝑁𝑜𝐵𝜏 ′
                                              (4.3) 
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Again we know that 

                                   𝑆𝑁𝑅 𝑡𝑜  =
2𝐸

𝑁𝑜
                                                                       (4.4) 

 

Now, combining equation 4.3 & 4.4 we may compute the output peak instantaneous 

SNR to the input SNR ratio as   

                     
𝑆𝑁𝑅 𝑡𝑜 

 𝑆𝑁𝑅 𝑖
= 2𝐵𝜏′                                                                  (4.5) 

 

The quantity  𝐵𝜏 ′  is referred to as the “time-bandwidth product” for a given waveform, 

or its corresponding matched filter. The factor 𝐵𝜏 ′  by which the output SNR is 

increased over that at the input is called the matched filter gain, or simply the 

compression gain.  

 

In general, the time-bandwidth product of an unmodulated pulse approaches unity. The 

time-bandwidth product of a pulse can be made much greater than unity by using 

frequency or phase modulation. If the radar receiver transfer function is perfectly 

matched to that of the input waveform, then the compression gain is equal to Bτ′  . 

Clearly, the compression gain becomes smaller than Bτ′  as the spectrum of the matched 

filter deviates from that of the input signal. 

 

4.3. Radar Equation with Pulse Compression 

The radar equation for a pulsed radar can be written as 

 𝑆𝑁𝑅 =
𝑃𝑡𝜏

′𝐺2𝜆2ϭ

 4𝜋 3𝑅4𝑘𝑇𝑒𝐹𝐿
                                                                                 (4.6) 

Where Pt   is the peak power, 𝜏 ′   is pulse width, G is the antenna gain, ϭ is the target 

RCS, R is range, 𝑘  is Boltzman‟s constant, Te  is  effective noise temperature, F is noise 

figure, and L is total radar losses.                                      
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Pulse compression radars transmit relatively long pulses (with modulation) and process 

the radar echo into very short pulses (compressed). One can view the transmitted pulse 

to be composed of a series of very short sub-pulses (duty is 100%), where the width of 

each sub-pulse is equal to the desired compressed pulse width. Denote the compressed 

pulse width as 𝜏𝑐 . Thus, for an individual sub-pulse, Eq. (4.6) can be written as 

        𝑆𝑁𝑅 𝜏𝑐 =
𝑃𝑡𝜏

′𝐺2𝜆2ϭ

 4𝜋 3𝑅4𝑘𝑇𝑒𝐹𝐿
                                                      (4.7) 

 

The SNR for the uncompressed pulse is then derived from Eq. (4.7) as 

 

       𝑆𝑁𝑅 =
𝑃𝑡(𝜏 ′ =𝑛𝜏𝑐)𝐺2𝜆2ϭ

 4𝜋 3𝑅4𝑘𝑇𝑒𝐹𝐿
                                                            (4.8)   

 

Where n is the number of sub-pulses. Equation (4.8) is denoted as the radar equation 

with pulse compression. 

 

Observation of Eq. (4.5) and (4.7) indicates the following (note that both equations have 

the same form): For a given set of radar parameters, and as long as the transmitted pulse 

remains unchanged, then the SNR is also unchanged regardless of the signal bandwidth. 

More precisely, when pulse compression is used, the detection range is maintained while 

the range resolution is drastically improved by keeping the pulse width unchanged and 

by increasing the bandwidth. Remember that range resolution is proportional to the 

inverse of the signal bandwidth, 

                                    R = C/2B                                                                          (4.9)                                                                  

 

4.4. Analog Pulse Compression 

Correlation and stretch pulse compression techniques are discussed in this section. 
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4.4.1. Correlation Processor 

In this case, pulse compression is accomplished by adding frequency modulation to a 

long pulse at transmission, and by using a matched filter receiver in order to compress 

the received signal. using LFM within a rectangular pulse compresses the matched filter 

output by a factor = 𝜏 ′  , which is directly proportional to the pulse width and  achieve 

large compression ratios. This form of pulse compression is known as “correlation 

processing.” 



Fig. 4.2 illustrates the advantage of pulse compression. In this example, an LFM 

waveform is used. Two targets with RCS Ϭ1 = 1𝑚2 and Ϭ2 = 0.5𝑚2 are detected. The 

two targets are not separated enough in time to be resolved.  Fig. 4.2a shows the 

composite echo signal  from those targets. Clearly, the target returns overlap and, thus, 

they are not resolved. However, after pulse compression the two pulses are completely 

separated and are resolved as two targets. In fact, when using LFM, returns from 

neighboring targets are resolved as long as they are separated, in time, by 𝜏𝑛1
 , the 

compressed pulse width. 

 

Figure  

Figure 4.2. (a)  Composite echo signal for two unresolved targets. 
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Figure 4.2. (b)  Composite echo signal corresponding to Fig. 4.2a, after pulse 

compression. 

 

Radar operations (search, track, etc.) are usually carried out over a specified range 

window, referred to as the receive window and defined by the difference between the 

radar maximum and minimum range. Returns from all targets within the receive window 

are collected and passed through a matched filter circuitry to perform pulse compression. 

One implementation of such analog processors is the Surface Acoustic Wave (SAW) 

devices. Because of the recent advances in digital computer development, the correlation 

processor is often performed digitally using the FFT. This digital implementation is 

called Fast Convolution Processing (FCP) and can be implemented at base-band. The 

fast convolution process is illustrated in Fig. 4.3 

Since the matched filter is a linear time invariant system, its output can be described 

mathematically by the convolution between its input and its impulse response, 

  

                             𝑦 𝑡 = 𝑠 𝑡 • (𝑡)                                                                         (4.10) 
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Where 𝑠 𝑡   is the input signal, (𝑡) is the matched filter impulse response (replica), and 

the (•) operator symbolically represents convolution. From the Fourier transform 

properties, 

  𝐹𝐹𝑇 𝑠 𝑡 •  𝑡  = 𝑆 𝑓 .𝐻(𝑓)                                                      (4.11) 

 

And when both signals are sampled properly, the compressed signal can be computed 

from 

  𝑦 = 𝐹𝐹𝑇−1{𝑆.𝐻}                                                                               (4.12) 

 

Where FFT
-1 

is the reverse of FFT . When using pulse compression, it is desirable to use 

modulation schemes that can accomplish a maximum pulse compression ratio, and can 

significantly reduce the side lobe levels of the compressed waveform. For the LFM case 

the first side lobe is approximately 13.4 𝑑𝐵 below the main peak, and for most radar 

applications this may not be sufficient. In practice, high side lobe levels are not 

preferable because noise and/or jammers located at the side lobes may interfere with 

target returns in the main lobe. 

 

 

Figure 4.3. Computing the matched filter output using an FFT. 

 

Weighting functions (windows) can be used on the compressed pulse spectrum in order 

to reduce the side lobe levels. The cost associated with such an approach is a loss in the 

main lobe resolution, and a reduction in the peak value (i.e., loss in the SNR), as 
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illustrated in Fig. 4.4. Weighting the time domain transmitted or received signal instead 

of the compressed pulse spectrum will theoretically achieve the same goal. However, 

this approach is rarely used, since amplitude modulating the transmitted waveform 

introduces extra burdens on the transmitter. 

 

Consider a radar system that utilizes a correlation processor receiver (i.e., matched 

filter). The receive window in meters is defined by  

  𝑅𝑟𝑒𝑐 = 𝑅𝑚𝑎𝑥 −  𝑅𝑚𝑖𝑛                                                 (4.13) 

 

Where  𝑅𝑚𝑎𝑥 and 𝑅𝑚𝑖𝑛  respectively, define the maximum and minimum range over 

which the radar performs detection. Typically 𝑅𝑟𝑒𝑐  is limited to the extent of the target 

complex. 

 

The radar echo signal is similar to the transmitted one with the exception of a time delay 

and an amplitude change that correspond to the target RCS. The first step of the 

processing consists of removing the frequency 𝑓0  . 

 

 

Figure 4.4. Reducing the first side lobe to -42 dB doubles the main lobe width. 
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By using MATLAB Function we can get the uncompressed and compressed echo signal 

in   Fig.  4.5 and Fig. 4.6 respectively. 

Figure 4.5. Uncompressed echo signal. Scatterers are unresolved 

 

Figure 4.6. Compressed echo signal. Scatterers are resolved 
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4.4.2. Stretch Processor 

Stretch processing, also known as “active correlation,” is normally used to process 

extremely high bandwidth LFM waveforms. This processing technique consists of the 

following steps: First, the radar returns are mixed with a replica (reference signal) of the 

transmitted waveform. This is followed by Low Pass Filtering (LPF) and coherent 

detection. Next, Analog to Digital (A/D) conversion is performed; and finally, a bank of 

Narrow Band Filters (NBFs) is used in order to extract the tones that are proportional to 

target range, since stretch processing effectively converts time delay into frequency. All 

returns from the same range bin produce the same constant frequency. Fig. 4.7 shows a 

block diagram for a stretch processing receiver. The reference signal is an LFM 

waveform that has the same LFM slope as the transmitted LFM signal. It exists over the 

duration of the radar “receive-window,” which is computed from the difference between 

the radar maximum and minimum range. Denote the start frequency of the reference 

chirp as 𝑓𝑟.  

 

Consider the case when the radar receives returns from a few close (in time or range) 

targets. Mixing with the reference signal and performing low pass filtering are 

effectively equivalent to subtracting the return frequency chirp from the reference signal. 

Thus, the LPF output consists of constant tones corresponding to the targets‟ positions. 

The normalized transmitted signal can be expressed by 

  𝑠1 𝑡 = cos  2𝜋  𝑓𝑜𝑡 +
𝜇𝑜

2
𝑡2                 0 ≤ 𝑡 ≤ 𝜏 ′              (4.14) 

 

Where 𝜇 =B/𝜏′ is the LFM coefficient and is the chirp start frequency fo. Assume a point 

scatterer at range R. The received signal by the radar is 

 𝑠𝑟 𝑡 = acos[2𝜋(𝑓𝑜 𝑡 − 𝜏 +
𝜇

2
 𝑡 − 𝜏 2)]                   (4.15) 

Where „a‟ is proportional to target RCS, antenna gain, and range attenuation. The time 

delay 𝜏  is 

  𝜏 = 2R/c                                                                                          (4.16) 
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Assume a radar system using a stretch processor receiver. The pulse width is 𝜏 ′  and the 

chirp bandwidth is B . Since stretch processing is normally used in extreme bandwidth 

cases (i.e., very large B ), the receive window over which radar returns will be processed 

is typically limited to few meters to possibly less than 100 meters. The compressed pulse 

range resolution is computed from Eq. (4.9). Declare the FFT size by N and its 

frequency resolution by f. The frequency resolution can be computed using the 

following procedure: consider two adjacent point scatterers at range R1 and R2. The 

minimum frequency separation f, between those scatterers so that they are resolved can 

be computed more precisely, 

       𝑓 = 𝑓2 − 𝑓1 =
2𝐵

𝑐𝜏 ′
 𝑅2 − 𝑅1 =

2𝐵

𝑐𝜏 ′ 𝑅                                                   (4.17) 

 

Now, substituting Eqn. (4.9) into Eqn. (4.17) yields    

     𝑓 =
2𝐵

𝑐𝜏 ′

𝑐

2𝐵
=

1

𝜏 ′
                                                                                      (4.18)  

       

The maximum resolvable frequency by the FFT is limited to the region± 𝑁𝑓/2. Thus, 

the maximum resolvable frequency is 

 

        
𝑁𝑓

2
>

2𝐵 𝑅𝑚𝑥𝑚  − 𝑅𝑚𝑛𝑚  

𝑐𝜏 ′
=

2𝐵𝑅𝑟𝑒𝑐

𝑐𝜋 ′
                                     (4.19)                                  

 

Using Eqn. (4.18) into Eq. (4.19) and collecting term yields  

      𝑁 > 2𝐵𝑇𝑟𝑒𝑐                                                                       (4.20) 

 

For better implementation of the FFT, choose an FFT of size 

                                            𝑁𝐹𝐹𝑇 ≥ 𝑁 = 2𝑚                                                    (4.21)                                                                

 

Here, m is a non zero positive integral. 
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Figure 4.7.  Stretch Processor Block Diagram 

 

The sampling interval is than given by 

   𝑓 =
1

𝑇𝑠𝑁𝐹𝐹𝑇
 

                             Or,  𝑇𝑠 =
1

𝑓𝑁𝐹𝐹𝑇
                                                                     (4.22) 

 

Fig.4.8 and 4.9, respectively, show the uncompressed and compressed echo signals 

corresponding to this example by using MATLAB coding. 
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Figure 4.8. Uncompressed echo signal. 3 targets are unresolved 

 

 

Figure 4.9.  Compressed echo signal. 3 targets are resolved 
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4.4.3. Distortion Due to Target Velocity 

We have analyzed pulse compression with no regards to target velocity. In fact, all 

analyses provided assumed stationary targets. Uncompensated target radial velocity, or 

equivalently Doppler shift, degrades the quality of the HRR profile generated by pulse 

compression. The effects of radial velocity on SFW were analyzed; similar distortion in 

the HRR profile is also present with LFM waveforms when target radial velocity is not 

compensated for. 

 

When the target radial velocity is not zero, the received pulse width is expanded (or 

compressed) by the time dilation factor. Additionally, the received pulse center 

frequency is shifted by the amount of Doppler frequency. When these effects are not 

compensated for, the pulse compression processor output is distorted. This is illustrated 

in Fig. 4.10. Fig. 4.10a shows a typical output of the pulse compression processor with 

no distortion. Alternatively, Figs. 4.10b, 4.10c show the output of the pulse compression 

processor when 5% shift of the chirp center frequency and 10% time dilation are present. 

Figure 4.10. (a) Compressed pulse output of a pulse compression processor. No 

distortion is present. 
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Figure 4.10. (b) Mismatched compressed pulse; 5% Doppler shift. 

 

 

Figure 4.10. (c) Mismatched compressed pulse; 10% time dilation. 
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4.5. Digital Pulse Compression 

In this section we will briefly discuss three digital pulse compression techniques. They 

are frequency codes, binary phase codes, and poly-phase codes. Costas codes, Barker 

Codes, and Frank codes will be presented to illustrate, respectively, frequency, binary 

phase, and poly-phase coding. We will determine the pulse compression goodness of a 

code, based on its autocorrelation function since in the absence of noise the output of the 

matched filter is proportional to the code autocorrelation. Given the autocorrelation 

function of a certain code, the main lobe width (compressed pulse width) and the side 

lobe levels are the two factors that need to be considered in order to evaluate the code‟s 

pulse compression characteristics. 

 

4.5.1. Frequency Coding (Costas Codes) 

Construction of Costas codes can be understood from the construction process of 

Stepped Frequency Waveforms (SFW). In SFW, a relatively long pulse of length 𝜏 ′  is 

divided into N sub pulses each of width 𝜏1(𝜏 ′ = 𝑁𝜏1) . Each group of N sub pulses is 

called a burst. Within each burst the frequency is increased by f  from one sub pulse to 

the next. The overall burst bandwidth is Nf . More precisely, 

  𝜏1 =  𝜏 ′/𝑁                                                                    (4.23) 

 

And the frequency for the ith sub pulse is 

  𝑓𝑖 = 𝑓0 +  𝑖𝑓       ; i= 1,N                                            (4.24) 

 

Where f0 is a constant frequency and f0 >> f . It follows that the time-bandwidth 

product of this waveform is 

  𝑓𝜏 ′ = 𝑁2                                                                   (4.25) 

 

Costas signals (or codes) are similar to SFW, except that the frequencies for the sub 

pulses are selected in a random fashion, according to some predetermined rule or logic. 

For this purpose, consider the 𝑁 ⤫ 𝑁  matrix shown in Fig. 4.11. In this case, the rows 
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are indexed from i = 1,2,…N  and the columns are indexed from j= 0,1,2,…(N-1) . The 

rows are used to denote the sub pulses and the columns are used to denote the frequency. 

A “dot” indicates the frequency value assigned to the associated sub pulse. In this 

fashion, Fig. 4.11a shows the frequency assignment associated with a SFW. 

Alternatively, the frequency assignments in Fig. 4.11b are chosen randomly. For a 

matrix of size 𝑁 ⤫ 𝑁   , there are a total of N! possible ways of assigning the “dots” 

(i.e., N!   Possible codes).  

 

The sequences of “dots” assignment for which the corresponding ambiguity function 

approaches an ideal or a “thumbtack” response are called Costas codes. A near 

thumbtack response was obtained by Costas1 by using the following logic: only one 

frequency per time slot (row) and per frequency slot (column). Therefore, for an 𝑁 ⤫ 𝑁  

matrix the number of possible Costas codes is drastically less than N!  . For example, 

there are Nc = 4 possible Costas codes for N = 3 , and  Nc = 40 possible codes for N=5 . 

It can be shown that the code density, defined as the ratio 𝑁𝑐/𝑁! , significantly gets 

smaller as N becomes larger. 

 

(a)                                                                            (b)                     

Figure 4.11. Frequency assignment for a burst of N sub pulses. (a) SFW (stepped 

LFM);(b)Costas code of length Nc = 10. 
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There are numerous analytical ways to generate Costas codes.   In this section we will 

describe two of these methods. First, q let be an odd prime number, and choose the 

number of sub pulses as  

 𝑁 = 𝑞 − 1                                                             (4.26) 

 

Define γ as the primitive root of q. A primitive root of (an odd prime number) is defined 

as γ such that the powers 𝛾, 𝛾1 ,𝛾2 , … . , 𝛾𝑞−1  modulo q generate every integer from 1 to 

−1 . We can define the normalized complex envelope of the Costas signal as 

 

 𝑠 𝑡 =
1

 𝑁𝜏1  
   𝑠𝑙(𝑡 − 𝑙𝜏1)𝑁−1

𝑙=0                                                     (4.27) 

 

 𝑠𝑙 𝑡 =  
exp 2𝜋𝑓1𝑡                   0 ≤ 𝑡 ≤ 𝜏1

       0                              𝑒𝑙𝑠𝑒𝑤𝑒𝑟𝑒
                                                  (4.28) 

 

Costas showed that the output of the matched filter is 

  𝜒 𝜏, 𝑓𝐷 =  
1

𝑁
 exp 𝑗2𝜋𝑙𝑓𝐷𝜏 

𝑁−1
𝑙=0  𝜙𝑙𝑙 𝜏,𝑓𝐷 +  𝜙𝑙𝑞  𝜏 −  𝑙 − 𝑞 𝜏1,𝑓𝐷 

𝑁−1
𝑞=0
𝑞  ≠𝑙

       (4.29) 

 𝜙𝑙𝑞  𝜏, 𝑓𝐷 =  𝜏 −
 𝜏 

𝜏1
 

𝑠𝑖𝑛𝛼

𝛼
 exp −𝑗𝛽 − 𝑗2𝜋𝑓𝑞𝜏                                        (4.30) 

                                                       

Three-dimensional plots for the ambiguity function of Costas signals show the near 

thumbtack response of the ambiguity function. All side lobes, except for few around the 

origin, have amplitude 1/N. Few side lobes close to the origin have amplitude 2/N, 

which is typical of Costas codes. The compression ratio of a Costas code is 

approximately N. 

 

4.5.2. Binary Phase Code 

In this case, a relatively long pulse of width 𝜏 ′  is divided into N smaller pulses; each is 

of width 𝜏 =  𝜏 ′/𝑁 . Then, the phase of each sub-pulse is randomly chosen as either 0 
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or π radians relative to some CW reference signal. It is customary to characterize a sub-

pulse that has 0 phase (amplitude of +1 Volt) as either “1” or “+.” Alternatively, a sub-

pulse with phase equal to π (amplitude of -1 Volt) is characterized by either “0” or “-.” 

The compression ratio associated with binary phase codes is equal to  = 𝜏 ′/𝜏 , and the 

peak value is N times larger than that of the long pulse. The goodness of a compressed 

binary phase code waveform depends heavily on the random sequence of the phase for 

the individual sub-pulses. 

 

One family of binary phase codes that produce compressed waveforms with constant 

side lobe levels equal to unity is the Barker code. Fig. 4.12 illustrates this concept for a 

Barker code of length seven. A Barker code of length n is denoted as Bn . There are only 

seven known Barker codes that share this unique property; they are listed in Table 4.1. 

Note that 𝐵2 and 𝐵4 have complementary forms that have the same characteristics. Since 

there are only seven Barker codes, they are not used when radar security is an issue. 

 

Figure 4.12. Binary phase code of length 7. 
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Table 4.1. Barker Codes 

 

 

 

In general, the autocorrelation function (which is an approximation for the matched filter 

output) for a 𝐵𝑁 Barker code will be 2𝑁𝜏 wide. The main lobe is 2𝜏  wide; the peak 

value is equal to N . There are (𝑁 − 1)/2  side lobes on either side of the main lobe; this 

is illustrated in Fig. 4.13 for a 𝐵13 . Notice that the main lobe is equal to 13, while all side 

lobes are unity. 

 

The most side lobe reduction offered by a Barker code is −22.3 𝑑𝐵, which may not be 

sufficient for the desired radar application. However, Barker codes can be combined to 

generate much longer codes. In this case, a 𝐵𝑚  code can be used within a 𝐵𝑛  code ( m 

within n ) to generate a code of length mn . The compression ratio for the combined 𝐵𝑚𝑛  

code is equal to mn. As an example, a combined is given by  
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        𝐵54 = { 11101, 11101, 00010, 11101 }                                      (4.31) 

 

and is illustrated in Fig. 4.14. Unfortunately, the side lobes of a combined Barker code 

autocorrelation function are no longer equal to unity. Some side lobes of a Barker code 

autocorrelation function can be reduced to zero if the matched filter is followed by a 

linear transversal filter with impulse response given by                 

                                              

                                     𝑡 =  𝛽𝑘𝛿 𝑡 − 2𝑘𝜏                                                     𝑁
𝐾=−𝑁 (4.32)  

 

 

Figure 4.13. Barker code of length 13, and its corresponding 

autocorrelation function. 
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Figure 4.14. A combined 𝑩𝟓𝟒 Barker code 

 

Where N is the filter‟s order, the coefficients 𝛽𝑘(𝛽𝑘 =  𝛽−𝑘)  are to be determined, 𝛿(•) 

is the delta function, and is the Barker code sub-pulse width. A filter of order produces 

zero side lobes on either side of the main lobe. The main lobe amplitude and width do 

not change. This is illustrated in Fig. 4.15. 

 

 

Figure 4.15. A linear transversal filter of order N can be used to produce N zero 

side lobes in the autocorrelation function. In this figure, N = 4. 

 

4.5.3. Frank Codes 

Codes that use any harmonically related phases based on a certain fundamental phase 

increment are called poly-phase codes. We will demonstrate this coding technique using 

Frank codes. In this case, a single pulse of width 𝜏 ′  is divided into N equal groups; each 

group is subsequently divided into other N sub-pulses each of width 𝜏 . Therefore, the 

total number of sub-pulses within each pulse is 𝑁2 , and the compression ratio is  =
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𝑁2.As before, the phase within each sub-pulse is held constant with respect to some CW 

reference signal.  

 

A Frank code of 𝑁2 sub-pulses is referred to as an N-phase Frank code. The first step in 

computing a Frank code is to divide 360𝑜  by N, and define the result as the fundamental 

phase increment 𝜙. More precisely, 

                                     𝜙 =
360𝑜

𝑁
                                              (4.33)                       

 

The size of the fundamental phase increment decreases as the number of groups is 

increased, and because of phase stability, this may degrade the performance of very long 

Frank codes. For      N-phase Frank code the phase of each sub-pulse is computed from 

   

 

                       
0          0             0                       0 ⋯ 0

⋮ ⋱ ⋮
0   𝑁 − 1   2 𝑁 − 1  3(𝑁 − 1) ⋯  𝑁 − 1 2

                                 (4.34)                     

 

Where each row represents a group, and a column represents the sub-pulses for that 

group. For example, a 4-phase Frank code has N = 4 , and the fundamental phase 

increment is 𝜑 = 360𝑜/4  = 90
o
 

 

Therefore, a Frank code of 16 elements is given by  

  

𝐹16 = { 1  1  1  1  1  𝑗 − 1  − 𝑗   1  − 1    1   − 1     1  − 𝑗   − 1      𝑗   }                  (4.35)        

 

The phase increments within each row represent a stepwise approximation of an up-

chirp LFM waveform. The phase increments for subsequent rows increase linearly 

versus time. Thus, the corresponding LFM chirp slopes also increase linearly for 

subsequent rows. This is illustrated in Fig. 4.16, for 𝐹16. 
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Figure 4.16. Stepwise approximation of an up-chirp waveform 

using a Frank code of 16 elements. 

 

4.5.4. Pseudo-Random (PRN) Codes 

Pseudo-random (PRN) codes are also known as Maximal Length Sequences (MLS) 

codes. These codes are called pseudo-random because the statistics associated with their 

occurrence is similar to that associated with the coin-toss sequences. Maximum length 

sequences are periodic with period L and the code values take on two binary values (+1 

and -1). The MLS correlation function is 

  𝜙 𝑛 =   
𝐿             𝑛 = 0, ±𝐿, ±2𝐿, …
−1                        𝑒𝑙𝑠𝑒𝑤𝑒𝑟𝑒

                                               (4.36)                     

 

Fig. 4.17 shows a typical sketch for an MLS autocorrelation function.  Clearly these 

codes have the advantage that the compression ratio becomes very large as the period is 

increased.  

 

Additionally, adjacent peaks (grating lobes) become farther apart. Maximum length 

sequences exist for all integer values m, with a period equal to 2𝑚 − 1. They can be 
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generated using shift register circuits with the proper feedback connections, where the 

sum is a modulo-2 operation. This is illustrated in Fig. 4.18 for m = 4 (i.e., L =15). Note 

that the circuit shown in Fig. 4.18 is not the only one that can produce this code. 

 

In radar applications, long codes are very desirable. However, having very long codes 

presents many possibilities for the feedback connections through the modulo-2 adder. 

For example, for m=80, the period is 𝐿 = 280 − 1, which is very huge and may take 

years to produce the corresponding code. Therefore, there is a need for a more 

systematic method for producing MLS codes.  

 

In practice, typical MLS codes are produced by using the primitive polynomials with the 

proper degree that corresponds to the code, and the feedback connections are made 

according to the chosen polynomial, as illustrated in Fig.4.18 for m =4 . In this example 

the primitive polynomial is 𝑥4 + 𝑥 + 1 . Of course the initial loading for the registers 

must be different from all zeros. More details on primitive polynomials can be found in 

many sited references. 

Figure 4.17. Typical correlation of an MLS code of length L 
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Figure 4.18. Circuit for generating an MLS sequence of length L = 15 

The primitive polynomial is 𝒙𝟒 + 𝒙 + 𝟏 
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 Chapter 5  
COMPARATIVE STUDY AMONG DIFFERENT PULSE 

COMPRESSION TECHNIQUE  

 

5.1. Introduction 

Reduction in the peak power of a pulse can be achieved by increasing the length of the 

Pulse. But, an increase in the length of the pulse reduces range resolution. To avoid the 

compromise in range resolution, some form of encoding must be done within the 

transmitted pulse, so that it is possible to \compress" a longer pulse into a shorter one in 

the receiver using suitable signal processing operations. The easiest form of such 

encoding is to allow the radar pulse to modulate a waveform or a sequence that is 

uncorrelated in time but known at the receiver. A cross-correlation operation at the 

receiver (using the known transmitted waveform/sequence) will compress the long 

received waveform/sequence into a short one. This is due to the time auto-correlation 

properties of the transmitted waveform/sequence, which is maximum at zero-lag and 

almost zero at lags other than zero. Another important effect of Pulse Compression is the 

increase in the bandwidth of the signal. Without Pulse Compression, a longer pulse has a 

lesser bandwidth than a shorter pulse. But, due to the encoding associated with Pulse 

Compression, the bandwidth of the longer pulse increases. In fact, to have higher range 

resolution using pulse compression, the waveform/sequence encoding should be highly 

uncorrelated and thus use a larger band-width. The objective of designing a good Pulse 

Compression scheme is now to choose an encoding signal that has a very narrow auto-

correlation function. 

 

5.2. Simulation of Different Pulse compression 

Simulation has been carried out for analog and digital pulse compression technique 

using MATLAB software. For the compression we have used chirp frequency of 5.6 
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GHz and chirp bandwidth of 1GHz. Scattering range of 150 km is also used. In the 

simulation we vary the weighting function and show the corresponding output and 

finally compare the outputs. As we have used MATLAB software, for simulation we 

have to fix some parameters which are suitable and easy to simulate and which do not 

exceed the range. It should be noted that the compressed pulse range resolution is 

∆𝑅 = 0.15 𝑚   

 

Figure 5.1. Uncompressed Echo of Received Signal 

 

5.2.1. Pulse compression Using Matched Filter 

Output of a matched filter is just the correlation of the received signal with a delayed 

version of the transmitted signal. In the FMCW case this function is implemented by 

taking the product of the received signal with the transmitted signal and filtering to 

obtain a constant frequency beat, as discussed. The spectrum is then determined using 

the Fourier transform or a similar spectral estimation process. 
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Figure 5.2. Matched filter time domain response 

 

Figure 5.3. Matched filter frequency domain response 
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Figure 5.4. Compressed echo of received signal using no weighting function 

 

5.2.1.1. Window Variation over matched filter response  

Weighting functions (windows) can be used on the compressed pulse spectrum in order 

to reduce the side lobe levels. The cost associated with such an approach is a loss in the 

main lobe resolution, and a reduction in the peak value. Weighting the time domain 

transmitted or received signal instead of the compressed pulse spectrum will 

theoretically achieve the same goal. However, this approach is rarely used, since 

amplitude modulating the transmitted waveform introduces extra burdens on the 

transmitter. We compare the performance of different side lobe reduction technique 

varying different windows. Hamming, Kaiser and Chebyshev window are used to show 

the comparison. 
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Figure 5.5. (a) Compressed echo of received signal using hamming weighting 

function 

 

Figure 5.5. (b) Compressed echo of received signal using Kaiser weighting function 
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Figure 5.5. (c) Compressed echo of received signal using chebyshev weighting 

function 

 

5.2.2. Stretch Processor 

In Stretch a linear FM pulse is transmitted and then the return echo is demodulated by 

down converting using a frequency modulated LO signal of identical or slightly different 

FM slope. If the identical slope is used then the echo spectrum corresponds to the range 

profile. This is a form of pulse compression intermediate between standard pulse 

compression and FMICW. If the slope of the LO is different to that of the transmitted 

chirp, then the output of the Stretch processor comprises signals with a reduced chirp. 

These can then be processed using a standard SAW pulse compression system to 

produce target echoes as described in the previous section. 
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Figure 5.6. (a) Compressed echo for single target using stretch processing technique 

 

 

Figure 5.6. (b) Compressed echo for two targets using stretch processing technique 
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Figure 5.6. (c) Compressed echo for three targets using stretch processing 

technique 

 

5.2.3 Digital Pulse Compression 

Barker Code is used here as digital pulse compression. Barker Code of different lengths 

is used here for multiple targets. 

Figure 5.7. (a) Digital pulse compression technique using Barker Code of length 

five (𝑩𝟓) for three targets 
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Figure 5.7. (b) Digital pulse compression technique using Barker Code of length 

seven (𝑩𝟕) for three targets 

 

 

Figure 5.7. (c) Digital pulse compression technique using Barker Code of length 

thirteen (𝑩𝟏𝟑) for three targets 
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5.3. Result and Discussion on Simulation  

To compare the performance of different pulse compression technique we instruct them to 

track the same target with varying weighting function for pulse compression using matched  

filter. We have plotted the compressed echo varying weighting function in figure 5.5. 

For stretch processor and digital pulse compression we referred them to track multiple 

targets. We checked the delectability of compressed echo for multiple targets in figure 

5.6 and figure 5.7. First Side lobe Ratio (SLR) for compressed echo for different pulse 

compression technique is listed below 

Table 5.1. First side lobe Ratio (SLR) for different pulse compression technique 

Name of Process 
First side lobe Ratio (SLR) 

in db 

Matched filter with no window -13.09 

Matched filter with Hamming window -13.14 

Matched filter with Kaiser window -13.46 

Matched filter with Chebyshev window -12.92 

Stretch Processor for single target Tensed to minus infinity 

Barker Code of length five(𝐵5) -13.97 

Barker Code of length seven(𝐵7) -16.90 

Barker Code of length thirteen(𝐵13) -22.27 

 

For multiple targets there is no overlapping of main lobes for Digital Pulse compression 

(figure 5.7). For stretch processor technique two main lobes overlap each other (Figure 

5.6(b) & 5.6(c)).    
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Chapter 6  
CONCLUSION AND FUTURE WORKS 

 

6.1. Results and Discussions 

Chapter 1 begins with the basic radar system, its origination and classification along 

with the operating frequency bands. In the process, it is shown graphically that 

increasing the pulse width increases the effective detection range for a pulsed radar 

system. It is not an economic way to increase the range as it means increasing the 

transmitted power. However,, fine resolution requires pulse width to be as small as 

possible (or bandwidth as large as possible). Achieving fine range resolution while 

maintaining adequate average transmitted power can be accomplished by using pulse 

compression techniques (not part of this thesis). 

 

 In chapter 2, the basic equation for a monostatic pulsed radar system is developed. The 

analysis was extended to find the equation for the bistatic radar system. Then different 

parameters were varied to observe their effects on the radar range by using MATLAB 

simulation. Doubling the peak power improves SNR only a little where as doubling the 

RCS improves SNR a little better. Other radar parameters such as antenna gain variation 

should be considered to improve SNR or detection range effectively. Integrating a 

limited number of pulses can significantly enhance the SNR. However, integrating large 

amount of pulses does not provide any further major improvement in radar performance. 

We also found from the simulation that we can increase the antenna aperture to 

compensate for the lack of power being transmitted to cover a wider range of area for 

target detection. 
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In chapter 3, concentration is given on fundamentals of pulse compression. It is shown 

that the easiest form of pulse compression is to allow the radar pulse to modulate a 

waveform or sequence that is uncorrelated in time but known at the receiver. A cross-

correlation operation at the receiver (using the known transmitted waveform/sequence) 

will compress the long received waveform/sequence into a short one. This is due to the 

time auto-correlation properties of the transmitted waveform/sequence, which is 

maximum at zero-lag and almost zero at lags other than zero. Different weighting 

functions are discussed here to improve the detection capability of radar while using 

compressed pulse. 

 

In chapter 4, different types of pulse compression techniques are discussed. It has been 

shown that how high range resolution depends on pulse compression. Using pulse 

.compression radar can achieve the energy of a long pulse and the resolution of a short-

pulse without the high peak power required of a high energy short-duration pulse. For a 

given set of radar parameters, and as long as the transmitted pulse remains unchanged, 

then the SNR is also unchanged regardless of the signal bandwidth  Since the spectral 

bandwidth of a pulse is inversely proportional to its width, the bandwidth of a short 

pulse is large. Large width can increase system complexity. Here we try to identify 

suitable pulse compression technique to increase the range resolution having less system 

complexity. We have also discussed about different types of distortion occurs during 

pulse compression and try to find out way to avoid distortions during pulse compression. 

 

In chapter 5, a comparison study of different pulse compression techniques is shown by 

simulating in MATLAB. When we simulate pulse compression using matched filter for 

single target there arise side lobes. To reduce side lobes we have used different 

weighting functions. By using stretch processing technique for same target side lobes are 

totally eradicated. But problem arises when multiple targets are used. Simulation shows 

that for two or more targets, compressed pulses overlapped each other. It can cause 

serious limitations on the performance of radars and their ability to perform adequate 
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target detection. Barker Code of different lengths is simulated here for multiple targets. 

And the problem of overlapping of two or more compressed pulse is reduced. 

As Barker Code of length thirteen ( 𝐵13 ) has no overlapping problem and has 

comparatively lower First Side lobe Ratio (-22.27 DB), it will be „the best estimated pulse 

compression technique‟. 

 

6.2. Scope of Future Works 

The thesis work mostly deals with different pulse compression techniques to improve 

range resolution for detecting multiple targets. Barker Code of length thirteen (𝐵13) has 

shown very good performance while simulating for multiple targets. But it still has some 

side lobes and that can create problem for detecting targets of very weak reflected echo 

signal. Future works may focus on reducing side lobes for the targets of long distances. 
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APPENDIX 

 MATLAB Codes Used for Simulations  

 

A-1 Code for figure 4.11.(a), 4.11.(b) & 4.11.(c) 

 

clc 

clear all 

eps = 1.5e-5; 

t = 0:0.001:.5; 

y = chirp(t,0,.25,20); 

%chirp signal generation 

figure(1) 

plot(t,y); 

yfft = fft(y,512); 

rt=abs(ifft(yfft .* conj(yfft))); 

ycomp = fftshift(abs(ifft(yfft .* conj(yfft)))); 

%normalized compressed pulse 

maxval = max (ycomp); 

ycomp = eps + ycomp ./ maxval; 

figure(2) 

del = .5 /512.; 

tt = 0:del:.5-eps; 

%relative delay 

plot (tt,ycomp,'k') 

%compressed pulse output without any distortion 

xlabel ('Relative delay - seconds'); 

ylabel('Normalized compressed pulse') 

grid 

%change center frequency 
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y1 = chirp (t,0,.25,21); 

y1fft = fft(y1,512); 

y1comp = fftshift(abs(ifft(y1fft .* conj(yfft)))); 

maxval = max (y1comp); 

y1comp = eps + y1comp ./ maxval; 

%normalized compressed pulse 

figure(3) 

plot (tt,y1comp,'k') 

%mismatched compressed pulse with 5% Doppler shift 

xlabel ('Relative delay - seconds'); 

ylabel('Normalized compressed pulse') 

grid    %change pulse width 

t = 0:0.001:.45; 

y2 = chirp (t,0,.225,20); 

y2fft = fft(y2,512); 

y2comp = fftshift(abs(ifft(y2fft .* conj(yfft)))); 

%normalized compressed pulse 

maxval = max (y2comp); 

y2comp = eps + y2comp ./ maxval; 

figure(4); 

plot (tt,y2comp,'k'); 

%mismatched compressed pulse with 10% time dillation 

xlabel ('Relative delay - seconds'); 

ylabel('Normalized compressed pulse') 

grid 

 

MATLAB function “power_integer_2.m” 

 

function n = power_integer_2 (x) 

m = 0.; 

for j = 1:30 



81 | P a g e  

 

m = m + 1.; 

delta = x - 2.^m; 

if(delta < 0.) 

n = m; 

return 

else 

end 

end 

 

A-2 Code for figure 5.1, 5.2 & 5.3 

clc 

clear all 

nscat=1; %Number of point scatterers within the received 

window 

rmin=150000; %Minimum range of receive window 

rrec=200; %Receive window size 

taup=.000005;%Uncompressed pulse width 

f0=14e+6; %Chirp start frequency 

b=16e+6;%Chirp bandwidth 

scat_range=rmin+[0 25 50];%Vector of scatterers range 

scat_rcs=[1 1 1]; %Vector of scatterers RCS 

winid=0; %window function 

eps = 1.0e-16; 

htau = taup/2.; 

c = 3.e8; 

n = fix(2. * taup * b); 

m = power_integer_2(n); %power_integer_2 calling function 

nfft = 2.^m; 

x(nscat,1:nfft) = 0.; 

y(1:nfft) = 0.; 

replica(1:nfft) = 0.; 

if( winid == 0.) 
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win(1:nfft) = 1.; 

win =win'; 

else 

if(winid == 1.) 

win = hamming(nfft); %hamming window function 

else 

if( winid == 2.) 

win = kaiser(nfft,pi); %kaiser window function 

else 

if(winid == 3.) 

win = chebwin(nfft,60); %chebwin window function 

end 

end 

end 

end 

deltar = c / 2. / b; 

max_rrec = deltar * nfft / 2.; 

maxr = max(scat_range) - rmin; 

if(rrec > max_rrec | maxr >= rrec ) 

'Error. Receive window is too large; or scatterers fall 

outside window'  

break 

end 

trec = 2. * rrec / c; 

  

deltat = taup / nfft; 

t = 0: deltat:taup-eps; 

uplimit = max(size(t)); 

replica(1:uplimit) = exp(i * 2.* pi * (.5 * (b/taup) .* 

t.^2)); 
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figure(1) 

subplot(2,1,1) 

plot(real(replica)) %matched filter time domain response 

title('Matched filter time domain response') 

subplot(2,1,2) 

plot(fftshift(abs(fft(replica)))); %matched filter 

frequency domain response 

title('Matched filter frequency domain response') 

for j = 1:1:nscat 

t_tgt = 2. * (scat_range(j) - rmin) / c +htau; 

x(j,1:uplimit) = scat_rcs(j) .* exp(i * 2.* pi *(.5 * 

(b/taup) .* (t+t_tgt).^2)); 

y = y + x(j,:); 

end 

figure(2) 

plot(t,real(y),'k') %plot of uncompressed echo signal 

xlabel ('Relative delay - seconds') 

ylabel ('Uncompressed echo') 

title ('Zero delay coincide with minimum range') 

rfft = fft(replica,nfft); 

yfft = fft(y,nfft); 

out= abs(ifft((rfft .* conj(yfft)) .* win' )) ./ (nfft); 

 

A-3  Code for figure 5.4 & 5.5 

clc 

clear all 

nscat=1; %Number of point scatterers within the received 

window 

rmin=150000; %Minimum range of receive window 
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rrec=200; %Receive window size 

taup=.000005;%Uncompressed pulse width 

f0=14e+6; %Chirp start frequency 

b=16e+6;%Chirp bandwidth 

scat_range=rmin+[0 25 50];%Vector of scatterers range 

scat_rcs=[1 1 1]; %Vector of scatterers RCS 

winid=0; %window function 

eps = 1.0e-16; 

htau = taup/2.; 

c = 3.e8; 

n = fix(2. * taup * b); 

m = power_integer_2(n); %power_integer_2 calling function 

nfft = 2.^m; 

x(nscat,1:nfft) = 0.; 

y(1:nfft) = 0.; 

replica(1:nfft) = 0.; 

if( winid == 0.) 

win(1:nfft) = 1.; 

win =win'; 

else 

if(winid == 1.) 

win = hamming(nfft); %hamming window function 

else 

if( winid == 2.) 

win = kaiser(nfft,pi); %kaiser window function 

else 

if(winid == 3.) 

win = chebwin(nfft,60); %chebwin window function 

end 

end 
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end 

end 

deltar = c / 2. / b; 

max_rrec = deltar * nfft / 2.; 

maxr = max(scat_range) - rmin; 

if(rrec > max_rrec | maxr >= rrec ) 

'Error. Receive window is too large; or scatterers fall 

outside window'  

break 

end 

trec = 2. * rrec / c; 

  

deltat = taup / nfft; 

t = 0: deltat:taup-eps; 

uplimit = max(size(t)); 

replica(1:uplimit) = exp(i * 2.* pi * (.5 * (b/taup) .* 

t.^2)); 

figure(4) 

plot(real(replica)) 

title('Matched filter time domain response') 

figure(3) 

plot(fftshift(abs(fft(replica)))); 

title('Matched filter frequency domain response') 

for j = 1:1:nscat 

t_tgt = 2. * (scat_range(j) - rmin) / c +htau; 

x(j,1:uplimit) = scat_rcs(j) .* exp(i * 2.* pi *(.5 * 

(b/taup) .* (t+t_tgt).^2)); 

y = y + x(j,:); 

end 

figure(1) 
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plot(t,real(y),'k') 

xlabel ('Relative delay - seconds') 

ylabel ('Uncompressed echo') 

title ('Zero delay coincide with minimum range') 

rfft = fft(replica,nfft); 

yfft = fft(y,nfft); 

out= abs(ifft((rfft .* conj(yfft)) .* win' )) ./ (nfft); 

figure(2) 

time = -htau:deltat:htau-eps; 

plot(time,out,'k') 

xlabel ('Relative delay - seconds') 

ylabel ('Compressed echo') 

title ('Zero delay coincide with minimum range') 

grid 

 

A-4   Code for figure 5.6 

 

clc 

clear all 

nscat=3; %Number of point scatterers within the received 

window 

rmin=150000; %Minimum range of receive window 

rrec=200; %Receive window size 

taup=.000005;%Uncompressed pulse width 

f0=14e+6; %Chirp start frequency 

b=16e+6;%Chirp bandwidth 

scat_range=rmin+[0 25 50];%Vector of scatterers range 

scat_rcs=[1 1 1]; %Vector of scatterers RCS 

win=0; %window function 

eps = 1.0e-16; 
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htau = taup / 2.; 

c = 3.e8; %speed of light 

trec = 2. * rrec / c; 

n = fix(2. * trec * b); 

m = power_integer_2(n); 

nfft = 2.^m; 

x(nscat,1:nfft) = 0.; 

y(1:nfft) = 0.; 

if( win == 0.) 

win(1:nfft) = 1.; 

win =win'; 

else 

if(win == 1.) 

win = hamming(nfft); %hamming window function 

else 

if( win == 2.) 

win = kaiser(nfft,pi); %kaiser window function 

else 

if(win == 3.) 

win = chebwin(nfft,60); % chebwin window function 

end 

end 

end 

end 

deltar = c / 2. / b; 

max_rrec = deltar * nfft / 2.; 

maxr = max(scat_range) - rmin; 

if(rrec > max_rrec | maxr >= rrec ) 

'Error. Receive window is too large; or scatterers fall 

outside window' 
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break 

end 

deltat = taup / nfft; 

t = 0: deltat:taup-eps; 

uplimit = max(size(t)); 

for j = 1:1:nscat 

psi1 = 4. * pi * scat_range(j) * f0 / c -4.* pi * b * 

scat_range(j) * scat_range(j) / c / c/ taup; 

psi2 = (4.*pi*b*scat_range(j) / c / taup) .* t; 

x(j,1:uplimit) = scat_rcs(j).* exp(i * psi1 + i.*psi2); 

y = y + x(j,:); 

end 

ywin = y .* win'; 

yfft = fft(y,nfft) ./ nfft; 

out= fftshift(abs(yfft)); 

n1=rand(size(yfft)); 

out1=out+n1; 

figure(2) 

time = -htau:deltat:htau-eps; 

plot(time,out) 

xlabel ('Relative delay - seconds') 

ylabel ('Compressed echo') 

title ('Zero delay coincide with minimum range (without 

noise)') 

gridime = -htau:deltat:htau-eps; 

grid 

 

A-5 Code for figure 5.7 

  

clc 
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clear all 

b=1;   %arbitary constant 

N=13;   %barker code length 

t=b/N*[1:1:(2*N-1)];   % compressed pulse width 

x=[1 1 1 1 1 -1 -1 1 1 -1 1 -1 1];   %barker code 

a=xcorr(x);   %auto correlation of barker code 

b=abs(a);   %absolute value of auto correlated signal 

plot(t, b);   %plot of compressed pulse 

 


