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ABSTRACT

Speech recognition (also known as automatic speech recognition or computer speech recog-

nition) converts spoken words to text. The term “voice recognition” is sometimes used

to refer to recognition systems that must be trained to a particular speaker as is the case

for most desktop recognition software. Recognizing the speaker can simplify the task of

translating speech.

For the past two decades, research in speech recognition has been intensively carried out

worldwide, spurred on by advances in signal processing, algorithms, architectures, and hard-

ware. Speech recognition systems have been developed for a wide variety of applications,

ranging from small vocabulary keyword recognition over dial-up telephone lines, to medium

size vocabulary voice interactive command and control systems on personal computers, to

large vocabulary speech dictation, spontaneous speech understanding, and limited-domain

speech translation.

In this paper, we prepare a Bangla Phoneme recognition system of Bangla Automatic Speech

Recognition (ASR). Most of the Bangla ASR system uses a small number of speakers,

but 30 speakers selected from a wide area of Bangladesh, where Bangla is used as a na-

tive language, are involved here. In the experiments, mel-frequency cepstral coefficients

(MFCCs) are inputted to the hidden Markov model (HMM) based classifiers for obtaining

phoneme recognition performance. It is shown from the experimental results that MFCC-

based method of 39 dimensions provide higher phoneme correct rate and accuracy. More-

over, it requires fewer mixture components in the HMMs .

Moreover, this paper we review some of the key advances in several areas of automatic

speech recognition. We also illustrate, by examples, how these key advances can be used for

continuous speech recognition of Bangla Language. Finally we elaborate the requirements

in designing successful real-world applications and address technical challenges that need

to be harnessed in order to reach the ultimate goal of providing an easy-to-use, natural, and

flexible voice interface between people and machines.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Speech is one of the oldest and most natural means of information exchange between hu-

man beings. We as humans speak and listen to each other in human-human interface. For

centuries people have tried to develop machines that can understand and produce speech as

humans do so naturally [1] [2] . Obviously such an interface would yield great benefits [3].

Attempts have been made to develop vocally interactive computers to realise voice/speech

recognition. In this case a computer can recognize text and give out a speech output [3].

Voice/speech recognition is a field of computer science that deals with designing computer

systems that recognize spoken words. It is a technology that allows a computer to identify

the words that a person speaks into a microphone or telephone.

Speech recognition can be defined as the process of converting an acoustic signal, captured

by a microphone or a telephone, to a set of words [4] [5]. Automatic speech recogni-

tion (ASR) is one of the fastest developing fields in the framework of speech science and

engineering. As the new generation of computing technology, it comes as the next major in-

novation in man-machine interaction, after functionality of text-to-speech (TTS), supporting

interactive voice response (IVR) systems.

The reason for the evolution of ASR, hence improved is that it has a lot of applications

in many aspects of our daily life, for example, telephone applications, applications for the

physically handicapped and illiterates and many others in the area of computer science.

Speech recognition is considered as an input as well as an output during the Human Com-

puter Interaction (HCI) design . HCI involves the design implementation and evaluation of

interactive systems in the context of the users task and work [6].

The list of applications of automatic speech recognition is so long and is growing; some
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of known applications include virtual reality, Multimedia searches, auto-attendants, travel

information and reservation, translators, natural language understanding and many more

applications [7]

Speech technology is the technology of today and tomorrow with a developing number of

methods and tools for better implementation. Speech recognition has a number of practi-

cal implementations for both fun and serious works. Automatic speech recognition has an

interesting and useful implementation in expert systems, a technology whereby computers

can act as a substitute for a human expert. An intelligent computer that acts, responds or

thinks like a human being can be equipped with an automatic speech recognition module

that enables it to process spoken information. Medical diagnostic systems, for example, can

diagnose a patient by asking him a set of questions, the patient responding with answers,

and the system responds with what might be a possible disease.

1.2 Background of research

In the past few years a significant portion of the research in speech processing has gone

into studying practical methods for automatic speech recognition (ASR). Much of this effort

has been stimulated by the Advanced Research Project Agency (ARPA), formerly known as

D(defense)ARPA, which has funded research on three large vocabulary recognition (LVR)

projects, namely the Naval Resource Management (RM) task, the Air Travel Information

System (ATIS) and the North American Business (NAB, previously known as the Wall Street

Journal or WSJ) task. In addition, there is a worldwide activity in multi-lingual, large vocab-

ulary speech recognition because of the potential applications to voice-interactive database

access and management (e.g. ATIS RM), voice dictation (e.g. discrete word recognizer [8]

and continuous speech recognition such as the NAB/WSJ task) and limited-domain spoken

language translation.

The Philips SPICOS system and its extensions, the CSELT system (which is currently in

trial) for Eurorail information services, the Cambridge University systems, and the LIMSI

effort, are examples of the current activity in speech recognition research in Europe. In

Japan, large vocabulary recognition systems are being developed based on the concept of

interpreting telephony and telephone directory assistance. In Taiwan and China, syllable-
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based recognizers have been designed to handle large vocabulary Mandarin dictation which

is of practical importance because keyboard entry of Chinese text requires a considerable

amount of effort and training. In Canada, the most notable research project is the INRS

86,000-word isolated word recognition system. In the United States, in addition to the re-

search being carried out at ATT and IBM, most of the effort is sponsored by ARPA, en-

compassing efforts by BBN (the BYBLOS system), CMU (the SPHINX systems), Dragon,

Lincoln Laboratory, MIT (the Summit system and its extensions), SRI (the DECIPHER sys-

tem), and many others in the ARPA Human Language Technology Program. A brief history

of automatic speech recognition research can be found in the textbook on speech recognition

by Rabiner and Juang (1993).

Although we have learned a great deal about how to build practical and useful speech recog-

nition systems, there remain a number of fundamental questions about the technology to

which we have no definitive answers. It is clear that the speech signal is one of the most

complex signals that we need to deal with. The speech signal being observed is different

(even when produced by the same person) each time, even for multiple utterances of the

same sequence of words. Part of the reason that automatic speech recognition by machine is

difficult is due to this inherent signal variability. In addition to the vast inherent differences

across different speakers and different dialects, the speech signal is influenced by the trans-

ducer used to capture the signal, the channel used to transmit the signal, and the speaking

environment that can add noise to the speech signal or change the way the signal is produced

(e.g. the Lombard effect) shown in very noisy environments.

There have been many attempts to find so called distinctive features of speech which are

invariant to a number of factors. Certain distinctive (phonetic) features, such as nasality and

voicing, can be used to represent the place and manner of articulation of speech sounds so

that speech can be uniquely identified by detecting the acoustic-phonetic properties of the

signal. By organizing such knowledge in a systematic manner, speech recognition can (in

theory) be performed by first identifying and labeling the sequence of feature vectors and

then identifying the corresponding sounds in the speech signal, followed by decoding the

corresponding sequence of words using lexical access to a dictionary of words. This has

been demonstrated in spectrogram reading by a human expert who can visually segment

and identify some speech sounds based on knowledge of acoustic-phonetics of English.

3



Although the collection of distinctive features, in theory, offers a set of invariant features for

speech recognition, it is not generally used in most speech recognitions systems. This is due

to the fact that the set of distinctive features are usually difficult to identify in spontaneous

continuous speech and the recognition results are generally unreliable.

1.3 Goal of the thesis

This thesis concentrates Bangla Phoneme Recognition for Different Acoustic Features:

(a) To critically review literature related to ASR.

(b) To identify speech corpus elements exhibited in Bangla language.

(c) Preparation Bangla speech corpus,

(d) To implement an isolated whole word phoneme recognizer that is capable of recognizing

and responding to word .

(e) To train the above developed system in order to make it speaker independent.

(f) To validate the automatic phoneme recognizer developed during the study

1.4 Significance of the Study

The proposed research has theoretical, practical, and methodological significance:

i. The speech corpus developed will be very useful to any researcher who may wish to

venture into Bangla language automatic phoneme recognition.

ii. By developing and training a speech recognition system in Bangla language, the semi

illiterates would be able to use it in accessing IT tools. This would help bridge the

digital divide.

iii. Since Speech technology is the technology of today and tomorrow, the results of this

research will help many indigenous Bangla language speakers who are scattered all

over the world to take advantage of the many benefits of ICT.

4



iv. The technology will find applicability in systems such as banking, telecommunica-

tions, transport, Internet portals, accessing PC, emailing, administrative and public

services, cultural centres and many others.

v. The built system will be very useful to computer manufactures and software develop-

ers as they will have a speech recognition engine to include Bangla language in their

applications.

vi. By developing and training a speech recognition system in Bangla language, it would

mark the first step towards making ICT tools become more usable by the blind and

elderly people with seeing disabilities.
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CHAPTER 2

SPEECH RECOGNITION

2.1 Introduction

Speech is a natural way of communication among people. Speech communication refers

to the processes associated with the production and perception of sounds used in spoken

language. We learn to speak prior to write or type. Although there are many professional

typists, it is not practical to employ them for all of our typing needs. Automatic speech

recognition (ASR) is a useful alternative form of input. It has several advantages over using

a computer keyboard. ASR can be used while someone is doing some work or looking

somewhere. It also allows people with handicaps to use computers. ASR reduces injuries

that arise from using computer keyboards for a long time or from concentrating on the

computer screen. ASR can also aid in education; an example is its use as a language-learning

tool.

For many languages speech recognition systems have been developed with some success.

A notable example is Microsoft Office XP’s speech recognition system. Other more spe-

cific ASR systems have also been used in different applications with continuing success. A

general-purpose speech recognition system (a dictation system) can be used to encode docu-

ments into text. This may be especially useful for languages that have a very large character

set. Large characters set languages are difficult to type using keyboards, as they require a

number of keystrokes to type for a single character. For such languages typing is usually a

very time consuming process. Amharic is an example of this type of languages.

This chapter introduces the basic of speech recognition system. Modern speech understand-

ing systems merge interdisciplinary technologies from Signal Processing, Pattern Recogni-

tion, Natural Language, and Linguistics into a unified statistical framework.
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2.2 Introduction to ASR Systems

Automatic speech recognition (sometimes referred to as just speech recognition, computer

speech recognition or erroneously as voice recognition) is the process of converting speech

signals uttered by speakers into a sequence of words, which they are intended to represent,

by means of an algorithm implemented as a computer program. The recognized words can

be the final results, as for applications such as data entry and dictation systems or the words

so recognized can be used to trigger specific tasks as in command and control applications.

Speech recognition systems can be categorized based on different parameters [9] , some of

the more important of which are shown in Table 2.1.

Table 2.1: Typical parameters used to characterize the capability of speech recognition sys-

tems.

Parameters Range

Speaking Mode Isolated words vs. continuous speech

Speaking Style Read Speech vs. Spontaneous Speech

Enrollment Isolated words vs. continuous speech

Vocabulary Size Small (less than 20 words identified) vs.

Large (greater than 20,000 words identified)

Language Model Finite-state vs. Context-sensitive

Signal to Noise Ratio (SNR) High (>30dB) vs. Low (<10dB)

An isolated-word speech recognition system requires that the speaker pause briefly between

words, whereas a continuous speech recognition system does not. Spontaneous speech

is much more difficult to recognize than speech read from script. Some systems require

speaker enrollment a user must provide samples of his or her speech before using them,

whereas other systems are said to be speaker-independent, in that no enrollment is neces-

sary. Some of the other parameters depend on the specific task.

7



2.3 Applications of ASR Systems

Speech recognition applications vary depending on the vocabulary size, the quality of the

microphone, the number of users, and the tolerance for error of the users . A few examples

include:

•Hands-free control of machinery

• Small vocabulary

• Speaker-independent

• High-quality microphone (often a headset microphone)

• Very low error tolerance (error tolerance can be increased with verbal feedback)

•Automatic telephone dialing

• Small vocabulary

•Mixture of speaker-independent (digits) and speaker-dependent (names)

• Low-quality microphone (telephone handset)

•Moderate error tolerance (if the system asks for confirmation before dialing)

•Telephone access to databases

•Moderate vocabulary

•Speaker-independent

•Low-quality microphone

•High error tolerance

•Word processing

• Large vocabulary

• Speaker-dependent

• High-quality microphone

• High error tolerance

8



2.4 Speech Recognition Basics

Speech recognition is the process by which a computer (or other type of machine) iden-

tifies spoken words. Basically, it means talking to your computer and having it correctly

recognizes what you are saying. A general solution of speech recognition shows in Fig. 2.1

.

Figure 2.1: General Solution.

The following definitions are the basics needed for understanding speech recognition tech-

nology:

Utterance

An utterance is the vocalization (speaking) of a word or words that represent a single mean-

ing to the computer. Utterances can be a single word, a few words, a sentence, or even

multiple sentences.

Speaker Dependence

Speaker dependent systems are designed around a specific speaker. They generally are more

accurate for the correct speaker, but much less accurate for other speakers. They assume

9



the speaker will speak in a consistent voice and tempo. Speaker independent systems are

designed for a variety of speakers. Adaptive systems usually start as speaker independent

systems and utilize training techniques to adapt to the speaker to increase their recognition

accuracy.

Vocabularies

Vocabularies (or dictionaries) are lists of words or utterances that can be recognized by the

SR system. Generally, smaller vocabularies are easier for a computer to recognize, while

larger vocabularies are more difficult. Unlike normal dictionaries, each entry doesn’t have

to be a single word. They can be as long as a sentence or two. Smaller vocabularies can

have as few as 1 or 2 recognized utterances (e.g.“Wake Up ”), while very large vocabularies

can have a hundred thousand or more.

Accurate

The ability of a recognizer can be examined by measuring its accuracy or how well it rec-

ognizes utterances. This includes not only correctly identifying an utterance but also identi-

fying if the spoken utterance is not in its vocabulary. Good ASR systems have an accuracy

of 98% or more. The acceptable accuracy of a system really depends on the application.

Training

Some speech recognizers have the ability to adapt to a speaker. When the system has this

ability, it may allow training to take place. An ASR system is trained by having the speaker

repeat standard or common phrases and adjusting its comparison algorithms to match that

particular speaker. Training a recognizer usually improves its accuracy.

Training can also be used by speakers that have difficulty speaking, or pronouncing certain

words. As long as the speaker can consistently repeat an utterance, ASR systems with

training should be able to adapt.

A Language Dictionary

Accepted Words in the Language are mapped to sequences of sound units representing pro-

nunciation, sometimes includes syllabification and stress.

A Filler Dictionary

Non-Speech sounds are mapped to corresponding non-speech or speech like sound units.
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Phone

Way of representing the pronunciation of words in terms of sound units. The standard system

for representing phones is the International Phonetic Alphabet or IPA. English Language use

transcription system that uses ASCII letters where as Bangla uses Unicode letters.

HMM

The Hidden Markov Model is a finite set of states, each of which is associated with a (gen-

erally multidimensional) probability distribution.Transitions among the states are governed

by a set of probabilities called transition probabilities. In a particular state an outcome or

observation can be generated, according to the associated probability distribution. It is only

the outcome, not the state visible to an external observer and therefore states are “hidden ”to

the outside; hence the name Hidden Markov Model.

Language Model

Language Model assigns a probability to a sequence of m words by means of a probability

distribution. To model it we can use a regular grammar.

2.5 Overview of the Full System

Figure 2.2: Overview of the Project
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2.6 Types of Speech Recognition

Speech recognition systems can be separated in several different classes by describing what

types of utterances they have the ability to recognize. These classes are based on the fact that

one of the difficulties of ASR is the ability to determine when a speaker starts and finishes

an utterance. Most packages can fit into more than one class, depending on which mode

they’re using.

Isolated Words

Isolated word recognizers usually require each utterance to have quiet (lack of an audio

signal) on both sides of the sample window. It doesn’t mean that it accepts single words,

but does require a single utterance at a time. Often, these systems have “Listen/Not Listen

”states, where they require the speaker to wait between utterances (usually doing processing

during the pauses). Isolated Utterance might be a better name for this class.

Connected Words

Connect word systems (or more correctly ‘connected utterances ’) are similar to Isolated

words, but allow separate utterances to be ‘run together ’with a minimal pause between

them.

Continuous Speech

Recognizers with continuous speech capabilities are some of the most difficult to create

because they must utilize special methods to determine utterance boundaries. Continuous

speech recognizers allow users to speak almost naturally, while the computer determines the

content. Basically, it’s computer dictation.

Spontaneous Speech

There appears to be a variety of definitions for what spontaneous speech actually is. At a

basic level, it can be thought of as speech that is natural sounding and not rehearsed. An

ASR system with spontaneous speech ability should be able to handle a variety of natural

speech features such as words being run together, “ums ”and “ahs ”, and even slight stutters.

Voice Verification/Identification

Some ASR systems have the ability to identify specific users. This document doesn’t cover
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verification or security systems.

2.7 Conclusion

The recognition of spontaneous speech can be improved by taking into consideration the

effects of the filled pauses while performing the recognition process by:

(1) Either omitting such pauses or by considering them as words to be added to the dictionary

of the ASR system.

(2) Recognizing hesitations and restarts.

(3) Improving the model accuracy at both the acoustic level and at the language model level.

(4) Increasing the amount of training data and the lexicon size. This could reduce the error

rate without increasing the search complexity.

A better understanding of the properties of human auditory perception that are relevant for

decoding the speech signal and are likely to improve the performance of ASR in differ-

ent environments is necessary for improving the performance of the existing recognizers.

Also, using longer acoustic units (for example, syllables) instead of using short-term speech

segments followed by post-processing techniques or using dynamic features is promising

for the evolution of ASR. Moreover, rich prosodic cues (e.g., fundamental frequency (F0),

energy, duration, etc.) that permit successful understanding, which are ignored by state-of-

the-art ASR systems, must be considered for better performance. Also, the use of language-

independent acoustic models and variable n-gram language models will enhance the perfor-

mance further.
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CHAPTER 3

HIDDEN MARKOV MODELS (HMMS)

3.1 Introduction

Speech Modern general-purpose speech recognition systems are based on Hidden Markov

Models (HMMs). These are statistical models which output a sequence of symbols or quan-

tities. HMMs are used in speech recognition because a speech signal can be viewed as a

piecewise stationary signal or a short-time stationary signal. In a short-time (e.g., 10 mil-

liseconds), speech can be approximated as a stationary process. Speech can be thought of

as a HMM for many stochastic purposes.

Another reason why HMMs are popular is because they can be trained automatically and

are simple and computationally feasible to use. In speech recognition, the hidden Markov

model would output a sequence of n-dimensional real-valued vectors (with n being a small

integer, such as 10), outputting one of these every 10 milliseconds. The vectors would

consist of mel frequency cepstral coefficients (MFCCs), which are obtained by taking a

Fourier transform of a short time window of speech and decorrelating the spectrum using

a discrete cosine transform (DCT), then taking the first (most significant) coefficients. The

hidden Markov model will tend to have in each state a statistical distribution that is a mixture

of diagonal covariance Gaussians which will give likelihood for each observed vector. Each

word, or (for more general speech recognition systems), each phoneme, will have a different

output distribution; a hidden Markov model for a sequence of words or phonemes is made

by concatenating the individual trained hidden Markov models for the separate words and

phonemes.
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3.2 Hidden Markov Models

Now we can introduce the application of HMMs in the field of ASR.It was mentioned above

that the first step in the speech recognition process is the extraction of spectral features for

each time frame. Now, for each two consecutive time frames, t and t + 1, the hmm-based

recognizer is assumed to transition from state i to state j with probability aij , or stay in state

i with probability aii, and emit an observation symbol ot with probability density bj(ot).

The hidden Markov model is a statistical model that uses a finite number of states and the

associated state transitions to jointly model the temporal and spectral variations of signals. It

has been used extensively to model fundamental speech units in speech recognition because

the HMM can adequately characterize both the temporal and spectral varying nature of

the speech signal. Although many variants exist, perhaps the simplest subword model is

a left-to-right HMM with only self and forward transitions. Within each state of the model

there is an observation density function which specifies the probability of a spectral vector.

This observation density can either be a discrete density (implying the use of one or more

codebooks to discrete the input spectral vector), or a continuous mixture density, or a so-

called semi-continuous density or a tied-mixture density which is a set of common continuous

densities whose weights are chosen according to the model state. Tying can also be done

at the HMM state level or at the state distribution level . Stochastic segment modeling ,

dynamic system modeling , stochastic trajectory modeling and successive state splitting have

also been proposed to extend the HMM to handle intra-state, inter-state, and inter-sample

correlations in a more precise manner. Some of the most often used acoustic modeling

approaches include:

• Maximum Likelihood (ML) Estimation of HMM: Estimation of HMM parameters

is usually accomplished in a batch mode using the ML approach based on the EM

(estimation-maximization) algorithm. Segmental ML approaches have also been ex-

tensively used. Although ML estimation has good asymptotic properties, it often re-

quires a large size training set to achieve reliable parameter estimation. Smoothing

techniques, such as deleted interpolation and Bayesian smoothing, have been pro-

posed to circumvent some of the problems associated with sparse training data.

• Maximum Mutual Information (MMI) Estimation of HMM: Instead of maximizing
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the likelihood of observing both the given acoustic data and the transcription, the MMI

estimation procedure maximizes the mutual information between the given acoustic

data and the corresponding transcription. As opposed to ML estimation, which uses

only class- -specific data to train the classifier for the particular class, MMI estima-

tion takes into account information from data in other classes due to the necessary

inclusion of all class priors and conditional probabilities in the definition of mutual

information.

• Maximum A Posteriori (MAP) Estimation of HMM: Perhaps the ultimate way to

train subword units is to adapt them to the task, to the speaking environment, and to

the speaker. One way to accomplish adaptive training is through Bayesian learning

in which an initial set of seed models (e.g. speaker-independent or SI models) are

combined with the adaptation data to adjust the model parameters so that the resulting

set of subword models matches the acoustic properties of the adaptation data. This can

be accomplished by maximum a posteriori estimation of HMM parameters and has

been successfully applied to HMM-based speaker and context adaptation of whole-

word and subword models. On-line adaptation, which continuously adapts HMM

parameters and hyperparameters, has also been developed.

• Minimum Classification Error (MCE) Estimation of HMM and ANN: One new di-

rection for speech recognition research is to design a recognizer that minimizes the

error rate on task-specific training data. The problem here is that the error probability

is not easily expressed in a close functional form because the true probability density

function of the speech signal is not known. An alternative is to find a set of model

parameters that minimizes the recognition error based on a given set of application-

specific, training or cross-validation data. Each training utterance is first recognized

and then used for both positive and negative learning by adjusting the model param-

eters of all competing classes in a systematic manner. For HMM-based recognizers,

a family of generalized probabilistic descent (GPD) algorithms has been successfully

applied to estimate model parameters based on the minimum classification error cri-

terion. The MCE/GPD approaches are also capable of maximizing the separation

between models of speech units so that both discrimination and robustness of a recog-

nizer can be simultaneously improved.
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The observation symbol ot is a 39-dimensional feature vector with real values. Each phoneme

is typically modeled using anywhere between 3 to 12 HMM states, depending on the recog-

nizer implementation. We will give an example of a very simple hmm in Fig. 3.1.

Figure 3.1: An hmm example state diagram. Three states with corresponding output

distributions are interconnected by transitions with transitional probabilities architecture.

3.3 HMMs for Word Modeling

A vector sequence X̃ = { , ,......., which belongs a word wv, can now be generated by the

HMM Vv as follows (to simplify the notation, we skip the word dass index v): At each time

t = (0,1 ... Tx-1) the HMM is in a state sθt , and will generate a vector with the emission

probability density p (~xt | sθt) ( the initial state probability uθ gives the probability being in

state sθ at time t = 0). Then it will make a state transition from state sθt to state sθt+1 with the

transition probability aθt ,θt+1 and so on. A given vector sequence X̃ can thus be generated by

running through a sequence of state indices Θ =
{
~x0,~x1, ...... ~xTx−1

}
. However, given only

the sequence X̃ ,one can not determine which sequence Θ was used to generate X̃ i.e., the

state sequence is hidden from the observer.
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The state transitions of the HMM reflect the sequence of quasi-stationary segments of speech

contained in the utterance X̃ . Therefore, one usually restricts the transition probability densi-

ties of the HMM to a “from left to right ”structure, i.e., being in a certain state sθ , only states

with the same or a higher state index θ can be reached with nonzero probability. The initial

state probability is usually set to one for the first state and to zero for all the other states, so

the generation process always starts in state sθ. Usually the state transi-tion probabilities are

restricted to reach only the two next state indices :

α(θ,θ+∆) >0 , if 0 ≤ ∆≤ 2

α(θ,θ+∆) = 0 , else

This leads to a lefttoright HMM structure as shown for five states in Fig. 3.2

Figure 3.2: Typical lefttoright HMM for word recognition

Note that by choosing nonzero selftransitions probabilities αθ,θ , vector sequences of infinite

length can generated, the shortest length of the sequence is defined by the shortest path, the

shortest vector sequence must have three vectors.

3.4 Emission Probability Density of a Vector Sequence

We remember that the HMM will generate the vector sequence X̃ along a state index se-

quence = θ0, θ1, . . . θ(TX−1). This is done by simply multiplying all the emission probability

densities and transition probabilities along the state sequence :

p
(
X̃ ,Θ | Λ

)
= uθ0 .p(~x0 | sθ0) . ∏ t=1

TX−1 (αθ(t−1),θt . p ()

Then, p
{

X̃ | Λ
}

can be computed as:
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p
(
X̃ | Λ

)
= ∑ΘεΩ

(N(TX ))
p
(
X̃ ,Θ | Λ

)
If we evaluate first one, we have to deal with product terms only, so that we can easily take

the logarithm of the individual probability (density) values and replace the product by the

sum of those logvalues. Since the probability density values may vary over several orders of

magnitude, taking the logarithm has the additional advantage of reducing the dynamic range

of those values. The logarithm of the probability density is often called the log score value.

Fig. 3.3 shows all the possible state sequences or paths (also called the trellis) for the HMM

shown in Fig. 3.2. In this Figure, the HMM is rotated by 90 degrees and on the horizontal

axis the vectors of the utterance X are shown. At every time index t, each possible path

will go through one of the N states of the HMM. In other words, at every grid point shown

in Fig. 3.3, a path recombination takes place. If we are using the log score values for the

transition probabilities and the emission probability densities, the evaluation of first one is

transformed to adding up all the log score values along a given path, in analogy to adding

all the local distances along the path.

Figure 3.3: Possible state sequences through the HMM
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3.5 The Viterbi Algorithm

Now, we can formulate the Viterbi (or DP) algorithm for computing the score log(p(X̃ ,Θopt |Λ)).

To enable the backtracking of the state sequence Θopt , we will use the backtracking variable

Ψ(θ , t) in analogy.

• Initialization (t = 0):

For the lefttoright structure we use, we define u0 = 1. Therefore, all other initial state

probabilities are zero, enforcing all paths to begin in state s0 with the emission of the

vector 0:

• Initialize first column: δ(sθ,0) =

 b(0,s0),θ = 0

−∞,θ = 1,2, . . . . . . ,(N−1)

• Initialize backtracking variable: Ψ(θ,0) =−1;θ = 0,1, . . . . . . ,(N−1)

• Iteration: Perform the local path recombination as given by (7.14) for all states θ =

0,1, . . . . . . ,(N−1) and all time indices t = 1, 2,. . . . . . , (T X−1):

4 Optimization step:

δ(sθ, t) = b(t,sθ)+maxiε≡(sθ){ d(si,sθ)+δ(si, t−1)

4 Backtracking:

Ψ(θ, t) = argmaxiε≡(sθ){ d(si,sθ)+δ(si, t−1)

• Termination: In our lefttoright model, we will consider only paths which end in the

last state of the HMM, the state sN1. After the last iteration step is done, we get:

log(p(X̃ ,Θopt |Λ)) = δ(sN−1,(TX)−1)

• Backtracking procedure: Beginning with time index (TX 1), go backwards in time through

the backtracking variables:

4 Initialization:

t = (TX −1);θ(TX−1) = N−1

4 Termination:

θ0 = Ψ(θ1,1)≡ 0
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3.6 Gaussian Probability Density Function

In our application, we measure feature vectors in a multidimensional feature space, so we

will use a multivariate Gaussian PDF, which looks like this:

φ(~x) = 1√
(2π)DIM .|C̃|

.e(−
1
2 (~x−~m)′.C̃−1.(~x−~m))

Where ~m denotes the mean vector and C̃ denotes the covariance matrix.

3.6.1 Continuous Mixture Densities

The Gaussian PDF equation can characterize the observation probability for vectors gener-

ated by a single Gaussian process. The PDF of this process has a maximum value at the

position of the mean vector m̃ and its value exponentially decreases with increasing distance

from the mean vector. The regions of constant probability density are of elliptical shape, and

their orientation is determined by the Eigenvectors of the covariance matrix. However, for

speech recognition, we would like to model more complex probability distributions, which

have more than one maximum and whose regions of constant probability density are not

elliptically shaped.

Here scatterplot of an emission process consisting of three Gaussian emission processes.

The process parameters are:

c1 = 0.3;C̃1 =

 5 2

2 2

 ; ~m1 = [1,1.5]′

c2 = 0.4;C̃2 =

 1 −1

1 5

 ; ~m1 = [−3,−1]′

c3 = 0.5;C̃3 =

 1 0

0 1

 ; ~m1 = [3,−3]′

The corresponding probability density function is visualized as a surface in Figure. 3.4.

The complexity of the PDF can be influenced by selecting the appropriate number of mix-

tures K and may be set individually for every state of the HMM. However, since a high

number of mixtures also means that a high number of parameters has to be estimated from a
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given training set of data, always some compromise between the granularity of the modeling

and the reliability of the estimation of the parameters has to be found.

Figure 3.4: scatterplot of vectors emitted by a gaussian mixture density process

3.7 Conclusion

The core elements are the most common HMM-based approach to speech recognition. Mod-

ern speech recognition systems use various combinations of a number of standard tech-

niques in order to improve results over the basic approach described above. A typical

large-vocabulary system would need context dependency for the phonemes (so phonemes

with different left and right context have different realizations as HMM states); it would use

cepstral normalization to normalize for different speaker and recording conditions; for fur-

ther speaker normalization it might use vocal tract length normalization (VTLN) for male-

female normalization and maximum likelihood linear regression (MLLR) for more general

speaker adaptation. The features would have so-called delta and delta-delta coefficients to

capture speech dynamics and in addition might use heteroscedastic linear discriminant anal-
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ysis (HLDA); or might skip the delta and delta-delta coefficients and use splicing and an

LDA-based projection followed perhaps by heteroscedastic linear discriminant analysis or a

global semitied covariance transform (also known as maximum likelihood linear transform,

or MLLT). Many systems use so-called discriminative training techniques which dispense

with a purely statistical approach to HMM parameter estimation and instead optimize some

classification-related measure of the training data. Examples are maximum mutual informa-

tion (MMI), minimum classification error (MCE) and minimum phone error (MPE).

Decoding of the speech (the term for what happens when the system is presented with a

new utterance and must compute the most likely source sentence) would probably use the

Viterbi algorithm to find the best path, and here there is a choice between dynamically

creating a combination hidden Markov model which includes both the acoustic and language

model information, or combining it statically beforehand (the finite state transducer, or FST,

approach).
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CHAPTER 4

BANGLA IPA TABLE

4.1 Introduction

The International Phonetic Alphabet (IPA) is an alphabetic system of phonetic notation

based primarily on the Latin alphabet. It was devised by the International Phonetic As-

sociation as a standardized representation of the sounds of spoken language. The IPA is

used by foreign language students and teachers, linguists, speech pathologists and therapists,

singers, actors,lexicographers, artificial language enthusiasts (conlangers), and translators.

The IPA is designed to represent only those qualities of speech that are distinctive in spoken

language: phonemes, intonation, and the separation of words and syllables. To represent

additional qualities of speech such as tooth gnashing, lisping, and sounds made with a cleft

palate, an extended set of symbols called the Extensions to the IPA may be used.

IPA symbols are composed of one or more elements of two basic types, letters and diacrit-

ics. For example, the sound of the English letter t may be transcribed in IPA with a single

letter, [t], or with a letter plus diacritics, [th ], depending on how precise one wishes to

be.Occasionally letters or diacritics are added, removed, or modified by the International

Phonetic Association. As of 2008, there are 107 letters, 52 diacritics, and four prosodic

marks in the IPA [10].

In 1886, a group of French and British language teachers, led by the French linguist Paul

Passy, formed what would come to be known from 1897 onwards as the International Pho-

netic Association (in French, l’Association phontique internationale). Their original alpha-

bet was based on a spelling reform for English known as the Romic alphabet, but in order

to make it usable for other languages, the values of the symbols were allowed to vary from

language to language. For example, the sound [
∫

] (the sh in shoe) was originally represented

with the letter <c >in English, but with the letter <x >in French. However, in 1888, the
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alphabet was revised so as to be uniform across languages, thus providing the base for all

future revisions.

Since its creation, the IPA has undergone a number of revisions. After major revisions and

expansions in 1900 and 1932, the IPA remained unchanged until the IPA Kiel Convention in

1989. A minor revision took place in 1993, with the addition of four letters for mid-central

vowels and the removal of letters for voiceless implosives. The alphabet was last revised

in May 2005, with the addition of a letter for a labiodentals flap. Apart from the addition

and removal of symbols, changes to the IPA have consisted largely in renaming symbols

and categories and in modifying typefaces. Extensions of the alphabet are relatively recent;

“Extensions to the IPA” was created in 1990 and officially adopted by the International

Clinical Phonetics and Linguistics Association in 1994 [10].

4.2 Bangla Script

The Bengali script (Bengali: bangla lipi or Bengali: bôgôlipi) is the writing system for

the Bengali language. It is also used, with some modifications, for Assamese, Meitei, Bish-

nupriya, Manipuri, Kokborok, Garo and Mundari languages. All these languages are spoken

in the eastern region of South Asia. Historically, the script has also been used to write the

Sanskrit language in the same region. From a classificatory point of view, the Bengali script

is an abugida, i.e. its vowel graphemes are mainly realized not as independent letters like

in a true alphabet, but as diacritics attached to its consonant graphemes. It is written from

left to right and lacks distinct letter cases. It is recognizable by a distinctive horizontal line

running along the tops of the letters that links them together, a property it shares with two

other popular Indian scripts: Devanagari (used for Hindi, Marathi and Nepali) and Guru-

mukhi (used for Punjabi). The Bengali script is,however, less blocky and presents a more

sinuous shaping [11].

The Bengali script evolved from the Eastern Nagari script, which belongs to the Brahmic

family of scripts, along with the Devanagari script and other written systems of the Indian

subcontinent. Both Eastern Nagari and Devanagari were derived from the ancient Nagari

script.In addition to differences in how the letters are pronounced in the different languages,

there are some minor typographical differences between the version of the script used
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for Assamese and Bishnupriya Manipuri as well as Maithili languages, and that used

for Bengali and other languages. For example, the letter rô (Bengali r ; Assamese B ;

Bishnupriya Manipuri/Maithili r / B ) and wô (Bengali second b ; Assamese/Bishnupriya

Manipuri/Maithili w ) have distinct variations depending on the language being written.

The Bengali script was originally not associated with any particular language, but was often

used in the eastern regions of Medieval India. It was standardized and modernized by Ishwar

Chandra under the reign of the British East India Company. The script was originally used to

write Sanskrit, which for centuries was the only written language of the Indian subcontinent

in addition to Tamil. Epics of Hindu scripture, including the Mahabharata or Ramayana,

were written in older versions of the Bengali script or Mithilakshar/Tirhuta script in this

region. After the medieval period, the use of Sanskrit as the sole written language gave way

to Pali, and eventually to the vernacular languages we know now as Maithili, Bengali, and

Assamese.Srimanta Sankardeva used it in the 15th and 16th centuries to compose his oeuvre

in Assamese and Brajavali the language of the Bhakti poets. There is a rich legacy of Indian

literature written in this script, which is still occasionally used to write Sanskrit today [11].

4.3 Bangla IPA Table

The first IPA chart was prepared in 1888 by the earliest form of the International Phonetic

Association and it has gone through many changes since then. The 1888 chart was rather a

list of symbols and their descriptions [12].

The Figure of 4.1 is the latest, revised 2005, in Bengali :

4.3.1 Vowels & Consonants

The phonemic inventory of Bangla consists of 29 consonants and 14 vowels, including

the seven nasalized vowels. Several conventions exist for Romanizing Indic languages,

including IAST (based on diacritics), ITRANS (uses upper case letters suited for ASCII

keyboards), and the National Library at Calcutta Romanization. Bangla words are currently

romanized on Wikipedia using a phonemic transcription, where the pronunciation is

represented with no reference to the spelling. The Wikipedia Romanization is given in the
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Figure 4.1: A chart of the full International Phonetic Alphabet
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table below, along with IPA transcriptions above them.

An approximate phonetic scheme in IPA is given in Figure 4.3. In Figure 4.2, only the

main 7 vowel sounds are shown, though there exists two more long counterpart of /i/ and

/u/, denoted as /i:/ and /u:/, respectively. These two long vowels are seldom pronounced

differently than their short counterparts in modern Bangla. There is controversy on the

number of Bangla consonants.

Figure 4.2: Bangla phonetic scheme in IPA (Vowels)

4.4 Bangla Phoneme Schemes

4.4.1 Bangla Phoneme

The Phonetic inventory of Bangla consists of 14 vowels, including seven nasalized vowels,

and 29 consonants. An approximate phonetic scheme in IPA is given in Figure 4.3. In

Table 4.2, only the main 7 vowel sounds are shown, though there exists two more long

counterpart of /i/ and /u/, denoted as /i:/ and /u:/, respectively. These two long vowels are

seldom pronounced differently than their short counterparts in modern Bangla. There is

controversy on the number of Bangla consonants.Native Bangla words do not allow initial
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Figure 4.3: Bangla phonetic scheme in IPA (Consonants)
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consonant clusters: the maximum syllable structure is CVC (i.e. one vowel flanked by a

consonant on each side) [13]. Sanskrit words borrowed into Bangla possess a wide range

of clusters, expanding the maximum syllable structure to CCCVC. English or other foreign

borrowings add even more cluster types into the Bangla inventory.

4.5 Conclusion

In the Bengali script, clusters of consonants are represented by different and sometimes

quite irregular characters; thus, learning to read the script is complicated by the sheer size

of the full set of characters and character combinations, numbering about 350. While efforts

at standardizing the script for the Bengali language continue in such notable centers as the

Bangla Academies (unaffiliated) at Dhaka (Bangladesh) and Kolkata (West Bengal, India),

it is still not quite uniform as yet, as many people continue to use various archaic forms

of letters, resulting in concurrent forms for the same sounds. Among the various regional

variations within this script, only the Assamese and Bengali variations exist today in the

formalized system. It seems likely that the standardization of the script will be greatly

influenced by the need to typeset it on computers. The large alphabet can be represented,

with a great deal of ingenuity, within the ASCII character set, omitting certain irregular

conjuncts. Work has been underway since around 2001 to develop Unicode fonts, and it

seems likely that it will split into two variants, traditional and modern.

In this and other articles on Wikipedia dealing with the Bengali language, a Romanization

scheme used by linguists specializing in Bengali phonology is included along with IPA

transcription.

A recent effort by the government of West Bengal focused on simplifying Bengali spellings

in primary school texts [11].
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CHAPTER 5

OUR CONTRIBUTION

5.1 Introduction

There have been many literatures in automatic speech recognition (ASR) systems for almost

all the major spoken languages in the world. Unfortunately, only a very few works have

been done in ASR for Bangla (can also be termed as Bengali), which is one of the largely

spoken languages in the world. More than 220 million people speak in Bangla as their native

language. It is ranked seventh based on the number of speakers [14]. A major difficulty to

research in Bangla ASR is the lack of proper speech corpus. Some efforts are made to

develop Bangla speech corpus to build a Bangla text to speech system [15]. However, this

effort is a part of developing speech databases for Indian Languages, where Bangla is one

of the parts and it is spoken in the eastern area of India (West Bengal and Kolkata as its

capital). But most of the natives of Bangla (more than two thirds) reside in Bangladesh,

where it is the official language. Although the written characters of Standard Bangla in

both the countries are same, there are some sound that are produced variably in different

pronunciations of Standard Bangla, in addition to the myriad of phonological variations in

non-standard dialects [16]. Therefore, there is a need to do research on the main stream of

Bangla, which is spoken in Bangladesh, ASR.

In this paper, we build an ASR system for Bangla phoneme in a large scale. For this purpose,

we first develop a medium size (compared to the exiting size in Bangla ASR literature)

Bangla speech corpus comprises of native speakers covering almost all the major cities

of Bangladesh. Then, Mel Frequency Cepstral Coefficients (MFCCs) are extracted from

the input speech, and finally extracted features are inserted into the hidden Markov model

(HMM) based classifier for obtaining the phoneme recognition performance.
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5.2 Why is ASR hard to accomplish?

There are various reasons why this is a complicated task. Speech, captured in speech signals,

has a rich variation between different speakers. Physiological aspects such as length of

the vocal cords, shape of the mouth cavity, position of the teeth all influence the speech

signal that a speaker produces. Other factors that differentiate speech include social aspects.

Native speakers can hear differences between standard Bangla pronounced by speakers

from different provinces in the Comilla and even between speakers from certain cities. An

acquaintance from the city of Dhaka went to the US and surprisingly was recognized there

as originating from Dhaka simply by his specific pronunciation of the letter r. Humans can

also distinguish between male and female speech and even between speeches from different

age categories. For example, when we answer the phone, we can tell whether it is a child

or an elderly person calling. All these aspects influence the speech signal and complicate

matters for a computer. An ASR system should be able to recognize all these different

pronunciations of the same sounds and then conclude that they are in fact the same sounds.

But even when one speaker pronounces the same word twice, there will be differences in

the speech signal. If a speaker has a cold, he sounds different. His emotions also influence

the pronunciation. Speech from a certain speaker is even different at different times of the

day. The duration of the different sounds that constitute the word in question, will also vary

slightly. Because speaking involves a continuous motion of the articulators —tongue, teeth,

lips— the sounds themselves even differ depending on which sounds precede and follow it.

This effect is known as coarticulation.

Besides the influence of the speaker, there also are external factors that complicate matters.

There will be different amounts of noise that obscure the speech signal and different input

devices and encoding schemes that influence the speech signal. This is known as channel

variability.

Apart from these more acoustical problems, there also are other complications. When

looking at a transcript of spontaneous speech, it can readily be seen that there are

many repetitions, filler words, mispronunciations, errors that are being corrected and

other mistakes that complicate matters. Very often, spontaneous sentences will not be

grammatically correct.
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Another difficulty is the vocabulary. The vocabulary of a modern language changes

continuously, with new words entering, old ones becoming obsolete and fashion words occur

and disappear sometimes so fast that they do not even become an entry in the dictionary. And

current speech recognizers rely on dictionaries to determine which sound sequences form a

word in a specific language and which do not. Certain languages, such as Bangla, also allow

the formation of a new word by combining two existing words, following certain rules. This

makes it hard to capture a vocabulary of a language even without the constant changes.

Many of these problems can be categorized under the header of ‘too much variation’, on

very different areas. During this research, we will not try to tackle all these problems

simultaneously but focus on the acoustic variation between speakers. Currently, the acoustic

variation between speakers of different characteristics is mostly ignored. Speech recognizers

are trained on corpora of speech from a balanced group of speakers, using statistical

averages calculated over the group as a whole to tune the acoustic speech models to. These

models can then be used to recognize speech from all speakers. Limiting this variation

by creating specialized acoustic speech models for different speaker groups could improve

the performance of ASR systems. Most current ASR systems already include provisions

for different genders. However, it is indicated in the literature of phonetics that age also

influences the speech production organs and thus leads to differences in speech acoustics.

Indeed, human listeners are able to differentiate between speech from speakers with different

genders and even ages. A special ASR system was also created for Swedish children.

However, the effects of these biological factors have not yet been researched for Bangla

speakers. We will thus look at the acoustical differences between different age categories

and genders specifically for the Bangla language, using the speech data from the recently

finished Corpus (the spoken Bangla corpus). This will allow us to conclude whether different

models for different age groups could be helpful for ASR of the Bangla language.

5.3 Preparation of Bangla Speech Corpus

There have been many literatures in automatic speech recognition (ASR) systems for almost

all the major spoken languages in the world. Unfortunately, only a very few works have

been done in ASR for Bangla (can also be termed as Bengali), which is one of the largely

spoken languages in the world. More than 220 million people speak in Bangla as their native
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language. It is ranked seventh based on the number of speakers [14]. A major difficulty to

research in Bangla ASR is the lack of proper speech corpus. Some efforts are made to

develop Bangla speech corpus to build a Bangla text to speech system [15]. However, this

effort is a part of developing speech databases for Indian Languages, where Bangla is one

of the parts and it is spoken in the eastern area of India (West Bengal and Kolkata as its

capital). But most of the natives of Bangla (more than two thirds) reside in Bangladesh,

where it is the official language. Although the written characters of Standard Bangla in

both the countries are same, there are some sound that are produced variably in different

pronunciations of Standard Bangla, in addition to the myriad of phonological variations in

non-standard dialects [16]. Therefore, there is a need to do research on the main stream of

Bangla, which is spoken in Bangladesh, ASR.

At present, a real problem to do experiment on Bangla phoneme ASR is the lack of proper

Bangla speech corpus. In fact, such a corpus is not available or at least not referenced in

any of the existing literature. Therefore, we develop a medium size Bangla speech corpus,

which is described below.

Hundred sentences from the Bengali newspaper “Prothom Alo”[17] are uttered by 30 male

speakers of different regions of Bangladesh. These sentences (30x100) are used for training

corpus (D1). On the other hand, different 100 sentences from the same newspaper uttered

by 10 different male speakers (total 1000 sentences) are used as test corpus (D2). All of

the speakers are Bangladeshi nationals and native speakers of Bangla. The age of the

speakers ranges from 20 to 40 years. We have chosen the speakers from a wide area

of Bangladesh: Dhaka (central region), Comilla Noakhali (East region), Rajshahi (West

region), Dinajpur Rangpur (North-West region), Khulna (South-West region), Mymensingh

and Sylhet (North-East region). Though all of them speak in standard Bangla, they are not

free from their regional accent.

Recording was done in a quiet room located at United International University (UIU),

Dhaka, Bangladesh. A desktop was used to record the voices using a head mounted close-

talking microphone. We record the voice in a place, where ceiling fan and air conditioner

were switched on and some low level street or corridor noise could be heard.

Jet Audio 7.1.1.3101 software was used to record the voices. The speech was sampled at 16

kHz and quantized to 16 bit stereo coding without any compression and no filter is used on
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the recorded voice.

5.4 Feature Extraction and Phonemes

When performing speech recognition, the first step is to analyze the given sound wave and

extract relevant data from it. This signal processing starts by dividing the sound wave in

time slices from which spectral features are extracted. Spectral features indicate how much

energy is present in the signal at different frequencies.Sounds are first in .wav format and

then it is converted to MFCC format.

WAV File Format

The WAV file format is a subset of Microsofts RIFF specification for the storage of

multimedia files. A RIFF file starts out with a file header followed by a sequence of data

“chunks”. A WAV file is often just a RIFF file with a single “WAVE”chunk which consists

of two sub-chunks - a “fmt”chunk specifying the data format and a “data”chunk containing

the actual sample data. The WAV file header contains the following:

‘RIFF’ : RIFF file identification (4 bytes)

<length > : length field (4 bytes)

‘WAVE’ : WAVE chunk identification (4 bytes)

‘fmt’ : format sub-chunk identification (4 bytes)

flength : length of format sub-chunk (4 byte integer)

format : format specifier (2 byte integer)

chans : number of channels (2 byte integer)

sampsRate : sample rate in Hz (4 byte integer)

bpsec : bytes per second (4 byte integer)

bpsample : bytes per sample (2 byte integer)

bpchan : bits per channel (2 byte integer)

‘data’ : data sub-chunk identification (4 bytes)

dlength : length of data sub-chunk (4 byte integer)

Mel-frequency cepstral coefficients (MFCCs)
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In sound processing, the mel-frequency cepstrum (MFC) is a representation of the short-term

power spectrum of a sound, based on a linear cosine transform of a log power spectrum

on a nonlinear mel scale of frequency. Mel-frequency cepstral coefficients (MFCCs) are

coefficients that collectively make up an MFC. They are derived from a type of cepstral

representation of the audio clip (a nonlinear “spectrum-of-a-spectrum”). The difference

between the cepstrum and the mel-frequency cepstrum is that in the MFC, the frequency

bands are equally spaced on the mel scale, which approximates the human auditory

system’s response more closely than the linearly-spaced frequency bands used in the normal

cepstrum. This frequency warping can allow for better representation of sound, for example,

in audio compression. MFCCs are commonly derived as follows:

1. Take the Fourier transform of (a windowed excerpt of) a signal.

2. Map the powers of the spectrum obtained above onto the mel scale, using triangular

overlapping windows.

3. Take the logs of the powers at each of the mel frequencies.

4. Take the discrete cosine transform of the list of mel log powers, as if it were a signal.

5. The MFCCs are the amplitudes of the resulting spectrum.

Later on, these features are used to determine which sounds were uttered. Instead of the

general word ‘sound ’we talk about a ‘phoneme ’. A phoneme is defined as:

Any of the minimal units of speech sound in a language that can serve to distinguish one

word from another. For example, /p/ is a phoneme in the English language, distinguishing

tap from tag. These spectral features are used in combination with hidden Markov models

(HMMs) to determine the probabilities for the different phonemes of having been uttered,

while taking the speech waveform into consideration. These calculations are explained in

more detail in the next section.

5.5 Bangla Phonemes with Phonetic Symbols

Phonetic inventory of Bangla consists of 8 short vowels, excluding long vowels, and 29

consonants. Table 5.1 shows Bangla vowel phonemes with their corresponding International
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Phonetic Alphabet (IPA) and our proposed symbols. On the other hand, the consonants,

which are used in Bangla language, are presented in Table 5.2. Here, the table exhibits the

same items for consonants like as Table 5.1. In the Table 5.2, the pronunciation of /S / , /P

/ , /s / are same by considering the words oibS (/bi
∫

/) and oiDs (/di
∫

/) .On the other hand,

in the words jam (/dℑam/) and Jak (/dℑak/) there is no difference of pronunciation of /j /

and /J / . Again , there is no difference of / n / and / N / in the words HooirN (/hrin/) and oitn

(/tin/).Phonemes /Ĺ / / and /Ľ / carry same pronunciation in the words paHaĹ (/pahar/) and

AaPaĽ (/a
∫

ar/) .

Table 5.1: Bangla Vowels

Letter IPA Our Symbol

A /⊃ /and/o/ a

Aa /a/ aa

I /i/ i

Ŋ /i/ i

U /u/ u

Ŕ /u/ u

E /e/ and /æ/ e

Ţ /oj/ oi

O /o/ o

Ů /ow/ ou

Table 5.2: Bangla Consonants

Letter IPA Our Symbol

k /k/ k

x /kh/ kh

g /g/ g

G /gh/ gh

Ć /η/ ng

c /t
∫
/ ch

q /t
∫ h / chh
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j /dℑ/ j

C /dℑh/ jh

T /t/ ta

F /th/ th

D /d/ da

Z /dh/ dha

N /n/ N

t /t
¯
/ t

Q /th/ th

d /d
¯

D

z /d
¯

h/ Dh

n /n/ N

p /p/ p

f /ph/ ph

b /b/ B

v /bh/ Bh

m /m/ M

J /dℑ/ J

r /r/ R

l /l/ L

S /
∫
//s/ S

P /
∫
/ S

s /
∫

/ /s/ S

H /h/ H

Ĺ /h/ Rh

Ľ /r
¯
/ Rh

y /e/ Y

Native Bangla words do not allow initial consonant clusters: the maximum syllable structure

is CVC (i.e. one vowel flanked by a consonant on each side). Sanskrit words borrowed

38



into Bangla possess a wide range of clusters, expanding the maximum syllable structure to

CCCVC. English or other foreign borrowings add even more cluster types into the Bangla

inventory.

5.6 Bangla Words

Table 5.3 lists some Bangla words with their written forms and the corresponding IPA.From

the table, it is shown that the same ‘Av ’(/a/) has different pronunciation based on succeeding

phonemes ‘g ’, ‘P ’and ‘e’. These pronunciations are sometimes long or short. For long and

short ‘Av ’we have used two different phonemes /aa/ and /ax/, respectively. Similarly, we

have considered all variations of same phonemes and consequently, found total 51 phonemes

excluding beginning and end silence (/sil/) and short pause (/sp/).

Table 5.3: Some Bangla words with their orthographic transcriptions and IPA

Bangla Word English pronounciation IPA Our Symbol

Aamra AAMRA /a m r a/ /aa m r ax/

AacrN AACHORON /a t
∫

r n/ / aa ch ow r aa n/

Aaoebdn ABEDON /a b æd
¯

n/ /ax b ae d aa n/

5.7 HTK Tool

Much of the functionality of HTK is built into the library modules. These modules ensure

that every tool interfaces to the outside world in exactly the same way. They also provide

a central resource of commonly used functions.HTK tools are designed to run with a

traditional command-line style interface. Each tool has a number of required arguments

plus optional arguments [18] .

5.7.1 HCopy

This program will copy one or more data files to a designated output file, optionally

converting the data into a parameterised form. While the source files can be in any supported
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format, the output format is always HTK. By default, the whole of the source file is copied

to the target but options exist to only copy a specified segment. Hence, this program is used

to convert data files in other formats to the HTK format, to concatenate or segment data

files, and to parameterise the result. If any option is set which leads to the extraction of

a segment of the source file rather than all of it, then segments will be extracted from all

source files and concatenated to the target.HCopy is used to convert the parameter kind of

a file, for example from WAVEFORM to MFCC, depending on the configuration options.

The allowable options to HCopy are as follows:

-C is used to specify a configuration file name and the option.

-S is used to specify a script file name.

-T HCopy supports the following trace options where each trace flag is given using an

octal base:

00001 basic progress reporting.

00002 source and target file formats and parameter kinds.

00004 segment boundaries computed from label files.

00010 display memory usage after processing each file.

Trace flags are set using the -T option or the TRACE configuration variable.

5.7.2 HList

HList is invoked by typing the command line:

HList [options] file ...

This causes the contents of each file to be listed to the standard output. If no files are given

and the source format is HAUDIO, then the audio source is listed. The source form of

the data can be converted and listed in a variety of target forms by appropriate settings of

the configuration variables, in particular TARGETKIND.HList also supports the standard

options -A, -C, -D, -S, -T, and -V.

HList supports the following trace option where each trace flag is given using an octal base

00001 basic progress reporting.

Trace flags are set using the -T option or the TRACE configuration variable.
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5.7.3 HCompV

This program will calculate the global mean and covariance of a set of training data. It

is primarily used to initialise the parameters of a HMM such that all component means

and all covariances are set equal to the global data mean and covariance.This might form

the first stage of a flat start training scheme where all models are initially given the same

parameters. Alternatively, the covariances may be used as the basis for Fixed Variance and

Grand Variance training schemes. These can sometimes be beneficial in adverse conditions

where a fixed covariance matrix can give increased robustness.

When training large model sets from limited data, setting a floor is often necessary to prevent

variances being badly underestimated through lack of data. One way of doing this is to

define a variance macro called varFloorN where N is the stream index. HCompV can also

be used to create these variance floor macros with values equal to a specified fraction of the

global variance. Another application of HCompV is the estimation of mean and variance

vectors for use in cluster-based mean and variance normalisation schemes. Given a list of

utterances and a speaker pattern HCompV will estimate a mean and a variance for each

speaker.

The allowable options to HCompV are as follows:

-C is used to specify a configuration file name and the option.

-S is used to specify a script file name.

-M dir Store output HMM macro model files in the directory dir. If this option is not

given, the new HMM definition will overwrite the existing one.

-m The covariances of the output HMM are always updated however updating the means

must be specifically requested. When this option is set, HCompV updates all the

HMM component means with the sample mean computed from the training files.

-v f This sets the minimum variance (i.e. diagonal elements of the covariance matrix) to

the real value f (default value 0.0).

-T HCompV supports the following trace options where each trace flag is given using an

octal base:
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00001 basic progress reporting.

00002 source and target file formats and parameter kinds.

00004 segment boundaries computed from label files.

00010 display memory usage after processing each file. Trace flags are set using the -T

option or the TRACE configuration variable.

5.7.4 HRest

HRest performs basic Baum-Welch re-estimation of the parameters of a single HMM using a

set of observation sequences. HRest can be used for normal isolated word training in which

the observation sequences are realisations of the corresponding vocabulary word.

Alternatively, HRest can be used to generate seed HMMs for phoneme-based recognition. In

this latter case, the observation sequences will consist of segments of continuously spoken

training material. HRest will cut these out of the training data automatically by simply

giving it a segment label.

The allowable options to HRest are as follows:

-C is used to specify a configuration file name and the option.

-S is used to specify a script file name.

-I mlf This loads the master label file mlf. This option may be repeated to load several

MLFs.

-L dir Search directory dir for label files (default is to search current directory).

-M dir Store output HMM macro model files in the directory dir. If this option is not

given, the new HMM definition will overwrite the existing one.

-H mmf Load HMM macro model file mmf. This option may be repeated to load multiple

MMFs.

-v f This sets the minimum variance (i.e. diagonal element of the covariance matrix) to the

real value f. This is ignored if an explicit variance floor macro is defined. The default

value is 0.0.
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-w f Any mixture weight or discrete observation probability which falls below the global

constant MINMIX is treated as being zero.

-i N This sets the maximum number of re-estimation cycles to N (default value 20).

-m N Sets the minimum number of training examples to be N. If fewer than N examples are

supplied then an error is reported (default value 3).

-T HRest supports the following trace options where each trace flag is given using an

octal base:

000001 basic progress reporting.

000002 output information on the training data loaded.

000004 the observation probabilities.

000010 the alpha matrices.

000020 the beta matrices.

000040 the occupation counters.

000100 the transition counters.

000200 the mean counters.

000400 the variance counters.

001000 the mixture weight counters.

002000 the re-estimated transition matrix.

004000 the re-estimated mixture weights.

010000 the re-estimated means.

020000 the re-estimated variances.

Trace flags are set using the -T option or the TRACE configuration variable.

5.7.5 HERest

This program is used to perform a single re-estimation of the parameters of a set of HMMs,

or linear transforms, using an embedded training version of the Baum-Welch algorithm.

Training data consists of one or more utterances each of which has a transcription in the

form of a standard label file (segment boundaries are ignored). For each training utterance,

a composite model is effectively synthesised by concatenating the phoneme models given
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by the transcription. Each phone model has the same set of accumulators allocated to it as

are used in HRest but in HERest they are updated simultaneously by performing a standard

Baum-Welch pass over each training utterance using the composite model.

HERest is intended to operate on HMMs with initial parameter values estimated by

HInit/HRest. HERest supports multiple mixture Gaussians, discrete and tied-mixture

HMMs, multiple data streams, parameter tying within and between models, and full or

diagonal covariance matrices. HERest also supports tee-models , for handling optional

silence and non-speech sounds. These may be placed between the units (typically words

or phones) listed in the transcriptions but they cannot be used at the start or end of a

transcription. Furthermore, chains of tee-models are not permitted.

HERest includes features to allow parallel operation where a network of processors is

available. When the training set is large, it can be split into separate chunks that

are processed in parallel on multiple machines/processors, consequently speeding up the

training process.

The allowable options to HERest are as follows:

-C is used to specify a configuration file name and the option.

-S is used to specify a script file name.

-I mlf This loads the master label file mlf. This option may be repeated to load several

MLFs.

-L dir Search directory dir for label files (default is to search current directory).

-H mmf Load HMM macro model file mmf. This option may be repeated to load multiple

MMFs.

-M dir Store output HMM macro model files in the directory dir. If this option is not

given, the new HMM definition will overwrite the existing one.

-v f This sets the minimum variance (i.e. diagonal element of the covariance matrix) to

the real value f (default value 0.0).

-w f Any mixture weight which falls below the global constant MINMIX is treated as being

zero.
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-t f [i l] Set the pruning threshold to f. During the backward probability calculation, at

each time t all (log) β values falling more than f below the maximum β value at

that time are ignored. During the subsequent forward pass, (log) α values are only

calculated if there are corresponding valid α values. Furthermore, if the ratio of the

αβ product divided by the total probability (as computed on the backward pass) falls

below a fixed threshold then those values of α and β are ignored. Setting f to zero

disables pruning (default value 0.0). Tight pruning thresholds can result in HERest

failing to process an utterance. if the i and l options are given, then a pruning error

results in the threshold being increased by i and utterance processing restarts. If errors

continue, this procedure will be repeated until the limit l is reached.

-T HERest supports the following trace options where each trace flag is given using an

octal base:

00001 basic progress reporting.

00002 show the logical/physical HMM map.

00004 list the updated model parameters. of tied mixture components.

Trace flags are set using the -T option or the TRACE configuration variable.

5.7.6 HHEd

HHEd is a script driven editor for manipulating sets of HMM definitions. Its basic operation

is to load in a set of HMMs, apply a sequence of edit operations and then output the

transformed set. HHEd is mainly used for applying tyings across selected HMM parameters.

It also has facilities for cloning HMMs, clustering states and editing HMM structures.

Many HHEd commands operate on sets of similar items selected from the set of currently

loaded HMMs. For example, it is possible to define a set of all final states of all vowel

models, or all mean vectors of all mixture components within the model X, etc. Sets such

as these are defined by item lists using the syntax rules given below. In all commands, all of

the items in the set defined by an item list must be of the same type where the possible types

are:

s - state
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t - transition matrix

p - pdf

w - stream weights

m - mixture component

d - duration parameters

u - mean vector

x - transform matrix

v - variance vector

i - inverse covariance matrix

h - HMM definition

The allowable option to HHEd for our experiment is:

-H mmf Load HMM macro model file mmf. This option may be repeated to load multiple

MMFs.

5.7.7 HParse

The HParse program generates word level lattice files (for use with e.g. HVite) from a

text file syntax description containing a set of rewrite rules based on extended Backus-

Naur Form (EBNF). The EBNF rules are used to generate an internal representation of

the corresponding finite-state network where HParse network nodes represent the words in

the network, and are connected via sets of links. This HParse network is then converted

to HTK V2 word level lattice. The program provides one convenient way of defining such

word level lattices.

The lattice produced by HParse will often contain a number of !NULL nodes in order to

reduce the number of arcs in the lattice. The use of such !NULL nodes can both reduce size

and increase efficiency when used by recognition programs such as HVite.

5.7.8 HVite

HVite is a general-purpose Viterbi word recogniser. It will match a speech file against a

network of HMMs and output a transcription for each. When performing N-best recognition

a word level lattice containing multiple hypotheses can also be produced.
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Either a word level lattice or a label file is read in and then expanded using the supplied

dictionary to create a model based network. This allows arbitrary finite state word networks

and simple forced alignment to be specified.

The allowable options to HVite are as follows:

-C is used to specify a configuration file name and the option.

-S is used to specify a script file name.

-t f [i l] Enable beam searching such that any model whose maximum log probability

token falls more than f below the maximum for all models is deactivated. Setting f to

0.0 disables the beam search mechanism (default value 0.0). In alignment mode two

extra parameters i and l can be specified. If the alignment fails at the initial pruning

threshold f, then the threshold will by increased by i and the alignment will be retried.

This procedure is repeated until the alignment succeeds or the threshold limit l is

reached.

-s f Set the grammar scale factor to f. This factor post-multiplies the language model

likelihoods from the word lattices. (default value 1.0).

-i s Output transcriptions to MLF s.

-w s Perform recognition from word level networks. If s is included then use it to define

the network used for every file.

-H mmf Load HMM macro model file mmf. This option may be repeated to load multiple

MMFs.

-T HVite supports the following trace options where each trace flag is given using an

octal base:

0001 enable basic progress reporting.

0002 list observations.

0004 frame-by-frame best token.

0010 show memory usage at start and finish.

0020 show memory usage after each utterance.

Trace flags are set using the -T option or the TRACE configuration variable.
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5.7.9 HResults

HResults is the HTK performance analysis tool. It reads in a set of label files (typically

output from a recognition tool such as HVite) and compares them with the corresponding

reference transcription files. For the analysis of speech recognition output, the comparison

is based on a Dynamic Programming-based string alignment procedure. For the analysis of

word-spotting output, the comparison uses the standard US NIST FOM metric. When used

to calculate the sentence accuracy using DP the basic output is recognition statistics for the

whole file set in the format

The first line gives the sentence-level accuracy based on the total number of label files which

are identical to the transcription files. The second line is the word accuracy based on the DP

matches between the label files and the transcriptions. In this second line, H is the number

of correct labels, D is the number of deletions, S is the number of substitutions, I is the

number of insertions and N is the total number of labels in the defining transcription files.

The percentage number of labels correctly recognised is given by

% Correct =
H
N
∗100%

and the accuracy is computed by

Accuracy =
H− I

N
∗100%

The allowable options to HResult are as follows:

-I mlf This loads the master label file mlf. This option may be repeated to load several

MLFs.

-L dir Search directory dir for label files (default is to search current directory).

These are the speech commands that are required for our experiment of phoneme

recognition.
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5.8 Steps of the Experiment(Data preparation)

1. Make a folder Experiment (any name can be given) into the drive H (any drive can be

used but this drive name is used in the command).

2. We have to put Train.scp (we have to make it according to our input voice and we can use

any name instead of Train but extension should be .scp), config.txt, HCopy.exe files are into

the folder Experiment.

3. In Train.scp (in this experiment we used 3000 input speech which contains in 30 different

folders and each folder has got 100 inputs voice) we have to type the informations. In this

file left part is the input and right part is the output.Train.scp looks like following :

“H:\\Experiment\\Recorded Audio 0.wav”“H:\\Experiment\\Recorded Audio 0.mfcc ”

“H:\\Experiment\\Recorded Audio 1.wav”“H:\\Experiment\\Recorded Audio 1.mfcc ”

“H:\\Experiment\\Recorded Audio 2.wav”“H:\\Experiment\\Recorded Audio 2.mfcc ”

“H:\\Experiment\\Recorded Audio 3.wav”“H:\\Experiment\\Recorded Audio 3.mfcc ”

“H:\\Experiment\\Recorded Audio 4.wav”“H:\\Experiment\\Recorded Audio 4.mfcc ”

“H:\\Experiment\\Recorded Audio 5.wav”“H:\\Experiment\\Recorded Audio 5.mfcc ”

4. The first stage of data preparation is to parameterise the raw speech waveforms into

sequences of feature vectors. HTK support both FFT-based and LPC-based analysis.

Here Mel Frequency Cepstral Coefficients (MFCCs), which are derived from FFT-based

log spectra, will be used. Coding can be performed using the tool HCopy configured to

automatically convert its input into MFCC vectors. To do this, a configuration file (config)

is needed which specifies all of the conversion parameters. Reasonable settings for these are

as follows :

# Coding parameters

SOURCEFORMAT = WAV

# SOURCERATE = 625

TARGETKIND = MFCC D A 0

TARGETRATE = 100000.0

SAVECOMPRESSED = T
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SAVEWITHCRC = T

WINDOWSIZE = 250000.0

USEHAMMING = T

PREEMCOEF = 0.97

NUMCHANS = 26

CEPLIFTER = 22

NUMCEPS = 12

ENORMALISE = F

Some of these settings are in fact the default setting, but they are given explicitly here

for completeness. In brief, they specify that the target parameters are to be MFCC using

C0 as the energy component, the frame period is 10msec (HTK uses units of 100ns), the

output should be saved in compressed format, and a crc checksum should be added. The

FFT should use a Hamming window and the signal should have first order preemphasis

applied using a coefficient of 0.97. The filterbank should have 26 channels and 12 MFCC

coefficients should be output. The variable ENORMALISE is by default true and performs

energy normalisation on recorded audio files. It cannot be used with live audio and since

the target system is for live audio, this variable should be set to false.To run HCopy, a list of

each source file and its corresponding output file is needed.

Files containing lists of files are referred to as script files and by convention are given the

extension scp (although HTK does not demand this). Script files are specified using the

standard -S option and their contents are read simply as extensions to the command line.

Thus, they avoid the need for command lines with several thousand arguments.Assuming

that the above script is stored in the file Train.scp, the training data would be coded by

executing

HCopy -T 1 -C config.txt -S Train.scp

This is illustrated in figure 5.1 :

5. Now we have to make source.mfc (we can use any name instead of source but extension

should be .mfc) into the folder practice and type the informations.The informations are taken

from the right part of the step 3 but here “”will not be used. source.mfc looks like following

:

H:\\Experiment\\Recorded Audio 0.mfcc
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Figure 5.1: HCopy Command

H:\\Experiment\\Recorded Audio 1.mfcc

H:\\Experiment\\Recorded Audio 2.mfcc

H:\\Experiment\\Recorded Audio 3.mfcc

H:\\Experiment\\Recorded Audio 4.mfcc

H:\\Experiment\\Recorded Audio 5.mfcc ............

6. Now we Put HList.exe into the folder Experiment.

7. Then we Put Batch HList.m into the folder Experiment and open this file using matlab.

8. After executing Batch HList.m, the following file will be generated

• dest.mfc into the folder Experiment.

• Output and genoutput folder will be created into every folder of the input voice and in

the output folder we will get automatically the following files:

Recorded Audio 0.shk, Recorded Audio 1.shk, ................

• But genoutput folder will not contain any information at that time.

9. Now we have to Put Vector Formatter.cpp file into the folder Line-Cutter (we can use any

name) which we have to create into the folder Experiment.
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10. Put dest.mfc (which we created in the last step#8) into the folder Line-Cutter.

11. Run Vector Formatter.cpp using the visual studio 6.0. after executing this program the

following information will be generated :

• Out vec.test into the folder Line-Cutter. We open the file Out vec.test and remove last

blank line and save it.

• In genoutput folder we will get automatically the following files:

Recorded Audio 0.gen, Recorded Audio 1.gen, .........

12. Make a folder Converted (we can use any name) into the folder Experiment. Put

convert.c into the folder Converted. Also put Out vec.test which was created in the last

step into the folder Line-Cutter into the folder Converted.

13. Make another folder Train (we can use any name) into the folder Converted. Now open

and run convert.c using visual studio software. After executing this program the following

files will be generated:

• Out vec.scp will be generating into the folder Converted.

• file1.vec, file2.vec, file3.vec ........ files will be created into the folder Train.These vector

files contain garbage data.

5.9 Steps of the Experiment(Training)

1. The first step in HMM training is to define a prototype model. The parameters of this

model are not important, its purpose is to define the model topology. For phone-based

systems, a good topology to use is 3-state left-right with no skips such as the following

∼o <VecSize >39 <MFCC 0 D A >

∼h “proto ”

<BeginHMM>

<NumStates>5

<State>2
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<Mean>39

0.0 0.0 0.0 ...

<Variance>39

1.0 1.0 1.0 ...

<State>3

<Mean>39

0.0 0.0 0.0 ...

<Variance>39

1.0 1.0 1.0 ...

<State>4

<Mean>39

0.0 0.0 0.0 ...

<Variance>39

1.0 1.0 1.0 ...

<TransP>5

0.0 1.0 0.0 0.0 0.0

0.0 0.6 0.4 0.0 0.0

0.0 0.0 0.6 0.4 0.0

0.0 0.0 0.0 0.7 0.3

0.0 0.0 0.0 0.0 0.0

<EndHMM>

where each ellipsed vector is of length 39. This number, 39, is computed from the length

of the parameterised static vector (MFCC 0 = 13) plus the delta coefficients (+13) plus the

acceleration coefficients (+13). The HTK tool HCompV will scan a set of data files, compute

the global mean and variance and set all of the Gaussians in a given HMM to have the same

mean and variance. Hence, assuming that a list of all the training files is stored in train.scp,

the command :

HCompV -T 1 -C HTK 39dpf.config -S Train.scp -m -v 0.01 -M Model proto 5states 39dim

will create a new version of proto 5states 39dim in the directory Model(the directory created

by us in the Experiment directory )in which the zero means and unit variances above

have been replaced by the global speech means and variances. Note that the prototype
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HMM defines the parameter kind as MFCC 0 D A. This means that delta and acceleration

coefficients are to be computed and appended to the static MFCC coefficients computed and

stored during the coding process described above. To ensure that these are computed during

loading, the configuration file config should be modified to change the target kind, i.e. the

configuration file entry for TARGETKIND should be changed to

TARGETKIND = MFCC 0 D A

Under Model directory two files are created :

• vfloors

• proto 5states 39dim

2.Now we rename vloors to macro .And we copy first 3 lines from proto 5states 39dim to

macro .

3.Now we run the following command:

HRest -T 1 -C HTK 39dpf.config -S Train.scp -I Train.MLF -L Label -M Model1 -H macro

-w 3 -v 0.05 -i 40 -m 1 proto 5states 39im

Here Label is the folder where label files of the input data are located.The extension of the

label files is .lab . Model1 is the folder created by us in the Experiment folder . Under

Model1 directory two files are created :

• macro

• proto 5states 39dim

4.Now copy & paste proto 5states 39dim and rename it as hmmdefs.

5. Given this new prototype model stored in the directory Model, a Master Macro File

(MMF) called hmmdefs containing a copy for each of the required monophone HMMs

is constructed by manually copying the prototype and relabeling it for each required

monophone (including “sil”). The format of an MMF is similar to that of an MLF and it

serves a similar purpose in that it avoids having a large number of individual HMM definition

files.Now we copy monophones and paste it into the folder Experiment. This file contains

53 elements.
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6.Now open hmmdefs and copy the codes from ∼h “proto 5states 39dim ”(4th line) to

<ENDHMM >(last line) and paste it 52 times. So total will be 53.Now remove ∼h

“proto 5states 39dim”(53 times) and write aa, ch, .... (total 53 word from monophones

file).

Now we run HERest commnd for several mixtures. For every mixtures we run the command

10 times for 10 Model directory.Each time HERest is run it performs a single re-estimation.

Each new HMM set is stored in a new directory.The process leading to the initial set of

monophones in the directory Experiment is illustrated in Figure 5.2 .

Figure 5.2: HERest Command

5.9.1 Mixture 1

1.Now we run the following command after creating Model2 directory:

HERest -T 1 -C HTK 39dpf.config -S Train.scp -I Train.MLF -L Label -M Model1 -H macro

-w 3 -v 0.05 -t 250.0 150.0 1000.0 -H Model1\hmmdefs -H Model1\macro -M Model2

monophones .

Under Model2 directory two files are created :

• macro

• hmmdefs
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2.Now we run the following command after creating Model3 directory:

HERest -T 1 -C HTK 39dpf.config -S Train.scp -I Train.MLF -L Label -M Model2 -H macro

-w 3 -v 0.05 -t 250.0 150.0 1000.0 -H Model2\hmmdefs -H Model2\macro -M Model3

monophones .

Under Model2 directory two files are created :

• macro

• hmmdefs

3. Now we have to repeat the above step until Model10 directory is created .

5.9.2 Mixture 2

1.Now we run the following command after creating Mix2 directory and Model1 directory

under Mix2 directory:

HHEd -H Model10\macro -H Model10\hmmdefs -M Mix2\Model1 Hed\mix2.hed

monophones .

Under Model1 directory two files are created :

• macro

• hmmdefs

2. Now we have to repeat the above step until Model10 directory is created .

5.9.3 Mixture 4

1.Now we run the following command after creating Mix4 directory and Model1 directory

under Mix4 directory:

HHEd -H Mix2 \Model10\macro -H Mix2\Model10\hmmdefs -M Mix4\Model1

Hed\mix4.hed monophones.

Under Model1 directory two files are created :
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• macro

• hmmdefs

2. Now we have to repeat the above step until Model10 directory is created .

5.9.4 Mixture 8

1.Now we run the following command after creating Mix8 directory and Model1 directory

under Mix8 directory:

HHEd -H Mix4 \Model10\macro -H Mix4\Model10\hmmdefs -M Mix8\Model1

Hed\mix8.hed monophones.

Under Model1 directory two files are created :

• macro

• hmmdefs

2. Now we have to repeat the above step until Model10 directory is created .

5.9.5 Mixture 16

1.Now we run the following command after creating Mix16 directory and Model1 directory

under Mix16 directory:

HHEd -H Mix8 \Model10\macro -H Mix8\Model10\hmmdefs -M Mix16\Model1

Hed\mix16.hed monophones.

Under Model1 directory two files are created :

• macro

• hmmdefs

2. Now we have to repeat the above step until Model10 directory is created .
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5.9.6 Mixture 32

1.Now we run the following command after creating Mix32 directory and Model1 directory

under Mix32 directory:

HHEd -H Mix16 \Model10\macro -H Mix16\Model10\hmmdefs -M Mix32\Model1

Hed\mix32.hed monophones.

Under Model1 directory two files are created :

• macro

• hmmdefs

2. Now we have to repeat the above step until Model10 directory is created .

5.10 Steps of the Experiment(Testing)

1. Now we run the following speech command :

HParse Grammer.grm lattice.lat

here lattice.lat is the output file.

2. HVite -T 1 -C HTK 39dpf.config -S Train.scp -t 300.0 -s 5.0 -i Result\out1.txt -w

lattice.lat -H Model10\hmmdefs dictionary.dic monophones

HVite -T 1 -C HTK 39dpf.config -S Train.scp -t 300.0 -s 5.0 -i Result\out2.txt -w lattice.lat

-H Model10\hmmdefs dictionary.dic monophones

HVite -T 1 -C HTK 39dpf.config -S Train.scp -t 300.0 -s 5.0 -i Result\out4.txt -w lattice.lat

-H Model10\hmmdefs dictionary.dic monophones

HVite -T 1 -C HTK 39dpf.config -S Train.scp -t 300.0 -s 5.0 -i Result\out8.txt -w lattice.lat

-H Model10\hmmdefs dictionary.dic monophones

HVite -T 1 -C HTK 39dpf.config -S Train.scp -t 300.0 -s 5.0 -i Result\out16.txt -w lattice.lat

-H Model10\hmmdefs dictionary.dic monophones

HVite -T 1 -C HTK 39dpf.config -S Train.scp -t 300.0 -s 5.0 -i Result\out32.txt -w lattice.lat

-H Model10\hmmdefs dictionary.dic monophones
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3. By running the following commands we check the correct rate and accuracy rate .

HResults -I Train.MLF -L Label monophones Result\out1.txt >>out1.log

HResults -I Train.MLF -L Label monophones Result\out2.txt >>out2.log

HResults -I Train.MLF -L Label monophones Result\out4.txt >>out4.log

HResults -I Train.MLF -L Label monophones Result\out8.txt >>out8.log

HResults -I Train.MLF -L Label monophones Result\out16.txt >>out16.log

HResults -I Train.MLF -L Label monophones Result\out32.txt >>out32.log

In out.log file the result of the experiment is shown – The correct rate and the accuracy rate

.

5.11 Conclusion

The HTK tools are best described by going through the processing steps involved in building

a sub-word based continuous speech recogniser. As shown in Figure 5.3, there are 4 main

phases: data preparation, training, testing and analysis.
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Figure 5.3: HTK Processing Stages
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CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusion

In this project, the main task was to develop an automatic phoneme recognizer for Bangla

language. This system is aimed at improving on the current Human-computer interface by

introducing a voice interface, which has proved to have so many advantages to the traditional

I/O methods. Users naturally know how to speak so this would provide an easy interface

which does not necessarily require special training which is normally the case when we are

using various ICT tools for the first time.

This paper showed a preparation of Bangla speech corpus and provided some experiments

to obtain phoneme recognition performance. This short introduction covered the basics of

speech recognition up to the principles of isolated word recognition.

The following conclusions are drawn from the experiments:

i) The MFCC-based system provides tremendous improvement of Bangla phoneme

recognition accuracy for both training and test data.

ii) A higher Bangla phoneme correct rate for training and test data is also obtained by the

MFCC-based system.

iii) We have learned how the basic algorithm for isolated word recognition with HMMs

works.

iv) If we have large vocabularies, we will not have enough training samples for the creation

of word models.

v) We have learned how “n-best” word sequences instead of the best word sequence only

can be searched .

61



vi) We have learned how we can integrate additional knowledge sources like finite state

grammars or stochastic language models into the recognition process.

vii) We have learned how we can reduce the computational complexity of the search

algorithm so that we are able to meet real time constraints.

6.2 Future Works

Some issues are beyond of this thesis. In future, we would like to do the following works :

(a) In the proposed canonicalization process, DPF extractor is implemented by a

single MLN, which cannot solve coarticulation problems and hence, shows some

misclassifications. Some experiments should be done using the proposed DPF extractor,

MLN+MLN+In/En+GS in the canonicalization process.

(b) Some authors incorporated multiple noise reduction techniques, instead of single one, in

their system and obtained better word accuracy for high and mid level SNR in multicondition

training. On the other hand, the proposed method in this thesis used two-stage Wiener

filtering technique and showed higher word accuracy in low SNR conditions. Therefore,

some experiments by embedding multiple noise reduction techniques in the proposed

method are needed to get better word accuracy for all SNR conditions in multicondition

training.

Some word recognition experiments by incorporating language models will be evaluated

in near future by incorporating the proposed DPF extractor.We would like to do further

experiments for obtaining phoneme recognition performance after inserting both features

into the neural network based systems.
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APPENDIX A

BATCH HLIST.M

Here is the code of an MatLab file which converts the mfcc file to shk files in the output

folder:

%%Input Script File

fin = fopen(‘H:\\Experiment\\source.m f c’);

%%Output Script File

fout= fopen(‘H:\\Experiment\\dest.m f c ’,‘w ’);

%%HTK Command

htk=‘H:\\Experiment\\HList −h ’;

%%HList Command Generated File Extension

extn = ‘.shk ’;

tline = fgetl( f in);

while ischar(tline)

disp(tline)

toutline = tline;

pathstr,name,ext,versn

= fileparts(tline); % Get File Path, Name, Extension and Version

disp(pathstr);

genpath=sprintf(‘%s ’,pathstr);

pathstr=strcat(pathstr, ‘\out put ’); % Insert Another Level of Folder Named output



genpath=strcat(genpath,‘\genout put ’);

%disp(pathstr) ;

%disp(genpath) ;

a = exist (pathstr, ‘dir ’);%Check If The Directory Exists

disp (a);

if(a =7)

status =mkdir(pathstr) %If Not Exist Create Directory

disp(status);

end

a=exist(genpath,‘dir ’); %Check If The Directory Exists

if(a∼=7)

mkdir(genpath) %If Not Exist Create Directory

end

str=strcat(pathstr,‘\ ’,name,extn); %Concat New File Extension

a=exist(str,‘file’);

if(a==2)

delete(str) %If HList Generated File Already Exist Then Remove Old File

end

fprintf(fout, ‘%s ’,str); %Write The File Name(Path+File) Into Output Script File

fprintf(fout,‘\r\n ’);

cmd=sprintf(‘%s %s�%s’,htk,tline,str); %Build Command String

%HList

status = dos(cmd); % Run Command

tline = fgetl(fin);



end

fclose(fin); %Close Opened File Stream

fclose(fout);


