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ABSTRACT

Protein inference refers assembling peptides identified from tandem mass spectra

into a list of proteins. Due to the existence of degenerate peptides, it is very difficult

to determine which proteins are present in the sample. This problem is called protein

inference problem and it represents a major challenge in shotgun proteomics as well

as in proteomics research. Many approaches have been introduced for solving protein

inference problem. In this paper, we have combined Bayesian and Meta-heuristic ap-

proaches for solving protein inference problem. Meta-heuristic approaches provide a

very fast and efficient heuristic search strategy to infer proteins with reasonable accu-

racy and precision. It provides the flexibility to infer proteins either parsimoniously

or optimistically or somewhere between the two by taking some tuning parameters.

On the other hand Bayesian model provides a probabilistic model that incorporates the

predicted peptide detectabilities as the prior probabilities of peptide identification. We

propose a combination of these two approaches. We showed it by combining MAgPI (A

Memetic Algorithm Based Approach in Protein Inference Problem) as Meta-heuristics

approach and Gibbs Sampler for protein inferencing as Bayesian approach. In our sys-

tem, Gibbs Sampler is processing the input of MAgPI and finally MAgPI is refining the

input. As, our input is going through two refining processes, the final output is better

than others in several aspects. Another important fact is that in our system computation

time of MAgPI is less than before as after first stage of refining, the size of candidate

solution becomes very short. We used Sigma49 dataset to test our method and got good

result in several aspects.
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CHAPTER 1
INTRODUCTION

Proteomics, based on mass spectrometry is a large-scale study of proteins, particularly their
structures and functions. It provides information that is not readily available from genomic
sequence or RNA expression data. An explicit goal of proteomics is the identification of all
proteins expressed in a cell or tissue as they are the vital parts of living organism and main
components of the physiological metabolic pathways or cells.

1.1 Overview

The concept of “Shotgun proteomics” arose to overcome the difficulties of using previous
technologies to separate complex mixtures. In 1975, two-dimensional polyacrylamide gel
electrophoresis was described by OFarrell and Klose with the ability to resolve complex pro-
tein mixtures. The development of matrix-assisted laser desorption ionization, electrospray
ionization, and database searching continued to grow the field of proteomics. However these
methods still had difficulty identifying and separating low-abundance proteins, aberrant pro-
teins, and membrane proteins. Shotgun proteomics emerged as a method that could resolve
even these proteins. It refers to the use of bottom-up proteomics techniques of identifying
proteins in complex mixtures using a combination of high performance liquid chromatogra-
phy combined with mass spectrometry [6].

The comprehensive and quantitative analysis of proteins expressed in a given organ, tissue or
cell line, provides additional valuable information about biological systems to complement
the knowledge gained by genomics or transcriptomics approaches. Being able to identify
and quantify proteins is of main importance in molecular and systems biology, since these
macromolecules, as well as the interactions between them, play an essential role in cell
functions.

It is important to know which proteins are present in a sample, but the abundance of these
molecules is also of major interest. For instance, one would like to be able to figure out
which are the most/least abundant proteins in a sample, or to compare the abundance of the
same protein in two samples under different biological conditions. In medical sciences, for
example, biomarkers can be used to monitor the efficiency of a treatment by comparing the
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molecule’s concentration before and after a therapy [7].

The most common method of shotgun proteomics starts with the enzymatically digested
proteins in the mixture which are optionally fractionated from their biological source. The
resulting peptide mixtures are then ionized and scanned by tandem mass spectrometry (
MS/MS ) to obtain a set of MS/MS spectra. These spectra are subsequently searched against
a protein database to identify peptides present in the sample. After the peptides have been
identified, it is necessary to validate the identification process so that further steps do not
suffer from noisy inputs. Many peptide search engines have been developed, among which
Sequest [8], Mascot [9] and X!Tandem Sequest [10] are commonly used. Finally, pep-
tides and proteins are identified by computational analysis [1]. Figure 1.1 shows the whole
procedure as a pipeline diagram.

Figure 1.1: A general pipeline for the identification of proteins in shotgun proteomics. Fig-
ure has been borrowed from [1].

Most algorithms have set their input by modelling the relationship between the identified
peptides and the proteins in the database as a bipartite graph. It is necessary to make a
one to one mapping between the proteins and the peptides but if there were a one to one
mapping from the proteins to peptides or vice-versa, the solution would be trivial, but the
actual situation is not that simple. Even if the identified set of peptides is reliable, it does
not ensure that a reliable list of proteins can be assembled from these peptides. Figure 1.2
shows that, protein P1 is an one hit wonder protein as it generates only one peptide after
digestion. We can identify that protein very easily from its generated peptide by searching
the database. But protein P2 and protein P3 both generates same peptide 5. So, it is not
straightforward to say from which protein peptide 5 generated. These type of peptides are
called degenerated peptide. One of the most challenging problems is the peptide degeneracy
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issue, which arises when a single peptide can be mapped to multiple proteins. Thus, in the
presence of a degenerate peptide, it is always difficult to deduce with protein or protein
family actually generated the peptide. As a result, the protein inference problem, often has
multiple solutions and can be computationally intractable. Three types of model are used in
the protein inference domain -

• Statistical model (ensures protein inferencing with high accuracy)

• Parsimonious model (assumes only a small subset of proteins should be sufficient to
explain all identified peptides)

• Optimistic model (returns all the protein or protein families that has some poten-
tial) [3]

Figure 1.2: A bipartite graph represents the protein-peptide relation

The protein identification procedure therefore can be divided into three major steps

1. Peptide Identification

2. Protein Inference

10



3. Result Evaluation

The main difficulty lies in the intermediate step Protein inference. So, the problem of deter-
mining which of the proteins is present in the sample is known as Protein inference problem

[3].

1.2 Motivation

The main motivation behind combining these two approaches is to reach globally optimal
solution by incorporating predicted peptide detectability as prior probability to yield a bet-
ter result. We have used prior probability to identify those peptides which are not being
identified by peptide search engine but have a significant impact on the work. We were in-
tended to map protein inference problem as evolutionary search problem and use Memetic
Algorithm as a synergy of evolutionary with separate individual learning procedure from its
surrounding. We have used different technique to maintain the diversity of solution. The
Meta-heuristic part of our approach does not work with the best individuals only, it gives
chance to the less fit ones too.

1.3 Objectives

It is necessary to fix some objectives or aim before starting any kind of research work.
Following objectives have been decided to solve protein inference problem with a high per-
formance by combining Bayesian and Meta-heuristic approaches:

• Incorporating peptide detectability as prior probability in peptide identification

• Implementing Gibbs Sampling algorithm for the output as MAP probability

• Reducing search area for protein identification which decreases the searching time

• Incorporating Memetic Algorithm with diversity maintenance mechanism

• Achieving a better result in the combined process than the individual ones

1.4 Organization of the thesis

This thesis is organized as follows: chapter 2 describes some basic but important definitions
and the related works have been done to solve protein inference problem. Chapter 3 dis-
cusses our combination procedure in detail. Chapter 4 shows the experimental setup, results
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using comparison with other works and gives possible future directions. Finally, Chapter 5
draws the conclusion.
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CHAPTER 2
PRELIMINARIES

In this chapter, we have discussed about some definitions of common technical terms and
related works that are intended to solve protein inference problem.

2.1 Basic Definitions

To have a clear knowledge on the working procedure of our approach, one has to be familiar
with some basic but very important definitions. The related definitions have been provided
below:

• Protein

Protein can be defines as, Any of a class of nitrogenous organic compounds that con-
sist of large molecules composed of one or more long chains of amino acids and is
an essential part of all living organisms, especially as structural components of body
tissues such as muscle, hair, collagen, etc., and as enzymes and antibodies [11].

In other words, proteins are large biological molecules, or macromolecules, consisting
of one or more long chains of amino acid residues [12].

• Peptide

Peptide can be defined as, a compound consisting of two or more amino acids linked
in a chain, the carboxyl group of each acid being joined to the amino group of the next
by a bond of the type -OC-NH- [11].

• Peptide Detectability

Peptide detectability is defined as the probability that a peptide is identified in an LC-
MS/MS experiment and has been useful in providing solutions to protein inference
and label-free quantification [11].

• Prior Probability

In Bayesian statistical inference, a prior probability distribution, often called simply
the prior, of an uncertain quantity p is the probability distribution that would express
one’s uncertainty about p before some evidence is taken into account [13].
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• Posterior Probability

In statistical terms, the posterior probability is the probability of event A occurring
given that event B has occurred [11].

• Gibbs Sampling

Gibbs Sampling is a commonly used strategy to approximate a high-dimensional joint
distribution that is not explicitly known [14, 15]. This algorithm is used to achieve
the optimal protein configuration with the MAP probability.

• True Positive (TP)

True positive denotes the amount of proteins that are correctly identified by an ap-
proach. Increase in TP is positive for an approach.

• False Positive (FP)

False positive denotes the amount of proteins that are identified by an approach but
they are not in the true class. Decrease in FP is considered as positive.

• False Negative (FN)

False negative denotes the amount of proteins that are not identified by an approach
but they are in the true class. Decrease in FN is considered as positive.

• Precision (Pr)

Ratio of correctly inferred proteins within the test peptide set that is inferred to be
present. Precision of an algorithm is considered as best if it is 1.

Precision =
TP

(TP + FP )
(2.1)

• Recall (Rc)

Recall can defined as the rate of true positive. Increase in recall is better for an ap-
proach.

Recall =
TP

P
(2.2)

• F Measure

The harmonic mean of precision and recall is called F measure. It is better to have a
better f measure.

FMeasure =
2

1
Precision

+ 1
Recall

(2.3)
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2.2 Related Works on Protein Inference Problem

Over the past few years, various research takes place on proteomics. Various method has
been used for proteomics. Nesvizhskii and his colleagues first addressed this protein infer-
encing challenge using a probabilistic model [16], After that different problem formula-
tions and new solutions have been proposed as well [17–19]. A new concept of peptide
detectability with the goal of finding the set of proteins with the minimal number of missed
peptides is discussed in [18]. Again greedy or graph-pruning strategies [18] address the
protein inference problem without performance guarantee. In other approach [2], the protein
inference is addressed by proposing two novel Bayesian models that take as input a set of
identified peptides from any peptide search engine, and attempt to find a most likely set of
proteins from which those identified peptides originated. The basic model assumes that all
identified peptides are correct, whereas the advanced model also accepts the probability of
each peptide to be present in the sample. Few classes of cooperative Meta-heuristics like
the Island model, Spatially embedded models and genetic programming have been used in
protein identification. The evolutionary identification approach [20] tries to find the entire
sequence of a protein, even in the case of variants or unknown proteins. To accomplish that,
different peptides that composes a given protein must be identified.

As we worked on the target of combining Bayesian approach and Meta-heuristic approach,
we have gathered knowledge on these topics deeply. In the following sub sections these two
approaches have been discussed by inspired from [2–4].

2.2.1 Bayesian Approach

Bayesian approach solves protein inference by proposing two Bayesian models where a set
of identified peptides from any peptide search engines used as input and then attempt to find
the set of proteins from which those identified peptides originated which is actual protein.

Representation of protein and peptide

A bipartite graph can be defined as a protein configuration graph. In Figure 2.1,

• Two disjoint sets of vertices represent the proteins in the database and the peptides
from these proteins, respectively.

• Each edge indicates that the peptide belongs to the protein.

• The protein configuration graph is independent of the proteomics experiment, and thus
can be built from a set of protein sequences.

• In this model, identified peptides and non identified peptides both are considered.
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• A protein configuration graph is partitioned into connected components, each repre-
senting a group of proteins sharing one or more (degenerate) peptides. If there are no
degenerate peptides in the database, each connected component will contain exactly
one protein and its peptides.

• The protein configuration graph can be interpreted as a Bayesian network with edges
pointing from proteins into peptides,

• It is cleared that protein inference can be addressed separately for each individual
connected component.

• The peptide identification results are first mapped to the protein configuration graph.A
vector of indicator variables (y1, ..., yj, ..., yn), are referred to as the peptide configu-
ration, to denote a set of identified peptides.

Now, the protein configuration graph can be simplified by removing proteins containing no
identified peptides. After the simplification, one connected component in the original pro-
tein configuration graph may be partitioned into several small components. Identify trivial
and non-trivial connected component so that the protein inference problem can be reduced
to finding the protein configuration (x1, ..., xi, ..., xm) by analysing non-trivial components
only [2].

Basic Bayesian Model

This model assumes that all identified peptides are correct.It can be considered as a special
case of the advanced model, where the probabilities ri,j for different peptides j are lim-
ited to 0 as non-identified peptides or 1 as identified peptides. Practically, the basic model
can be used when the probabilities rj are not provided and while while the identified pep-
tides are obtained at a stringent false discovery rate (FDR), e.g., 0.01, by either a heuristic
target-decoy search strategy [19, 21, 22] or by probabilistic modeling of random peptide
identification scores [23,24]. In the next section, basic model is extended to a more realistic
model in which different probabilities are incorporated for different identified peptides that
are estimated based on the peptide identification scores. When the probabilities of identified
peptides are available, it is expected that the advanced model should perform better than the
basic model [2].

Now considering m proteins and n peptides from these proteins within a non-trivial con-
nected component of the protein configuration graph. Each protein i is either present in
the sample or absent from it, which can be represented by an indicator variable xi. There-
fore, any solution of the protein inference problem corresponds to a vector of indicator

16



Figure 2.1: (a) A protein configuration graph consisting of two connected components. (b)
Basic Bayesian model for protein inference. In which peptides are represented as a vector of
indicator variables: 1 (gray) for identified peptides and 0 (white) for non-identified peptides.
(c) Advanced Bayesian model for protein inference. In which each peptide is associated to
an identification score (0 for non-identified peptides). Sizes of circles reflect prior/posterior
probabilities. Figure has been borrowed from [2].

variables,(x1, ..., xm), referred to as a protein configuration. Given the set of identified pep-
tides from peptide search engines (peptide configuration (y1, ..., yn)), the goal is to find the
maximum a posteriori (MAP) protein configuration, that is the configuration that maximizes
the posterior probability P (x1, ..., xm|y1, ..., yn),

(x1, ..., xm)MAP = argmax(x1,...,xm)P (x1, ..., xm|y1, ..., yn) (2.4)

Using Bayes rule, the posterior probability can be expressed as:

P (x1, ..., xm|y1, ..., yn) =
P (x1, ..., xm)P (y1, ..., ym|x1, ..., xn)∑

(x1,...,xm)[P (x1, ..., xm)P (y1, ..., ym|x1, ..., xn)]

=

P (x1, .......xm)
∏
j

[1− Pr(yj = 1|x1, ..., xm)]1−yjPr(yj = 1|x1, ..., xm)yj∑
(x1,...,xm) P (x1, ..., xm)

∏
j

[1− Pr(yj = 1|x1, ..., xm)]1−yjPr(yj = 1|x1, ..., xm)yj

(2.5)

where P (x1, ..., xm) is the prior probability of the protein configuration. Assuming the
presence of each protein i is independent of other proteins, this prior probability can be
computed as:

P (x1, ..., xm) =
∏
i

P (xi) (2.6)

17



Pr(yj = 1|x1, ..., xm) is the probability of peptide j to be identified by shotgun proteomics
given the protein configuration (x1, ..., xm). Assuming that different proteins contribute
independently to the identification of a peptide, we can compute it as:

Pr(yj = 1|x1, ..., xm) = 1−
∏
i

[1− xiPr(yj = 1|xi = 1, x1 = ... = xi−1 = xi+1 = ... = xm = 0)]

(2.7)

where Pr(yj = 1|xi = 1, x1 = ... =xi−1 = xi+1 = ... = xm = 0) is the probability of
peptide j to be identified if only protein i is present in the sample. This probability, referred
to as the standard peptide detectability dij , is an intrinsic property of the peptide (within
its parent protein), and can be predicted from the peptide and protein sequence prior to a
proteomics experiment [25]. Combining equations (2.5) and (2.7), we can compute the
posterior probabilities for protein configurations as:

P (x1, ..., xm|y1, ..., yn) =

∏
i

P (xi)
∏
j

{[
∏
i

(1− xidij]1−yj [1−
∏
i

(1− xidij)]yj}∑
(x′1,...,x

′
m)

∏
i

P (x′i){[
∏
i

(1− x′idij]1−yj [1−
∏
i

(1− x′idij)]yj}

(2.8)

It is also possible to compute marginal posterior probability of a specific protein i to be
present in the sample, which can be expressed as:

p(xi|y1, ....., yn) =
∑

(x1,....xi−1,xi+1,.......,xm)

P (x1, ..., xm|y1, ..., yn) (2.9)

Advanced Bayesian Model

The advanced model accepts the probability of each peptide to be present in the sample.
Where in basic Bayesian model, all identified peptide has equal probabilities of being cor-
rectly identified. Here peptide identification score sj for each peptide j is introduced, which
is the output of the peptide search engines. It is assumed the peptide identification score is
highly correlated with the probability of a peptide being correctly identified and their rela-
tionship can be approximately modelled using probabilistic methods. The goal is to compute
P (x1, ..., xm|s1, ..., sn) by enumerating all potential peptide configurations:

P (x1, ..., xm|s1, ..., sn) =
∑

(y1,...,yn)

[P (x1, ..., xm|y1, ..., yn)P (x1, ..., xm|s1, ..., sn)] (2.10)
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It is assumed that sj is independent of the presences of the other peptides (i.e., (y1, ...,yj−1,
yj+1, . . ., yn)) for each peptide j, so

P (s1, ..., sn|y1, ..., yn) =
∏
j

P (sj|yj) (2.11)

By applying Bayes rule,

P (s1, ..., sn|y1, ..., yn) =
∏
j

P (yj|sj)P (sj)

P (yj)
=

∏
j

(1− rj)1−yjr
yj
j P (sj)

P (yj)
(2.12)

where the marginal probability of a peptide j can be computed as:

P (yj) =
∑

x1,...,xm)

[P (yi|x1...xm)] = [1−
∏
i

(1−Pr(xi = 1)dij]
yj [1−

∏
i

(1−Pr(xi = 1)dij]
1−yj

(2.13)

Combining these equations, it is possible compute the posterior probability of protein con-
figurations as:

P (x1, ..., xm|s1, ..., sn) =

∑
(y1,...,yn){

∏
i
P (xi){[

∏
i
(1−xidij)]1−yj [

∏
i
(1−xidij)]yj

(1−rj)
1−yj r

yj
j

P (yj)
}}

∑
(x′1,....x

′
m)(y1,....yn){

∏
i
{P (x′i){[

∏
i
(1−x′idij)]

1−yj [1−[
∏
i
(1−x′idij)]

yj ]
(1−rj)

1−yj r
yj
j

P (yj)
}}

(2.14)
It is also possible compute the posterior probability of a specific protein i present in the
sample as:

P (xi|s1, ....., sn) =
∑

(x1,....xi−1,xi+1,.......,xm)

P (x1, ..., xm|s1, ..., sn) (2.15)

The marginal posterior probability of a peptide j as:

P (yj|s1, ....., sn) =
∑

(x1,....,xm,y1,.....yj−1,yj+1.....yn)

[P (x1, ..., xm|y1, ..., yn)P (y1, ..., yn|s1, ..., sn)]

(2.16)

Gibbs Sampling Algorithm

Gibbs Sampling is a commonly used strategy to approximate a high-dimensional joint dis-
tribution that is not explicitly known [14, 15]. It is adopted to achieve the optimal protein
configuration with the MAP probability. The original Gibbs Sampling algorithm considers
one individual variable at a time in the multi-dimensional distribution. It, however, often
converges slowly and is easily trapped by local maxima for long time. Several techniques
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have been proposed to improve the search efficiency of Gibbs Sampling algorithm, such as
random sweeping, blocking, and collapsing [15]. Because in this each variable xi to be
sampled has small search space (i.e., 0,1) and the block sampling technique is applied in
this Gibbs Sampler algorithm. Without increasing the computational complexity, a novel
memorizing strategy is adopted that keeps a record of all posterior probabilities among all
configurations are evaluated during the sampling procedure, and report the maximum solu-
tion in the end [2].

2.2.2 Meta-heuristic Approach

Two Meta-heuristic approaches for solving the protein inference problem are proposed.
They have been discussed in the following sub-section.

1. PlssGA

2. MAgPI - It is the continuation work of PIssGA.

The first attempt to solve protein inference problem using Meta-heuristic approach is PIssGA.
In PissGA, a steady state genetic algorithm was used to solve the protein inference problem.
The reason behind choosing the steady state version of genetic algorithm is due to the ex-
ploitative nature of the protein inference problem. PIssGA iterates through the fitness eval-
uation,parent selection, breeding and survival selection procedures after initialization. The
contribution of this algorithm is,

• To provide a very fast and efficient heuristic search strategy to infer proteins with
reasonable accuracy and precision

• To provide the flexibility to infer proteins either parsimoniously or optimistically or
somewhere between the two, based on some tuning parameter [3]

In MAgPI the main target is to reach globally optimal solution avoiding the local optima
as in steady state GA approach, the solution can be stuck in local optima. MAgPI does not
neglect the less fit individuals completely and It gives some chance to the less fit individuals
to reproduce and even to survive. The contribution of this algorithm is,

• It is based on Memetic Algorithm and explored more utilization of evolutionary com-
putation in this research. The algorithm 1 has been included in the algorithm section.

• It utilizes different technique in maintaining diversity of solutions from the traditional
distance based diversity maintenance
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• In MAgPI protein inference problem has been mapped as an evolutionary search. In
this strategy, selected individuals are allowed to learn from the surrounding and to
propagate the improvement to the next generations [4].

Following these two algorithms will be discussed described:

Candidate solution Representation

For representing candidate solution in both algorithm,

- If the protein is present, the corresponding gene has value 1 and

- If the protein is absent, the corresponding gene has value 0

Thus a string of 0 and 1s will form an individual. Figure 2.2 gives an example representation
which assumes five potential proteins. In Figure 2.2, the candidate solution represents that
the testing biological sample contains proteins Pr2, Pr3 and Pr5. Main database contain
more protein which is not potential with respect to peptide sequences obtained from MS and
MS/MS spectrum analysis. So, they can be discarded from candidate solution representation
as they never can appear [3, 4].

Pr1 Pr2 Pr3 Pr4 Pr5 Pr6
0 1 1 0 1 0

Figure 2.2: Representation of the candidate solution.

Generating Initial Population

In many protein databases, peptide sequences of proteins are well known and available. For
the initial population generation, consider following steps,

• Step 1: Mapping

The mapping of protein to its peptide sequence. An hypothetical mapping is demon-
strated in Figure 2.3, where Prn is a protein and the symbols at the right of the arrow
sign actually represents its hypothetical peptide sequence.

• Step 2: Potential Protein Identification

If protein Pr1 generates a peptide sequence which contains the peptide G, then the
former is obviously a potential parent of the latter. In this way, identify all the potential
proteins in the sample, form a set of potential proteins removing any repetitions and
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Pr1→ GKEUTR
Pr2→ LY ARE

Pr3→ LV GARTHNB
...........................
...........................

Prn→WHBAFGSTHJSY B

Figure 2.3: An hypothetical mapping of protein and peptide

discard the rest of the proteins as they are of no interest for this particular test case. As
the number of proteins present in the test sample cannot exceed the cardinality of the
potential protein set, number of genes in an individual is kept equal to the cardinality
of the latter. This helps to reduce the size of the candidate solution and reduce the
search space.

• Step 3: Generation of Initial Population

After the number of potential proteins in an individual and also the individual potential
proteins have been identified,it is ready to generate the initial population [3,4]. Figure
2.4 shows a sample initial population,

Pr3 Pr4 Pr9 Pr11 Pr14
0 0 1 0 0
0 1 0 1 1
0 0 1 1 0
1 1 0 0 1

Figure 2.4: A sample initial population

Recombination and Mutation as Breeding Operators

In PlssGA uniform crossover was used as recombination, because candidate solution is en-
coded in Boolean valued vector and sequence gene has not any special significance. This
means every gene has equal probability of swapping and this probability is denoted by γ
which is user defined. Figure 2.5 demonstrates uniform crossover process which swaps the
genes corresponding to Pr1, Pr3 and Pr6.

For mutation, bit-flip mutation operator is applied. Here, a gene is randomly randomly
selected from an individual and with a very small probability µ. Flip is done to change value
of gene. Figure 2.6 demonstrates this process of mutation operator flips the value of Pr3
from 1 to 0 [3, 4].
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Figure 2.5: Uniform Crossover. Figure has been borrowed from [3, 4].

Figure 2.6: Bit flip mutation operator. Figure has been taken from [3, 4].

Procedure of Offspring Education in MAgPI

To accommodate the essence of Memetic Algorithm, offspring education procedure is used
on selected individuals. m

Parent Selection Procedure for Breeding

In PIssGA, it is performed using the roulette wheel selection mechanism, also known as
proportionate reproduction. It selects individuals for crossover and mutation operations.

The survival selection follows the exploitative approach. PIssGA only replaces a parent
individual only when the child has a greater fitness [3].

On the other hand in MAgPI, The survivor or parent selection of MAgPI is a combination
of both elitist and Fitness Uniform Selection. Kindividuals for next generation are selected
in elitist approach, the rest are selected uniformly over fitness landscape(FUSS) [4].

Evaluating Fitness

In PlssGA the fitness function should consider the following issues:

• First issue is the choice of whether to consider the minimum or maximum number of
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proteins that cover the test peptide sequence or whether to keep both the options and
make it adaptive.

• Percentage of test peptides covered by the proteins inferred by a candidate solution.

• Another issue is how much the hypothetical peptide set constructed from the inferred
proteins of an individual is similar to the test peptide sequence. The more similar
they are, the higher is the probability of the inferred protein sets to be correct. Also
important is the issue of how many redundant peptides does this hypothetical peptide
set contains.

• The protein inference procedure is not deterministic due to the presence of both one-
hit wonders and degenerate peptides. So, an exact solution may not be available and
approximate solutions may be only possible option.

On the other hand, in MAgPI while evolving the candidate solutions of protein inference
problem, the fitness function should consider the following issues:

• The most unique features of MAgPI which gives user the control over whether to pre-
fer the minimum or maximum number of inferred proteins or take a mid way around.

• Percentage of peptides covered within the test peptide sequence by the inferred pro-
teins of a candidate solution.

• The amount at which the hypothetical peptide set constructed from the inferred pro-
teins of an individual is similar to the test peptide sequence. The more they are similar,
the higher is the probability of the inferred protein set of being correct. How many
redundant peptides does this hypothetical peptide set contains.

• Procedure is not deterministic due to the presence of both one-hit wonders and degen-
erate peptides. So, an exact solution may not be available and approximate solutions
may be only possible option.

So, the following functions are used in both algorithms:

• N(c): It returns the number of 1s in an individual c.

• C(c): This is the coverage function which returns how much the hypothetical pep-
tide set constructed from the inferred proteins of individual c cover the test peptide
sequence. of individual c cover the test peptide sequence.
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• R(c): This is the redundancy function which returns how much the hypothetical pep-
tide set resulting from inferred proteins of individual c contains redundant proteins
with respect to the test peptide sequence [3].

• S(c): This is the shield function which returns number of test peptides not covered by
the hypothetical peptide set resulting from inferred protein set in MAgPI [4].

Consider Figure 2.7 for a better understanding of the Coverage and the Redundancy mea-
sure,Here, Coverage means the intersection of the inferred hypothetical peptide set (A) and
the test peptide set (B) and Redundancy contains the peptides in the inferred hypothetical
peptide set that are not part of the test peptide set [3].

Figure 2.7: Demonstration of coverage and redundancy. Figure has been borrowed from
[3].

Now In PlssGA the fitness equation can be expressed as:

F (c) = [(C(c))α − (R(c))β] ∗ (N(c))1−ε ∗ (
1

N(c)
)ε (2.17)

Here, the fitness function defined by equation (2.17) which tries to maximize the coverage
and minimize the redundancy simultaneously.Here, α and β are two weighting exponent
fractions. These two constants are varied for 0 to 1 and adjusted by experiment. ε is a
user defined parameter, which indicates the user preference for whether to take maximum
possible number of proteins or minimum possible number of proteins as the desired output
or something in between the two [3].

In MAgPI fitness function can be expressed in the following manner:

F (c) =
1

Ψi
c ∗ 1

f
+ (1−Ψi

c) ∗ 1
η

∗N(c)ε ∗ (
1

N(c)
)1−ε (2.18)

Where f is Fidelity and ε is Exposure. Fidelity signifies how trustworthy the individual is in
inferring the protein according to our proposed heuristic. And Exposure signifies how much
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expressive an individual in expressing the test peptide set,

f =
C(c)

C(c) +R(c)
(2.19)

η =
C(c)

C(c) +R(c)
(2.20)
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CHAPTER 3
THEORETICAL FRAMEWORK OF OUR APPROACH

The theoretical description of our approach will be discussed in this chapter. Here we dis-
cussed about selection of algorithms for the improvement process of output quality and
combining Bayesian and Meta-heuristic approaches. Particularly, initial generation of in-
put, using Gibbs Sampling algorithm, the process of filtering the input, mapping the protein
and peptide, apply filtered input in MAgPI and at last the overall work flow will be discussed
here.

3.1 Selection of Algorithm

We had to select two algorithm based on Meta-heuristic approach and Bayesian approach.
In the previous chapter we have discussed about various algorithm of this two approaches.

• From Bayesian approach, we are taking Gibbs Sampler for protein inferencing using
the advanced model. Because here peptide detectability is included.

• From Meta-heuristic approach, we are taking MAgPI as it the latest work and contin-
uation of PlssGA.

3.2 Improvement Process of Output Quality

• If we want a better output, one of the possible strategies is providing a better quality
input set to the algorithm. In MAgPI in the second phase “Initial Population Genera-
tion” peptide detectability and prior probability have not considered while generating
the candidate solution. By using Gibbs Sampler we can take account of peptide de-
tectability and prior probability of our input.

• Generally MAgPI takes a generated peptide and then includes all the potential parent
proteins that might have generated the peptide in the protein set by searching the
protein-peptide database. In this way, all the potential proteins in the sample have
been included to form a set of potential proteins. The size of these protein set is large
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and it has a major effect on the output of the approach. But by using Gibbs Sampler
as a pre processing unit of input refining, database size will reduce.

• As database where all protein-peptide relation exists in MAgPI is large, the searching
procedure takes a long time which increases the running time of the algorithm. But in
our approach searching time will definitely reduce as database is short.

So, the most important challenge of our approach is increasing the input quality of MAgPI
by using Gibbs Sampler so that it can results in a better quality output.

3.3 Our Approach

In our approach we are refining the initial input into two phase. The output of first phase
is going to as input to the second phase. So there is Gibbs Sampler which is working as a
pre-processing unit of input and MAgPI as a final refiner. Note that, we did not implement
these algorithms. The implementation of MAgPI was provided by our supervisor and Gibbs
Sampler by [26].

3.3.1 Initial Input Generation

In initial input, we have incorporated the peptide detectabilities as the prior probabilities of
peptide identification. Prior probability is important as all the peptides belong to the same
protein are not observed. Some of them can be found but the others are not. The peptides
that are not identified can have significant impact on the work [25].

We have collected the input files from the website [26]:

• Input file with a list of sequences and confidence score for candidate peptide identifi-
cations

• Input file with detectability for all tryptic peptides from all candidate proteins

• Input file with prior probability for proteins

3.3.2 Gibbs Sampling

Gibbs Sampling is adopted to achieve the optimal protein configuration with the MAP prob-
ability. It often converges slowly and is easily trapped by local maxima for long time. We
have used MsBayesPro.exe which is a proof-of-principle implementation of the Bayesian
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protein inference algorithm. It gives output including the posterior probabilities for the pro-
teins, posterior probabilities for the peptides and estimated even prior for proteins and also
uses Gibbs Algorithm 2

The generated output files are:

• An output file with an extension of .bayes53 which contains the full inference result
including the posterior probabilities for the proteins

• An output file with an extension of .peppost which contains the posterior probabilities
for the peptides. The peptide posterior probabilities are better measures of correctly
identifying peptides than the original probabilities.

• An output file with an extension of .prior which contains estimated even prior for
proteins, used for iterative protein inference procedure [26]

By filtering the output, we got a set of most probable protein list which may present in the
sample. This protein list is going to be our candidate solution.

3.3.3 Filtering

We analysed the generated output file. In the output file, following variables are contained,
protein quantity, MAP state by memorizing, posterior decode state by memorizing, posi-
tive probability by memorizing, number of identified peptides of this protein, total peptides,
number of proteins, probability of at least one protein exist. All these information is gener-
ated each time memorized approach converges. Actually we didnt need all this information.

We decided to take only those proteins whose MAP state by memorizing field is 1. The
reason behind is that it is the MAP (maximum a posterior) solution; it provides the best
combination of protein existence states to explain the data. In other words, it is telling
us weather this protein exists or not. To extract these proteins we wrote a program which
checks every field and generate the protein list as well as its corresponding peptides. The
algorithm of filtering is illustrated in Figure 3.1.

3.3.4 Mapping

In the generated protein list, proteins name are given in the form of accession number used
in the Swiss-Prot Database as entry. This accession number is the combination of letters
and numbers, for example P10363. Peptides are represented as a sequence of amino acid for
example, ’ABDFRGS..’.
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Figure 3.1: Process of filtering the full inference result of MsBayesPro

Now using this proteins and peptides name in this format is difficult. So we have mapped
them. All proteins and peptides are given a unique integer number. Then protein and pep-
tides are mapped by taking account of their relation. In order to map them, we had to write
several programs. Language we used was C++ and Java.

3.3.5 Procedure of Providing Filtered Input in MAgPI

Implementation of MAgPI is done according to the Algorithm 1. The filtered and mapped
protein-peptide list is used as database here. The test peptides as sample are given as input.
MAgPI is generating candidate solution from our updated database which is now short in
size compare with before and taking less time in searching process. Generation of candidate
solution is done by the following steps,

1. From the test peptides list, peptides are taken.

2. Each peptide is searched in the database which we developed by the filtering and
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mapping process.

3. The corresponding proteins are taken from database for each peptide.

4. By this, all peptides in the sample is searched and corresponding proteins are taken.
This list of proteins is our desired candidate solution.

The rest of the part in MAgPI remains same as before. Here, we only made the change in
the generation process of candidate proteins which is shown in Figure 3.2.

Figure 3.2: Generation of Candidate Solution
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3.4 Overall Work Flow

The whole discussion of the previous section is represented by a flow chart in Figure 3.3.

Figure 3.3: Flowchart of the working procedure of CBM
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CHAPTER 4
EXPERIMENT AND RESULT

After developing an approach, it is necessary to implement it practically so that we can
get the experimental value to compare the approach with the other protein identification
approaches.

4.1 Dataset

Dataset is same as used in Bayesian approach that is Sigma49 dataset which is a synthetic
mixture of 49 standard human proteins. It was made available by Sigma Corporation for the
assessment of protein analysis protocols. Among 49 proteins, 44 proteins contain at least
one peptide that can be identified by shotgun proteomics. In addition, 9 keratin proteins and
4 other proteins are categorized as the keratin contamination and bonus proteins, and are
believed to be present in the sample due to contamination. It also contains the detectability
of the peptides to be present in that protein. The reason of using this dataset is mainly due to
the fact that the currently available peptide detectability predictors can only handle tryptic
peptides.

4.2 Experimental Setup

We ran our experiment with our filtered data on a core i-3 Intel micro-processor, 4 GB RAM
machine using JAVA. We tried to infer 44 proteins of Sigma49 as the rest five proteins dont
have a single peptide that can be identified by the Peptide Prophet search. For test peptide
(sample) we have taken peptides of 44 sigma proteins which we got from MSBayesPro.

4.3 Performance Measures

After an approach has been developed, assessing its performance is still a problem. The
most straightforward strategy for assessing the performance of different protein identifica-
tion methods is to compare all the methods using same parameters.

33



The performance measures are mainly based on the following parameters:

1. True Positive (TP)

2. False Positive (FP)

3. False Negative (FN)

4. Precision (Pr)

5. Recall (Rc) and

6. F-measure (F)

TP, FP, FN and TN are represented by a confusion matrix in Figure 4.1.

Figure 4.1: Confusion matrix. Figure has been borrowed from [5].

4.4 Comparison of Results

Results are compared among following approaches: Minimum Missed Peptide approach
(MMP), ProteinProphet (PP), Basic Bayesian model (BB), Basic Bayesian model with de-
tectability Adjustment (BBA), Advanced Bayesian model using raw PeptideProphet proba-
bilities (ABP), ABP after detectability Adjustment (ABPA), Advanced Bayesian model us-
ing converted Probability scores (ABL), ABL after detectability adjustment (ABLA), ABLA
with estimated protein prior probabilities (ABLAP) and Meta-heuristic approach (PIssGA),
A Memetic Algorithm Based Approach in Protein Inference Problem (MAgPI) and our ap-
proach, Combining Bayesian and Meta-heuristic Approaches for the Protein Inference Prob-
lem(CBM).
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Table 4.1 is showing the summary of our results with comparisons.

Table 4.1: Comparison of Results
MMP PP BB BBA ABP ABPA ABL ABLA ABLAP PIssGA MAgPI CBM

TP 39 41.5 39 37 35 43 37 44 43 40.5 39.62 40.61
FP 6 7.5 16 6 4 22 4 9 6 8 0.3 0.99
FN 5 2.5 5 7 9 1 7 0 1 3.5 4.38 3.39
Pr 0.87 0.85 0.71 0.86 0.9 0.66 0.9 0.83 0.88 0.84 0.99 0.98
Rc 0.89 0.94 0.89 0.84 0.8 0.98 0.84 1.0 0.98 0.92 0.90 0.92
F 0.88 0.89 0.79 0.85 0.84 0.79 0.87 0.91 0.92 0.88 0.94 0.95

4.5 Discussion

Our approach performed good among all the approaches in terms of F-measure. Also, in
terms of precision our approach is better than all other approaches except MAgPI. True
proteins number is not that good as ABPA, ABLA or ABLAP. The reason for this may be
attributed to the errors introduced by the Gibbs Sampler. Recall that we are using the output
of the Gibbs Sampler as the input of our second stage. As we are taking directly the output,
some error is included in our system automatically. For example, after examine the filtering
stage we found that in the most probable protein list which we are using as our candidate
solutions, is missing 2 proteins of sigma49 proteins among 44 proteins. So actually we are
giving 42 proteins as input in the MAgPI instead of 44. But we are evaluating our result out
of 44 proteins. That is the reason of less true proteins. Our system beats the MAgPI in 4
aspects out of 6, where precision is very near with MAgPI. As, precision=TP/(FP+TP); only
decreasing FP will solve the rest two. Our pre-processing of candidate solution, reduce the
number of candidate solution m than MagPI. This set of candidate solution is working as
database in our system and it is needed to search proteins very frequently. So reduction in
size of candidate solution is reducing the computational time of MAgPI.
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CHAPTER 5
CONCLUSION

In this paper, we have introduced a way of combining Meta-heuristic approach and Bayesian
approach and measured its performance on Sigma49 dataset. The experimental results show
that, our approach outperforms in several parameters among all of the existing protein in-
ference methods. MAgPI computational time is also reduces because of filtered small size
of candidate solutions. So far the result is promising. Now, as we said before Gibbs Sam-
pler contains 42 true proteins (2 proteins are missing) and our system is evaluated for 44
proteins. We think this is the possible reason of higher FP or extra captured proteins. We
did not implement Gibbs Sampler manually by ourselves, so we could not solve this error.
Thats why our next target will be to implement the Gibbs Sampler manually to extract error
free protein list from an intermediate stage of processing which will lead us to increase TP
and decrease FP.

The idea of this two phase input refining system is new and we got good results from our
approach. We hope that it will have a good use in the further research of solving protein
inference problem.
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APPENDIX A
ALGORITHMS

A.1 MAgPI Algorithm

In Algorithm 1 shows about Memetic Algorithm Based Approach in Protein Inference
(MAgPI).

Algorithm 1 Memetic Algorithm Based Approach in Protein Inference (MAgPI)
Initialize population P(0) with λ solutions
k ← 0
while k < Gmax do
Q(k)← φ
while |Q(k)| < µ do
a1 ← RWSS(P (k))
a2 ← FUSS(P (k))
[o1, o2]← CROSSOV ER(a1, a2)
MUTATE(o1) with probability υ
MUTATE(o2) with probability υ
Q(k)← Q(k) ∪ {o1, o2}

end while
L← Set of candidates for Offspring Education from P(k) ∪ Q(k)
for ∀l ∈ L do

educate l by offspring education procedure
end for
P (k + 1)←λ survivors from P(k) ∪Q(k)
k ← k + 1

end while
RWSS- Roulette Wheel Selection
FUSS - Fitness Uniform Selection Scheme
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A.2 Gibbs Sampling Algorithm

Algorithm 2 Gibbs sampler for protein inferencing using the advanced model
Input : Probabilities of correct peptide identification (r1, ..., rn) and peptide detectabilities
dij
Output : MAP protein configuration (x1, ..., xm)
Initialize (x1, ..., xm) and (y1, ..., yn) randomly ;
MaxPr← 0 ;
while {
not convergence} do

c← a random number between 0 and t ;
(v1, ..., vc)← a random c-block from (1, ....,m) ;
d← t-c ;
(w1, ..., wd)← a random d-block from (1, ...., n) ;
Compute normalizing factor T← (V alue(x1,...,xm;y1,...,yn)

F (xv1 ,...,xvc ,yw1 ,...,ywd
)
) ;

for all (xv1 , ..., xvc) and (yw1 , ..., ywd
) do

Compute (xv1 , ..., xvc ; yw1 , ..., ywd
) ;

memorising : Value (x1, ..., xm, y1, ..., yn)← F*T ;
if Value(x1, ..., xm, y1, ..., yn) >MaxPr then

MaxPr Value← (x1, ..., xm, y1, ..., yn) ;
(xMax

1 , ..., xMax
m )← (x1, ..., xm) ;

(xMax
v1

, ...., xMax
vc )← (xv1 , ......xvc) ;

(yMax
1 , ..., yMax

n )← (y1, ..., yn) ;
(yMax
w1

, ...., yMax
wc

)← (yw1 , ......ywc) ;
end if

end for
Sample (x′v1 , ......x

′
vc ; y

′
w1
, ......y′wd

) from normalized F (xv1 , ......xvc ; yw1 , ......ywd
) ;

(xv1 , ......xvc)← (x′v1 , ......x
′
vc) ;

(yw1 , ......ywd
)← (y′w1

, ......y′wd
) ;

end while
Report MaxPr, (xMax

1 , ..., xMax
m ) and compute marginal probabilities ;

41


	CERTIFICATION
	CANDIDATES' DECLARATION
	ACKNOWLEDGEMENT
	ABSTRACT
	List of Figures
	List of Tables
	List of Abbreviation
	Introduction
	Overview
	Motivation
	Objectives
	Organization of the thesis

	Preliminaries
	Basic Definitions
	Related Works on Protein Inference Problem
	Bayesian Approach
	Meta-heuristic Approach


	Theoretical Framework of Our Approach
	 Selection of Algorithm
	Improvement Process of Output Quality
	Our Approach
	Initial Input Generation
	Gibbs Sampling
	Filtering
	Mapping
	Procedure of Providing Filtered Input in MAgPI

	Overall Work Flow

	Experiment and Result
	Dataset
	Experimental Setup
	Performance Measures
	Comparison of Results
	Discussion

	Conclusion
	References
	Algorithms
	MAgPI Algorithm
	Gibbs Sampling Algorithm


