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ABSTRACT

Automatic speech recognition (ASR) known as speech recognition is a computer

technology that enables a device to recognize and understand spoken words and sen-

tences, by digitizing the sound and matching its pattern against the stored patterns. In

short, it is the conversion of spoken speech to text. Currently available devices are

largely speaker-dependent and can recognize discrete speech better than the normal

(continuous) speech. Speaker independent system recognizes speech of indefinite mul-

tiple people. In our research, we have used a system which is speaker independent

and can detect continuous speech. Their major applications are in assistive for helping

people in working around their disabilities. Our proposed Bangla speech system, based

on MFCC+Neural Network+Triphone is a new approach towards the field of Bangla

ASR system. For this thesis work, we have prepared a Bangla speech recognition sys-

tem of Bangla ASR. Most of the Bangla ASR system uses a small number of speakers,

but 30 speakers selected from a wide area of Bangladesh, where Bangla is used as a

native language, are involved here. In the experiments, Mel-Frequency Cepstral Coef-

ficients (MFCCs) and the result based on (recognized by) Neural Network are inputted

to the Hidden Markov Model (HMM) based classifiers for obtaining speech recogni-

tion performance. Other than the traditional MFCC triphone model; a new method that

have used Neural Network based triphone model had been experimented to get better

ASR performance. We used k-mean clustering for the proposed method. From the

experimental results, word correct rate and word accuracy for male and female voices

distinctly provide much better result for the proposed model based on Neural Network

than MFCC-38 as well as MFCC-39. So, our proposed system is in favor of gender

independent fact. For male and female voices collectively, sometimes MFCC-39 based

model and sometimes Neural Network based model shows better word accuracy and

correct rate.
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CHAPTER 1
INTRODUCTION

Almost all the major spoken languages in the world have Automatic speech recognition
(ASR) systems, but for Bangla (can also be termed as Bengali) too little research has been
performed. The lack of proper speech corpus is a major difficulty to research in Bangla
ASR. To develop Bangla speech corpus to build a Bangla text to speech system [1] the lack
of proper speech corpus is a major issue. However, this effort is a part of developing speech
databases for Indian Languages, where Bangla is one of the parts and it is spoken in the
eastern area of India (West Bengal and Kolkata as its capital). But in Bangladesh most of
the natives of Bangla (more than two thirds) reside, here bangla is the official language. Al-
though both the countries have same written characters of Standard Bangla, there are some
sounds that are produced variably in different pronunciations of Standard Bangla. So, there
is a need to do research on the main stream of Bangla ASR, which is spoken in Bangladesh.
Bangla ASR research or Bangla speech processing can be found in [2–7]. For example, us-
ing Hidden Markov Models (HMMs) recognition of isolated and continuous Bangla speech
on a small dataset is described in [3]; Bangla vowel characterization is done in [2]; devel-
opment of Continuous Bangla speech recognition system is in [6], where [7] shows a brief
overview of Bangla speech synthesis and recognition. As a whole, most of these works are
mainly focused on the on the frequency distributions of different vowels and consonants or
simple recognition task on a very small database.

1.1 Contribution

In this work, a medium speech corpus which is based on ASR systems is used for the design-
ing of triphone models. Two stages comprise the method. To catch context of both sides,
the first stage designs triphone models; the second stage use Hidden Markov Model based
classifier to output word strings based on triphone models. The purpose of this research is to
help to build a medium vocabulary triphone based continuous speech recognizer for Bangla
language.
In Order to solution some problems in Bangla Speech Recognition, this thesis consentrates
on context sensitive triphone model. The problems on which attention is focused are:

a) Co articulation fact,
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b) Correction Rate of Word and Sentence,
c) Reduction of mixture component for desired result.
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CHAPTER 2
AUTOMATIC SPEECH RECOGNITION

Conversion of human voice into text is the purpose of Automatic Speech Recognition (ASR),
which is also termed as Computer Speech Recognition. The task of translating speech is
simplified if the voice of the speaker is properly recognized. The recognition system that
must be trained to a particular speaker is the main task of most speech recognition software
which is referred to the term Voice Recognition.
Again in an expanded sense, the process of enabling a computer to identify and respond to
the sounds produced in human speech without being targeted at single speaker such as live
TV show on phone request can recognize random voices. This sense can be represented by
the term Speech Recognition.
Speech recognition applications include voice user interfaces such as call routing (e.g. I
would like to make a collect call), voice dialing (e.g. Call home), domestic appliance con-
trol, simple data entry (e.g. entering a credit card number), search (e.g. find a podcast
where particular words were spoken), preparation of structured documents (e.g. a radiology
report), speech-to-text processing (e.g. word processors or emails), and aircraft (usually
termed Direct Voice Input).

2.1 History

While AT&T Bell Laboratories developed a primitive device that could recognize speech in
the 1940s, researchers knew that the widespread use of speech recognition would depend on
the ability to accurately and consistently perceive subtle and complex verbal input. In 1952
the first speech recognizer is developed and it comprises of a device to recognize single spo-
ken digits [8]. Next in 1964 at New York Worlds Fair, IBM Shoebox another early device
was displayed.
Thus, in the 1960s, researchers turned their focus towards a series of smaller goals that
would aid in developing the larger speech recognition system. As a first step, developers
created a device that would use discrete speech, verbal stimuli punctuated by small pauses.
However, in the 1970s, continuous speech recognition, which does not require the user to
pause between words, began. This technology became functional during the 1980s and is
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still being developed and refined today.
Speech Recognition Systems have become so advanced and mainstream that business and
health care professionals are turning to speech recognition solutions for everything from
providing telephone support to writing medical reports. Technological advances have made
speech recognition software and devices more functional and user friendly, with most con-
temporary products performing tasks with over 90 percent accuracy.
According to figures provided by industry. Satisfying the needs of consumers and busi-
nesses by simplifying customer interaction, increasing efficiency, and reducing operating
costs, speech recognition is used in a wide range of applications.
In speech recognition automatic transcription, the constraint which is behind its backward-
ness is the lacking in the software. The judgment that may be provided by a real human
but not yet by an automated system is mostly required as the nature of narrative dictation is
highly interpretive. In addition, the requirement of a long period of time to train the software
by the user and/or system provider is another visible constraint in this context.
In ASR a comparison is made, to differentiate between artificial syntax systems and natural
language processing. The first types of systems stated above are usually domain-specific
and the second type of processing stated above are basically language-specific application.
Each of these types of application represents its own specific goals and challenges.

2.2 Basics of Speech Recognition

Speech recognition is the way to identify spoken words by using a computer (or other type
of machine). In short, it is the interaction between human and computer with the purpose
of making it correctly recognizes the words of human voice. A general solution of speech
recognition shows in Figure 2.1. Some definitions which are the basics to understand the
speech recognition technology are presented below:
Utterance
Vocal expression can be termed as utterance. It is the act or process of producing sounds
with the voice that represents a single meaning to the computer. Utterances can be a single
word, a few words, a sentence, or even multiple sentences.
Speaker Dependence
It is an Acoustic Model that has been tailored to recognize a particular persons speech. Such
Acoustic Models are usually trained using audio from a particular persons speech.
A Speaker Independent Acoustic Model can recognize speech from a person who did not
submit any speech audio that was used in the creation of the Acoustic Model.
The reason for the distinction is that it takes much more speech audio training data to create
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a Speaker Independent Acoustic Model than a Speaker Dependent Acoustic Model.
Vocabularies
Vocabularies (or dictionaries) are collection of words or utterances to be recognized by the
SR system. Usually, larger vocabularies are more difficult to recognize than smaller vocab-
ularies. Here, each entry doesnt have to be a single word. They can be as long as a sentence
or two. Smaller vocabularies can have as few as 1 or 2 recognized utterances (e.g. carry on),
while very large vocabularies can have a hundred thousand or more.
Accurate
By measuring the accuracy or well recognition utterance, the ability of a recognizer can be
examined. This includes not only correct identification of an utterance but also the identi-
fication of spoken utterance if it is not in the recognizers vocabulary. Good ASR systems
have an accuracy of 98% or more. The acceptable accuracy of a system really depends on
the application.
Training
It is the process by which speech recognizer is taught the skills that are needed for the recog-
nition of the speech of a speaker. An ASR system is trained by having the speaker repeat
standard or common phrases and adjusting its comparison algorithms to match that particu-
lar speaker. Training basically work for the improvement of accuracy of the recognizer.
Training can also be used by speakers that have difficulty speaking, or pronouncing certain
words. As long as the speaker can consistently repeat an utterance, ASR systems with train-
ing should be able to adapt.
The speech recognition process is represented in Figure 2.2 and will be explained in more

Figure 2.1: General Solution
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detail in the following sections.
The speech waveform first undergoes a signal processing step which produces a representa-
tion in spectral feature vectors. Phone likelihoods are subsequently estimated, after which a
decoding step can finish the recognition process.

2.3 Types of Speech Recognition

With the description of what types of utterances recognizers have the ability to recognize,
speech recognition systems can be separated in several different classes. These classes are
based on the fact that one of the difficulties of ASR is the ability to determine when a speaker
starts and finishes an utterance. Most packages can fit into more than one class, depending
on which mode theyre using.
Isolated Words
Isolated word recognizers usually require each utterance to have quiet (lack of an audio sig-
nal) on both sides of the sample window. It doesnt mean that it accepts single words, but
does require a single utterance at a time. Often, these systems have Listen/Not Listenstates,
where they require the speaker to wait between utterances (usually doing processing during

Figure 2.2: Schematic architecture for a simplified speech recognizer
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the pauses). Isolated Utterance might be a better name for this class.
Connected Words
Connect word systems or connected utterances are similar to Isolated words, but accept sep-
arate utterances to be uttered togetherwith a short pause between them.
Continuous Speech
Recognizers which has the capability with continuous speech are some of the most diffi-
cult to create because they must utilize special methods to determine utterance boundaries.
Continuous speech recognizers allow users to speak almost naturally, while the computer
determines the content. It can be suggested as computer dictation.
Spontaneous Speech
There appears to be a variety of definitions for what spontaneous speech actually is. At a
basic level, it can be thought of as speech that is natural sounding and not rehearsed. An
ASR system with spontaneous speech ability should be able to handle a variety of natural
speech features such as words being run together, umsand ahs, and even slight stutters.
The recognition of spontaneous speech can be improved by taking into consideration the
effects of the filled pauses while performing the recognition process by:
(1)Either deleting such pauses or by accepting them as words to be added to the dictionary
of the ASR system.
(2) Recognizing hesitations and restarts.
(3) By developing the model accuracy at both the acoustic level and at the language model.
(4) Increasing the amount of training data and the lexicon size. This could reduce the error
rate without increasing the search complexity.
At the end, for improving the performance of the existing recognizers it is needed to under-
stand the properties of human auditory perception that are relevant for decoding the speech
signal and to improve the performance of ASR in different environments is necessary. Also,
using longer acoustic units (for example, syllables) instead of using short term speech seg-
ments followed by post processing techniques or using dynamic features is promising for
the evolution of ASR. Moreover, rich prosodic cues (e.g. fundamental frequency, energy,
duration, etc.) that permit successful understanding, which are ignored by state of the art
ASR systems, must be considered for better performance. Again, the use of language inde-
pendent acoustic models and variable ngram language models will enhance the performance
further.
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CHAPTER 3
BANGLA PHONETIC SCHEME

The International Phonetic Alphabet (IPA) is an alphabetic system of phonetic notation
based primarily on the Latin alphabet. It was devised by the International Phonetic Associ-
ation as a standardized representation of the sounds of spoken language. The IPA is used by
foreign language students and teachers, linguists, speech pathologists and therapists, singers,
actors, lexicographers, artificial language enthusiasts (conlangers), and translators.
The IPA is designed to represent only those qualities of speech that are distinctive in spoken
language: phonemes, intonation, and the separation of words and syllables. To represent
additional qualities of speech such as tooth gnashing, lisping, and sounds made with a cleft
palate, an extended set of symbols called the Extensions to the IPA may be used.
IPA symbols are composed of one or more elements of two basic types, letters and diacritics.
For example, the sound of the English letter t may be transcribed in IPA with a single letter,
[t], or with a letter plus diacritics, [th], depending on how precise one wishes to be. Occa-
sionally letters or diacritics are added, removed, or modified by the International Phonetic
Association. As of 2008, there are 107 letters, 52 diacritics, and four prosodic marks in the
IPA.
In 1886, a group of French and British language teachers, led by the French linguist Paul
Passy, formed what would come to be known from 1897 onwards as the International Pho-
netic Association (in French, l Association phontique internationale). Their original alpha-
bet was based on a spelling reform for English known as the Romic alphabet, but in order
to make it usable for other languages, the values of the symbols were allowed to vary from
language to language.
Since its creation, the IPA has undergone a number of revisions. After major revisions and
expansions in 1900 and 1932, the IPA remained unchanged until the IPA Kiel Convention in
1989. A minor revision took place in 1993, with the addition of four letters for mid-central
vowels and the removal of letters for voiceless implosives. The alphabet was last revised in
May 2005, with the addition of a letter for a labiodentals flap. Apart from the addition and
removal of symbols, changes to the IPA have consisted largely in renaming symbols and
categories and in modifying typefaces.
Extensions of the alphabet are relatively recent; Extensions to the IPAwas created in 1990
and officially adopted by the International Clinical Phonetics and Linguistics Association in
1994.
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3.1 Bangla Script

The Bengali script (Bengali: bangla lipi) is the writing system for the Bengali language. It
is also used, with some modifications, for Assamese, Meitei, Bishnupriya Manipuri, Kok-
borok, Garo and Mundari languages. All these languages are spoken in the eastern region
of South Asia. Historically, the script has also been used to write the Sanskrit language in
the same region. From a classificatory point of view, the Bengali script is an abugida, i.e. its
vowel graphemes are mainly realized not as independent letters like in a true alphabet, but
as diacritics attached to its consonant graphemes. It is written from left to right and lacks
distinct letter cases. It is recognizable by a distinctive horizontal line running along the tops
of the letters that links them together, a property it shares with two other popular Indian
scripts: Devanagari (used for Hindi, Marathi and Nepali) and Gurumukhi (used for Pun-
jabi). The Bengali script is, however, less blocky and presents a more sinuous shaping. The
Bengali script evolved from the Eastern Nagari script, which belongs to the Brahmic family
of scripts, along with the Devanagari script and other written systems of the Indian subcon-
tinent. Both Eastern Nagari and Devanagari were derived from the ancient Nagari script. In
addition to differences in how the letters are pronounced in the different languages, there are
some minor typographical differences between the version of the script used for Assamese
and Bishnupriya Manipuri as well as Maithili languages, and that used for Bengali and other
languages.
The Bengali script was originally not associated with any particular language, but was often
used in the eastern regions of Medieval India. It was standardized and modernized by Ishwar
Chandra under the reign of the British East India Company. The script was originally used to
write Sanskrit, which for centuries was the only written language of the Indian subcontinent
in addition to Tamil. Epics of Hindu scripture, including the Mahabharata or Ramayana,
were written in older versions of the Bengali script or Mithilakshar/Tirhuta script in this
region. After the medieval period, the use of Sanskrit as the sole written language gave
way to Pali, and eventually to the vernacular languages we know now as Maithili, Bengali,
and Assamese. Srimanta Sankardeva used it in the 15th and 16th centuries to compose his
oeuvre in Assamese and Brajavali the language of the Bhakti poets. There is a rich legacy
of Indian literature written in this script, which is still occasionally used to write Sanskrit
today.
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3.2 Bangla IPA Table

The first IPA chart was prepared in 1888 by the earliest form of the International Phonetic
Association and it has gone through many changes since then. The 1888 chart was rather a
list of symbols and their descriptions.
The latest, revised 2005, in Bengali shown in figure 3.1.

Figure 3.1: A chart of the full International Phonetic Alphabet
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3.3 Bangla Phoneme Schemes

The Phonetic inventory of Bangla consists of 14 vowels, including seven nasalized vow-
els, and 29 consonants. Native Bangla words do not allow initial consonant clusters: the
maximum syllable structure is CVC (i.e. one vowel flanked by a consonant on each side).
Sanskrit words borrowed into Bangla possess a wide range of clusters, expanding the max-
imum syllable structure to CCCVC. English or other foreign borrowings add even more
cluster types into the Bangla inventory.
In the Bengali script, clusters of consonants are represented by different and sometimes
quite irregular characters; thus, learning to read the script is complicated by the sheer size
of the full set of characters and character combinations, numbering about 350. While efforts
at standardizing the script for the Bengali language continue in such notable centers as the
Bangla Academies (unaffiliated) at Dhaka (Bangladesh) and Kolkata (West Bengal, India),
it is still not quite uniform as yet, as many people continue to use various archaic forms
of letters, resulting in concurrent forms for the same sounds. Among the various regional
variations within this script, only the Assamese and Bengali variations exist today in the
formalized system. It seems likely that the standardization of the script will be greatly influ-
enced by the need to typeset it on computers. The large alphabet can be represented, with a
great deal of ingenuity, within the ASCII character set, omitting certain irregular conjuncts.
Work has been underway since around 2001 to develop Unicode fonts, and it seems likely
that it will split into two variants, traditional and modern.
In this and other articles on Wikipedia dealing with the Bengali language, a Romanization
scheme used by linguists specializing in Bengali phonology is included along with IPA tran-
scription. A recent effort by the government of West Bengal focused on simplifying Bengali
spellings in primary school texts.

Figure 3.2: Some Bangla words with their orthographic transcriptions and IPA
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CHAPTER 4
HMM-BASED CLASSIFIER

4.1 About HMM

HMM phoneme models basically consists of three emitting states and a simple left-to-right
topology as illustrated in Figure 4.1 and Figure 4.2. To ease joining of the models together
the entry and exit states are provided. The exit state of one phoneme model can be connected
with the entry state of another to from a composite HMM. This allows phone models to be
joined together to form words and words to be joined together to cover complete utterances.

4.2 Modeling of HMM

Generally, an HMM is specified by a five-tuple:
(S,O, π,A,B)

(1) S = {1, 2, ...., ;N}, set of hidden states
N: the number of states.

St : the state at time t.

Figure 4.1: Standard HMM phoneme model (without Gaussian mixtures)
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(2) O = {o1, o2, ..., oM}, set of observation symbols
M: the number of observation symbols
(3) π = {πi}πi = P (s0 = i)1 ≤ i ≤ N, the initial state distribution
(4) A = {aij}aij = P (st = j | st−1 = i), 1 ≤ i, j ≤ N

State transition probability distribution.
(5) B = {bj(K)}bj(k) = p(Xt = ok | st = j)1 ≤ j ≤ N, 1 ≤ k ≤ M Observation symbol
probability distribution in state.
To sum up, a complete specification of an HMM includes:
(i) two constant-size parameters: N and M (representing the total number of states and the
size of observation symbols)
(ii) three sets of probability distribution: Φ = (A,B, π)

4.3 Three basic problems of HMM

HMM has an issue of facing three major problem. They are :
1. The evaluation problem : deals with the probability of the model.
2. The decoding problem : deals with the most likely state sequence.
3. The learning problem : deals with the adjustment of the model parameter to maximize
the joint probability.
A brief definition of these problems are given below :
(i) The evaluation problem:
Given a model Φ and a sequence of observation X = (X1, X2, ...., XT ), what is the proba-
bility P (X | Φ); i.e, the probability of the model that generates the observations?
(ii) The decoding problem:
Given a model Φ and a sequence of observation X = (X1X2 .... XT ) , what is the most

Figure 4.2: Standard HMM phoneme model (using Gaussian mixtures)
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likely state sequence S = (s0, s1, ...., sT ) in the model that produces the observations?
(iii) The learning problem:
Given a model Φ and a set of observations, how can we adjust the model parameter to
maximize the joint probability

∏
P (X | Φ)?

4.4 Solutions of the problems in HMM

As solutions to each of the three problems in HMM, three basic algorithms are used. These
algorithms are :
1. Forward algorithm : define forward probability
2. Vitebri algorithm : define the best path
3. Baum-Welch algorithm : iteratively recomputes the model parameters to increase the
likelihood of the training data at each iteration.
The above algorithms stated above are described below :
(i) First problem solution [Forward algorithm]
Define forward probability, αt = P (X t

1, st = i | Φ)

αt(i) is the probability that the HMM is in state i having generated partial observation
X t

1(namelyX1, X2, ..., Xt

(ii) Second problem solution: [Viterbi Algorithm]

Instead of summing up probabilities from different paths coming to the same destination
state, the Viterbi algorithm picks and remembers the best path.
Define the best path probability,

Vt(i) = P (X t
1, S

t−1
1 , st = i | Φ)

Vt(i) is the probability of the most likely state sequence at time t, which generates the ob-
servation X t

1(untiltimet) and ends in state i. (iii) Third problem solution: [Baum-Welch
Algorithm]
Baum-Welch Algorithm or so-called Forward-Backward algorithm in essence is an EM (Ex-
pectation Maximization) algorithm. The basic idea of EM algorithm is to iteratively recom-
puted the model parameters given their current estimates so as to increase the likelihood of
the training data at each iteration.
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CHAPTER 5
CONTEXT DEPENDENT TRIPHONE MODEL

Context-independent models or monophone models, assume that a phoneme in any con-
text is equivalent to the same phoneme in any other context. Since the articulators do not
move from one position to another immediately in most phoneme transitions this assumption
is fundamentally proved incorrect. The transition duration is variable and depends on the
phonemes, For example, for /v/ and /j/ the transitions are very long but from stop consonants
to vowels the transition is significantly shorter but by no means discrete. Thus, neighboring
phonemes are bound to have an effect on the examined phoneme. So, it should be consid-
ered that these co-articulation effects caused by context-dependency should be taken into
account.
The terms precontext and postcontext are used to indicate the preceding and following neigh-
bor of a phoneme. Figure 5.1 shows these terms for the triphone ch-aa+d.
Using word models is one way of dealing with the dependency. They are suitable for small

vocabulary task and have been shown to be more accurate than phoneme models [9]. But for
large recognizer they are not feasible. Instead, subword models are likely to produce better
results.
In the past, a natural shift occurred from word models to syllable models. They were pro-
posed already in the mid 70s by Fujimura [10]. The early syllable recognizers were non-
HMM based. Now, demi-syllable and biphone models (a unit consisting of two consecutive
phonemes) have been used. Since phonemes are abstract super classes of phones, classifica-
tion can be performed with different precision. As a result, some variations in the number
of phonemes are caused. Syllable models have been popular especially in Mandarin, Can-

Figure 5.1: The definition of pre- and postcontext for the triphone ch-aa+d
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tonese, and Japanese recognizers but they are suitable for other languages as well. Diphones
(phoneme units dependent on either pre- or postcontext) were introduced in the late 1970s
and early 1980s [11,12]. A few years after that, Schwartz et al. proposed the use of triphones
in speech recognition [10]. This work concentrates on modeling triphones. This selection
was made based on the fact that the most important coarticulatory effects on a phoneme are
due to its immediate neighbors on either side. Moreover, triphones are commonly used in
large vocabulary recognition in other languages, but not so much in Finnish.

5.1 Fundamental Mechanism of Triphones

To model the co-articulatory effects between phonemes and that there was nothing spe-
cial about the units themselves, Schwartz [10] noted that all the subword units longer than
phonemes (biphones, syllables, etc.) applied as units to speech recognition were merely
trying. This motivated him to return to modeling phonemes. Only this time they were made
context dependent, which led to the introduction of the concept of triphones - a model for
a single phoneme conditioned on its preceding and following neighbor phoneme. The idea
of triphones is used in any modern recognizer, and in [13] the actual results of the first rec-
ognizer utilizing triphones are presented. A triphone is simply a model of a single phoneme
conditioned on its immediate neighbors, and not a structure of three phonemes. Similarly, a
diphone is a model of a phoneme conditioned on either its left or right phoneme or a quin-
phone is conditioned on two neighboring phonemes on either side.
Context-dependent models can be constructed in two ways: they can either be word internal
or cross-word. For cross-word triphones the phonemes at the end or beginning of neigh-
boring words are considered to affect the phoneme. On the contrary, when constructing
word-internal models, context beyond the word borders are not considered. Usually, the
number of cross-word triphones is considerably higher than the number of word-internal
triphones.
The cross-word triphones are a natural choice for continuous speech recognition, since there
are seldomly clear pauses between words in fluent speech. Actually, a stop consonant might
introduce a longer pause than a word break. The problem, again, is the increasing number
of models and the shortage of data for training them.
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5.2 For Context-dependent HMMs Clustering Mechanisms

In two cases a set of full triphones is immoderate. The first case arise in all practical cases
there is not enough training material for many of the triphones. The second case is, despite
co-articulatory effects some triphones are quite similar and had better be covered by the
same model. With the minimization of the number of parameters the training data problem
can be solved. It can be performed in several ways. The number of models or the num-
ber of states can be reduced by state or model clustering. Another approach is confining
parameters inside the states or models, that is, forcing them to be equal for two different
states (means and variances) or models (transition matrices). A straightforward way of re-
ducing the number of parameters in a triphone model set could be to tie all the parameters
of all models center states. The assumption that the center of each triphone (for the same
phoneme) is similar could lead to this kind of an approach. Clustering mechanisms provide
better results than this kind of direct tying. Some clustering algorithms are depicted in this
section.

5.2.1 Data-driven (bottom-up) Clustering

In the data driven clustering algorithm each state is initially located in its respective cluster.
Next, two clusters which form the smallest cluster are amalgamated together. This amalga-
mation of clusters is iteratively continued until the smallest cluster that would be constructed
by combining any two clusters would be greater than some predefined limit.
The size of the cluster is represented as the longest distance between any two members of
the cluster. The metric is termed as the Euclidean distance between the means of the two
states. A constraint in this fact is its limitation to deal with invisible triphones (triphones not
present in the training data), which are bound to occur in large vocabulary recognition with
cross-word triphones. Therefore, diphone and monophone models are normally used to deal
with this problem.
This algorithm is bottom-up since it starts with individual states and ends with clusters.

An illustration of the algorithm is depicted in Figure 5.2. This clustering algorithm was
introduced in [14].

5.2.2 Decision-tree (top-down) Clustering

Binary decision trees [15] is another perspective for clustering states. Furthermore, to states
and unlike data-driven clustering described above, this algorithm can be used to cluster
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entire models as well.
To split the clusters during the process a set of questions regarding phonemes context is
needed. There is no specification regarding the number of questions. As an example a
typical question might be: Is the left context of this phoneme either an / a/ or an /o/?.
A brief description of the algorithm stated below: initially in the root node of a tree, all
states/models in a given list are placed. The nodes are iteratively split by selecting a question.
Based on the answer, states/models in the state are placed either in the right or left child
node of the current node. It is performed iteratively until the log likelihood increase of the
states/models in the tree node obtained by the best question is below a predefined limit. At
this stage, all the parameters in the state/model are tied. An illustration is in Figure 5.3.

The question used is chosen to maximize the likelihood of the training data given the final
set of model/state tying. When the node is split, the likelihood of its child nodes is bound
to increase since the number of parameters to describe the same data increases. The log
likelihood can be calculated based on the statistics (means, variances, and state occupation
counts) gathered from the training data, and based on that information the best question for
each node can be chosen.

5.2.3 Classification Based on Articulatory Facts

For the classification of triphone models one of the criterion is, to use decisions made a priori
about the context for classifications. Basically, one decides classifications for phonemes and
then classifies those triphones with contexts from the same phoneme classes to belong to

Figure 5.2: Data-driven state clustering for some triphones of the phoneme /i/
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the same broad class triphone (or cluster). The phoneme classes could be formed randomly
but spontaneously it would be beneficial if there was some similarity between the members
of a phoneme class. Furthermore, natural choices are based on articulatory facts. This type
of approach has been suggested in [16] and [17]. Here, two different classifications were
used: one is based on the type of the phoneme (short: ToP) and the other on the place of
articulation (short: PoA). articulation (short: PoA).

Figure 5.3: Part of the tree-based model clustering process of /i/-triphones. Leaf nodes are
gray, and they form the final clusters
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CHAPTER 6
PROPOSED METHOD

Automatic speech recognition (ASR) deals with the decoding of an acoustic signal of a
speech utterance into corresponding text transcription, such as words, phonemes or other
language units. Even after years of extensive research and development, accuracy in ASR
remains a challenge to researchers. There are number of well known factors which deter-
mine accuracy. The prominent factors are those that include variations in context, speakers
and noise in the environment. Therefore, research in ASR has many open issues with respect
to small or large vocabulary, isolated or continuous speech, speaker dependent or indepen-
dent and environmental robustness.
ASR for western languages like English and Asian languages like Chinese are well matured.
But similar research in Bangla (widely used as Bengali) languages is still in its infancy stage.
Another major hurdle in ASR for the Bangla language is resource deficiency. Annotated
speech corpora for training and testing the acoustic models are scarce. Recently there is a
growing interest in ASR for Bangla language [2–7]. Continuous Bangla speech recognition
system is developed in [5], while [18] presents a brief overview of Bangla speech synthesis
and recognition. However, most of these researches have some problems:
(i) deals with small scale speech corpus,
(ii) use only time domain information and
(iii) constructs triphone models [18–22] using MFCC features and consequently, better
recognition performance is not obtained.
In this study, we have proposed an ASR system where information is based on time domain
and frequency domain. The proposed method comprises three stages, where the first stage
is to extract the acoustic features for the given speech example. The second stage is to train
and test the neural network by using the acoustic features extracted from the previous stage.
Third and final stage is to use the HTK (Hidden Markov Model Toolkit) with the output
form the neural network.

The steps we have followed in this case is explained below:

1. Make a folder Experiment (any name can be used) into the drive D (any drive can be used
but this drive name must use in the command).
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2. Make ensure the Train.scp (this has to be made according to the input voice and any name
can be used instead of Train but extension should be .scp), config.txt, HCopy.exe files are
into the folder Experiment.

3. In Train.scp (in this experiment we used 3000 input speech which contains in 30 different
folders and each folder has got 100 inputs voice) the information has to typed look like the
following. Here left part is the input and right part is the output in figure 6.1.
* different folder name can be used for inputs and outputs. But it should be write correctly
in Train.scp

4. Now run the following command.
HCopy − T1− Cconfig.txt− STrain.scp

5. Now make source.mfc (any name can be used instead of source but extension should be
.mfc) into the folder practice and type the following information
D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\Recorded Audio 000.mfc

D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\Recorded Audio 001.mfc

D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\Recorded Audio 002.mfc

* Here it is noted that the above information are taken from the right part of the step 3 but
here will not be used.

6. Put HList.exe into the folder Experiment.

7. Put Batch HList.m into the folder Experiment and open this file using matlab.

8. After executing Batch HList.m, the following file will be generated

a. dest.mfc into the folder Experiment which contain the following information

Figure 6.1: Train.scp Example
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D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\output\\Recorded Audio 000.shk

D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\output\\Recorded Audio 001.shk

D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\output\\Recorded Audio 002.shk

b. output and genoutput folder will be created into

D : \Experiment\BanglaFemeleTrainingV oice\barishal soma
\andinoutputfolderwewillgetautomaticallythefollowingfiles :

Recorded Audio 000.shk,Recorded Audio 001.shk,

* Here it is noted that

D : \Experiment\BanglaFemeleTrainingV oice\barishal soma
\genoutput
will not contain any information at that time.

Figure 6.2: Batch HList.m
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9. Put line cutter.cpp file into the folder Line-Cutter (any name can be used) which have to
be created into the folder Experiment.

10. Put dest.mfc (which we created in the last step#8) into the folder Line-Cutter.

11. Run line cutter.cpp. after executing this program the following information will be gen-
erated

a. Out vec.test into the folder Line-Cutter. Out vec.test (open it and remove last blank
line and save it) file contain the following information:

D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\genoutput\\Recorded Audio 000.gen

D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\genoutput\\Recorded Audio 001.gen

D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\genoutput\\Recorded Audio 002.gen

b. In

D : \Experiment\BanglaFemeleTrainingV oice\barishal soma
\genoutputfolder
we will get automatically the following files:

Recorded Audio 000.gen,Recorded Audio 001.gen,

12. Make a folder Neural Network. Put label.txt & phoneme.txt in this folder. Put dimen-
sion 117 generator.cpp in this folder. Also put Out vec.test in this folder which was created
in the last step. Now open and run dimension 117 generator.cpp. This program will execute
the following file-
a. Input.scp which contains following information:
D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\genoutput\\Recorded Audio 000.txt

D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\genoutput\\Recorded Audio 001.txt

D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
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\\genoutput\\Recorded Audio 002.txt

13. Put output generator.cpp in the folder Neural Network. Now execute the program. This
will create the following file-

a. Output.scp which contains following files
D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\genoutput\\Recorded Audio 000.out

D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\genoutput\\Recorded Audio 001.out

D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\genoutput\\Recorded Audio 002.out

14. Put Integrate MLN.cpp in the folder Neural Network. Execute the program with epoch=300.
Choose 1 from the menu which means training stage. It will take 7-10 days or more to exe-
cute based on configuration of the PC using.

15. Now testing stage. Choose 2 from the menu which means testing. It is actually close test.

16. Put log converter.cpp in the folder Neural Network. Make sure Input file = TrainOut-
put.scp. Execute the program which will create the following file-
TrainLogOutput.scp which contains following information-

D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\genoutput\\Recorded Audio 000.log

D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\genoutput\\Recorded Audio 001.log

D : \\Experiment\\BanglaFemeleTrainingV oice\\barishal soma
\\genoutput\\Recorded Audio 002.log

17. Compare some .out and corresponding .log files to check if the Neural Network could
recognize the data or not.

18. Make a folder Converted (any name can be used) into the folder Experiment. Put con-
vert.c into the folder Converted. Also put TrainLogOutput.scp which was created in the last
step into the folder Neural Network.
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19. Make another folder Train (you can use any name) into the folder Converted. Now open
and run convert.c using visual studio software. After executing this program the following
files will be generated:
a. Out vec.scp will be generating into the folder Converted. In this file contains the follow-
ing information
Train\file1.vec
Train\file2.vec
Train\file3.vec
b. file1.vec, file2.vec, file3.vec files will be created into the folder Train.

20. Copy and paste Out vec.scp into the folder converted then rename this file named
Train.scp.

21. Make a folder HMMTraining into the folder Experiment. HMMTraining folder must
contains the following files:
proto 5states 39dim.txt(calledinitialmodelofHMM)

Train.scp(gettingformthelaststep.nowopenTrain.scpand

gotothelastlineandpressenterandfinallysaveit)

HTK 39dpf.config

HCompV.exe

22. Make a folder named hmm0 (make another folder model into the folder hmm0) into the
folder HMMTraining.

23. Copy Train folder from the converted folder and paste it into the folder HMMTraining.

24. Run the following command

HCompV −A−D−T1−CHTK 39dpf.config−STrain.scp−m− v0.01− f0.01−
Mhmm0\model\
proto 5states 39dim.txt

25. After executing the above command the following files will be generated into the folder
model.
a. proto 5states 39dim (it can be renamed as .cpp and see the data to understand)
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b. vFloors

26. open HMMTraining -> hmm0 -> model then copy and paste proto 5states 39dim and
rename it as hmmdefs.

27. Copy monophones0 and paste it into the folder model. This file contains 51 words.
From this file remove sp and then save it.

28. Now open hmmdefs and copy the codes from h ”proto 5states 39dim” (4th line) to <
ENDHMM > (last line) and paste it 50 times. So total will be 51.

29. Now remove h ”proto 5states 39dim” (51 times) and write aa, ch, (total 51 word)

30. Open HMMTraining -> hmm0 -> model then copy and paste vFloors and rename it as
macros.

31. Now copy the following from proto 5state 39dim and paste it in macros (at the top).
∼ o
>STREAMINFO-> 1 39
> VECSIZE> 39>NULLD><USER><DIAGC>

32. Make a folder hmm1 into the folder HMMTraining. HMMTraining must contains the
following files:
a. HERest.exe
b. phones0.mlf

33. Now run following command.

HERest−A−D−T1−CHTK 39dpf.config− Iphones0.mlf − t250.0150.01000.0−
STrain.scp−Hhmm0\model\macros−Hhmm0\model\hmmdefs−Mhmm1hmm0\
model\monophones0

34. After executing the above command the following files will be generated into the folder
hmm1.
a. hmmdefs
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b. macros

35. Make another folder hmm2 into the folder HMMTraining and run the following com-
mand.
HERest−A−D−T1−CHTK 39dpf.config− Iphones0.mlf − t250.0150.01000.0−
STrain.scp−Hhmm1\
macros−Hhmm1\hmmdefs−Mhmm2hmm0\model\monophones0

36. After executing the above command the following files will be generated into the folder
hmm2.
a. hmmdefs
b. macros

37. Make another folder hmm3 into the folder HMMTraining and run the following com-
mand
HERest−A−D−T1−CHTK 39dpf.config− Iphones0.mlf − t250.0150.01000.0−
STrain.scp−Hhmm2\
macros−Hhmm2\hmmdefs−Mhmm3hmm0\model\monophones0

38. After executing the above command the following files will be generated into the folder
hmm3.
a. hmmdefs
b. macros

39. Open practice -> HMMTraining -> hmm4 (create this folder) -> copy hmmdefs and
macros form hmm3 and paste those into the folder hmm4

40. Now open hmmdefs and copy form h ”sil” to <ENDHMM> and paste it at the end
and rename h ”sil” into h ”sp” and also need some necessary changes

41. hmm4 folder must contain the following information:
a. HHEd.exe
b. Sil.hed

42. Copy monophones0 (from hmm0 -> model) and paste it into the folder hmm4. Now
rename monophones0 into monophones1 and after that open it and write sp at the end of the
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file (remove blank line from the last).

43. Make a folder hmm5 into the folder HMMTraining.

44. Now run the following command
HHEd− A−D − T1−Hmacros−Hhmmdefs−M..\hmm5sil.hedmonophones1

(putHHEDintofolderhmm4)

or

HHEd−A−D−T1−Hhmm4\macros−Hhmm4\hmmdefs−Mhmm5hmm4\sil.hedhmm4\
monophones1(HHEDshouldbeputintoHMMTrainingfolderinstedofhmm4)

45. After executing this command the following files will be generated into the folder hmm5.
a. hmmdefs
b. macros

46. copy HTK 39dpf.config and Train.scp and paste it into the folder hmm5.

47. Make a folder hmm6 into the folder HMMTraining. At that time HMMTraining folder
must contains the following files:
a. HERest.exe
b. monophones1
c. phones1.mlf

48. Now run the following command
HERest−A−D−T1−CHTK 39dpf.config− Iphones1.mlf − t250.0150.03000.0−
STrain.scp−Hhmm5\
macros−Hhmm5\hmmdefs−Mhmm6monophones1

49. After executing this command the following files will be generated into the folder hmm6.
a. hmmdefs
b. macros

50. Make a folder hmm7 into the folder HMMTraining.

51. Now run the following command
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HERest−A−D−T1−CHTK 39dpf.config− Iphones1.mlf − t250.0150.03000.0−
STrain.scp−Hhmm6\
macros−Hhmm6\hmmdefs−Mhmm7monophones1

52. After executing this command the following files will be generated into the folder hmm7.
a. hmmdefs
b. macros

53. put HVite.exe, dict, words.mlf into the folder HMMTraining.

54. Now run the following command.
HV ite − A − D − T1 − l ∗ −oSWT − bSENT − END − CHTK 39dpf.config −
Hhmm7\macros−Hhmm7\
hmmdefs− ialigned.mlf −m− t250.0150.01000.0− ylab− a− Iwords.mlf
− STrain.scpdictmonophones1 > HV ite log.txt

55. It will take a little bit time to execute this command. After executing this command the
following files will be generated into the folder HMMTraining:
a. aligned.mlf
b. HVite log.txt

56. Make a folder hmm8 into HMMTraining.

57. Run following command
HERest−A−D−T1−CHTK 39dpf.config− Ialigned.mlf − t250.0150.03000.0−
STrain.scp−Hhmm7\
macros−Hhmm7\hmmdefs−Mhmm8monophones1

58. After executing the above command the following files will be generated into the folder
hmm8.
a. hmmdefs
b. macros

59. Make a folder hmm9 into HMMTraining.
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60. Run following command
HERest−A−D−T1−CHTK 39dpf.config− Ialigned.mlf − t250.0150.03000.0−
STrain.scp−Hhmm8\
macros−Hhmm8\hmmdefs−Mhmm9monophones1

61. After executing this command the following files will be generated into the folder hmm9.
a. hmmdefs
b. macros

62. Make mktri.led into the HMMTraining. Open mktri.led and go to TC line then press
enter and save it.

63. Put HLEd.exe into the folder HMMTraining.

64. Run the following command
HLEd− A−D − T1− ntriphones1− l ∗ −iwintri.mlfmktri.ledaligned.mlf

65. After executing this command the following files will be generated into the folder HMM-
Training:
triphones1
wintri.mlf

66. Install ActivePerl 5.14.2

67. Put maketrihed into the folder HMMTraining.

68. Run the following command
perlF : \experiment\HMMTraining\maketrihedF : \experiment\
HMMTraining\monophones1F : \experiment\HMMTraining\triphones1

69. After executing this command mktri.hed will be generated into the drive C (in perl di-
rectory). Copy mktri.hed and paste it into HMMTraining folder.

70. Open monophones1 and go to the last line SP and then press enter and finally save it.
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71. Open mktri.hed then change CLF : \experiment\HMMTraining\triphones1 into
the following format:
CLF : \\experiment\\HMMTraining\\triphones1
Create three folders named hmm10 hmm12
Change mktri.hed
CLD : \practice\HMMTraining\triphones1
to
CLD : \\practice\\HMMTraining\\triphones1

Then execute the following command:
HHEd− A−D − T1−Hhmm9\hmmdefs−Mhmm10mktri.hedmonophones1

72. The following files will be created after executing the above command
hmm10\hmmdefs
hmm10\macros

Next run HERest 2 more times:
HERest− A−D − T1− CHTK39dpf.config − Iwintri.mlf − t250.0150.03000.0−
Strain.scp−Hhmm10\
macros−Hhmm10\hmmdefs−Mhmm11triphones1

73. The files created by this command are:
hmm11\hmmdefs
hmm11\macros

74. Run the following command
HERest−A−D− T1−CHTK 39dpf.config− Iwintri.mlf − t250.0150.03000.0−
sstats− Strain.scp−Hhmm11\
macros−Hhmm11\hmmdefs−Mhmm12triphones1

75. The files created by this command are:
hmm12\hmmdefs
hmm12\macros
also create the following file: stats into the folder HMMTraining

76. need to put the following files into the folder HMMTraining:
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global.ded,HDMan.exe&voxforge lexicon

77. Run the following command
HDMan−A−D−T1− bsp−nfulllist−gglobal.ded−1flogdicttrivoxforge lexicon

78. After executing this command the following files will be generated:
fulllist, dicttri & flog

79. Next create a new fulllist1 file and copy the contents of the fulllist and triphones1 into
it.

80. Copy the fixfullist.pl script to our folder

81. Run the following command
perlD : \practice\ HMMTraining\fixfulllist.plD : \practice\
HMMTraining\fulllist1D : \practice\HMMTraining\fulllist

82. After executing this command the file will be created as like fulllist.

83. copy tree.hed (13kb original) into the folder HMMTraining.

84. copy mkclscript.prl into the folder HMMTraining.

85. Run the following command.
perlD : \practice\ HMMTraining\mkclscript.prlTB350D : \
practice\HMMTraining\monophones0D : \practice\HMMTraining\tree.hed

86. After executing this command the tree.hed (22kb) will be generated with additional in-
formation.

87. Then add the following codes into the end of the tree.hed
TR1

AU”F : \\experiment\\HMMTraining\\fulllist”
CO”F : \\experiment\\HMMTraining\\tiedlist”
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ST”F : \\experiment\\HMMTraining\\trees”

88. Create three more folders named hmm13-hmm15 into the folder HMMTraining.

89. Run the following command.
HHEd−A−D−T1−Hhmm12\macros−Hhmm12\hmmdefs−Mhmm13tree.hedtriphones1

90. After executing this command tiedlist and trees will be created into the folder HMM-
Training and also created hmmdefs and macros into the folder hmm13

91. Run the following command
HERest − A − D − T1 − T1 − CHTK 39dpf.config − Iwinter.mlf − sstats −
t250.0150.03000.0− STrain.scp−Hhmm13\
hmmdefs−Mhmm14tiedlist

92. Run the following command
HERest−A−D−T1−T1−CHTK 39dpf.config− Iwinter.mlf − sstats− t250.0
150.0 3000.0−STrain.scp−Hhmm14\
macros−Hhmm14\hmmdefs−Mhmm15tiedlist
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CHAPTER 7
EXPERIMENTAL RESULT ANALYSIS

In order to achieve further insight into the performance of different HMM types the results
were analyzed thoroughly. First, the overall insertion, deletion, and substitution errors were
counted and the accuracy and correctness figures derived from these.

7.1 Performance figures

As explained earlier, there are three different types of recognition errors: substitution (S),
deletion (D), and insertion errors (I). The total number of words is marked with N. The
correctness (C) figure is calculated according to equation 8.1 and it describes the portion of
words recognized correctly from all words.

%WordCorrectRate = (N−S−D)
N

× 100% (8.1)

For Accuracy calculation it considers insertion (I). Equation for word accuracy can be writ-
ten as follows:

%WordCorrectRate = (N−S−D−I)
N

× 100% (8.2)

For the case of Sentence correct rate it considers correctly recognized sentences (H) within
total number of sentences (N) to calculate sentence correct rate.

%SentenceCorrectRate = (H)
N
× 100% (8.3)
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7.2 Speech DataBase

At present, a real problem to do experiment on Bangla phoneme ASR is the lack of proper
Bangla speech corpus. In fact, such a corpus is not available in any of the existing literature.
Therefore, we develop a medium size Bangla speech corpus, which is described below.

Hundred sentences from the Bengali newspaper Prothom Alo are uttered by 30 male speak-
ers and 30 female speakers of different regions of Bangladesh. These male sentences (30
100) are used for training corpus and these female sentences are user for training corpus.
On the other hand, different 100 sentences from the same newspaper uttered by 10 different
male speakers (total 1000 sentences) and different 100 sentences from the same newspaper
uttered by 10 different female speakers (total 1000 sentences) are used as test corpus. All
of the speakers are Bangladeshi nationals and native speakers of Bangla. The age of the
speakers ranges from 20 to 40 years. We have chosen the speakers from a wide area of
Bangladesh.

Recording was done in a quiet room located at United International University (UIU),
Dhaka, Bangladesh. A desktop was used to record the voices using a head mounted close
talking microphone. We record the voice in a place, where ceiling fan and air conditioner
were switched on and some low level street or corridor noise could be heard.
Jet Audio 7.1.1.3101 software was used to record the voices. The speech was sampled at
16 kHz and quantized to 16 bit stereo coding without any compression and no filter is used
on the recorded voice. For this study, stereo coding has been used in order to reduce the re-
dundancy in stereo coding signals. One can achieve significant signal gains in stereo coding
which can be utilized to either boost the quality of the reconstructed signal or to lower the
bit rate whiling keeping the signal quality constant with respect to the original coder.

7.3 Experimental Setup

The frame length and frame rate are set to 25 ms and 10 ms (frame shift between two con-
secutive frames), respectively, to obtain acoustic features (MFCCs) from an input speech.
MFCC comprised of 39 dimensional features. Then this 39 dimensional features are con-
verted into 117 dimensional features to make it ready for Neural Network.
For designing an accurate continuous word recognizer, word correct rate (WCR) and word
accuracy (WA) for test data set are evaluated using an HMM-based classifier. The train data
set is used to design Bangla triphones HMMs with five states, three loops, and left-toright
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Table 7.1: Word Recognition Performance for MFCC39+TRIPHONE-HMM using Male
test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 3079 3087 3131 3023
D 37 40 34 63
S 174 163 125 204
I 23 21 8 7
N 3290 3290 3290 3290

models. Input features for the classifier are 39 dimensional MFCC. In the HMMs, the out-
put probabilities are represented in the form of Gaussian mixtures, and diagonal matrices
are used. The mixture components are set to one, two, four and eight.

To obtain the WCR and WA we have designed the following experiments for male , female
and male+female test data sets:
(a) MFCC39+Triphone-HMM.
(b) MFCC38+Triphone-HMM.
(c) MFCC39+Neural Network+Triphone-HMM.

*** Experiments results are given in tables and charts where
H=Correctly Recognized,
D=Deletion,
S=Substitution,
I=Insertion,
N=Total,

7.4 Experimental Results and Discussion

The table 7.3 shows that in mix1 the recognizer recognized 3111 words out of 3290 words
perfectly. In mix2 3104, mix4 3111 and mix8 3119 words recognized perfectly. In mix1
it also shows that 12 words deleted, 167 words substituted and 33 words inserted. We can
find the best result in mix8, where deletions, substitutions and insertions are also lesser than
other mixes.
**Similar description applies for tables 7.1,7.2,7.8,7.7and7.9

The table 7.6 shows that in mix1 the recognizer correctly recognized 937 sentences out of
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Table 7.2: Word Recognition Performance for MFCC38+TRIPHONE-HMM using Male
test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 2906 2883 2898 2736
D 62 55 52 89
S 322 352 340 465
I 61 55 59 70
N 3290 3290 3290 3290

Table 7.3: Word Recognition Performance for MFCC39+Neural Network+TRIPHONE-
HMM using Male test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 3111 3104 3111 3119
D 12 13 11 15
S 167 173 168 156
I 33 31 30 29
N 3290 3290 3290 3290

Table 7.4: Sentence Recognition Performance for MFCC39+TRIPHONE-HMM using Male
test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 925 930 947 913
S 75 70 53 87
N 1000 1000 1000 1000

Table 7.5: Sentence Recognition Performance for MFCC38+TRIPHONE-HMM using Male
test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 874 865 869 818
S 126 135 131 182
N 1000 1000 1000 1000
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Table 7.6: Sentence Recognition Performance for MFCC39+Neural Network+TRIPHONE-
HMM using Male test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 937 945 953 958
S 63 55 47 42
N 1000 1000 1000 1000

Table 7.7: Word Recognition Performance for MFCC39+TRIPHONE-HMM using FeMale
test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 2885 3017 3080 3076
D 105 64 48 53
S 300 209 162 161
I 19 16 17 11
N 3290 3290 3290 3290

1000 test sentences which were not trained in neural network. It substituted 63 sentences.
The recognizer recognized 945, 953 and 958 sentences in respectively mix2, mix4 and
mix8. We can find the best result in mix8. In mix8 maximum sentences recognized rather
than other mixes.
**Similar description applies for tables 7.4,7.5,7.10,7.11 and 7.12

Table 7.8: Word Recognition Performance for MFCC38+TRIPHONE-HMM using FeMale
test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 3001 2982 2998 2932
D 30 33 37 47
S 259 275 255 311
I 58 60 52 50
N 3290 3290 3290 3290
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Table 7.9: Word Recognition Performance for MFCC39+Neural Network+TRIPHONE-
HMM using FeMale test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 3118 3143 3167 3182
D 18 14 11 13
S 154 133 112 95
I 47 43 33 27
N 3290 3290 3290 3290

Table 7.10: Sentence Recognition Performance for MFCC39+TRIPHONE-HMM using Fe-
Male test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 867 909 929 926
S 133 91 71 74
N 1000 1000 1000 1000

Table 7.11: Sentence Recognition Performance for MFCC38+TRIPHONE-HMM using Fe-
Male test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 898 890 900 879
S 102 110 100 121
N 1000 1000 1000 1000

Table 7.12: Sentence Recognition Performance for MFCC39+Neural
Network+TRIPHONE-HMM using Male test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 937 945 953 958
S 63 55 47 42
N 1000 1000 1000 1000

Table 7.13: Word Recognition Performance for MFCC39+TRIPHONE-HMM using
Male+FeMale test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 6096 6066 6048 6020
D 120 106 110 140
S 364 408 422 420
I 28 36 36 28
N 6580 6580 6580 6580
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Table 7.14: Word Recognition Performance for MFCC38+TRIPHONE-HMM using
Male+FeMale test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 6012 5950 5966 5886
D 62 74 78 78
S 506 556 536 616
I 128 132 116 128
N 6580 6580 6580 6580

Table 7.15: Word Recognition Performance for MFCC39+Neural Network+TRIPHONE-
HMM using Male test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 5912 5946 6030 5990
D 62 66 50 46
S 606 568 500 544
I 182 184 172 160
N 6580 6580 6580 6580

Table 7.16: Sentence Recognition Performance for MFCC39+TRIPHONE-HMM using
Male test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 1836 1820 1820 1810
S 164 180 180 190
N 2000 2000 2000 2000

Table 7.17: Sentence Recognition Performance for MFCC38+TRIPHONE-HMM using
Male test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 1810 1788 1794 1772
S 190 212 206 228
N 2000 2000 2000 2000

Table 7.18: Sentence Recognition Performance for MFCC39+Neural
Network+TRIPHONE-HMM using Male test Data set.

MIX 1 MIX 2 MIX 4 MIX 8
H 1756 1772 1796 1784
S 244 228 204 216
N 2000 2000 2000 2000
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Figure 7.1: Word Correct Rate for male test data set

Figure 7.2: Word Accuracy for male test data set

44



Figure 7.3: Sentence Correct rate for male test data set

Figure 7.4: Word Correct Rate for female test data set
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Figure 7.5: Word Accuracy for female test data set

Figure 7.6: Sentence Correct Rate for female test data set
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Figure 7.7: Word Correct Rate for male+female test data set

Figure 7.8: Word Accuracy for male+female test data set
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Figure 7.9: Sentence Correct Rate for male+female test data set
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CHAPTER 8
CONCLUSION

The focus of this research was to show a preparation of Bangla speech corpus and to provide
some experiments to obtain better word recognition performance through neural network.
This covered the basics of speech recognition up to the principles of continuous speech
recognition. The following conclusions are drawn from the experiments:

i) The MFCC39+Neural Network+Triphone based system provides tremendous improve-
ment of Bangla word recognition accuracy for both training and test data.

ii) A higher Bangla word correct rate for training and test data is also obtained by the LF-
based system.

iii) We have learned how the basic algorithm for isolated word recognition with HMMs
works.

iv) We have learned how we can integrate additional knowledge sources into the recognition
process.

v) K-mean clustering instead of model clustering. This would lead the clustering process
even more towards the data-driven direction.

vi) We have learned how we can reduce the computational complexity of the search algo-
rithm so that we are able to meet real time constraints.

Speaker independency is a major fact in many experimental applications. The methodspre-
sented in this thesis could also be applied to such a recognizer, but speaker independency
poses many new problems, as well. The need for training data increases dramatically. As
there exists very few research works for Bangla ASR system, still there prevails the need for
conducting lot more research works to enrich this system. So, our research based on LF-25
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in the field of Bangla ASR system is a positive approach to achieve better word accuracy as
well as word correct rate which will be highly beneficial to the future research analysis.
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APPENDIX A
CODES

A.1 Line Cutter

We use this code to remove the unnecessary heading of the MFCC data. . .

1 #include<stdio.h>

2 #include<stdlib.h>

3 #include<string.h>

4 #include<math.h>

5 #include<iostream>

6 using namespace std;

7 FILE *ifp, *ofp, *inputt, *outputt, *script;

8 float t[100];

9 int dimension=39;

10 double data[1000][1000];

11

12 int main()

13 {

14 int percent=0;

15 inputt=fopen("dest.mfc","r");//from where to read

16 outputt=fopen("dest_out.mfc","r");//read utl where to write

17 script=fopen("input.scp","w");//typically output.txt and input.scp both are same

18

19 int i=0;

20 char inp[65];

21 char outp[69];

22 while(!feof(inputt))

23 {

24 percent++;

25 fscanf(inputt, "%[ˆ\n]%*c", &inp);

26 printf("%s\tSerial:%d\n",inp,percent);

27 ifp = fopen(inp, "r");
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28 rewind(ifp);

29 fscanf(outputt, "%[ˆ\n]%*c", &outp);

30 ofp=NULL;

31 if (ifp == NULL)

32 {

33 continue;

34 }

35 ofp = fopen(outp, "w");

36 rewind(ofp);

37 fprintf(script,"%s\n", outp);

38 int counter=0;

39 int last;

40 float tmp;

41 char line[100000];

42 fscanf(ifp, "%[ˆ\n]%*c", &line);

43 fscanf(ifp, "%[ˆ\n]%*c", &line);

44 fscanf(ifp, "%[ˆ\n]%*c", &line);

45 fscanf(ifp, "%s", &line);

46 fscanf(ifp, "%s", &line);

47

48 fscanf(ifp, "%d", &last);

49

50 fscanf(ifp, "%[ˆ\n]%*c", &line);

51 fscanf(ifp, "%[ˆ\n]%*c", &line);

52 //printf("%d\n",last);

53 //while(!feof(ifp))

54 int it=0;

55 while(it<last)

56 {

57 fscanf(ifp, "%s", &line);

58 for(int ii=0;ii<39;ii++)

59 {

60 fscanf(ifp,"%f",&tmp);

61 if(ii==9 || ii==19 || ii==29 || ii==38)

62 fprintf(ofp,"%.3f\n",tmp);

63 else

64 fprintf(ofp,"%.3f\t",tmp);

65 }

66 it++;
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67 }

68 fclose(ifp);

69 fclose(ofp);

70 }

71 return 0;

72 }

A.2 Matrix Format Converter

We use this code to convert the output form HList from 39 dimension to 117 dimension in
order to use in our neural network. . .

1 #include<stdio.h>

2 #include<stdlib.h>

3 #include<string.h>

4 #include<math.h>

5 #include<iostream>

6 using namespace std;

7 FILE *ifp, *ofp, *inputt, *outputt, *script;

8 float t[100];

9 int dimension=39;

10 double data[1000][1000];

11 void out(int frame)

12 {

13 for(int t=0;t<frame;++t)

14 {

15 int prev=t-3;

16 int suc=t+3;

17 if(prev<0)

18 prev=0;

19 if(suc>frame-1)

20 suc=frame-1;

21 for(int k=0;k<dimension;++k)

22 fprintf(ofp,"%10.4lf", data[prev][k]);

23 for(int k=0; k<dimension; ++k)

24 fprintf(ofp,"%10.4lf", data[t][k]);

25 for(int k=0; k<dimension; ++k)

26 fprintf(ofp,"%10.4lf", data[suc][k]);

27 fprintf(ofp,"\n");
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28 }

29 fclose(ofp);

30 }

31 int main()

32 {

33 int percent=0;

34 inputt=fopen("input.txt","r");//from where to read

35 outputt=fopen("output.txt","r");//read utl where to write

36 script=fopen("input.scp","w");//typically output.txt and input.scp both are same

37

38 int i=0;

39 char inp[65];

40 char outp[69];

41 while(!feof(inputt))

42 {

43 percent++;

44 printf("%d\n",percent);

45 fscanf(inputt, "%[ˆ\n]%*c", &inp);

46 ifp = fopen(inp, "r");

47 rewind(ifp);

48 fscanf(outputt, "%[ˆ\n]%*c", &outp);

49 ofp=NULL;

50 if (ifp == NULL)

51 {

52 continue;

53 }

54 ofp = fopen(outp, "w");

55 rewind(ofp);

56 fprintf(script,"%s\n", outp);

57 int counter=0;

58 while(!feof(ifp))

59 {

60 int i;

61 for(i=0;i<dimension;i++)

62 {

63 fscanf(ifp,"%lf",&data[counter][i]);

64 }

65 counter++;

66 }
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67 out(counter-1);

68 fclose(ifp);

69 }

70 return 0;

71 }

A.3 Log Creator

We use this code to convert the data from neural network for better understanding the varia-
tion. . .

1 #include<stdio.h>

2 #include<stdlib.h>

3 #include<string.h>

4 #include<math.h>

5 #include<iostream>

6 using namespace std;

7 FILE *ifp, *ofp, *inputt, *outputt, *script;

8 float t[100];

9 int dimension=53;

10 float data[1000][1000];

11 void out(int frame)

12 {

13 for(int t=0;t<frame;++t)

14 {

15 for(int i=0;i<dimension;i++)

16 {

17 data[t][i] = (-10)*log10(data[t][i]);

18 if(i==dimension-1)

19 {

20 fprintf(ofp,"%.5f\n", data[t][i]);

21 }

22 else

23 {

24 fprintf(ofp,"%.5f ", data[t][i]);

25 }

26 }

27

28 }
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29 fclose(ofp);

30 }

31 int main()

32 {

33 int percent=0;

34 inputt=fopen("TrainOutput.scp","r");//from where to read

35 outputt=fopen("TrainOutput.output","r");//read utl where to write

36

37 int i=0;

38 char inp[65];

39 char outp[69];

40 while(!feof(inputt))

41 {

42 percent++;

43

44 fscanf(inputt, "%[ˆ\n]%*c", &inp);

45 printf("%s\n",inp);

46 ifp = fopen(inp, "r");

47 rewind(ifp);

48 fscanf(outputt, "%[ˆ\n]%*c", &outp);

49 ofp=NULL;

50 if (ifp == NULL)

51 {

52 continue;

53 }

54 ofp = fopen(outp, "w");

55 rewind(ofp);

56 fprintf(script,"%s\n", outp);

57 int counter=0;

58 while(!feof(ifp))

59 {

60 int i;

61 for(i=0;i<dimension;i++)

62 {

63 fscanf(ifp,"%f",&data[counter][i]);

64 }

65

66 counter++;

67 }
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68 out(counter-1);

69 fclose(ifp);

70 }

71 return 0;

72 }

A.4 HTK Environment Converter

We use this code to convert the output from the neural network to data for HTK environ-
ment. . .

1 #include<stdio.h>

2 #include<math.h>

3 #include<stdlib.h>

4 #include<string.h>

5

6 #define MAX_SAMPLE_NUM 1500000

7 #define MAX_FRAME_NUM 5500

8 #define FILTER_NUM 53

9 #define BIN 53

10 #define MAX_FNAME 512

11

12 #define IN_SCRIPT "Out_vec.test"

13 #define OUT_SCRIPT "Out_vec.scp"

14

15 typedef struct histogram {

16 //double **zcpa;

17 //double **d_zcpa;

18 //double **dd_zcpa;

19 double **peaks;

20 // double *power;

21 // double *d_power;

22 // double *dd_power;

23 //double **finalvector;

24 } HISTOGRAM;

25

26 void WriteWave(double **vec, char *fname, int fnum, int ch);

27

28 void main(void){
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29 int n;

30 HISTOGRAM *hist;

31 char fname[MAX_FNAME]={’\0’};

32 char Path[MAX_FNAME]={’\0’};

33 //char LPath[MAX_FNAME]={’\0’};

34 char temp[6]={’\0’};

35 char tmp[10]={’\0’};

36 //char phone[6]={’\0’};

37 int fnum=0;

38 FILE *fp,*fp1,*fp3;

39 double data;

40 int k,i;

41 //long x,y;

42

43 k=1;

44

45 printf("Program is running...................\n");

46

47 fp1=fopen(IN_SCRIPT,"r");

48 if(fp1==NULL){

49 printf("\nCan not open input file");

50 exit(1);

51 }

52 rewind(fp1);

53

54 fp3=fopen(OUT_SCRIPT,"w");

55 if(fp3==NULL){

56 printf("\nCan not open script file");

57 exit(1);

58 }

59 rewind(fp3);

60

61 if((hist=(HISTOGRAM*)malloc(sizeof(HISTOGRAM)))==NULL){

62 printf("\nCan not allocate memory for histogram");

63 exit(1);

64 }

65

66 memset(hist,0,sizeof(HISTOGRAM));

67 if ((hist->peaks=(double **)calloc(MAX_FRAME_NUM,
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68 sizeof(double *)))==NULL) {

69 printf("Cant allocate memory for hist->peaks\n");

70 exit(1);

71 }

72 for(n = 0; n < MAX_FRAME_NUM; n++){

73 if ((hist->peaks[n] = (double *)calloc(BIN,

74 sizeof(double ))) == NULL){

75 printf("Cant allocate memory for hist->peaks\n");

76 exit(1);

77 }

78 }

79

80 while((!feof(fp1))){

81 strcpy(fname,"");

82 strcpy(temp,"");

83 strcpy(fname,"Train\\file");

84 itoa(k,temp,10);

85 strcat(fname,temp);

86 strcat(fname,".vec");

87 putc(’\n’,fp3);

88 fprintf(fp3,"%s",fname);

89 fnum=0;

90

91 strcpy(Path,"");

92 fscanf(fp1,"%[ˆ\n]%*c",Path);

93 printf("\nInput File::%s",Path);

94

95 fp=fopen(Path,"r");

96 if(fp==NULL){

97 printf("\nCan not open input Data");

98 exit(1);

99 }

100 rewind(fp);

101

102 n=0;

103 while(!feof(fp)){

104 for(i=0;i<BIN;++i){

105 fscanf(fp,"%lf",&data);

106 hist->peaks[n][i]=data;
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107 }

108 ++n;

109 }

110 fnum=n-1;

111 WriteWave(hist->peaks,fname, fnum, BIN);

112

113 fclose(fp);

114 ++k;

115 }

116

117 fclose(fp1);

118 fclose(fp3);

119 return;

120 }

121

122 void WriteWave(double **vec, char *fname, int fnum, int ch)

123 {

124 FILE *fp;

125 int f, c, n;

126

127 int r_fnum;

128 int sp = 100000;

129 short int sampSize;

130 short int sampKind = 9;

131 unsigned char *temp;

132 unsigned char t1[2], t2[2], t3[2], t4[2];

133 unsigned char val[15];

134

135 unsigned char b_fnum[4], b_sp[4], b_ss[4], b_sk[4];

136

137 //float databuf[OUTPUT_DIM];

138 float databuf[FILTER_NUM];

139 float **floatbuf;

140

141 /* ?????????, allocation of temporal buffer */

142 if ((floatbuf = (float **)calloc(MAX_FRAME_NUM,

143 sizeof(float *))) == NULL){

144 exit(1);

145 }
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146 for (n = 0; n < MAX_FRAME_NUM; n++){

147 if((floatbuf[n]=(float*)calloc(FILTER_NUM,

148 sizeof(float)))==NULL){

149 exit(1);

150 }

151 }

152

153 /* ?????????, allocation of temporal buffer */

154 if ((temp=(unsigned char*)calloc(MAX_SAMPLE_NUM*2,

155 sizeof(unsigned char)))==NULL)

156 {

157 printf("Cant allocate memory for writewave\n");

158 exit(1);

159 }

160

161 sampSize = ch * sizeof(float);

162

163 /* ??????????????? */

164 /* output for temporal byte swap */

165 if ((fp= fopen(fname, "wb")) == NULL){

166 fprintf(stderr, "file open error\n");

167 exit(1);

168 }

169 fwrite(&fnum, sizeof(int), 1, fp);

170 fwrite(&sp, sizeof(int), 1, fp);

171 fwrite(&sampSize, sizeof(short int), 1, fp);

172 fwrite(&sampKind, sizeof(short int), 1, fp);

173 for (f = 0; f < fnum; f++){

174 for (c = 0; c < ch; c++){

175 databuf[c] = (float)vec[f][c];

176 }

177 fwrite(databuf, sizeof(float), ch, fp);

178 }

179 fclose(fp);

180

181 /* ?????????????? */

182 /* re-input for byte swap */

183 if ((fp= fopen(fname, "rb")) == NULL){

184 fprintf(stderr, "file open error\n");
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185 exit(1);

186 }

187 fread(b_fnum, sizeof(unsigned char), 4, fp);

188 fread(b_sp, sizeof(unsigned char), 4, fp);

189 fread(b_ss, sizeof(unsigned char), 2, fp);

190 fread(b_sk, sizeof(unsigned char), 2, fp);

191 fread(temp, sizeof(unsigned char), MAX_SAMPLE_NUM*2, fp);

192

193 fclose(fp);

194

195 /* ???????????, swap of frame size */

196 sprintf(t1, "%02lx", b_fnum[0]);

197 sprintf(t2, "%02lx", b_fnum[1]);

198 sprintf(t3, "%02lx", b_fnum[2]);

199 sprintf(t4, "%02lx", b_fnum[3]);

200 strcpy(val, "0x");

201 strcat(val, t1);

202 strcat(val, t2);

203 strcat(val, t3);

204 strcat(val, t4);

205 sscanf(val, "%08lx", &r_fnum);

206

207 /* ????????, swap of sampling period */

208 sprintf(t1, "%02lx", b_sp[0]);

209 sprintf(t2, "%02lx", b_sp[1]);

210 sprintf(t3, "%02lx", b_sp[2]);

211 sprintf(t4, "%02lx", b_sp[3]);

212 strcpy(val, "0x");

213 strcat(val, t1);

214 strcat(val, t2);

215 strcat(val, t3);

216 strcat(val, t4);

217 sscanf(val, "%08lx", &sp);

218

219 /* ???????, swap of vector size */

220 sprintf(t1, "%02lx", b_ss[0]);

221 sprintf(t2, "%02lx", b_ss[1]);

222 strcpy(val, "0x");

223 strcat(val, t1);
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224 strcat(val, t2);

225 sscanf(val, "%04lx", &sampSize);

226

227 /* ?????, swap of kind of wave */

228 sprintf(t1, "%02lx", b_sk[0]);

229 sprintf(t2, "%02lx", b_sk[1]);

230 strcpy(val, "0x");

231 strcat(val, t1);

232 strcat(val, t2);

233 sscanf(val, "%04lx", &sampKind);

234

235

236 /* ??????????, swap of feature vector */

237 n = 0;

238 for (f = 0; f < fnum; f++){

239 for (c = 0; c < ch; c++){

240 sprintf(t1, "%02lx", temp[n]);

241 sprintf(t2, "%02lx", temp[n + 1]);

242 sprintf(t3, "%02lx", temp[n + 2]);

243 sprintf(t4, "%02lx", temp[n + 3]);

244 strcpy(val, "0x");

245 strcat(val, t1);

246 strcat(val, t2);

247 strcat(val, t3);

248 strcat(val, t4);

249 sscanf(val, "%08lx", &floatbuf[f][c]);

250 n += 4;

251 }

252 }

253

254 /* ???????????????? */

255 /* output into file after byte swap */

256 if ((fp= fopen(fname, "wb")) == NULL){

257 fprintf(stderr, "file open error\n");

258 exit(1);

259 }

260

261 fwrite(&r_fnum, sizeof(int), 1, fp);

262 fwrite(&sp, sizeof(int), 1, fp);
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263 fwrite(&sampSize, sizeof(short int), 1, fp);

264 fwrite(&sampKind, sizeof(short int), 1, fp);

265 for (f = 0; f < fnum; f++){

266 fwrite(floatbuf[f], sizeof(float), ch, fp);

267 }

268

269 fclose(fp);

270

271 /* ?????????, deallocation of temporal buffer */

272 for (n = 0; n < MAX_FRAME_NUM; n++){

273 free(floatbuf[n]);

274 }

275 free(floatbuf);

276 free(temp);

277

278 }
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