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ABSTRACT

A graph G is graceful if its set of vertices is denoted by the set {0, 1, . . . ,m} and the

set of edges is denoted by {1, 2, . . . ,m}, such that all edges are labeled uniquely and

according to the difference of the labels of the vertices connecting it. A simple notation

to be mentioned that all the vertices will have unique labels, and so will the edges. The

idea of graceful labeling came to being from Ringel’s conjecture(see chapter 1). The

conjecture introduced in 1963, established the open problem of graceful labeling. Any

graph that can be labeled gracefully suggests that the class of the graph implies Ringel’s

conjecture. Over the years many people worked on this conjecture and found out many

classes of graceful trees and graph. Such graceful classes of trees and graphs are Path or

Chain, Caterpillar, Extended caterpillar, super caterpillar, Star, Olive tree, Banana tree,

Lobstar, product tree Cyle wheel, Crown graph etc. A C4 graph is a cycle consisting of

four vertices. The C4 graph is graceful. However, graphs formed by multiple number

of C4 cycles in them were yet to be studied. Another type of graph is a star. A star S1,

n is a center vertex connected with n leaves. A star is also classified as a tree, according

to the definition. It has been proved earlier that all stars are graceful. The purpose of

this paper was to study and develop procedures to gracefully labeled graphs formed by

the combination of multiple C4 cycles and the combination of multiple stars. A general

procedure was developed for each of the three classes, proved to be graceful, through

this paper. Further research was conducted on finding more varieties of such graphs and

the results were discussed. The result of the research proposes an open problem about

a class of graphs which partially supports Ringel’s conjecture. The paper highlights the

classes of graphs and trees that were previously proved to be graceful.
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CHAPTER 1
INTRODUCTION

1.1 Overview

The theory of graphs has a definite starting point, which is an exception in the field of mathe-
matics. It started when the Swiss mathematician Leonard Euler (1707-1783) considered the
problem of the seven Konigsberg bridges. In the early 18th century the city of Konigsberg
(in Prussia) was divided into four sections by the Pregel river. Seven bridges connected these
regions as shown in Figure 1.1. Regions are shown by A, B, C, D respectively. It is said that
the townsfolk of Konigsberg amused themselves by trying to find a route that crossed each
bridge just once (It was all right to come to the same island any number of times). Euler
discussed whether or not it is possible to have such a route by using the graph shown in
Figure 1.1. He published the first paper in graph theory in 1736 to show the impossibility
of such a route and give the conditions which are necessary to permit such a stroll. Graph

Figure 1.1: A map of Konigsberg and a graph representing the bridges of Konigsberg.
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theory was born to study problems of this type. Graph theory is one of the topics in an area
of mathematics described as Discrete Mathematics.
The problems as well as the methods of solution in discrete mathematics differ fundamen-
tally from those in continuous mathematics. In discrete mathematics we “count” the number
of objects while in continuous mathematics we “measure” their sizes. Although discrete
mathematics began as early as man learned to count, it is continuous mathematics which
has long dominated the history of mathematics. This picture began to change in twentieth
century. The first important development was the change that took place in the conception of
mathematics. Its central point changed from the concept of a number to the concept of a set
which was more suitable to the methods of discrete mathematics than to those of continuous
mathematics.
The second dramatic point was the increasing use of computers in society. Much of the
theory of computer science uses concepts of discrete mathematics. Graph theory as a mem-
ber of the discrete mathematics family has a surprising number of applications, not just to
computer science but to many other sciences (physical, biological and social), engineering
and commerce. Graceful graphs have a range of practical application domains, including in
radio astronomy, X-ray crystallography, cryptography, and experimental design,coding the-
ory and communication network addressing such as Multiprotocol Label Switching (MPLS)
multicasting using Caterpillars and a Graceful. Graph theory has turned out to be a vast area
with innumerable applications in the field of social networks, data organization, communi-
cation network, discrete mathematics and so on.
The purpose of our paper is to provide some results in a class of problems categorized as
Graph labeling. Let G be an undirected graph without loops or double connections between
vertices. In labeling (valuation or numbering) of a graph G, we associate distinct nonnega-
tive integers to the vertices of G as vertex labels (vertex values or vertex numbers) in such a
way that each edge receives a distinct positive integer as an edge label (edge value or edge
number) depending on the vertex labels of vertices which are incident with this edge. Inter-
est in graph labeling began in mid-1960s with a conjecture by Kotzig-Ringel and a paper by
Rosa [1].
In 1963, ringel conjectured the following:
Conjecture 1. Let T be a given tree with n vertices and n − 1 edges, then the edges of
K2n−1 can be partitioned int 2n− 1 trees isomorphic to T .
Figure 1.2 shows the conjecture for T , a tree of 3 edges, and K7. Tree T has 4 vertices or
n = 4. As per Conjecture 1 there are 7 distinct copies of T inK7. It is interesting to consider
the number of edges in K2n−1 relative to the number of edges in T . The number of edges in
K2n−1 is equivalent to the number of ways one can choose 2 from the group 2n− 1 or(

2n− 1

2

)
= (2n− 1)(2n− 2)/2 = (2n− 1)(n− 1)

10



Therefore, the number of distinct edges in K2n−1 is always (2n − 1) times | E(T ) |. It re-
mains to be proven that the partitioning results in trees isomorphic to T , but we know there
exist the correct number of edges.
In 1967, Rosa published a pioneering paper on graph labeling problems. He called a func-
tion f a β-labeling of a graph G with n edges (Golomb [2]) subsequently called such
labeling graceful and this term is now the popular one) if f is an injection from the vertices
of G to the set {0, 1, . . . , n} such that, when each edge is labeled with the absolute value
of the difference between the labels of the two end vertices, the resulting edge labels are
distinct. This labeling provides a sequential labeling of the edges from 1 to the number of
edges. Any graph that can be gracefully labeled is a graceful graph. Although numerous
families of graceful graphs are known, a general necessary or sufficient condition for grace-
fulness has not yet been found. Also It is not known if all tree graphs are graceful. Another
important labeling is an α-labeling or α-valuation which was also introduced by Rosa [1].
An α-valuation of a graph G is a graceful valuation of G which also satisfies the following
condition:
There exists a number γ(0 ≤ γ<E(G)) such that, for any edge e ∈ E(G) with the end
vertices u, v ∈ V (G), min { vertex label (v), vertex label (u)} ≤ γ< max { vertex label (v),
vertex label (u)} It is clear that if there exists an α-valuation of graphG, thenG is a bipartite
graph. The first graph in Figure 3.1 is a path with five edges and it has an α-labeling with
γ = 3. During the past thirty years, over 200 papers on this topics have been appeared in
journals. Although the conjecture that all trees are graceful has been the focus of many of
these papers, this conjecture is still unproved. Unfortunately there are few general results

Figure 1.2: K7 being decomposed into 7 isomorphic trees of size 3
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in graph labeling. Indeed even for problems as narrowly focused as the ones involving the
special classes of graphs, the labelings have been hard-won and involve a large number of
cases. Finding a graph that possesses an α-labeling is another common approaches in many
papers. The following condition (due to Rosa) is known to be necessary and in the case of
cycles also sufficient for a 2-regular graph G = (V,E) to have an α-labeling.
| E(G) |≡ 0 (mod 4). In 1982, Kotzig conjectured that this condition is also sufficient for
a 2-regular graph with two components. In 1996, Abrham and Kotzig have shown that this
conjecture is valid.

1.2 Approaches

As mentioned earlier that the topic about graceful labeling of graphs is an open problem, we
found interest in demonstrating newer classes of graphs that can be gracefully labeled. Our
research helped us to gain the knowledge about the prevailing classes of graceful graphs and
trees and the general rule defined to label them. In order to make the topic understandable,
our paper mentions a few examples of the prevailing classes of graceful trees and graceful
graphs. The mentioned portion was the result of our studies in the related field. After
studying through the prevailing data, we focused on finding out any newer classes that can
be gracefully labeled. We found success when we brought out three such classes that will
be discussed in this paper. All these three classes have a generalized rule for labeling.
Algorithms have been developed based on these rules, which are also included. Moreover,
some conditional categories of a particular class of graphs were also labeled gracefully. A
general rule was not implied since the total class could not be labeled gracefully, yet. Further
research will be conducted to prove this particular category is also graceful. This paper will
provide an elaborate discussion about the topics mentioned.

12



CHAPTER 2
PRELIMINARIES

2.1 Basic Definition

A graph G = (V,E) consists of two finite sets: V (G), the vertex set of the graph, often
denoted by just V , which is a nonempty set of elements called vertices, and E(G), the
edge set of the graph, often denoted by just E, which is a set of elements called edges. A
connected acyclic graph is called tree.

2.1.1 Degree

The degree of a vertex in a graph is the number of vertices adjacent to it [3]. For example
degree of each vertices in figure 2.1 is 5.

2.1.2 Adjacency

Two vertices are adjacent if they share an edge. [3]

Figure 2.1: A complete graph K6 with 6 vertices and 15 edges
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2.1.3 Diameter

To find the diameter [3] of a graph, first find the distance between every pair of vertices.
The diameter is the maximum of these minima.The diameter of a tree is much simpler; as
there is always one and only one path of edges between any two vertices, there is only one
possible distance. The diameter of the graph in Figure 2.1 is 1.

2.1.4 Complete Graph

A complete graph(see Figure 2.1) has one edge from every vertex to every other vertex. The
complete graph with n vertices is represented by the symbol Kn and will have edges. [3]

2.1.5 Node

A node is another name for a vertex. Within this thesis node and vertex are used interchange-
ably.

2.1.6 Node, Mirrored

All of the work in this thesis is related to trees with labeled nodes. Mirror Nodes are a
concept created to describe sets of nodes that do not need to have all possible labelings
tested because they are part of identical structures. For example the three trees in Figure 2.2
are structurally identical. This means that any algorithm that looked at all three would be

Figure 2.2: Example of mirrored nodes the 2, 3 and 4 can be rearranged at will.
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wasting time on the second two.
Two nodes n1 and n2 are considered mirrored if:
1. The rooted tree with n1 as the root is isomorphic to the rooted tree with n2 as the root
2. n1 and n2 are adjacent or are adjacent to a common node.

2.1.7 Isomorphic

Two graphs are isomorphic if they have the same structure if, by rearranging their vertex
identification, they can be shown to share the same set of edges. [3]

2.1.8 Bipartite Graph

A bipartite graph, also called a bigraph, is a set of graph vertices decomposed into two
disjoint sets such that no two graph vertices within the same set are adjacent.

2.1.9 Labeling

A valuation OG, is a one-to-one mapping of the vertex set of G into the set of non-negative
integers. Let s be an edge between vertices vi and vj and let ai and aj be the labels of vi and
vj , respectively. Then bs =| aiaj | is referred to as an induced label of edge s. Let VOG

be
the set of vertex labels and HOG

be the set of induced edge labels in a valuation OG of the
graph G. Rosa [1] defines the following conditions on a valuation OG of a graph G.
(a) VOG

⊂ {0, 1, . . . , n};

Figure 2.3: Example α valuation.
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(b) VOG
⊂ {0, 1, . . . , 2n};

(c) HOG
≡ {1, 2, . . . , n};

(d) HOG
≡ {x1, x2, . . . , xn}, where xi = i or xi = 2n+ 1i ,

(e) there exists x, x ∈ {0, 1, . . . , n}, such that for an arbitrary edge (vi, vj) of the graph G
either ai ≤ x<aj or aj ≤ x<ai holds.
A valuation satisfying the conditions
(a), (c), (e) is called an α-valuation,
(a), (c) is called a β-valuation,
(b), (c) is called a σ-valuation,
(b), (d) is called a ρ-valuation.
In 1976 Sheppard [4] used the term balanced labeling to denote α-labeling. Also, β- valu-
ation has been called graceful numbering by Golomb [2] in 1972, and proper labelling by
Sheppard [4] in 1976 However, it is most commonly called graceful labeling, and in this
paper we use the terms α-valuation and graceful labeling interchangeably.

2.2 Previous Works

The concept of a graceful labeling has been introduced by Rosa [1] as a means of attacking
the famous conjecture of Ringel that K2n+1 can be decomposed into 2n + 1 subgraphs that
are all isomorphic to a given tree with n edges. Rosa proved that if G is graceful and if all
vertices of G are of even degrees, then | E(G) |≡ 0 or 3(mod 4) and named β valuation.
Although most graphs are not graceful, graphs that have some sort of regularity of structure
are graceful. Many variations of graceful labeling have been introduced in recent years

Figure 2.4: Example of β-valuation.
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by researchers. All cycles Cn are graceful if and only if n = 0 or 3(mod 4). All snakes
Pn, wheels Wn, helms Hn, crowns Rn, and complete bipartite graphs Km,n are graceful.
The complete graphs Kn are graceful only if n ≤ 4. It has been conjectured that all trees
are graceful. Although this conjecture has been the focus of more that 200 papers, it is
still an open problem. It has been shown that trees with atmost 27 vertices are graceful.
Although more than 400 papers have been published on the subject of graph labeling,there
are few particular techniques to be used by authors. The graceful labeling problem is to
find out whether a given graph is graceful, and if it is graceful, how to label the vertices.
The common approach in proving the gracefulness of special classes of graphs is to either
provide formulas for gracefully labeling the given graph, or construct desired labeling from
combining the famous classes of graceful graphs. Unfortunately, the process of gracefully
labeling a particular graph G is a very tedious and difficult task for many classes of graphs.
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CHAPTER 3
PREVAILING CLASSES OF GRACEFUL TREES

3.1 Chain or Path

A graph is called a path (see figure 3.1) if the degree of every vertex is ≤ 2 and there are no
more than 2 endvertices [2]. An endvertex or leaf is a vertex of degree 1.Therefore a chain
or path is a tree with only two leaves, or equivalently a tree in which all vertices have degree
0 or 1. Chain or path has following characteristics:
1. A chain or path, is the simplest type of tree: a single line of vertices.
2. A chain is a caterpillar (see figure 3.1) with no legs.

Theorem 1. Every path is graceful [1].
Proof. We demonstrate an algorithm to gracefully label any path Pn with n vertices. In a
path the number of edges is one less that the number of vertices or m = n − 1. Labeling
can begin at either end without loss of generality. The first vertex at one end is labeled 0,

Figure 3.1: Gracefully labeled Path
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the adjacent vertex is labeled n − 1, the next adjacent, nonlabeled vertex is labeled 1, and
we continue in this manner. Alternate vertices are incremently decreasing by 1. consider
two cases where n = 0(mod2). In both cases k = bn/2c . For even case the edge labels
beginning with the leftmost edge in figure are | (n− 1)− 0 | , | (n− 1)− 1 | , | (n− 2)− 1 |
, . . . , | (n− k)− (k − 1) | = n− 1, n− 2, n− 3, . . . , 1. In detremining the last edge value
recall k = bn/2c. For cases where n is even, k = bn/2c = n/2 and (n − k) − (k − 1) =

n−k−k+1 = 1. It is easy to see this is a graceful labeling since all numbers between 1 and
n− 1 or m are used in the edge labels. Similarly, when n is odd the edge values beginning
on the left are n − 1, n − 2, n − 3, . . . , 1. In evaluating the right most edge value, recall
k = bn/2c = n− 1/2 when n is odd. Then n− k− k = n−n− 1/2−n− 1/2 = 1. Again
every value from 1 to n − 1 or m is used. Rosa [1] also introduced α graceful labeling,
which is a stronger standard, and therefore fewer graphs are α graceful. Graphs that are α
graceful are also graceful. A graceful graph G is said to be α graceful if there exists a critical
value α such that for every edge (u, v), either f(u) ≤ α<f(v) or f(v) ≤ α<f(u). In each
α graceful graph, α is a positive integer and the vertices are said to have an α valuation.
These α graceful graph must be bipartite, which implies that no α graceful graphs can have
an odd cycle [5]. An example of α graceful labeling is shown in figure 3.1. Examine the
vertex labels in the path shown in figure 3.1. Begining at the left end of the path the first
vertex is labeled 0 and alternate vertices to the right increase by 1. Call these vertex labels
{0,1,2,3,4,5} set A.

3.2 Caterpillar

A caterpillar C = (XUY,E) is a tree consisting of a path P (C) with vertex set X and
vertices Y not on P (C), each joined to exactly one vertex of P (C). So a caterpillar is a
tree with one long path or chain of vertices and any number of paths of length 1 attached
to the chain. The long chain is known as spine of the caterpillar. Original results on the
gracefulness of caterpillars are due to Rosa [1]. Let the base of a tree T be the tree obtained
by deleting the leaves of T and any edges incident with these vertices. In 1967, Rosa showed
that ant tree that is a path or has a path as its base is graceful by constructing a bipartite
labeling of such trees. Since a caterpillar is transformed into a path by the deletion of its
leaves, the gracefulness of caterpillars follows by Rosa’s construction. Figure 3.2 shows a
α gracefully labeled caterpillar. The first vertex on the spine is labeled 0 and the adjacent
vertices are labeled {24, 23, 22, 21, 20} using the higher values on the leaf neighbors, so that
20 is the label for the next vertex on the spine and there are 4 leaf neighbors of vertex 0. Now
the remaining non-labeled neighbors of 20 are labeled {1, 2, 3, 4} with the lower values on
the leaf neighbors and the value 4 on the next vertex on the spine. Continuing in this manner
the caterpillar of 25 vertices is labeled. The edge values are {1, 2, 3, . . . , 24} and m = 24,
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while the vertex values are from the set {0, 1, 2, . . . , 24}.

Theorem 2. All caterpillars are α graceful [6].
Proof. We demonstrate an algorithm to α gracefully label any caterpillar. Let vi represent
the vertices on the spine of the caterpillar and N(vi) is the set of all vertices adjacent to vi,
while | N(vi) | is the number of vertices which are adjacent to vi.

ki =

 |N(vi)| − 1, if i is the first or last vertex of the spine

|N(vi)| − 2, otherwise

1. Begin by labeling the first vertex on the spine 0 (figure 3.2). Alternate vertices of this
spine beginning with the first vertex are odd. all other vertices on the spine are called even.
2. Leaf neighbors of 0 are labeled begining with n−1 and going in descending order ending
with n− k1 where k1 ≡ N(v0)− 1.
3. The next vertex on the spine, a neighbor of 0, is labeled n− (k1 + 1).
4. Leaf neighbors of this vertex n− (k1 + 1) are labeled 1 through k2.
5. Continue in this manner. The odd vertices on the spine and the leaf neighbors of the even

Figure 3.2: Gracefully labeled Caterpillar.

20



vertices on the spine are labeled in increasing order, while the leaf neighbors of the odd
vertices on the spine are labeled in decreasing order. the last vertex on the spine is labeled
n− (k1 + k3 + · · ·+ ki−3 + bi/2c) if it is even. It is n− (k2 + k4 + · · ·+ ki−2 + bi− 1/2c) if
odd. The last neighbor of this vertex is labeled n− (k2 + k4 + · · ·+ ki−2 + ki + bi− 1/2c)
or n− (k1 + k3 + · · ·+ ki−2 + ki + bi/2c) respectively.
6. α = min{x, y} where x = the label of last vertex on the spine and,

y =

 minlabels of leaf neighbours, if x <labels of leaf neighbors

maxlabels of leaf neighbors, if x >labels of leaf neighbors

3.3 Star

A star Sk(see Figure 3.3) is the complete bipartite graph K1,k, a tree with one internal node
and k leaves (but, no internal nodes and k + 1 leaves when k ≤ 1). Alternatively, some

Figure 3.3: A Star.
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authors define Sk to be the tree of order k with maximum diameter 2; in which case a star of
k>2 has k 1 leaves.

3.4 Symmetrical Tree

A symmetrical tree (see Figure 3.4) is a rooted tree in which every level contains vertices of
the same degree.It has been proved that all symmetrical trees are graceful. [7]

3.5 m-Stars

An m-Star (see Figure 3.5) has a single root node with any number of paths of length m
attached to it. Cahit and Cahit also proved that all m-Stars a graceful. [8]

3.6 Olive Tree

An olive tree has a root node with k branches attached; the ith branch has length I. Pastel
and Raynaud proved that all olive trees are graceful [9].
Figure3.6 is a sample figure.

Figure 3.4: Gracefully labeled Symmetrical Tree.
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Figure 3.5: Gracefully labeled 2 star.

Figure 3.6: Gracefully labeled Olive.
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3.7 Banana Tree

A banana tree (see Figure 3.7) is constructed by bringing multiple stars together at a single
vertex.Banana trees have not been proved graceful, although Bhat-Nayak and Deshmukh
have proven the gracefulness of certain classes of banana tree. [10]

3.8 Tp Tree

Hegde and Shetty defined a class of tree called Tp-trees (transformed trees) created by taking
a gracefully labelled chain and shifting some of the edges (Figure 3.8), and proved that they
can always be gracefully labelled using the original chain labels. [11]

3.9 Product Tree

Some proofs also show that certain graceful trees can be added together to give a larger
graceful tree. Koh et al. [12] showed how rooted product trees are always graceful(see
Figure 3.9).

Figure 3.7: Gracefully labeled Banana tree.
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3.10 Lobstar

A lobster (see Figure 3.10) is a tree having a path from which every vertex has distance
at most two.Morgan has proved that all lobsters with perfect matching are graceful. A
small class of interlaced lobsters is constructed by joining symmetrical trees (rooted trees
in which every level contains vertices of the same degree) successively at the roots to form
a path containing these roots.Graceful lobsters with vertices on the central path attached to
combination(s) containing all three types of branches preceded by the vertices attached to
combination(s) containing two types of branches. Some lobsters satisfy this property with
some restrictions on the number of odd, even, and pendant branches. [13]

3.11 Firecracker

A firecracker F (see Figure 3.11) is a tree consisting of a path P (F ) and a collection of
stars, where each vertex on is joined to the central vertex of exactly one star. All firecrackers
are graceful. [13]

Figure 3.8: Gracefully labeled Tp tree.
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3.12 Spraying Pipe

A spraying pipe [13] is a path V1, ..., Vn where each vertex Vi is joined to Mi paths at a leaf
of each path, and where all paths have fixed length. A spraying pipe is interlaced if n is even

Figure 3.9: Gracefully labeled Product Tree.
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and m2i1 = m2i for every 1 ≤ i ≤ n/2.

Figure 3.10: Gracefully labeled Lobstar.

Figure 3.11: Gracefully labeled Firecracker.
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CHAPTER 4
PREVAILING CLASSES OF GRACEFUL GRAPHS

The following necessary condition for gracefulness of a graph G = (V,E) with m =|
V (G) | and n =| E(G) | comes directly from the definition 2.1.7 :
Lemma 1. If G is a graceful graph then mn+ 1. [1]
It is clear that the above lemma is satisfied for every connected graph. Using this condition
we can rule out the existence of a graceful labeling for some disconnected graphs, for in-
stance, 1-regular graphs with n > 1.
A connected graph G is called Eulerian if n > 0 and the degree of every vertex of G is
even. A necessary condition for the existence of a graceful labeling of an Eulerian graph
G is proved by Rosa [1].

4.1 Eulerian Graph

Theorem 3. If G is a graceful Eulerian graph then n ≡ 0 or 3 (mod 4). [1]
In this theorem, an Eulerian graph is any graph in which the degree of each vertex is even;
it does not have to be connected. For example, K6 in Figure 4.1 are Eulerian, but it has 10

Figure 4.1: A complete graph K5
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and thus by the above theorem it is not graceful.
A generalization of Rosas theorem for k−graceful Eulerian graphs is as follows.
Theorem 4. If an Eulerian graph G = (V,E) is k-graceful then either n ≡ 0(mod4) or
n ≡ 1 (mod 4) when k is even or n ≡ 3 (mod 4) when k is odd. [14]

4.2 Cycle

For cycle Cn, the necessary condition in theorem is also sufficient.
Theorem 5. The cycle Cn is graceful if and only if n ≡ 0 or 3 (mod 4). [1]
Rosa also proved the following result:
Theorem 6. The cycle Cn has an α-labeling if and only if n ≡ 0 (mod 4). [1]
Maheo and Thuillier [15] have generalized this result as follow.
Theorem 7. The cycle Cn is k-graceful if and only if either n ≡ 0 (mod 4) or n ≡ 1(mod 4)
where k is even and k ≤ (n−1)/2 or n ≡ 3(mod 4) where k is odd and k ≤ (n−1)/2. [15]
We also know that.
Theorem 8. The cycle Cn is 1-sequential. [16]

4.3 Wheel

According to theorem 6 and the connection between 1-sequential and graceful graphs, we
can conclude that all wheels are graceful:
Theorem 9. The wheel Wn is graceful for all n ≥ 3. [17]
The following theorem and conjecture are due to Maheo and Thuillier.
Theorem 10. W2k+1 is k-graceful for any k ≥ 1. [15]
Conjecture 2. W2k is k-graceful with k 6= 3, 4. [5]

4.4 Crown

A crown Rn is formed by adding to the n points v1, v2, v3, . . . , vn of a cycle Cn, n more
pendant points u1, u2, u3, . . . , un and n more lines (ui, vi), i = 1, 2, 3, . . . , n for n ≥ 3.
Frucht has proved the following theorem.
Theorem 11. R2n is graceful for any n ≥ 3. [5]
We know that a graph admitting an α-labeling must be bipartite and, as such, can not contain
cycles of odd length. It follows that wheels can not have an α-labeling since they contain
triangles as subgraphs. For analogous reason, crowns can not have α-labeling if n is odd.
For even values of n, Frucht has offered the following conjecture.
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Conjecture 3. If n ≡ 0(mod 2) then Rn has an α-labeling. [5]
In Figure 4.2, we can see a graceful labeling for R5 and in Figure 4.3 an α-labeling for R6.

4.5 Helm

A helm Hn, n ≥ 3, is the graph obtained from a crown Rn by adding a new vertex joined to
every vertex of the unique cycle of the crown. Ayel and Favaron proved that.
Theorem 12. The helm Hn is graceful for every n ≥ 3. [18]

Figure 4.2: Graceful Labeling of R5.

Figure 4.3: α Labeling of R6.
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For example, Figure 4.4 shows that H5 is graceful.

4.6 Chord

A chord of a cycle is an edge joining two otherwise non adjacent vertices of a cycle. Bon-
dendiek conjectured that any cycle with a chord is graceful. This conjecture has been proved
by Delorme et al.
Theorem 13. The graph consisting of a cycle plus a chord is graceful. [19]
Let Pk be a path with k edges and k + 1 vertices. Koh and Yap defined a cycle with a
Pk-chord as a cycle with a path Pk joining two nonconsecutive vertices of the cycle. They
proved that these graphs are graceful when k = 2. Thereafter Punnim and Pabhapate proved
the general case k ≥ 3.
Theorem 14. A cycle with a Pk-chord is graceful for all k ≥ 1. [20]
In 1990, Zhi-Zheng generalized the above theorem by proving the following result.
Theorem 15. Apart from four exceptional cases, simple graphs consisting of three indepen-
dent paths joining two vertices are graceful. [21]
Examples of graceful labeling of cycles with a P1-chord and P3-chord can be seen in Fig-
ure 4.6. Koh et al. also introduced the concept of a cycle with k-consecutive chords. A cycle
with k-consecutive chords is a graph formed from a cycle by joining a cycle vertex v to k
consecutive vertices of the cycle in such a way that v is not adjacent to any of these. Koh
and others proved the following result about this kind of graph.
Theorem 16. A cycle Cn with k-consecutive chords is graceful if k = 2, 3, . . . , n− 3. [20]

Figure 4.4: Graceful Labeling of H5.
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4.7 Dragon

A dragon Dn(m) is a graph obtained by joining the end point of path Pm to the cycle Cn.
Truszcynski has proved the following theorem related to dragons.
Theorem 17. The dragon Dn(m) is graceful for n ≥ 3,m ≥ 1. [21]
The following conjecture is also due to Truszcynski.
Conjecture 3. All graphs with a unique cycle are graceful except Cn, n ≡ 1, 2 (mod 4). [21]

Figure 4.5: Graceful Labeling of C6.

Figure 4.6: Graceful Labeling of C4.
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4.8 Triangular Snake

Rosa [1] has defined a triangular snake (or ∆-snake) as a connected graph in which all
blocks are triangles and the block-cut-point graph is a path. Let ∆n-snake be a ∆ snake
with n blocks. Since a ∆n-snake is an Eulerian graph, according to theorem 1 it can only
be graceful if 3n ≡ 0 or 3 (mod 4)⇒ n ≡ 0 or 1 (mod 4). Moulton verified that this result
is also sufficient.
Theorem 18. Every ∆n-snake is graceful if and only for n ≡ 0 or 1 (mod 4). [22]

Figure 4.7: Graceful Labeling of ∆5 snake.

Figure 4.8: Graceful Labeling of ∆7 snake.
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In order to deal with other cases, Moulton also defined a new concept as follows.
Definition. An almost graceful labeling of a graph G = (V,E) with n =| E(G) | and m =|
V (G) | is a one-to-one mapping f of the vertex set V (G) into the set {0, 1, 2, . . . , n−1}∪{n
or n + 1} such that the set of edge labels induced by the absolute value of the difference of
the labels of the adjacent vertices is {1, 2, 3, . . . , n− 1} ∪ {n or n+ 1}.
Notice that the above definition includes graceful labeling as special case. Next Moulton
has strengthened the theorem 16 as follows.
Theorem 19. Every ∆n-snake for n ≡ 2 or 3 (mod 4) is almost graceful. [22]
The graceful labeling of ∆5-snake and an almost graceful labeling of ∆7-snake are shown
in Figure 4.7 and Figure 4.8 repectively.
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CHAPTER 5
NEW APPROACHES ON GRACEFUL GRAPHS

5.1 Linear Dice

This type of graph consists of C4 graphs joined with a single vertex. Each C4 is termed as
a dice. Among two consecutive dices, there is a common node. The procedure followed for
the graceful labeling of the Linear Dice Chain can be demonstrated by Figure 5.4.
In this case, let us denote the number of nodes as n, number of edges as m and number
of dices as x. The procedure is capable enough to label a graph with any number of dices,
gracefully. The following description enunciates the values of the assumed variables.
The value of x can be received from the user or analyst. The values of n andm are dependent
on x. x must be positive integer. The values of n and m will depend on x in the following
way.
n = (x× 4)(x− 1)

Figure 5.1: Gracefully labeled Linear Dice with 2 C4.
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m = x× 4

From the above equations, it is obvious thatm>n. This phenomenon can be defined as, since

Figure 5.2: Gracefully labeled Linear Dice with 3 C4.

Figure 5.3: Gracefully labeled Linear Dice with 4 C4.
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two consecutive dices have a common node, one vertex is reduced for each pair. However,
the total graph is a chain. So the two end vertices are not common to any other dices. As a

Figure 5.4: Gracefully labeled Linear Dice with 5 C4.

Figure 5.5: Gracefully labeled Linear Dice with n C4.
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result, (x1) is to be subtracted from the total number to obtain n. On the other hand, each
dice has four edges. Hence, the value of m can be clearly understood.
The available labels for the edges will be 1 to m. Each number within the range will be used
for the label of any one of the edges.
The available labels for the nodes will be from 0 tom. The common nodes should be labeled
with an interval of one from the opposite nodes. As a result, x labels will be unused. The
node labels are to be started from 0. So, there will be x extra labels.
Following the above criteria, graph of any length of this class can be labeled gracefully. The
first free node is to be labeled with the least available label. The opposite node is to be
labeled with the number at the difference of one. The top node is to be assigned with the
maximum available label and the bottom node with its immediate previous number. This
technique to be followed for all the remaining dices.

5.2 Dice−Path Chain

This is a derivation of Linear Dice Chains. The linear dice chains have a common node
between two consecutive dices. This type of graphs is derived by separating the common
nodes and adding an edge between each consecutive pairs of dices. Figure ?? can demon-
strate the formation procedure. Each dice is a C4 graph. In order to elaborate the formation

Figure 5.6: Gracefully labeled Dice−Path Chain with 2 C4.
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procedure, let us consider, x be the number of dices, n the number of nodes and m the num-
ber of edges. The value of x can be user input. It must be a positive integer. The values of n

Figure 5.7: Gracefully labeled Dice−Path Chain with 3 C4.

Figure 5.8: Gracefully labeled Dice−Path Chain with 4 C4.
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and m are dependent on the value of x. The following expressions can define the relation.
n = x× 4

m = (x× 4) + (x1)

From the above relations, it is clear that m>n. The number of nodes is simply the number
of dices multiplied by 4. This is because no nodes are common between more than one
dices. Hence, the number of nodes can be found out straight forward. The number of edges
will require the addition of an extra value. This is because each pair of consecutive dices
is connected by an edge. Since the graph forms a chain, such extra edges will be (x1) in
number. This extra value is added to the total number to get the number of edges.
The number of available labels for edges is 1 tom. Each label will be used for one particular
edge without repetition.
The number of available labels for nodes is from 0 to m. Since m>n, there will be some
extra available labels. Experimentally, it is found that there will be x number of extra labels.
Number of edges is (x1) more than that of nodes. Moreover, there is one more available
label for nodes than edges. Hence, the total number of extra labels for nodes will be equal
to the number of dices.
Following the above criteria, graphs containing any number of dices can be labeled grace-
fully.
The first free node is to be assigned with the minimum available label and its opposite one
with the label at the difference of two. The top node is to be assigned with the maximum

Figure 5.9: Gracefully labeled Dice−Path Chain with n C4.
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available label and its opposite with the immediate previous one. This procedure will be
termed as forward labeling.
For the second dice, since its previous dice followed forward labeling, it will follow reverse
labeling. Hence, the node that is connected with the previous dice with an edge will be
assigned with the maximum available label and its opposite one will be given the label at
the difference of two. The top node will be assigned the minimum available value and its
opposite one, the number immediately next to it.
Altering the forward and reverse labeling procedure will gracefully label the total graph.

5.3 Linear Dice Chain with Connected End-Vertices

We have discussed earlier about the linear dices. They are the sequence of C4 graphs con-
nected by a common vertex within each pair. The difference between this class with linear
dice class is that, the two end vertices (the floating vertices, one at the first dice and the other
at the n-th dice) are connected by an edge. The graph may be denoted as containing nC4

where n is an integer. Such graphs could be labeled gracefully for n = 2 to 5. Such graphs
are demonstrated by the following figures.

Figure 5.10: Linear Dice Chain with Connected End-Vertices with 2 C4.
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Figure 5.11: Linear Dice Chain with Connected End-Vertices with 3 C4.

Figure 5.12: Linear Dice Chain with Connected End-Vertices with 4 C4.
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5.4 Double Star

Star is a category of graph, as well as trees, which contains a central node connected by
any number of arms. A star with n arms is represented by S1,n. It has been proved earlier
that all stars are graceful. However, through our research, we successfully combined two
stars together and labeled the graph gracefully. Both stars can have any number of arms, not
necessarily the same number. A central node will connect one arm of each star. The arms
through which the central node will be connected will depend on the labeling procedure.
If there are n1 arms in the first star and n2 arms in the second star, then there will be a total
of n1+n2+3 vertices and n1+n2+2 edges. Hence, n = n1+n2+3 andm = n1+n2+2.
Available labels for vertices will be 0 to n1 and that of edges will be 1 to n1.
The labeling procedure will initialize by denoting the first three available node labels to
the two center vertices of the stars and the connecting node. After that, the arms of the
first star are labeled, starting from the maximum available label for nodes and decreasing
sequentially. After the first star is labeled, the arms of the second star are labeled, starting
from the available maximum label number. When both the stars have been labeled, it is to
be found out which edge labels are still unoccupied. It is to be mentioned that that the edge
labels can be found out by the difference of the node labels of the adjacent vertices. There
will be two unused edge labels left. The center node is connected to such arms of the stars
that these two edge labels are used. Hence, the whole graph becomes gracefully labeled.

Figure 5.13: Linear Dice Chain with Connected End-Vertices with 5 C4.
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Figure 5.14: Gracefully labeled Double Star.
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CHAPTER 6
EXPERIMENTAL RESULTS

6.1 Device

The codes implemented for our research were developed in a device running of Window OS.
The minimum requirement for the example demonstration is the installation of Flash Player
(minimum version 11). An update web browser will help in that case. The codes can be
executed smoothly in Windows or Linux based devices.

6.2 Language

The language used for the development of the samples provided with this paper is Action-
Script 3.0. It is an object-oriented programming language which was originally developed
by Macromedia Inc., later dissolved by Adobe Systems. It is a superset of the syntax and
semantics of the language JavaScript. The language is primarily used for the development
of websites and software targeting the Adobe Flash Player platform.
Since the arrival of Flash Player 9 alpha, ActionScript version 3.0 was introduced. This
version is compiled and run on a version of ActionScript Virtual Machine. ActionScript 3.0
executes up to 10 times faster than legacy ActionScript code due to Just-In-Time compiler
enhancements. ActionScript 3.0 provides better options for user interactivity and the plat-
form is open source. Hence, it provides better advantages to the developer whenever there is
the possibility for user interaction and graphical manipulation. The original console screen
acts as a blank canvas and thus, the developer gets a total option to execute any graphical
illustrations required.
Since the gracefully labeled graphs produced by the following examples are dependent up
on the input by the user, hence the algorithm is executed in the background procedure af-
ter the inputs are taken and the developer manages to display the result sets in the form of
gracefully labeled graphs.
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6.3 IDE

The IDE(Integrated Development Environment) used for the development of the algorithms
and the example codes provided with this paper was Adobe Flash Professional CS6. It is a
part of the Adobe CS6 Master Collection.
Adobe Flash Professional is a multimedia authoring program used to create content for
Adobe Engagement Platform. It is used to develop web applications, games, movies, con-
tent for mobile phones and other embedded devices. The platform supports the scripting
language ActionScript 3.0 in case of user interaction and graphical manipulation.
The version, Adobe Flash Professional CS6 as released in 2012. It was upgraded from the
previous versions by integrating the support of HTML5(Hyper Text Markup Language) and
the ability to generate spread sheets.

6.4 Experimental Data

Various theories have been developed regarding graceful labeling. However, graphical
demonstration has been scarce. One of the main motives of our research was to find out
the possible ways of graphical demonstration, so that readers and eager researchers could
get a practical example. Hence, we developed the algorithms and implemented their cor-
responding codes. The codes are attached with this paper. Some examples of our code
implementations are provided in this section.

Figure 6.1: Graceful Labeling of Linear Dice.
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6.4.1 Code Specification Linear Dice

The pseudo code 1 labels a linear dice by taking the manual input of number of dices. The
number of dices is denoted by the integer variable ‘diceNumber’. After the simulation of
the following pseudo code, three arrays will contain the result, viz. topRow, middleRow and
bottomRow. The arrays, as their name suggests, contains the labels of the nodes in top row,
middle row and bottom row respectively in sequential order.

6.4.2 Input Format for Linear Dice

The input for the linear dice labeling is an integer number. Inserting the number and pressing
simulate will show the graph with the provided number of dices, gracefully labeled. In the
example 6.1, the number given as input was 5.

6.4.3 Test Cases for Linear Dice

User can choose to produce a graphical representation based of the result arrays in any
platform they prefer. A simple example of such an illustration 6.1 with actionscript 3.0 is
provided with this paper.

Figure 6.2: Graceful Labeling of Dice−Path Chain.
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6.4.4 Code Specification for Dice−Path Chain

The pseudo code 2 takes the number of dices as the parameter. The number of dices in the
required chain to be formed is denoted by the integer ‘diceNumber’. User can manually
provide the value. After the simulation, the gracefully labeled vertices will be denoted by
the values in the array vertexNumber. The index of the array will determine which of the
four endings of the dice the number points. If x is the value in vertexNumber[i], then the
value of i mod(4) will determine the position of x.
If i mod(4) = 1, x is the label of the left corner of the ((i/4) + 1)−th dice.
If i mod(4) = 2, x is the label of the right corner of the ((i/4) + 1)−th dice.
If i mod(4) = 3, x is the label of the top corner of the ((i/4) + 1)−th dice.
If i mod(4) = 0, x is the label of the bottom corner of the ((i/4) + 1)−th dice.

6.4.5 Input Format for Dice−Path Chain

The input for the dice path chain graph is also similar to that of the linear dice. The input
should be an integer number denoting the number of dices in the graph. Pressing simulate
button will produce the output, gracefully labeled graph. In the example 6.2, the input was
5.

6.4.6 Test Cases for Dice−Path Chain

Graphical illustrations can be executed any language the user prefers. A simple example of
such an illustration 6.2 with in actionscript 3.0 is provided with this paper.

6.4.7 Code Specification for Double Star

In order to execute the pseudo code 3 , two integer variables has to be provided to the func-
tion. The number of arms for each star will be provided as armsNumber1 and armsNumber2
respectively, where armsNumber1 is a positive integer and armsNumber2 is a negative inte-
ger. After the simulation, the vertexNumber array will contain the labels of nodes in graceful
manner. The sequence will be as follows :
1. Initial index (0) will contain label of the center node of first star
2. Following armsNumber1 indices will contain the labels of the arms of the first star
3. The next index will contain the label of the center node of the second star
4. Following armsNumber2 indices will contain the labels of the arms of the second star
5. The last index, i.e. the index indicating the number of vertices will contain the label of
the joining node (n−th vertex)
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Apart from the array, two variables join1 and join2 will contain the edge numbers of the
edges joining the n − th vertex with the observed arms of the first star and second star
respectively.

6.4.8 Input Format for Double Star

The input for the simulation of the double star are to integer number. The first input textbox
is for the number of arms of the first star, which must be a positive integer. The second
textbox is for the number of arms of the second star. Pressing simulate will provide the
required graphical illustration of the gracefully labeled graph. In the provided test case, the
inputs were 5 and 4.

6.4.9 Test Cases for Double Star

User may use any language to produce a graphical representation or use the values in any
way necessary. This paper will contain a simple example 6.3 executed in actionscript 3.0.

Figure 6.3: Graceful Labeling of Double Star.
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6.5 Additinal implementations

6.5.1 Star

The input for the star labeling demonstration is a number between 1 to 17. In the exam-
ple 6.4, the input is 17.

Figure 6.4: Graceful Labeling of Star.

Figure 6.5: Input graph representation for caterpillar demonstration.
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Figure 6.6: Output graph representation for caterpillar demonstration.

6.5.2 Input Format for Caterpillar

The adjacent nodes for the edges are to be provided. Then, the total number of nodes. After
that, pressing the simulate button will give the output.
In the example 6.5, the provided edges were 1 2, 2 3, 3 4, 4 5, 2 6, 2 7. Then the total number
of nodes provided was 7.

6.5.3 Test Cases for Caterpillar

For example 6.6
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CHAPTER 7
CONCLUSION

Graceful graphs have a range of practical application domains, including radio astronomy,
X-ray crystallography, cryptography, and experimental design, coding theory and commu-
nication network addressing, such as Multiprotocol Label Switching (MPLS) multicasting
using Caterpillars and Graceful Graphs. Graph theory has turned out to be a vast area with
innumerable applications in the field of social networks, data organization, communication
network, discrete mathematics and so on. The Graceful Tree Conjecture was initially inter-
esting, mostly because of its connection to Ringel’s Conjecture, but soon became famous in
its own right. Despite efforts of many researchers, only limited progress has been made over
the last few decades. To date, only some very restricted classes of trees have been shown to
be graceful. Although some progress has been made on the relaxed labeling, we still are far
from a solution. This paper presents classes of graceful graphs and trees, theorems regarding
graceful labeling along with some new results on the gracefulness of three classes of graphs.
We look to obtain even greater results in the future regarding graphs in these three classes.
Hopefully similar results can be achieved for larger graphs as well. Graceful labeling has
been studied for over three decades, and the topic continues to be a fascinating one in the
world of graph theory and discrete mathematics. An abundance of published papers and
results exist, yet various unsolved problems and unproven conjectures continue to allow the
undertaking of even more research, with the hopes that new results will be obtained.
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APPENDIX A
ALGORITHMS

A.1 Algorithm

Algorithm 1 A gracefully labeled linear dice
LinearDice(diceNumber)
totalEdges = diceNumber × 4
for i = 1 to diceNumber +1 do

middleRow[i] = (i− 1)× 2
end for
for i = 1 to diceNumber and j =totalEdges do

topRow[i] = j
j = j − 2

end for
for i = 1 to diceNumber and j =totalEdges 1 do

bottomRow[i] = j
j = j − 2

end for
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Algorithm 2 A gracefully labeled dice path chain
DicePath Chain(diceNumber)
totalEdges = (diceNumber × 4) + (diceNumber 1)
maxAvailable = totalEdges
minAvailable = 0
for i = 1 to (diceNumber ×4) do

if labeled forward then
vertexNumber[i] =minAvailable
vertexNumber[i+ 1] =minAvailable +2
minAvailable = minAvailable +3
vertexNumber[i+ 2] = maxAvailable
vertexNumber[i+ 3] = maxAvailable 1
maxAvailable = maxAvailable 2

else
vertexNumber[i] = maxAvailable
vertexNumber[i+ 1] = maxAvailable 2
maxAvailable = maxAvailable 3
VertexNumber[i+ 2] = minAvailable
vertexNumber[i+ 3] = minAvailable +1
minAvailable = minAvailable+2

end if
end for
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Algorithm 3 A gracefully labeled double star
DoubleStar(armsNumber1, armsNumber2)
count = 0
totalVertex = armsNumber1 + armsNumber2 +3
vertexNumber[armsNumber1 +1] = 1
for i = 1 to armsNumber1 do

vertexNumber[i] =(totalVertex 1) i+ 1
end for
for i = 0 to totalVertex 1 do

if i not used for any vertex then
vertexNumber[totalVertex −1] = i
break

end if
end for
for i = 1 to armsNumber1 do

edge[vertexNumber[i] vertexNumber[0]] = true
end for
for i = (armsNumber1 +2) to (armsNumber1 +2+ armsNumber2) do

edge[vertexNumber[i] vertexNumber[armsNumber1 +1]] = true
end for
join1 = vertexNumber[totalVertex −1]
join2 = vertexNumber[totalVertex −1]
if armsNumber1 is 0 then

join1 = vertexNumber[totalVertex −1] vertexNumber[0]
edge[join1] = true
count = count +1

end if
if armsNumber2 is 0 then

join2 = vertexNumber[totalVertex 1]4 vertexNumber[armsNumber1+1]
edge[join2] = true

end if
for i = 1 to totalVertex 1 do

if edge[i] is false then
if count is 0 then

join1 = i
count = count +1
join2 = i

end if
end if

end for
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APPENDIX B
CODES

B.1 Codes

The following code will initialize Linear Dice

1 import flash.events.MouseEvent;

2 var diceNumber:int;

3 var diceText:String;

4 var topRow:Array = new Array;

5 var midRow:Array = new Array;

6 var botRow:Array = new Array;

7 var totalEdges:int;

8 var i:int;

9 var j:int;

10 simulateButton.buttonMode = true;

11 simulateButton.addEventListener(MouseEvent.CLICK, simulate);

12 function simulate(e:MouseEvent):void{

13 diceText = diceInput.text;

14 diceNumber = Number(diceText);

15 totalEdges = diceNumber * 4;

16 for(i = 1; i <= (diceNumber + 1); i++){

17 midRow[i] = (i - 1) * 2;

18 }

19 for(j = totalEdges, i = 1; i <= diceNumber; i++, j -= 2){

20 topRow[i] = j;

21 }

22 for(j = (totalEdges - 1), i = 1; i <= diceNumber; i++, j -= 2){

23 botRow[i] = j;

24 }

25 }

The following code will execute Linear Dice

1 import flash.geom.Point;
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2 var nodeX:Array = new Array;

3 var nodeY:Array = new Array;

4 var n:node;

5 var l:nodelabel;

6 var e:edgelabel;

7 this.graphics.lineStyle(2);

8 this.graphics.beginFill(0xFFFFFF);

9 var xCoor:Number = 20;

10 var yCoor:Number = 300;

11 for(i = 1; i <= (diceNumber + 1); i++){

12 n = new node();

13 addChild(n);

14 n.x = nodeX[i] = xCoor;

15 n.y = nodeY[i] = yCoor;

16 l = new nodelabel();

17 addChild(l);

18 l.x = xCoor;

19 l.y = yCoor;

20 l.nodeNumber.text = midRow[i].toString();

21 xCoor += 100;

22 }

23 xCoor = 70;

24 yCoor = 250;

25 for(i = 1; i <= (diceNumber); i++){

26 n = new node();

27 addChild(n);

28 n.x = xCoor;

29 n.y = yCoor;

30 this.graphics.moveTo(xCoor, yCoor);

31 this.graphics.lineTo(nodeX[i], nodeY[i]);

32 e = new edgelabel;

33 addChild(e);

34 e.x = (xCoor + nodeX[i]) / 2;

35 e.y = (yCoor + nodeY[i]) / 2;

36 trace(e.x + " " + e.y);

37 e.edgeNumber.text = (topRow[i] - midRow[i]).toString();

38 this.graphics.moveTo(xCoor, yCoor);

39 this.graphics.lineTo(nodeX[i + 1], nodeY[i + 1]);

40 e = new edgelabel;
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41 addChild(e);

42 e.x = (xCoor + nodeX[i + 1]) / 2;

43 e.y = (yCoor + nodeY[i + 1]) / 2;

44 e.edgeNumber.text = (topRow[i] - midRow[i + 1]).toString();

45 l = new nodelabel();

46 addChild(l);

47 l.x = xCoor;

48 l.y = yCoor;

49 l.nodeNumber.text = topRow[i].toString();

50 xCoor += 100;

51 }

52 xCoor = 70;

53 yCoor = 350;

54 for(i = 1; i <= (diceNumber); i++){

55 n = new node();

56 addChild(n);

57 n.x = xCoor;

58 n.y = yCoor;

59 this.graphics.moveTo(xCoor, yCoor);

60 this.graphics.lineTo(nodeX[i], nodeY[i]);

61 e = new edgelabel;

62 addChild(e);

63 e.x = (xCoor + nodeX[i]) / 2;

64 e.y = (yCoor + nodeY[i]) / 2;

65 e.edgeNumber.text = (botRow[i] - midRow[i]).toString();

66 this.graphics.moveTo(xCoor, yCoor);

67 this.graphics.lineTo(nodeX[i + 1], nodeY[i + 1]);

68 e = new edgelabel;

69 addChild(e);

70 e.x = (xCoor + nodeX[i + 1]) / 2;

71 e.y = (yCoor + nodeY[i + 1]) / 2;

72 e.edgeNumber.text = (botRow[i] - midRow[i + 1]).toString();

73 l = new nodelabel();

74 addChild(l);

75 l.x = xCoor;

76 l.y = yCoor;

77 l.nodeNumber.text = botRow[i].toString();

78 xCoor += 100;

79 }
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The following code will initialize Dice−Path Chain

1 import flash.events.MouseEvent;

2 var diceText:String;

3 var diceNumber:int;

4 var totalEdges:int;

5 var maxAvail:int;

6 var minAvail:int;

7 var forward:Boolean = true;

8 var i:int;

9 var vertexNumber:Array = new Array;

10 simulateButton.buttonMode = true;

11 simulateButton.addEventListener(MouseEvent.CLICK, simulate);

12 function simulate(e:MouseEvent):void{

13 diceText = diceInput.text;

14 diceNumber = Number(diceText);

15 totalEdges = (diceNumber * 4) + (diceNumber - 1);

16 maxAvail = totalEdges;

17 minAvail = 0;

18 for(i = 1; i <= (diceNumber * 4); i += 4){

19 if(forward){

20 forward = !forward;

21 vertexNumber[i] = minAvail;

22 vertexNumber[i+1] = minAvail + 2;

23 minAvail += 3;

24

25 vertexNumber[i+2] = maxAvail;

26 vertexNumber[i+3] = maxAvail - 1;

27 maxAvail -= 2;

28 }

29 else{

30 forward = !forward;

31 vertexNumber[i] = maxAvail;

32 vertexNumber[i+1] = maxAvail - 2;

33 maxAvail -= 3;

34

35 vertexNumber[i+2] = minAvail;

36 vertexNumber[i+3] = minAvail + 1;

37 minAvail += 2;

38 }
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39 }

40 }

The following code will execute Dice−Path Chain

1 import flash.geom.Point;

2 var nodeX:Array = new Array;

3 var nodeY:Array = new Array;

4 var n:node;

5 var e:edgelabel;

6 var l:nodelabel;

7 this.graphics.lineStyle(2);

8 this.graphics.beginFill(0xFFFFFF);

9 var xCoor:Number = 20;

10 var yCoor:Number = 300;

11 for(i = 1; i <= (diceNumber * 4); i += 4){

12 n = new node();

13 addChild(n);

14 n.x = nodeX[i] = xCoor;

15 n.y = nodeY[i] = yCoor;

16 l = new nodelabel();

17 addChild(l);

18 l.x = xCoor;

19 l.y = yCoor;

20 l.nodeNumber.text = vertexNumber[i].toString();

21 if(i != 1){

22 this.graphics.moveTo(nodeX[i], nodeY[i]);

23 this.graphics.lineTo(nodeX[i - 3], nodeY[i - 3]);

24 e = new edgelabel;

25 addChild(e);

26 e.x = (nodeX[i] + nodeX[i - 3]) / 2;

27 e.y = (nodeY[i] + nodeY[i - 3]) / 2;

28 if((vertexNumber[i] - vertexNumber[i - 3]) >= 0){

29 e.edgeNumber.text = (vertexNumber[i] -

30 vertexNumber[i - 3]).toString();

31 }

32 else{

33 e.edgeNumber.text = ((vertexNumber[i] -

34 vertexNumber[i - 3]) * (-1)).toString();

35 }
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36 }

37 n = new node();

38 addChild(n);

39 n.x = nodeX[i + 1] = xCoor + 100;

40 n.y = nodeY[i + 1] = yCoor;

41 l = new nodelabel();

42 addChild(l);

43 l.x = xCoor + 100;

44 l.y = yCoor;

45 l.nodeNumber.text = vertexNumber[i + 1].toString();

46 n = new node();

47 addChild(n);

48 n.x = nodeX[i + 2] = xCoor + 50;

49 n.y = nodeY[i + 2] = yCoor - 50;

50 l = new nodelabel();

51 addChild(l);

52 l.x = xCoor + 50;

53 l.y = yCoor - 50;

54 l.nodeNumber.text = vertexNumber[i + 2].toString();

55 this.graphics.moveTo(nodeX[i], nodeY[i]);

56 this.graphics.lineTo(nodeX[i + 2], nodeY[i + 2]);

57 e = new edgelabel;

58 addChild(e);

59 e.x = (nodeX[i] + nodeX[i + 2]) / 2;

60 e.y = (nodeY[i] + nodeY[i + 2]) / 2;

61 if((vertexNumber[i] - vertexNumber[i + 2]) >= 0){

62 e.edgeNumber.text = (vertexNumber[i] -

63 vertexNumber[i + 2]).toString();

64 }

65 else{

66 e.edgeNumber.text = ((vertexNumber[i] -

67 vertexNumber[i + 2]) * (-1)).toString();

68 }

69 this.graphics.moveTo(nodeX[i + 1], nodeY[i + 1]);

70 this.graphics.lineTo(nodeX[i + 2], nodeY[i + 2]);

71 e = new edgelabel;

72 addChild(e);

73 e.x = (nodeX[i + 1] + nodeX[i + 2]) / 2;

74 e.y = (nodeY[i + 1] + nodeY[i + 2]) / 2;
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75 if((vertexNumber[i + 1] - vertexNumber[i + 2]) >= 0){

76 e.edgeNumber.text = (vertexNumber[i + 1] -

77 vertexNumber[i + 2]).toString();

78 }

79 else{

80 e.edgeNumber.text = ((vertexNumber[i + 1] -

81 vertexNumber[i + 2]) * (-1)).toString();

82 }

83 n = new node();

84 addChild(n);

85 n.x = nodeX[i + 3] = xCoor + 50;

86 n.y = nodeY[i + 3] = yCoor + 50;

87 l = new nodelabel();

88 addChild(l);

89 l.x = xCoor + 50;

90 l.y = yCoor + 50;

91 l.nodeNumber.text = vertexNumber[i + 3].toString();

92 this.graphics.moveTo(nodeX[i], nodeY[i]);

93 this.graphics.lineTo(nodeX[i + 3], nodeY[i + 3]);

94 e = new edgelabel;

95 addChild(e);

96 e.x = (nodeX[i] + nodeX[i + 3]) / 2;

97 e.y = (nodeY[i] + nodeY[i + 3]) / 2;

98 if((vertexNumber[i] - vertexNumber[i + 3]) >= 0){

99 e.edgeNumber.text = (vertexNumber[i] -

100 vertexNumber[i + 3]).toString();

101 }

102 else{

103 e.edgeNumber.text = ((vertexNumber[i] -

104 vertexNumber[i + 3]) * (-1)).toString();

105 }

106 this.graphics.moveTo(nodeX[i + 1], nodeY[i + 1]);

107 this.graphics.lineTo(nodeX[i + 3], nodeY[i + 3]);

108 e = new edgelabel;

109 addChild(e);

110 e.x = (nodeX[i + 1] + nodeX[i + 3]) / 2;

111 e.y = (nodeY[i + 1] + nodeY[i + 3]) / 2;

112 if((vertexNumber[i + 1] - vertexNumber[i + 3]) >= 0){

113 e.edgeNumber.text = (vertexNumber[i + 1] -
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114 vertexNumber[i + 3]).toString();

115 }

116 else{

117 e.edgeNumber.text = ((vertexNumber[i + 1] -

118 vertexNumber[i + 3]) * (-1)).toString();

119 }

120 xCoor += 200;

121 }

The following code will initialize Double Star

1 i m p ort flash.events.MouseEvent;

2 var arms1:String;

3 var arms2:String;

4 var armsNumber1:int;

5 var armsNumber2:int;

6 var totalVertex:int;

7 var join1:int;

8 var join2:int;

9 var vertexNumber:Array = new Array;

10 var edgeNumber:Array = new Array;

11 var vertexCheck:Array = new Array;

12 var edgeCheck:Array = new Array;

13 var i:int;

14 var j:int;

15 simulateButton.buttonMode = true;

16 simulateButton.addEventListener(MouseEvent.CLICK, simulateCode);

17 function simulateCode(e:MouseEvent):void{

18 arms1 = inputArms1.text;

19 armsNumber1 = Number(arms1);

20 arms2 = inputArms2.text;

21 armsNumber2 = Number(arms2);

22 totalVertex = armsNumber1 + armsNumber2 + 3;

23 for(i = 0; i < totalVertex; i++){

24 vertexCheck[i] = false;

25 edgeCheck[i] = false;

26 }

27 vertexNumber[0] = 0;

28 vertexCheck[0] = true;

29 vertexNumber[armsNumber1 + 1] = 1;
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30 vertexCheck[1] = true;

31 for(i = 1; i <= armsNumber1; i++){

32 vertexNumber[i] = (totalVertex - 1) - i + 1;

33 vertexCheck[(totalVertex - 1) - i + 1] = true;

34 }

35 var secondStarStart:int = totalVertex - armsNumber1;

36 for(i = (armsNumber1 + 2), j = 1;

37 i < (armsNumber1 + 2) + armsNumber2; i++, j++){

38 vertexNumber[i] = secondStarStart - j;

39 vertexCheck[secondStarStart - j] = true;

40 }

41 for(i = 0; i< totalVertex; i++){

42 if(vertexCheck[i] == false){

43 vertexNumber[totalVertex - 1] = i;

44 vertexCheck[i] = true;

45 break;

46 }

47 }

48 for(i = 1; i <= armsNumber1; i++){

49 edgeCheck[vertexNumber[i] - vertexNumber[0]] = true;

50 }

51 for(i = (armsNumber1 + 2); i < (armsNumber1 + 2) + armsNumber2;

52 i++){

53 edgeCheck[vertexNumber[i] - vertexNumber[armsNumber1 + 1]]

54 = true;

55 }

56 var count:int = 0;

57 join1 = vertexNumber[totalVertex - 1];

58 join2 = vertexNumber[totalVertex - 1];

59 if(armsNumber1 == 0){

60 join1 = vertexNumber[totalVertex - 1] - vertexNumber[0];

61 edgeCheck[join1] = true;

62 count++;

63 }

64 if(armsNumber2 == 0){

65 join2 = vertexNumber[totalVertex - 1] -

66 vertexNumber[armsNumber1 + 1];

67 edgeCheck[join2] = true;

68 }
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69 for(i = 1; i < totalVertex; i++){

70 if(edgeCheck[i] == false){

71 if(count == 0){

72 join1 = i;

73 count++;

74 }

75 else if(count == 1 && join2 ==

76 vertexNumber[totalVertex - 1]){

77 join2 = i;

78 }

79 }

80 }

81 }

The following code will execute Double Star

1 import flash.geom.Point;

2 var nodeX:Array = new Array;

3 var nodeY:Array = new Array;

4 var n:node;

5 var l:nodelabel;

6 var e:edgelabel;

7 this.graphics.lineStyle(2);

8 this.graphics.beginFill(0xFFFFFF);

9 n = new node();

10 addChild(n);

11 n.x = nodeX[0] = 200;

12 n.y = nodeY[0] = 350;

13 l = new nodelabel();

14 addChild(l);

15 l.x = nodeX[0];

16 l.y = nodeY[0];

17 l.nodeNumber.text = vertexNumber[0];

18 n = new node();

19 addChild(n);

20 n.x = nodeX[armsNumber1 + 1] = 600;

21 n.y = nodeY[armsNumber1 + 1] = 350;

22 l = new nodelabel();

23 addChild(l);

24 l.x = nodeX[armsNumber1 + 1];
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25 l.y = nodeY[armsNumber1 + 1];

26 l.nodeNumber.text = vertexNumber[armsNumber1 + 1];

27 n = new node();

28 addChild(n);

29 n.x = nodeX[totalVertex - 1] = 400;

30 n.y = nodeY[totalVertex - 1] = 150;

31 l = new nodelabel();

32 addChild(l);

33 l.x = nodeX[totalVertex - 1];

34 l.y = nodeY[totalVertex - 1];

35 l.nodeNumber.text = vertexNumber[totalVertex - 1];

36 var ranX:Number;

37 var ranY:Number;

38 var sign:Boolean = false;

39 for(i = 1; i <= armsNumber1; i++){

40 ranX = Math.random() * (300 - 100) + 100;

41 trace("X : " + ranX.toString());

42 nodeX[i] = ranX;

43 if(sign){

44 ranY = 350 + Math.sqrt( 10000 -

45 ((ranX - 200)*(ranX - 200)));

46 sign = !sign;

47 }

48 else{

49 ranY = 350 - Math.sqrt( 10000 -

50 ((ranX - 200)*(ranX - 200)));

51 sign = !sign;

52 }

53 nodeY[i] = ranY;

54 n = new node();

55 addChild(n);

56 n.x = nodeX[i];

57 n.y = nodeY[i];

58 l = new nodelabel();

59 addChild(l);

60 l.x = nodeX[i];

61 l.y = nodeY[i];

62 l.nodeNumber.text = vertexNumber[i];

63 this.graphics.moveTo(nodeX[0], nodeY[0]);
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64 this.graphics.lineTo(nodeX[i], nodeY[i]);

65 e = new edgelabel();

66 addChild(e);

67 e.x = (nodeX[0] + nodeX[i]) / 2;

68 e.y = (nodeY[0] + nodeY[i]) / 2;

69 e.edgeNumber.text = vertexNumber[i].toString();

70 }

71 for(i = (armsNumber1 + 2);

72 i < (armsNumber1 + 2) + armsNumber2; i++){

73 ranX = Math.random() * (700 - 500) + 500;

74 nodeX[i] = ranX;

75 if(sign){

76 ranY = 350 - Math.sqrt( 10000 -

77 ((ranX - 600)*(ranX - 600)));

78 sign = !sign;

79 }

80 else{

81 ranY = 350 + Math.sqrt( 10000 -

82 ((ranX - 600)*(ranX - 600)));

83 sign = !sign;

84 }

85 nodeY[i] = ranY;

86 n = new node();

87 addChild(n);

88 n.x = nodeX[i];

89 n.y = nodeY[i];

90 l = new nodelabel();

91 addChild(l);

92 l.x = nodeX[i];

93 l.y = nodeY[i];

94 l.nodeNumber.text = vertexNumber[i];

95 this.graphics.moveTo(nodeX[armsNumber1 + 1],

96 nodeY[armsNumber1 + 1]);

97 this.graphics.lineTo(nodeX[i], nodeY[i]);

98 e = new edgelabel();

99 addChild(e);

100 e.x = (nodeX[armsNumber1 + 1] + nodeX[i]) / 2;

101 e.y = (nodeY[armsNumber1 + 1] + nodeY[i]) / 2;

102 e.edgeNumber.text=(-vertexNumber[armsNumber1+1]
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103 + vertexNumber[i]).toString();

104 }

105 var joinNode1:int;

106 var joinNode2:int;

107 for(i = 0; i < totalVertex; i++){

108 if((vertexNumber[i]==(vertexNumber[totalVertex-1]

109 + join1)) && armsNumber1 != 0){

110 joinNode1 = i;

111 }

112 if((vertexNumber[i]==(vertexNumber[totalVertex-1]

113 + join2)) && armsNumber2 != 0){

114 joinNode2 = i;

115 }

116 }

117 if(armsNumber1 == 0){

118 joinNode1 = 0;

119 }

120 if(armsNumber2 == 0){

121 joinNode2 = armsNumber1 + 1;

122 }

123 var eText:Number;

124 this.graphics.moveTo(nodeX[totalVertex - 1],

125 nodeY[totalVertex - 1]);

126 this.graphics.lineTo(nodeX[joinNode1],

127 nodeY[joinNode1]);

128 e = new edgelabel();

129 addChild(e);

130 e.x = (nodeX[totalVertex - 1] + nodeX[joinNode1]) / 2;

131 e.y = (nodeY[totalVertex - 1] + nodeY[joinNode1]) / 2;

132 if((- vertexNumber[totalVertex - 1] +

133 vertexNumber[joinNode1]) >= 0){

134 e.edgeNumber.text=(-vertexNumber[totalVertex-1]

135 + vertexNumber[joinNode1]).toString();

136 }

137 else{

138 e.edgeNumber.text = ((- vertexNumber[totalVertex - 1]

139 + vertexNumber[joinNode1]) * (-1)).toString();

140 }

141 this.graphics.moveTo(nodeX[totalVertex - 1],
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142 nodeY[totalVertex - 1]);

143 this.graphics.lineTo(nodeX[joinNode2],

144 nodeY[joinNode2]);

145 e = new edgelabel();

146 addChild(e);

147 e.x = (nodeX[totalVertex - 1] + nodeX[joinNode2]) / 2;

148 e.y = (nodeY[totalVertex - 1] + nodeY[joinNode2]) / 2;

149 if((- vertexNumber[totalVertex - 1] + vertexNumber[joinNode2]) >= 0){

150 e.edgeNumber.text = (- vertexNumber[totalVertex - 1]

151 + vertexNumber[joinNode2]).toString();

152 }

153 else{

154 eText = (- vertexNumber[totalVertex - 1] +

155 vertexNumber[joinNode2]) * (-1);

156 e.edgeNumber.text = (eText).toString();

157 }

The following code will demonstrate a gracefully labeled Star

1 i m p ort flash.events.MouseEvent;

2 import flash.geom.Point;

3 import flash.events.Event;

4 import flash.utils.Timer;

5 import flash.events.TimerEvent;

6 var masterTimer:Timer = new Timer(1000);

7 masterTimer.addEventListener(TimerEvent.TIMER, time);

8 messageBox.text = "Enter a number between 1 to 17";

9 simulateButton.buttonMode = true;

10 simulateButton.addEventListener(MouseEvent.CLICK, checkLimit);

11 var vertexArray:Array;

12 var nodeX:Array;

13 var nodeY:Array;

14 var edgeArray:Array;

15 var nodeLabel:Array;

16 nodeX = new Array;

17 nodeY = new Array;

18 nodeX = [0, 400, 400, 600, 200, 400, 500, 500,

19 300, 300, 350, 250, 450, 550, 550, 350, 250, 450];

20 nodeY = [0, 300, 500, 300, 300, 100, 400, 200, 200,

21 400, 450, 250, 150, 350, 250, 150, 350, 450];
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22 var edgeX:Array = [0, 400, 400, 500, 300, 400, 450, 450, 325,

23 325, 375, 300, 425, 500, 500, 375, 300, 425];

24 var edgeY:Array = [0, 300, 400, 300, 300, 200, 375, 225, 225,

25 375, 425, 275, 175, 325, 275, 175, 325, 425];

26 var vertex:int;

27 var nodeDrawn:int = 0;

28 var currentNode:int = 1;

29 var i:int;

30 var l:nodelabel;

31 var e:edgelabel;

32 var n:node;

33 function checkLimit(e:MouseEvent):void{

34 vertex = Number(noOfHands.text);

35 if(vertex < 1 || vertex > 17){

36 messageBox.text = "NOT IN LIMIT";

37 }

38 else{

39 simulate();

40 }

41 }

42 function simulate():void{

43 simulateButton.visible = false;

44 noOfHands.visible = false;

45 vertexInput.visible = false;

46 messageBox.visible = false;

47 vertexArray = new Array;

48 edgeArray = new Array;

49 nodeLabel = new Array;

50 for(i = 1; i <= vertex; i++){

51 vertexArray[i] = 0;

52 if(i < vertex){

53 edgeArray[i] = 0;

54 }

55 }

56 n = new node();

57 addChild(n);

58 n.x = nodeX[1] = 400;

59 n.y = nodeY[1] = 300;

60 nodeDrawn++;
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61 l = new nodelabel();

62 addChild(l);

63 l.x = nodeX[1];

64 l.y = nodeY[1];

65 l.nodeNumber.text = vertex.toString();

66 vertexArray[1] = vertex;

67 this.graphics.lineStyle(2);

68 this.graphics.beginFill(0xFFFFFF);

69 masterTimer.start();

70 }

71 function time(event:TimerEvent):void{

72 if(nodeDrawn < vertex){

73 n = new node();

74 addChild(n);

75 nodeDrawn++;

76 n.x = nodeX[nodeDrawn];

77 n.y = nodeY[nodeDrawn];

78 this.graphics.moveTo(nodeX[1], nodeY[1]);

79 this.graphics.lineTo(nodeX[nodeDrawn],

80 nodeY[nodeDrawn]);

81 l = new nodelabel();

82 addChild(l);

83 l.x = nodeX[nodeDrawn];

84 l.y = nodeY[nodeDrawn];

85 l.nodeNumber.text = (nodeDrawn - 1).toString();

86 e = new edgelabel();

87 addChild(e);

88 e.x = edgeX[nodeDrawn];

89 e.y = edgeY[nodeDrawn];

90 e.edgeNumber.text = (

91 vertex - nodeDrawn + 1).toString();

92 }

93 else{

94 masterTimer.stop();

95 }

96 }
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