
B.Sc. in Computer Science and Engineering Thesis

A Cost Effective Regression Testing Approach for Web
Application

Submitted by

Sumsun Nahar Jesy
200914011

Md. Raihan Majumder
200914049

Md. Arifur Rahman
200914014

Supervised and Approved by

Dr. Muhammad Masroor Ali
Professor

Department of Computer Science and Engineering, BUET

.

Department of Computer Science and Engineering
Military Institute of Science and Technology



CERTIFICATION

This thesis paper titled “A Cost Effective Regression Testing Approach for Web Applica-

tion” is submitted by the group as mentioned below has been accepted as satisfactory in

partial fulfillment of the requirements for the degree of Bachelor of Science in Computer

Science and Engineering on December 2012.

Group Members:

Sumsun Nahar Jesy
Md. Raihan Majumder
Md. Arifur Rahman

Supervisor:

———————————-
Dr. Muhammad Masroor Ali
Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology
Dhaka-1000, Bangladesh

ii



CANDIDATE’S DECLARATION

This is to certify that the work presented in this thesis paper is the outcome of the inves-

tigation and research carried out by the following students under the supervision of Dr.

Muhammad Masroor Ali, Professor, BUET, Dhaka, Bangladesh.

It is also declared that neither this thesis paper nor any part thereof has been submitted any-

where else for the award of any degree, diploma or other qualifications.

———————————-
Sumsun Nahar Jesy
200914011

———————————-
Md. Raihan Majumder
200914049

———————————-
Md. Arifur Rahman
200914014

iii



ACKNOWLEDGEMENT

We are thankful to Almighty Allah for his blessings for the successful completion of our

thesis. Our heartiest gratitude, profound indebtedness and deep respect go to our supervisor

Dr. Muhammad Masroor Ali, Professor, BUET, Dhaka, Bangladesh, for his constant super-

vision, affectionate guidance and great encouragement and motivation. His keen interest on

the topic and valuable advices throughout the study was of great help in completing thesis.

We are especially grateful to the Department of Computer Science and Engineering (CSE)

of Military Institute of Science and Technology (MIST) for providing their all out support

during the thesis work.

Finally, we would like to thank our families and our course mates for their appreciable

assistance, patience and suggestions during the course of our thesis.

iv



ABSTRACT

Regression testing is an expensive testing procedure utilized to validate modified software.

During regression testing, a modified system is retested using the existing test suite. Because

the size of the test suite may be very large, testers are interested in detecting faults in the

system as early as possible during the retesting process. Regression test selection techniques

attempt to reduce the cost of regression testing by selecting a subset of a program’s existing

test suite. In this paper we have briefly discussed two of the selection techniques and choose

the safe algorithm technique. The previous researches indicate that safe regression test se-

lection can be cost-effective, but that its costs and benefits vary widely based on a number of

factors. In order to carry through the regression testing quickly and effectively, we have pro-

posed a regression testing approach from a large test suite using hybrid technique based on

safe selection algorithm and prioritization based on cost criterion. We examined some prior-

itization strategies and develop our proposed algorithm to improve the rate of fault detection

for web applications. We propose a new hybrid regression testing approach that select less

test cases and then prioritize them according to their cost, so that the regression testing for

web application become more time effective and less expensive.

1



TABLE OF CONTENT

CERTIFICATION ii

CANDIDATE’S DECLARATION iii

ACKNOWLEDGEMENT iv

ABSTRACT 1

List of Figures 5

List of Tables 6

List of Abbreviation 7

List of Symbols 8

1 Introduction 9

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Thesis Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 BACKGROUND 11

2.1 Web Services Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Modeling Web Application . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Web Application Representation- 1 . . . . . . . . . . . . . . . . . 12

2.2.2 Web Application Representation- 2 . . . . . . . . . . . . . . . . . 13

2.3 Test Suite Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2



2.3.1 Test Suite-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Test Suite-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 REGRESSION TESTING 17

3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Typical Steps for Regression Testing Process . . . . . . . . . . . . . . . . 18

3.3 Regression Testing Approaches . . . . . . . . . . . . . . . . . . . . . . . . 19

4 SELECTION of REGRESSION TESTING 20

4.1 Regression Test Selection Problem . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Selection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Based on Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.2 Based on Safe Algorithm . . . . . . . . . . . . . . . . . . . . . . . 22

5 PRIORITIZATION OF REGRESSION TESTS 25

5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Importance of Prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Prioritization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 OUR PROPOSED REGRESSION TESTING METHOD 28

6.1 Our Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2 Selected Test Selection Technique . . . . . . . . . . . . . . . . . . . . . . 28

6.3 Prioritization Algorithm for Web Application . . . . . . . . . . . . . . . . 28

6.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 DISCUSSION AND CONCLUSION 36

3



7.1 Achievement of Our Work . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.3 Future Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

References

4



LIST OF FIGURES

2.1 web service architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 An example of TLTS representing a simple travel agency web application . 14

2.3 A TLTS representing simple hotel reservation . . . . . . . . . . . . . . . . 15

3.1 a subset of tasks in regression testing process . . . . . . . . . . . . . . . . 18

4.1 Algorithm to generate test set T’ . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 A modified TLTS for the original travel agency web application presented

in figure-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1 TLTS of the modified travel agency application and TLTS of the Ccv com-

ponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 TLTS of the composed hotel reservation HR and Credit card validation Ccv

components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5



LIST OF TABLES

6.1 number of functions covered by test cases . . . . . . . . . . . . . . . . . . 32

6.2 number of functions covered by test cases . . . . . . . . . . . . . . . . . . 34

6



LIST OF ABBREVIATION

SOAP : Simple Object Access Protocol

SOA : service-oriented architecture

WSDL : Web Services Description Language

UDDI : Universal Description, Discovery and Integration

TPG : Task Precedence Graph

TLTS : Timed Labeled Transition System

Ccv : credit card validation

7



LIST OF SYMBOLS

S : initial pages in the website

D : deleted pages

C : modified pages

A : added pages

U : unchanged pages

8



CHAPTER 1

INTRODUCTION

1.1 Overview

The development of web applications has received significant attention in the past few years.

The use of web services also provided a common communication infrastructure to commu-

nicate through the internet, and enabled developers to design applications that can span dif-

ferent operating systems, hardware platforms and geographical locations. Thus the design

and the maintenance of reliable web applications and web services should be considered

seriously. No matter how well conceived and tested before being released, web applica-

tions will eventually have to be modified in order to fix bugs or respond to changes in user

specifications. During maintenance of evolving software systems, their specification and

implementation are changed to fix faults, to add new functionality, and to change the ex-

isting functionality. Regression testing must be conducted to confirm that recent program

changes have not adversely affected existing features and new tests must be conducted to

test new features. Studies show that regression testing accounts for 80Regression test selec-

tion techniques reduce the cost of regression testing by selecting an appropriate subset of

the existing test suite, based on information about the program, modified version, and test

suite. New software development processes such as extreme programming also promote a

short development and testing cycle and frequent execution of fast test cases. Running all

of the test cases in a test suite, however, can require a large amount of effort, time and cost.

For example, one of our industrial collaborators reports that for one of its products of about

20,000 lines of code, the entire test suite requires seven weeks to run. Therefore, there is a

clear need for another technique to reduce again the test cases form selected test suite. A

cost effective technique is prioritization technique that has the potential to be more effective

when a test suites’ allowed execution time is known, particularly when that execution time

is short. There are two benefits brought by prioritization technique. First, it provides a way

9



to find more bugs under resource constraint condition and thus improves the reliability of

the system quickly. Second, because faults are revealed earlier, engineers have more time

to fix these bugs and adjust the project schedule. Also it can avoid the drawbacks that can

occur when we apply test suite minimization technique which discard test cases.

1.2 Thesis Goal

In this paper, we have used two techniques, test suite selection and prioritization for regres-

sion testing. We first select a regression test selection algorithm that executes any of the

modifications in the old version of a web application. Then, depending on the available

resources, a tradeoff between what we should ideally do in regression testing and what we

can afford to do is applied to determine which tests, among those necessary, should be re-

executed first, and which ones have lower priority or are to be omitted from re-execution.

That is our work is an attempt to develop an algorithm for reduction of test cases from a

large test suite using selection algorithm that will reduce both time and effort and produce

optimal results. Hence, we propose a hybrid regression testing optimization technique, us-

ing regression test selection and prioritization, which reduces the overall cost of regression

testing phase by selecting subset of test suite which was developed throughout the life of the

software.

1.3 Thesis Outline

In this paper, we have proposed a hybrid approach for regression testing using a safe selec-

tion algorithm and a prioritization algorithm. In this regard in Chapter 2 we discussed about

the background study of web applications. Following Chapter 3 describe about regression

testing. In Chapter 4 we have briefly described two method of regression testing selection

techniques. We have presented our proposal and algorithm in Chapter 6 and conclude our

paper in Chapter 7.

10



CHAPTER 2

BACKGROUND

2.1 Web Services Overview

Web Services were defined differently by vendors, researchers, or standards organizations.

In our study, we define Web Services as self-contained component-based applications, re-

siding on different servers, and communicating with other applications by exchanging XML

messages wrapped in SOAP interfaces. Web services infrastructure is based on service-

oriented architecture (SOA) that involves three kinds of participants: service providers, ser-

vice requesters and a service broker (Figure 1). A service provider publishes services to a

service broker. Service requesters find required services using a service broker and then bind

to them [1]. This infrastructure uses the following standards to make web services function

together: Web Services Description Language (WSDL), Universal Description, Discovery

and Integration (UDDI), The Extensible Markup Language (XML), and Simple Object Ac-

cess Protocol (SOAP). The WSDL file is a description of how to access the web service and

what operations this service can perform. On the service broker, the UDDI registry holds the

specification of services and the URL that points to the WSDL file of services. The service

requester searches for a web service in the UDDI registry, then binds to it, and transmits

massages and data using XML wrapped in SOAP interfaces.

2.2 Modeling Web Application

Web-based software systems are constructed by integrating different interacting-components

from a variety of sources. The schedule of invoking the interacting-components is restricted

by the requirements specification of the web application and by time constraints. These

components interact with the main application as well with other components by exchang-

ing messages (actions) that might also involve timing constraints. Many researchers have

11



Figure 2.1: web service architecture

model web applications in different model, though basic view or infrastructures are similar.

We here discussed two types of web application representations in following paragraphs.

2.2.1 Web Application Representation- 1

According to Xu, Chen, Jiang, Huowang [2] web applications consisted of multiple pages,

and pages contact with each other by the relationships of hyperlink dependent and data de-

pendent. These pages are mostly described in HTML or other script languages. These form

a complicated system, and any change to one of the contents in the system may influence

others. The number of hyperlinks in one page is called as its out-degree, and the number

of all the hyperlinks, which point to one page, is called as the page’s in-degree. A Web

page is consisted of many categories of elements, and the changes to some elements cannot

influence others, such as the adjustment for page layout, or the literal changes to the content,

etc. One page can also be consisted of several pages, i.e., there exists including relationship

among these pages. But in fact, the pages are independent (except framework) and they can

be disposed as several single pages. Otherwise, there may be indirect-dependent between

two pages caused by visiting the shared variables. As the changes to some elements may

influence other pages, these dependent relationships are divided into two categories: direct-

dependent and indirect-dependent. Suppose S= initial pages in the website, and after adjust-

ing the structure of the website, D= deleted pages, C= modified pages, A= added pages, U=

unchanged pages, and then U=S D C. The possible dependent relationships among all the

pages are divided into four categories, shown as below:

12



• Before the website structure adjustment, there exist hyperlink (or submit) dependent

relationships E1 from the set U to the sets D and C, i.e, E1= U− >(D+C); where

”−> ” means the hyperlink (or submit) dependent relationships.

• Before the website structure adjustment, there exist hyperlink (or submit) dependent

relationships E2from the sets D and C to the set U, i.e., E2=(D+C)−>U

• After the website structure adjustment, there exist hyperlink (or submit) dependent

relationships E3from the sets C and A to the set U along with the relationships between

C and A, i.e., E3= (C +A)−>U, C−>A, A−>C

• After the website structure adjustment, there exist data dependent relationships E4

from the sets C and A to the set U along with the relationships between C and A

i.e., E4= (C+A)=> U, C=>A, A=>C; Where ” => ” means the data dependent

relationships.

In order to obtain the indirect-dependent relationships caused by data transfer or shar-

ing variables we should go deep into the insides of the pages and obtain the dependent

set of a certain changed page element by analyzing the variable’s definition-usage

relationship.

2.2.2 Web Application Representation- 2

Another web application representation is a two-level abstract model [3]. The first level

models the interaction of components with the main application. The second level models

the internal behavior of each component in the system. This hierarchical model helps in

minimizing the state explosion problem. The functional behavior of a web system could be

represented as a Task Precedence Graph (TPG). However, web applications are composed

of components [3] that interact by exchanging messages restricted by timing constraints,

first level of abstraction models a web applications as an input-complete Timed Labeled

Transition System (TLTS), where each node in the TLTS is an abstract representation of a

single component in the system that models the behavior of its software modules, and an

edge joining two nodes represents the flow of actions (transitions) between components.

Every edge is labeled with an action and its corresponding timing constraint. A TLTS can

be defined as follows: Definition 2.1 (Timed Labeled Transition System (TLTS)) An TLTS

13



is defined by M = (S, A, C, T, s0) where S is a finite set of states, s0 is the initial state, and A

is a set of actions. A is partitioned into 2 sets: AI is the set of input actions (written ?i), AO

is the set of output actions (written ?o). C is a set of clocks. T is a transition set having the

form {Tr1.T r2...T rn}; Tri = < s; a; d; EC; Cs >, where: s ∈ S and d ∈ S are starting and

destination states; a ∈A is the action of the transition; EC is an enabling condition evaluated

to the result of the formula a b where ∈ { <, >, ≤, ≤, = } or to a constant valued either

true or false; Cs is a set of clocks to be reset at the execution of transition Tri. Definition

2.2 (input-complete) A TLTS M is said to be input-complete if all states accept any input a

∈ AI. A TLTS will be input-completed by adding to each controllable state (a state whose

action is only input) a loop labeled by all complementary actions in the input alphabet AI.

Figure 2.2: An example of TLTS representing a simple travel agency web application

Figure 2 illustrates a TLTS representing a simple travel agency web application that is com-

posed of four components: Main Component (MC), Hotel Reservation (HR), Car Rental

(CR), and Weather Prediction (WP). The second level of abstraction models every single

component in the web application. In this level, each component is modeled as an input-

complete Timed Labeled Transition System (TLTS). Each state in the TLTS represents a

state of the modeled component. An edge joining two states is labeled with an action and its

corresponding timing constraint. It represents a transition from one state to another. Figure

3 shows an example of TLTS representing a simple hotel reservation component (HR) with

initial state s0. A transition is represented by an arrow between two states and labeled by

the action, the timing constraint and clocks to reset (action; EC; Cs).

14



Figure 2.3: A TLTS representing simple hotel reservation

2.3 Test Suite Generation

Regression testing technique for web services is based on testing web services. In the fol-

lowing subsections we briefly discuss two works on testing web services. Then, we present

the regression test case selection algorithm on next Chapter.

2.3.1 Test Suite-1

Xu, Chen, Jiang, Huowang [2] shortly told about test suite generation for web application

of slicing based representation described in section 2.2.1. There are direct-dependent and

indirect-dependent relationships among the sets U, S, A, D mentioned in section 2.2.1. The

testing for direct-dependent relationships generated by hyperlinks is easy, for we only need

to validate whether these pages are reachable and effective. In order to obtain the indirect-

dependent relationships caused by data transfer or sharing variables, we look through insides

of the pages and obtain the dependent set of page elements by analyzing the variable’s

definition-usage relationship, thus we can gain the definition-usage paths about variables

and generate the testing cases for the web application.

2.3.2 Test Suite-2

In another work [3], Tarhini, Fouchal, and Mansour presented testing technique that guaran-

tees the availability of services in web applications modeled as. It selects and then associates

all suitable web services to our web application before invocation time; moreover, it suggests

testing the functionality of the web service integrated in the web application by executing

15



three sets of test cases generated from (1) the WSDL files and (2) the specification of both

the component fulfilled by a web service and (3) the specification of the whole web applica-

tion. The links to all selected suitable web services are saved into a log file associated with

the component to be fulfilled by the web service. The log file contains the urls of all suitable

web services and the set of test sequences used to test this component, it also contains a pri-

ority ranking number for each of these services. The first set tests the adequacy of the web

service independently. It is generated based on boundary value testing analysis [4] bounded

by the limitations defined in the XML schema. The second set of test sequences is used to

test the behavior of the web service individually. Thus, it is generated by traversing all loop-

free paths going from the initial state of the TLTS specification representing the component

to be fulfilled. The third set of test sequences tests the interaction of the web service as a

part of the web application. Thus, this set is generated by traversing all loop free paths going

from the initial state of the TLTS representing the web application including the loop-free

paths of the TLTS representing the inner actions of the composed components. Next, test

sequences and test histories are created. One test history is created for the web system; it

consists of the third set of test sequences generated above, and an execution history for each

test sequence. An execution history consists of a list of components and their internal states

that experienced this test sequence. Other test histories are created for each composed com-

ponent. Those test histories are attached to log files found in their corresponding component.

A component’s test history consists of only test sequences that experienced this component.

16



CHAPTER 3

REGRESSION TESTING

3.1 Definition

Regression testing is type of testing carried out to ensure that changes made in the fixes

or any enhancement changes are not impacting the previously working functionality. It is

executed after enhancement or defect fixes in the software or its environment. The word

regress means to return to a previous, usually worse, state. Regression testing refers to that

portion of the cycle in which a program P’ is tested using test set T to ensure that not only

does the newly added or modified code behaves correctly, but also that code carried over

unchanged from the previous version P continues to behave correctly.

17



3.2 Typical Steps for Regression Testing Process

Figure 3.1: a subset of tasks in regression testing process

A regression testing process is exhibited in Figure 4. The process assumes that P’ is available

for regression testing. There is usually a long series of tasks that lead to P’ from P. these

tasks, not shown in Figure 4, include creation of one or more modification requests and the

actual modification of the design and the code.

18



3.3 Regression Testing Approaches

Regression testing refers to selecting tests from the test suite generated during the initial

development phase and to adding new tests to address enhancements and additions. One

regression testing strategy is retest all which reruns every test in the initial test suite. This

approach is normally very expensive and requires a lot of time. An alternative approach is

to select a random subset of tests, which might be unreliable. Therefore, regression testing

is a challenging task that should be both economic and reliable. The first task of regression

testing process is to select the test suite T’ from T. This is the most challenging task among

the all steps of process. This task can be done by three ways: selection, minimization and

prioritization. Sometimes these three approaches can be bind together for developing test

suite T’. Again they can be applied individually on T.

19



CHAPTER 4

SELECTION OF REGRESSION TESTING

4.1 Regression Test Selection Problem

The first step of regression testing process is tests selection. Most of the cost of the regres-

sion testing is dependent on selecting tests from validated tests for modified version of a web

application. In this Chapter we will discuss about selection techniques of regression testing.

4.2 Selection Methods

The selection of suitable test cases from T can be made in different ways and a number of

regression-testing methods have been proposed. These methods are based on different ob-

jectives and techniques, such as: procedure and class firewalls [5, 6]; semantic differencing

[7]; textual differencing [8]; slicing-based data-flow technique [9,10]; test case reduction

[11,12]; and safe algorithm based on program’s control graph [13]. In following two sec-

tions we will briefly discuss two methods of selection tests.

20



4.2.1 Based on Slicing

Xu, Chen, Jiang, Huowang [2] give a web regression testing method focused on the changes

to the page elements. This method is based on the idea of slicing and only abstract related

information to simplify problems, i.e., they started this work with analyze the changes them-

selves, then obtained the related contents with the changes by the Forward and Backward

Search Method, at last gain the dependent set to the changes and generated the complete and

effective testing cases for the web regression testing. The method description and the testing

steps are briefly shown as below:

• Step 1: Scan the whole page that contains the changed variable, and record the sen-

tences which have variables’ definitions or usages, written as <sentence number,

(Def(or Use) variables)*>, and ” ∗ ” means occurring one time or more, since there

may be several variables defined or used in one sentence.

• Step 2: Based on the records in Step 1, we can find out the definition usage set of the

changed variable, written as <variable, DefSet: numbers of the sentences that define

the variable, UseSet: numbers of the sentences that use the variable>, and this form

can be seen as the extension of the traditional slicing criterion.

• Step 3: The definition-usage paths of the variable can exist inside process, between

processes, inside a page, or between pages, and the level is extended one by one. If the

related sentences of the variable’s definition-usage are inside the same process, then

we begin with the definition sentence, and execute the sentences in the order of first

sequence, next branch, and then cycle till we reach the usage sentence. If the related

sentences of the variable’s definition-usage are between processes, we still need to

add a process calling edge to join the two paths inside each process.

• Step 4: The definition-usage paths between pages are concerned with two pages, so

we must deal with the other page in the Step1-3 also. Then we can add the related

hyperlink to the existed paths in the two pages, such produce a complete path between

the two pages. Among them, it is easier to search the usage set from the definition set

of the variable backward, which only need traverse all the hyperlinks of the current

page; while it is more difficult to search the definition set from the usage set of the

21



variable forward. But since we have added the in-page records in each page before,

we can realize the reverse search.

• Step 5: Since the dependent relationships among variables have the transfer property,

i.e., the change to a variable can not only influences the definition-usage of them-

selves, but also all the variables that rely on this one. These definition-usage rela-

tionships of the ”infected” variables should be test also, and the method of generating

testing paths is the same with before.

• Step 6. Record all the paths generated above and thus can generate the testing suit for

the variable. Based on this testing suit, we can go along with the relevant testing, such

as the page reachable testing, hyperlink effective testing, variable values testing, etc.

At last, we can validate the functional correctness of the related pages.

4.2.2 Based on Safe Algorithm

Tarhini, Fouchal, and Mansour presented a safe regression testing technique [14] that is used

to retest the web system whenever it is modified. They classify modifications to web service

based applications into the following types: (a) Type-1: integrating a newly established web

service into the application, (b) Type-2: adding, removing or fixing an operation or a timing

constraint in an existing component, (c) Type-3: modifying the specification (operations or

timing constraints) of the web application. Consider a web application ω and its modified

version ω′. After any of the above modifications, we need to validate ω′ by using the set

of test sequences T, found in Test Suite-2, used previously to test the web application ω.

Thus, we firstly identify all modifications done to ω, and then select a set of tests T’⊆ T

that may reveal modification-related errors in ω′. Moreover, a new test set may be created

to test required changes in the specification of the web application or any of its composed

components. The algorithm for selecting the test set T’ is shown following paragraph. This

algorithm is used for Type-2 modification, which includes (a) fixing a time condition or ac-

tion, (b) removing an operation, or (c) adding an operation. It is also used for part of Type-3

modification. The algorithm is presented in Figure 5. The input to the TestSelect algorithm

22



Figure 4.1: Algorithm to generate test set T’

presented in Figure 5 is the modified TLTS version for ω′, the previously generated test set

T for ω, and the test history. The output is a selected set of test sequences T’⊆ T that is be-

lieved to reveal modified-related errors if executed on ω′, and the updated test history. The

set T must include all test sequences that (1) traverse the newly added state in TLTS ω′, (2)

traverse all newly added edges in TLTS ω′, and (3) traverse all edges with modified labels in

the TLTS ω′. Thus, T’ is generated by finding all acyclic paths in the input-complete TLTS

of ω′ and not in the input-complete TLTS of ω. The test set T’ is able to experience any of

the changes like fixing, deleting or adding of a timing constraint or an action. To illustrate,

we consider one of these changes in following:

23



Figure 4.2: A modified TLTS for the original travel agency web application presented in

figure-2

Fixing a condition or an action: Consider the TLTS ω in figure 6. Assume the time restriction

in the transition <!Notice; c<10;−> is changed to (c<5). Thus, we get a modified version

ω′ with time restriction <!Notice; c<5;−>. The set T generated from the original TLTS ω

is:

T1: <?Hotel Reservation;c=0;−>

T2: <?Car Rental;c=0;−>.<!Notice;c<10;−>

T2: <?Weather Request;c=0;−>.<!Weather Info;−;−>

The set T’ all generated from modified TLTS ω′ is:

T’all1 : <?Hotel Reservation;c=0;−>

T’ all2: <?Car Rental;c=0;−>.<!Notice;c<5;−>

T’all3: <?Weather Request;c=0;−>.<!Weather Info;−;−>

Thus, the set T’ = T’all T is:

T’ 1: <?Car Rental;c=0;−>.<!Notice;c<5;−>

24



CHAPTER 5

PRIORITIZATION OF REGRESSION TESTS

5.1 Definition

Test case prioritization techniques schedule test cases for execution in an order that attempts

to increase their effectiveness at meeting some performance goal. We formally define the

test case prioritization problem as follows:

25



5.2 Importance of Prioritization

Regression test prioritization is often performed in a time constrained execution environment

in which testing only occurs for a fixed time period. For example, many organizations rely

upon nightly building and regression testing of their applications every time source code

changes are committed to a version control repository. There are many possible goals of

prioritization, including the following:

• Testers may wish to increase the rate of fault detection of a test suite that is, the

likelihood of revealing faults earlier in a run of regression tests using that test suite

• Testers may wish to increase the coverage of coverable code in the system under test

at a faster rate, allowing a code coverage criterion to be met earlier in the test process.

• Testers may wish to increase their confidence in the reliability of the system under test

at a faster rate.

• Testers may wish to increase the rate at which high-risk faults are detected by a test

suite, thus locating such faults earlier in the testing process.

• Testers may wish to increase the likelihood of revealing faults related to specific code

changes earlier in the regression testing process.

Besides meeting those goals, cost reduction and time constraints are also important

issue for using prioritization methods in regression testing. While T’ is the selected

subset of T, it might be overly large for testing P’. One might not have sufficient budget

and time to execute P’ against all tests in T’. While test minimization algorithms could

be used to further reduce the size of T’, this reduction is risky. Tests removed from

T’ might be important for finding faults in P’. In such situations, one could apply

techniques to prioritize tests in T’ and then use only the top few high-priority tests.

26



5.3 Prioritization Methods

There are many methods/ techniques have been introduced for regression testing prioritiza-

tion problem, like: time aware test suite prioritization [15], using system models [16], code

coverage based technique [17], dynamic prioritization [18], genetic algorithm [19], using

cost criterion etc. in our work we have used a prioritization method based on cost criterion.

27



CHAPTER 6

OUR PROPOSED REGRESSION TESTING METHOD

6.1 Our Proposal

After studying different regression test selection techniques we found that cost test can be

reduced more if we reschedule the test sequences. That means applying prioritization tech-

niques on selected test suite T’ will be more cost and time effective. Moreover it can help

tester in early fault detection in limited time constraint. So we have proposed to integrate a

prioritization method within a regression test selection technique for web application.

6.2 Selected Test Selection Technique

In this paper, we have discussed two of the most effective regression test selection technique

in section 4.2.1 (based on slicing) and 4.2.2 (based on a safe algorithm). Between them

we have choose the selection technique based on a safe algorithm by Tarhini, Fouchal, and

Mansour [14]. The motivation behind choosing this technique is that it is comparatively easy

to understand, easy to implement and above all, it is little more cost efficient than slicing

based technique. So we did our work based on that algorithm.

6.3 Prioritization Algorithm for Web Application

We have worked on a prioritization algorithm based on a cost criterion derived from residual

coverage [20]. The test case that covers more transitions/ functions of a single component

has lower cost and it should be executed first. Similarly in the case of first level abstraction

of web application, the test case that covers most of the components, connected to main

applications, have lower cost. In following section, we will derive the algorithm for test

cases of single component of web application. But it is also applicable for whole web

28



application as first level abstraction.

6.3.1 Algorithm

Suppose P’ is the modified version of component P. T’ is our selected test suite from T by

safe algorithm. Let E’ is the set to transitions/ functions, actually called at least once during

the execution of P’ against T’. C(X) be the number of transitions/ functions that remain to

be covered after having executed P’ against tests in set X⊆ T’. Initially C ( { }) = |E’|. Here

C(X) is the residual coverage of P’ with respect to T’. The cost of executing P’ against a test

t in T’ is the number of transitions/ functions that remain uncovered after execution of P’

against T’. Thus, C(X) reduces or remains unchanged as tests are added to X.

The prioritization algorithm is presented in figure 7. Here the procedure PrioTest computes

the residual coverage for all test in T’ and determines the next highest-priority test. This

procedure is repeated until all tests in T’ have been prioritize.

Algorithm: PrioTest Input: T’: set of regression tests for modified component P’ selected

by Selection Algorithm (Figure 5 ) TransCov: set of transitions in P’ covered by tests in T’.

Cov: Coverage vector such that for each test t∈T’, Cov(t) is the set of transitions/ functions

covered by executing P’ against t. Output: PT: a sequence of tests such that - (i) each test in

PT belongs to T’, (ii) each test in T’ appears exactly once in PT, (iii) tests in PT are arranged

in the ascending order of cost. /* PT is initialized to test t with the list cost. The cost of each

remaining test in T’ is computed and the one with the least cost is appended to PT and not

considered any further. This procedure continues until all test in T’ have been considered.

*/

• Step 1: X’=T’. Find t∈T’ such that |Cov (t)| ≤ |Cov(u)|,m for all u ∈ X, u 6=t.

• Step 2: set PT = < t >, X’ = X’ \ {t}. Update TransCov by removing all transitions/

functions covered by t, from it. Thus TransCov = TransCov \ Cov (t).

• Testers may wish to increase their confidence in the reliability of the system under test

at a faster rate.

• Step 3: repeat the following steps while X’6= φ and TransCov6=φ.

29



3.1: compute the residual coverage for each test t ∈ T. C(X) =|TransCov \ (Cov (t)

∩ TransCov)|. C(X) indicates the count of currently uncovered transitions/ functions

that will remain uncovered after having executed P’ against t.

3.2: find test t ∈ X’ such that C (t) ≤ C (u), for all u ∈ X’, u 6= t. If two or more such

tests exist then randomly select one.

3.3: update the prioritized sequence, set of tests remaining to be examined and transi-

tions/ functions yet to be covered by test in PT. PT = append (PT, t), X’= X’ \ t and

TransCov= TransCov \ Cov(t).

• Step 4: Append to PT any remaining tests in X’. All remaining tests have the same

residual coverage which equals | TransCov |. Hence these tests are tied. Random

selection is one way to break the tie.

End of the procedure.

Figure 7: Proposed Prioritization algorithm.

6.3.2 Example

Let the specification of the web application, discussed in Figure 2 has been modified. A

change can be either adding or removing an operation/ component in the web application.

To illustrate, assume a new component ”credit card validation” (Ccv) is added to the web

application so that the hotel reservation HR and car rental CR components can use it to

validate credit cards. Figure 8 shows the TLTS of the modified web application and the

TLTS of the component Ccv. With this modification we need to coordinate between the

newly added web service Ccv and the components HR and CR. This is done by searching

the UDDI registry again to find the perfect match that coordinates between composed web

services.

The three sets of test sequences that make up test suite T? needed to test the modified web

application are generated by TestSelect algorithm (Figure 7) as follows:

• It generates first set of test sequences to test only the newly added web service. This

is done by parsing the corresponding WSDL of that service to get the data types and

boundaries of the input parameters and output information. These test are mandatory,

30



Figure 6.1: TLTS of the modified travel agency application and TLTS of the Ccv component

so that we don’t apply prioritization on these test set.

• The second set of test sequences is generated by traversing all paths starting from the

initial state of the TLTS representing the newly added component. For example, the

second set of test sequences T’, for credit card validator web service generated from

the TLTS shown in figure 7 looks like: t’1: <?wrong input;-;− > t’2: <?CC type/

Number;-;−>.<! Valid/ notValid;-;−>

So we have selected regression test set T’ = {t’1, t’2}. Let the input functions, transi-

tions and other functions like ”<?CC type/Number;-;−>” be denoted by integer like:

t’1: 1

t’2: 2,3

Now we made a table showing number of functions covered by test cases as follows:

31



Table 6.1 number of func-

tions covered by test cases

Test (t) Functions Covered Cov(t)

t’1
1 1

t’2 2,3 2

Let us apply our PrioTest algorithm on T’ to obtain prioritized list of tests. The inputs

to PrioTest are: T’, TransCov = {1, 2, 3 }, and the test coverage vectors for each test

in T’ as in table above.

Step 1: X’= {t’1, t’2}. Here t’2 covers more number of functions (2) in X’ and hence

has the least cost.

Step 2: PT= < t’2 >. X’= { t’1 }, TransCov = {1}.

Step 3: We continue the process as X’ and TransCov is not empty.

Step 3.1: compute the residual coverage for each test in X’. Hence here left only one

test t’1. C (t’2) = | { 1 } \ ({ 1 } ∩ { 1 }) | = φ

Step 3.2: as only one test has left and it covers the rest one functions so we must select

this.

Step 3.3: PT = < t’2, t’1 >. X’ = φ, TransCov = φ.

Step 4: as there no test is remained, we stop the procedure.

Output: PT = < t’2, t’1 >

Here we had only two tests and they are prioritized.

• o The third set of test sequences is generated using the algorithm TestSelect, consists

of all paths in the web application’s TLTS that traverse all components affected by

the new modification, including the inner paths of the TLTS representing those com-

ponents. The TLTS of the composed hotel reservation HR and Credit card validation

Ccv components is shown in figure 9. A sample of the third set for the modified web

application shown in figure 8 would be:

t’1: <?HotelReservation;-;c=0>.<?invalid date;-;−>

t’2:<?HotelReservation;-;c=0><?validdate;-;−><?double;;><!Price;;c=0><?Confirmation;c<5;;>

<?CC:type/Number;-;−><!valid/notValid;-;><!Notice;-; c<10>

32



Figure 6.2: TLTS of the composed hotel reservation HR and Credit card validation Ccv

components

t’3:<?HotelReservation;-;c=0><?validdate;-;−>.<?single;;>.<!Price;;c=0>.<?Confirmation;c<5;−>.<?CC:type/Number;-

;−>.<!valid/notValid;-;>.<!Notice;-; c<10>

t’4: <?HotelReservation;-;c=0><?validdate;-;−>.<?wrong input;-;−>

So we have selected regression test set T’ = {t’1, t’2, t’3, t’4 }. Let the input func-

tions, transitions and other functions like ”<?CC type/Number;-;−>” be denoted by

integer like:

t’1: 1,2

t’2: 1,3,4,6,7, 8,9,10

t’3: 1,3,5,6,7,8,9,10

t’4: 1,3,11.

Now we made a table showing number of functions covered by test cases as follows:

33



Table 6.2 number of func-

tions covered by test cases

Test (t) Functions Covered Cov(t)

t’1
1,2 2

t’2 1,3,4,6,7,8,9,10 8

t’3 1,3,5,6,7,8,9,10 8

t’4 1,3,11 3

Let us apply our PrioTest algorithm on T’ to obtain prioritized list of tests. The inputs

to PrioTest are: T’, TransCov = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }, and the test coverage

vectors for each test in T’ as in table above. Step 1: X’= {t’1, t’2, t’3, t’4}. Here

t’2 and t’3 both cover most of the number of functions (8) in X’ and so both have

least cost. Hence we randomly select t’3. Step 2: PT= <t’3 >. X’= {t’1, t’2, t’4 },

TransCov = {2, 4, 11 }. Step 3: We continue the process as X’ and TransCov is not

empty. Step 3.1: compute the residual coverage for each test in X’ as follows:

C (t’1) = | {2, 4, 11} \ ({1, 2} ∩ {2, 4, 11}) | = | {4, 11 } | = 2. C (t’2) = — 2,4,11

(1,3,4,6,7,8,9,10 ∩ 2,4,11) — = —2,11— = 2 C (t’4) = — 2, 4, 11 (1, 3, 11 ∩ 2, 4,

11) — = —2, 4— = 2

Step 3.2: t’1, t’2 and t’4 all have the least cost (2). We arbitrarily select t’1. Step 3.3:

PT = < t’3, t’1 >. X’ = { t’2, t’4 }, TransCov = {4, 11 }. Since X’ and TransCov

is not empty we go back to step 3 again. Step 3.1: we again compute the residual

coverage for each test in X’ as follows:

C (t’2) = | {4,11} \ ({1,3,4,6,7,8,9,10 } ∩ {4,11}) | = | { 11 } | = 1 C (t’4) = | {4, 11}

\ ({1, 3, 11} ∩ {4, 11}) | = | { 4 } | = 1

Step 3.2: t’2 and t’4 both have the least cost (1). We arbitrarily select t’2. Step 3.3:

PT = < t’3, t’1, t’2 >. X’ = {t’4 }, TransCov = { 11 }. Since X’ and TransCov is not

empty we go back to step 3 again. Step 3.1: we again compute the residual coverage

for each test in X’ as follows:

C (t’4) = | { 11 } \ ({1, 3, 11} ∩ {11}) | = φ

Step 3.2: t’4 has the least cost and as only one test has left and it covers the rest one

34



functions so we must select this. Step 3.3: PT = <t’3, t’1, t’2, t’4>. X’ = φ, TransCov

= φ. Step 4: as there no test is remained, we stop the procedure.

Output: PT = <t’3, t’1, t’2, t’4 >. Here we had all tests in T’ are prioritized.

The two examples above showed the prioritization of tests in a test suite for two kind

of modification in a web application. This reschedule will help testers to test some of

tests with higher priority in a test suite when time and budget are limited.

35



CHAPTER 7

DISCUSSION AND CONCLUSION

7.1 Achievement of Our Work

In this paper we have developed a cost effective regression optimization technique, which

reduces the regression cycle time and improves the quality of testing. We have presented

a hybrid regression testing technique for retesting modified web applications. In this re-

gard, we have choose a regression test selection algorithm that selects only necessary test

sequences needed to ensure the correctness of the modified system. That algorithm is safe

because it selects every test sequence that corresponds to a different behavior in the mod-

ified system. In order to make sure of what to test, we analyze the possible changes and

their influences in web applications detailed and represent web application using two level

abstractions. Finally, we can greatly improve the quality and efficiency of the regression

testing developing a prioritization algorithm for selected regression test suit. Our analysis

suggests that this technique can improve the rate of fault detection of test suites in least

expensive way. Finally, as we use cost effective scheme for both regression test suite selec-

tion and prioritization, compared with other techniques, our approach has a wider scope of

application.

7.2 Limitations

Due to shortage of time we could not implement and simulate our algorithm practically.

But from empirical study we can ensure that our proposed approach will meet the goal

successfully. Another limitation of our work is in selection of the base of prioritization

technique. As different web applications have different goal or purposes, the cost criterion

for prioritization can be different.

36



7.3 Future Plan

In future research, we plan to perform an experimental study on larger models and systems

to have better understanding of the advantages and limitations of our proposed regression

test technique. So under the condition of numerous changes of users’ demands, we can

ensure the functional correctness of web applications and our testing approach.

37



REFERENCES

[1] H. Fouchal A. Tarhini and N. Mansour. A simple approach for testing web service

based applications. international conference on Innovative Internet Community Sys-

tems, I2CS 2005, Paris-France, 2005.

[2] Hacne Fouchal Abbas Tarhini and Nashat Mansour. Regression testing web services-

based applications. Computer Systems and Applications, IEEE International Confer-

ence, 2006.

[3] D. Binkley. Semantic guided regression cost reduction. IEEE, 1997.

[4] E. Engstrm and P. Runeson. A qualitative survey of regression testing practices. Inter-

national Conference on Product-Focused Software Process Improvement, 2006.

[5] M. J. Harrold G. Rothermel and J. Dehia. Regression test selection for c++. software.

J. Softw. Testing, Verif., and Rel. 10(2), 2000.

[6] Luay H. Tahat Bogdan Korel Mark Harman and Hasan Ura. Regression test suite

prioritization using system models.

[7] Yogesh Singh K.Aggrawal and A.Kaur. Code coverage based technique for prioritizing

test cases for regression testing. ACM SIGSOFT Software Engineering Notes, 2004.

[8] Arvinder Kaur and Shubhra Goyal. A genetic algorithm for regression test case prior-

itization using code coverage. International Journal on Computer Science and Engi-

neering (IJCSE), 20011.

[9] Chen Jixiang Jiang Lei Xu Baowen, Xu Zhenqiang. Regression testing for web appli-

cations based on slicing. IEEE, 2006.

[10] H. Leung and L. White. A firewall concept in both control-flow and data-flow in regres-

sion integration testing. In proceedings of the Conference on Software Maintenance,

pages 262-271, 1992.

38



[11] P. Hisa X. Li D.C. Kung C.T. Hsu Y. Toyoshima L. Li and C. Chen. A technique for

the selective revalidation of oo software. Journal of Software Maintenance 9,pages

217-233, 1997.

[12] Nilam Kaushik Mazeiar Salehie Ladan Tahvildari Sen Liz and Mark Moorez. Dynamic

prioritization in regression testing.

[13] N. Mansour and R. Bahsoon. Reduction-based methods and metrics for selective re-

gression testing. In Information and Software Technology, 2002.

[14] N. Mansour and K. El-Fakih. Simulated annealing and genetic algorithms for optimal

regression testing. International Journal of Computer Applications, 1999.

[15] Aditya P. Mathura. Foundations of software testing.

[16] G. Rothermel and M. J. Harrold. A safe, efficient algorithm for regression test selec-

tion. the conference on software maintenance, 1993.

[17] F.I. Vokolos and P.G. Frankl. Pythia. a regression test selection tool based on tex-

tual differencing. 3rd International Conference on Reliability,Quality and Safety of

Software-Intensive Systems, 1996.

[18] Kristen R. Walcott and Mary Lou Soffa. Time aware test suite prioritization. ACM

SIGSOFT/SIGPLAN International Symposium on Software Testing and Analysis, 2006.


