
B.Sc. in Computer Science and Engineering Thesis

Optimizing Divide and Conquer Based Algorithms: the Case of
Heapsort

Submitted by

Abu Sa-Adat Mohammed Moinul Hasan Lutfor
201014009

Md. Shahidul Islam
201014015

Arup Kanti Dey
201014052

Supervised by

Dr. M. Kaykobad
Professor, Department of CSE

Bangladesh University of Engineering and Technology

.

Department of Computer Science and Engineering
Military Institute of Science and Technology

CERTIFICATION

This thesis with title “Optimizing Divide and Conquer Based Algorithms: the Case of

Heapsort”, submitted by the group as mentioned below has been accepted as satisfactory

in partial fulfillment of the requirements for the degree B.Sc. in Computer Science and

Engineering on December 2013.

Group Members:

Abu Sa-Adat Mohammed Moinul Hasan Lutfor
Md. Shahidul Islam
Arup Kanti Dey

Supervisor:

———————————-
Dr. M. Kaykobad
Professor, Department of CSE
Bangladesh University of Engineering and Technology

ii

CANDIDATES’ DECLARATION

This is to certify that the work presented in this thesis is the outcome of the investiga-

tion and research carried out by the following students under the supervision of Dr. M.

Kaykobad, Professor, Department of CSE, Bangladesh University of Engineering and Tech-

nology, Dhaka, Bangladesh.

It is also declared that neither this thesis nor any part there of has been submitted anywhere

else for the award of any degree, diploma or other qualifications.

———————————-
Abu Sa-Adat Mohammed Moinul Hasan Lutfor
201014009

———————————-
Md. Shahidul Islam
201014015

———————————-
Arup Kanti Dey
201014052

iii

ACKNOWLEDGEMENT

We are thankful to Almighty Allah for His blessings for the successful completion of our

thesis. Our heartiest gratitude, profound indebtedness and deep respect go to our supervisor

Dr. M Kaykobad, Professor, Department of CSE, Bangladesh University of Engineering and

Technology, for his constant supervision, affectionate guidance and great encouragement

and motivation. His keen interest on the topic and valuable advices throughout the study

was of great help in completing our thesis.

We are especially grateful to the Department of Computer Science and Engineering (CSE)

of Military Institute of Science and Technology (MIST) for providing their all out support

during the thesis work.

Finally, we would like to thank our families and our course mates for their appreciable

assistance, patience and suggestions during the course of our thesis.

Dhaka Abu Sa-Adat Mohammed Moinul Hasan Lutfor

December 2013 Md. Shahidul Islam

. Arup Kanti Dey

iv

ABSTRACT

The divide and conquer approach is very useful in computer science applications. With

this approach a large problem is broken down into small and manageable subproblems and

each is solved separately. Then these solutions are combined to give the final solution to

the problem. This paper presents a discussion on the divide and conquer based techniques

for various sorting algorithm with special emphasis on heap sort. Most divide and conquer

approach divides a problem into two subproblems recursively. The thesis shows that ternary

systems are more promising than the more traditional binary systems used in the divide

and conquer approach. In particular, heap on ternary tree does indicate some theoretical

advantages over the more established binary systems. The paper also makes an endeavour

to present a set of simulations with random numbers for both integers and floating point

numbers to support our theoretically proven claim. For doing so, at first algorithm for con-

ventional binary heapsort has been modified for three and four child heapsort. Thereafter,

the paper finds out number of comparisons required, number of movements required and

time taken for all the three systems. Experimental results clearly state that in most cases

three child heasort demonstrates better performance than both binary and four child version

of heapsort. The experimental data with graphical representation have also been presented

to support the analysis. This experiment can surely be a guide to establish more promising

ternary system in applications related to divide and conquer technique with the motivation-

‘A little advantage in optimization can be proven very useful in implementation of large

systems’.

v

TABLE OF CONTENT

vi

LIST OF FIGURES

vii

LIST OF TABLES

viii

LIST OF ABBREVIATION

BC : Before Christ

FFT : Fast Fourier Transform

VLSI : Very Large Scale Integration

CPU : Central Processing Unit

RAM : Random Access Memory

CH : Convex Hull

D&C : Divide and Conquer

ix

CHAPTER 1

INTRODUCTION

1.1 Literature Review

In computer science, divide and conquer (D&C) [3], [25] is an important algorithm design

paradigm based on multi-branched recursion. A D & C algorithm works by recursively

breaking down a problem into two or more sub-problems of the same (or related) type, until

these become simple enough to be solved directly. The solutions to the sub-problems are

then combined to give a solution to the original problem. This technique is the basis of

efficient algorithms for all kinds of problems, such as sorting (e.g. quicksort, merge sort),

multiplying large numbers (e.g. Karatsuba [10]), syntactic analysis (e.g. top-down parsers),

and computing the discrete Fourier transform. On the other hand, the ability to understand

and design D & C algorithms is a skill that takes time to master. It is because when proving a

theorem by induction, it is often necessary to replace the original problem by a more general

or complicated problem in order to get the recursion going and there is no systematic method

for finding the proper generalization.

The name “divide and conquer” is sometimes applied to algorithms that reduce each prob-

lem to only one subproblem, such as the binary search[26] algorithm for finding a record in

a sorted list (or its analog in numerical computing, the bisection algorithm for root finding).

These algorithms can be implemented more efficiently than general divide-and-conquer al-

gorithms. Under this broad definition, however, every algorithm that uses recursion or loops

could be regarded as a “divide and conquer algorithm”. Therefore, some authors consider

that the name “divide and conquer” should be used only when each problem may generate

two or more subproblems. The name decrease and conquer has been proposed instead for

the single-subproblem class. The correctness of a D & C algorithm is usually proved by

mathematical induction, and its computational cost is often determined by solving recur-

rence relations.

1

1.2 Early Historic Examples

Early examples of these algorithms are primarily decrease and conquer - the original prob-

lem is successively broken down into single sub problems, and indeed can be solved iter-

atively. Binary search, a decrease and conquer algorithm where the sub problems are of

roughly half the original size, has a long history. While a clear description of the algorithm

on computers appeared in 1946 in an article by John Mauchly, the idea of using a sorted list

of items to facilitate searching dates back at least as far as Babylonia in 200 BC. Another

ancient D & C algorithm is the Euclidean algorithm to compute the greatest common divisor

of two numbers (by reducing the numbers to smaller and smaller equivalent subproblems),

which dates to several centuries BC.

An early example of a divide-and-conquer algorithm with multiple subproblems is Gauss’s

1805 description of what is now called the Cooley-Tukey fast Fourier transform (FFT)

algorithm, although he did not analyze its operation count quantitatively and FFTs did

not become widespread until they were rediscovered over a century later. An early two-

subproblem D & C algorithm that was specifically developed for computers and properly

analyzed is the merge sort algorithm, invented by John von Neumann in 1945. Another

notable example is the algorithm invented by Anatolii A. Karatsuba in 1960 that could

multiply two n-digit numbers in O(nlog23) operations. This algorithm disproved Andrey

Kolmogorov’s 1956 conjecture that Ω(n2) operations would be required for that task.

As another example of a D & C algorithm that did not originally involve computers, Knuth[17]

gives the method a post office typically uses to route mail: letters are sorted into separate

bags for different geographical areas, each of these bags is itself sorted into batches for

smaller sub-regions, and so on until they are delivered. This is related to a radix sort, de-

scribed for punch-card sorting machines as early as 1929.

1.3 Scopes and Objectives

With the invention of computers, two parametric algebra, number system, and graphs among

other systems started to flourish with accelerated speed. Boolean algebra got, its impor-

tant, applications in computer technology, binary number system has occupied the core of

computer arithmetic, and binary trees have become inseparable in mathematical analysis of

2

complexity of algorithms and in the development of efficient algorithms. Since 2 has been

being used as a parameter having significant, influence in the efficiency of the concerned

algorithms, the claim of its supremacy over other values should be subject to rigorous veri-

fication.

Megiddo[20] has placed an objection to the standard translation of problems into languages

via the binary coding.Extensive works have already been done on optimality of ternary

trees[6] and their VLSI embedding[24]. In this paper we have made simplified theoreti-

cal analyses on several problems, where 2 is being used as an algorithmic parameter, to

see whether some other values are more promising. We have achieved some positive re-

sults in favor of 3 as an algorithmic parameter and these results have been supported by the

experimental data.

This paper discusses about the widely used D & Cs based algorithms including their com-

plexity. The scope of this paper is limited to theoretical and experimental analysis of Heap

sort by varying the number of child. From the analysis it is observed that in many cases 3

child Heap sort is exhibiting better result than 2 or 4 child Heap sort.

3

CHAPTER 2

DIVIDE AND CONQUER TECHNIQUES

2.1 Divide and Conquer

Divide and conquer is an established technique for designing effective algorithm for unipro-

cessors. The basic D & C scheme can be stated as “Given a problem, Divide it into inde-

pendent subproblems of the same type, once these subproblems been solved (using the D

& C scheme recursively), combine their solutions into a solution to the original problem.”

For example, a D & C approach to summing numbers in a list of is to halve the list, sum the

halves and then add the two results. Divide and conquer is called perhaps the most important

and most widely applicable technique for designing efficient algorithms.

The divide-and-conquer strategy solves a problem by:

1. Breaking the problem into subproblems which are smaller instances of the same type of

problem.

2. Recursively solving these subproblems.

3. Appropriately combining their answers.

The real work is done piecemeal, in three different places: in the partitioning of problems

into sub problems; at the end of the recursion, when the sub problems are so small that they

are solved outright; and in the gluing together of partial answers. These are held together

and coordinated by the algorithm’s core recursive structure.

From a theoretical point of view, D & C is an attractive algorithm abstraction. It is computed

by solving the following recurrence equation:

T(n)= branchingFactor(N)* T(subproblemSize(N))+ combineCost(N)

4

2.1.1 Advantages

Solving Difficult Problems

Divide and conquer is a powerful tool for solving conceptually difficult problems: all it

requires is a way of breaking the problem into sub-problems, of solving the trivial cases and

of combining sub-problems to the original problem. Similarly, D & C only requires reducing

the problem to a single smaller problem, such as the classic Tower of Hanoi puzzle, which

reduces moving a tower of height n to moving a tower of height n − 1.

Algorithm Efficiency

The divide-and-conquer paradigm often helps in the discovery of efficient algorithms. It was

the key, for example, to Karatsuba’s fast multiplication method, the quicksort and mergesort

algorithms, the Strassen algorithm for matrix multiplication, and fast Fourier transforms. In

all these examples, the divide-and-conquer approach led to an improvement in the asymp-

totic cost of the solution. For example, if the base cases have constant-bounded size, the

work of splitting the problem and combining the partial solutions is proportional to the

problem’s size n, and there are a bounded number p of sub problems of size n/p at each

stage, then the cost of the divide-and-conquer algorithm will be O(n log n).

Parallelism

Divide and conquer algorithms are naturally adapted for execution in multi-processor ma-

chines, especially shared-memory systems where the communication of data between pro-

cessors does not need to be planned in advance, because distinct sub-problems can be ex-

ecuted on different processors. This approach leads to a quicker solution of the problem

as solutions of the subproblems become available much faster and almost together than the

sequential solution by a single processor.

Memory Access

Divide-and-conquer algorithms naturally tend to make efficient use of memory caches. The

reason is that once a sub-problem is small enough, it and all its sub-problems can, in princi-

ple, be solved within the cache, without accessing the slower main memory. An algorithm

designed to exploit the cache in this way is called cache-oblivious, because it does not con-

tain the cache size(s) as an explicit parameter. Moreover, D & C algorithms can be designed

for important algorithms (e.g. sorting, FFTs, and matrix multiplication) to be optimal cache-

5

oblivious algorithms-they use the cache in a provably optimal way, in an asymptotic sense,

regardless of the cache size. In contrast, the traditional approach to exploiting the cache is

blocking, as in loop nest optimization, where the problem is explicitly divided into chunks

of the appropriate size this can also use the cache optimally, but only when the algorithm is

tuned for the specific cache size(s) of a particular machine.

2.1.2 Implementation Issues

Recursion

Divide-and-conquer algorithms are naturally implemented as recursive procedures. In that

case, the partial sub-problems leading to the one currently being solved are automatically

stored in the procedure call stack.

Explicit stack

Divide and conquer algorithms can also be implemented by a non-recursive program that

stores the partial sub-problems in some explicit data structure, such as a stack, queue, or

priority queue. This approach allows more freedom in the choice of the sub-problem that

is to be solved next, a feature that is important in some applications - e.g. in breadth-first

recursion and the branch and bound method for function optimization. This approach is also

the standard solution in programming languages that do not provide support for recursive

procedures.

Stack Size

In recursive implementations of D & C algorithms, one must make sure that there is suffi-

cient memory allocated for the recursion stack, otherwise the execution may fail because of

stack overflow. Fortunately, D & C algorithms that are time-efficient often have relatively

small recursion depth. For example, the quicksort algorithm can be implemented so that it

never requires more than nested recursive calls to sort items.

Stack overflow may be difficult to avoid when using recursive procedures, since many com-

pilers assume that the recursion stack is a contiguous area of memory, and some allocate a

fixed amount of space for it. Thus, the risk of stack overflow can be reduced by minimizing

the parameters and internal variables of the recursive procedure, and/or by using an explicit

stack structure.

6

Choosing the Base Cases

In any recursive algorithm, there is considerable freedom in the choice of the base cases, the

small sub problems that are solved directly in order to terminate the recursion. Choosing the

smallest or simplest possible base cases is more elegant and usually leads to simpler pro-

grams, because there are fewer cases to consider and they are easier to solve. For example,

an FFT algorithm could stop the recursion when the input is a single sample, and the quick

sort list-sorting algorithm could stop when the input is the empty list; in both examples there

is only one base case to consider, and it requires no processing.

On the other hand, efficiency often improves if the recursion is stopped at relatively large

base cases, and these are solved non-recursively, resulting in a hybrid algorithm. This strat-

egy avoids the overhead of recursive calls that do little or no work, and may also allow

the use of specialized non-recursive algorithms that, for those base cases, are more efficient

than explicit recursion. A general procedure for a simple hybrid recursive algorithm is short-

circuiting the base case, also known as arm’s-length recursion. In this case whether the next

step will result in the base case is checked before the function call, avoiding an unnecessary

function call. For example, in a tree, rather than recursing to a child node and then check-

ing if it is null, checking null before recursing; this avoids half the function calls in some

algorithms on binary trees. Since a D & C algorithm eventually reduces each problem or

sub-problem instance to a large number of base instances, these often dominate the overall

cost of the algorithm, especially when the splitting/joining overhead is low.

2.2 Quicksort

Quick sort is a divide-and-conquer sorting algorithm in which division is dynamically car-

ried out (as opposed to static division in Merge sort). The three steps of Quick sort are as

follows:

Divide: Rearrange the elements and split the array into two sub arrays and an element in

between such that so that each element in the left sub array is less than or equal the middle

element and each element in the right sub array is greater than the middle element.

Conquer: Recursively sort the two sub arrays.

Combine: None.

7

Algorithm 1 Quick Sort
Quicksort(A,n)

Quicksort ′(A, l,n)

Quicksort ′(A, p,r)

if p≥ r then

return

end if

q = Partition(A, p,r)

Quicksort ′(A, p,q−1)

Quicksort ′(A,q+1,r)

The Subroutine Partition

Given a sub array A [p r] such that p ≤ r - 1, This subroutine rearranges the input sub array

into two sub arrays, A [p.. q - 1] and A[q +1 .. r], so that each element in A[p..q - 1] is less

than or equal to A[q] and each element in A[q +1.. r] is greater than or equal to A[q] Then

the subroutine outputs the value of q.

Use the initial value of A[r] as the pivot, in the sense that the keys are compared against it.

Scan the keys A [p... r - 1] from left to right and flush to the left all the keys that are greater

than or equal to the pivot.

Algorithm 2 Partition
Partition(A, p,r)

x = A[r]

i← p−1

for j← p to r-1 do

if A[j]⇐ x then

i← i+1

Exchange A[i]↔ A[j]

end if

Exchange A[i+1]↔ A[r]

return i+1

During the for loop i+1 is the position at which the next key that is greater than or equal to

the pivot should go to.

8

An Example:

q

17 9 22 31 7 12 10 21 13 29 18 20 11

9 17 22 31 7 12 10 21 13 29 18 20 11

9 7 22 31 17 12 10 21 13 29 18 20 11

9 7 10 31 17 12 22 21 13 29 18 20 11

pivot=11 r

9 7 10 11 17 12 22 21 13 29 18 20 31

Another Example:

17 9 22 31 7 12 10 21 13 29 18 20 23

17 9 22 31 7 12 10 21 13 29 18 20 23

pivot=23 r

17 9 22 31 7 12 10 21 13 29 18 20 23

17 9 22 31 7 12 10 21 13 29 18 20 23

17 9 22 7 31 12 10 21 13 29 18 20 23

17 9 22 7 12 31 10 21 13 29 18 20 23

17 9 22 7 12 10 31 21 13 29 18 20 23

2.2.1 Proving Correctness of Partition

Let (A, p, r) be any input to Partition and let q be the output of Partition on this input.

Suppose 1 ≤ p < r. Let x = A[r]. We will prove the correctness using loop invariant. The

loop invariant we use is: at the beginning of the for-loop, for all k, p ≤ k ≤ r, the following

properties hold:

1. If p ≤ k ≤ i, then A[k] ≤ x.

2. If i+1 ≤ k ≤ j - 1, then A[k] > x.

3. If k = r, then A[k] = x.

Initialization

The initial value of i is p - 1 and the initial value of j is p. So, there is no k such p ≤ k ≤ I

and there is no k such that i+1 ≤ k ≤ j - 1. Thus, the First conditions are met. The initial

value of A[r] = x, is so the last one is met.

9

Maintenance

Suppose that the three conditions are met at the beginning and that j ≤ r - 1. Suppose that

A[j] > x. The value of i will not be changed, so (1) holds. The value of j becomes j +1. Since

A[j] > x, (2) will for the new value of j. Also, A[r] is unchanged so (3) holds. Suppose that

A[j] ≤ x. Then A [i+1] and A[j] will be exchanged. By (2), A [i+1] > x. So, after exchange

A[i+1] ≤ x and A[j] > x. Both i and j will be incremented by 1, so (1) and (2) will be

preserved. Again (3) still holds.

Termination

At the end, j = r. So, for all k, 1 ≤ k ≤ i, A[k] ≤ x and for all k, i+1 ≤ k ≤ r - 1, A[k] > x.

2.2.2 Running Time Analysis

The running time of quick sort is a linear function of the array size, r - p+1, and the distance

of q from p, q - p. This is Θ(r - p+1). What are the worst cases of this algorithm?

Worst-case analysis Let T be the worst-case running time of Quick sort. Then

T(n) = T(1)+T(n - 1)+ Ω(n):

2.3 Mergesort

In computer science, a mergesort (also commonly spelled merge sort) is an O (n log n)

comparison-based sorting algorithm. Most implementations produce a stable sort, which

means that the implementation preserves the input order of equal elements in the sorted out-

put. Merge sort is a D & C algorithm that was invented by John von Neumann in 1945.

Conceptually, a merge sort works as follows:

1. Divide the unsorted list into n sub lists, each containing 1 element (a list of 1 element is

considered sorted).

2. Repeatedly merge sub lists to produce new sorted sub lists until there is only 1 sub list

remaining. This will be the sorted list.

10

Merge sort is based on the divide-and-conquer paradigm. Its worst-case running time has a

lower order of growth than insertion sort. Since we are dealing with sub problems, we state

each sub problem as sorting a sub arrayA[p .. r]. Initially, p = 1 and r = n, but these values

change as we recurse through sub problems. To sort A[p .. r]:

Divide Step

If a given array A has zero or one element, simply return; it is already sorted. Otherwise,

split A [p .. r] into two subarrays A[p .. q] and A[q + 1 .. r], each containing about half of

the elements of A[p .. r]. That is, q is the halfway point of A[p .. r].

Conquer Step

Conquer by recursively sorting the two subarraysA[p .. q] and A[q + 1 .. r].

Combine Step

Combine the elements back in A[p .. r] by merging the two sorted subarrays A[p .. q] and

A[q + 1 .. r] into a sorted sequence. To accomplish this step, a procedure is defined as

MERGE (A, p, q, r).

Figure 2.1: Recursive Mergesort Algorithm Used to Sort an Array of 7 Integer Values

11

2.3.1 Algorithm: Merge Sort

Algorithm 3 Mergesort
MERGESORT (A, p,r)

if p < r then

q =
⌊ p+r

2

⌋
MERGE(A, p,q)

MERGE(A,q+1,r)

MERGE(A, p,q,r)

MERGE(A, p,q,r)

n1← q− p+1

n2← r−q

Create arrays L[1....n1+1] and R[1....n2+1]

for i← 1 to n1 do

L[i]← A[p+ i−1]

for j← 1 to n2 do

R[j]← A[q+ j]

L[n1+1]← ∞

R[n2+1]← ∞

i← 1

j← 1

for k← p to r do

if L[i]≤ R[j] then

A[k]← L[i]

i← i+1

else A[k]← R[j]

j← j+1

12

Analysis

In sorting n objects, merge sort has an average and worst-case performance of O (n log n).

If the running time of merge sort for a list of length n is T(n), then the recurrence T(n) =

2T(n/2) + n follows from the definition of the algorithm (apply the algorithm to two lists

of half the size of the original list, and add the n steps taken to merge the resulting two

lists). The closed form follows from the master theorem. In the worst case, the number of

comparisons merge sort makes is equal to or slightly smaller than (ndlogne− 2dlogne+ 1),

which is between (n log n - n + 1) and (n log n + n + O (log n)). For large n and a randomly

ordered input list, merge sort’s expected (average) number of comparisons approaches αn

fewer than the worst case where

α =−1+∑
k=∞
k=0

1
2k+1 ≈ 0.2645

In the worst case, merge sort does about 39% fewer comparisons than quick sort does in the

average case. In terms of moves, merge sort’s worst case complexity is O(n log n)-the same

complexity as quick sort’s best case, and merge sort’s best case takes about half as many

iterations as the worst case. Merge sort is more efficient than quick sort for some types of

lists if the data to be sorted can only be efficiently accessed sequentially, and is thus popular

in languages such as Lisp, where sequentially accessed data structures are very common.

Unlike some (efficient) implementations of quick sort, merge sort is a stable sort as long as

the merge operation is implemented properly. Merge sort’s most common implementation

does not sort in place; therefore, the memory size of the input must be allocated for the

sorted output to be stored in (see below for versions that need only n/2 extra spaces). Merge

sort also has some demerits. One is its use of 2n locations; the additional n locations are

commonly used because merging two sorted sets in place is more complicated and would

need more comparisons and move operations. But despite the use of this space the algorithm

still does a lot of work: The contents of m are first copied into left and right and later into

the list result on each invocation of merge sort.

2.3.2 Variants

Primary Concern: Reducing the Space Complexity and the Cost of Copying

13

A simple alternative for reducing the space overhead to n/2 is to maintain left and right as

a combined structure, copy only the left part of m into temporary space, and to direct the

merge routine to place the merged output into m. With this version it is better to allocate

the temporary space outside the merge routine, so that only one allocation is needed. The

excessive copying mentioned previously is also mitigated, since the last pair of lines before

the return result statement (function merges in the pseudo code above) become superfluous.

An alternative to reduce the copying into multiple lists is to associate a new field of infor-

mation with each key (the elements in m are called keys). This field will be used to link the

keys and any associated information together in a sorted list (a key and its related informa-

tion is called a record). Then the merging of the sorted lists proceeds by changing the link

values; no records need to be moved at all. A field which contains only a link will generally

be smaller than an entire record so less space will also be used. This is a standard sorting

technique, not restricted to merge sort.

Optimizing merge sort

On modern computers, locality of reference can be of paramount importance in software

optimization, because multilevel memory hierarchies are used. Cache-aware versions of

the merge sort algorithm, whose operations have been specifically chosen to minimize the

movement of pages in and out of a machine’s memory cache, have been proposed. For

example, the tiled merge sort algorithm stops partitioning sub arrays when sub arrays of size

S are reached, where S is the number of data items fitting into a CPU’s cache. Each of these

sub arrays is sorted with an in-place sorting algorithm such as insertion sort, to discourage

memory swaps, and normal merge sort is then completed in the standard recursive fashion.

Also, many applications of external sorting use a form of merge sorting where the input get

split up to a higher number of subsists, ideally to a number for which merging them still

makes the currently processed set of pages fit into main memory.

Comparison with other sort algorithms

Although heap sort has the same time bounds as merge sort, it requires only Θ(1) auxiliary

space instead of merge sort’s Θ(n), and is often faster in practical implementations. On typ-

ical modern architectures, efficient quick sort implementations generally outperform merge

sort for sorting RAM-based arrays. On the other hand, merge sort is a stable sort and is more

efficient at handling slow-to-access sequential media. Merge sort is often the best choice for

14

sorting a linked list: in this situation it is relatively easy to implement a merge sort in such

a way that it requires only Θ(1) extra space, and the slow random-access performance of

a linked list makes some other algorithms (such as quick sort) perform poorly, and others

(such as heap sort) completely impossible.

Utility in online sorting

Merge sort’s merge operation is useful in online sorting, where the list to be sorted is re-

ceived a piece at a time, instead of all at the beginning. In this application, we sort each new

piece that is received using any sorting algorithm, and then merge it into our sorted list so

far using the merge operation. However, this approach can be expensive in time and space

if the received pieces are small compared to the sorted list.

2.4 Convex Hull

2.4.1 Convexity

A convex is a polygon in which any line joining two points within the polygon lies within

the polygon. Alex-Ander Kalashnikov[18] gives similar definitions of convexity, the first is

that, a subset set S of the plane is called convex if and only if for any pair of points P, Q ∈ S

the line segment PQ is completely contained in S. The second goes as, a set S is convex if

it is exactly equal to the inter-section of all the half planes containing it. The figures below

show convex and non-convex shapes.

Figure 2.2: Convex and Non-Convex Shapes

Convex Hull

Convex Hull of a set Q of points is the smallest convex polygon P, for which each point in

15

Q is either on the boundary of P or in its interior. In line with the above[21], asserts that

the convex hull of a set S of points, denoted hull(S) is the smallest polygon P for which

each point of S is either on the boundary or in the interior of P. Similarly, establishes that

the convex hull CH(P) of a finite point set P is the smallest convex polygon that contains P.

Figure 2.3 shows a convex hull P.

Figure 2.3: Convex Hull P

Intuition

If each point is represented by a nail sticking out from a board and you take a rubber band

and lower it over the nails, so as to completely encompass the set of nails, and then let the

rubber band naturally contract, the rubber band will give you the edges of the convex hull

of the set of points, and those nails that correspond to a change in slope of the rubber band

represent the extreme points of the convex hull.

2.4.2 Convex Hull Problem

In a convex hull problem a set of points or coordinates are given and one is asked to come up

with the smallest polygon in which all points are either inside or on the edge of the polygon.

Finding the convex hull using divide and conquer

Souvaine[28] establishes that in order to find the convex hull using a divide-and-conquer

16

approach, one has to follow these steps: sort points (p1, p2, . . . , pn) by their x-coordinate

recursively find the convex hull of p1 through pn/2 recursively find the convex hull of pn/2

+1 through pn merge the two convex hulls A more detailed algorithm for finding a Convex

Hull is presented in [22]. The algorithm is as follows: Hull(S): If —S— ≤ 3, then compute

the convex hull by brute force in O(1) time and return. Otherwise, partition the point set S

into two sets A and B, where A consists of half the points with the lowest x co-ordinates

and B consists of half of the points with the highest x co-ordinates. Recursively compute

HA = Hull (A) and HB = Hull (B). Merge the two hulls into a common convex hull, H, by

computing the upper and lower tangents for HA and HB and discarding all the points lying

between these two tangents.

2.4.3 Running Times of Convex Hull Divide and Conquer Algorithm

Sequential Algorithm

Sorting requires O (n log n) time. However, it is critical to note that the sort only needs to

be performed once at the beginning of the algorithm as a pre-processing step and not every

time through the recursion. The stitch step requires Θ(logn) time to determine the lines of

support (i.e., the common tangent lines) and Θ(n) time to reorder (compress) the data. So,

there is Θ(nlogn) pre-processing time and T (n) = 2T (n/2) + O (n) = O (nlog n) running

time. Therefore, the running time for the algorithm is optimal at Θ(nlogn).

Mesh Algorithm

Given n points, arbitrarily distributed one point per processor on a mesh of size n, the convex

hull of the set S of points can be determined in Θ(n
1
2) time. First, sort the points into shuffled

row major order so that the following holds (geometric points on left side of figure mapped

to mesh quadrants as shown in right side of figure 2.4):

Binary Search

Binary search from S1 to S2 and from S2 to S1, where after each iteration, the remaining

data is compressed together so that the running time of the binary search is linear in the edge

length of the sub-mesh that the points initially reside in. Broadcast the 4 tangent points.

Eliminate points inside of quadrilateral and renumber. Running time of binary search is

B(n) = B(n / 2) +Θ(n
1
2) = Θ(n

1
2). So, the running time of the divide-and-conquer convex

17

Figure 2.4: Mesh Algorithm

hull algorithm on a mesh of size n is T (n) = T (n / 4) + B(n) = T (n / 4) +Θ(n
1
2) = Θ(n

1
2),

plus Θ(n
1
2) for the initial sort, which is Θ(n

1
2).

2.4.4 Advantages of the Divide and Conquer Approach

Algorithm efficiency

The Quick Hull recursively subdivides point set S, and assembles the convex hull H(S)

by “merging” the sub- problem results or partial solutions. The base case requires O(1),

constant-bounded time. Thus the D & C algorithm will have O (n log n) complexity.

Subdivision allows Parallelism

Divide-and-conquer algorithms are adapted for execution in multi-processor machines, es-

pecially shared memory systems as in the testing of robots using convex hulls; where the

communication of data between processors does not need to be planned in advance. Thus

distinct sub-problems can be executed on different processors.

Ideal for solving difficult and complex problems

Divide and conquer is a powerful tool for solving conceptually difficult problems, such as

the classic Tower of Hanoi puzzle: all it requires is a way of breaking the problem into

sub-problems, of solving the trivial cases and of combining sub-problems to the original

problem.

Memory access

Divide-and-conquer algorithms naturally tend to make efficient use of memory caches. The

reason is that once a sub-problem is small enough, it and all its sub-problems can, in princi-

18

ple, be solved within the cache, without accessing the slower main memory. An algorithm

designed to exploit the cache in this way is called cache oblivious, because it does not con-

tain the cache size(s) as an explicit parameter.

2.4.5 Disadvantages of the Divide and Conquer Approach

Recursion which is the basis of D & C is slow, the overhead of the repeated subroutine calls,

along with that of storing the call stack. Inability to control or guarantee sub-problem size

results in sub-optimum worst case time performance. Requires a lot of memory for storing

intermediate results of sub-convex hulls to be combined to form the complete convex hull.

The use of D & C is not ideal if the points to be considered are too close to each other such

that other approaches to convex hull will be ideal Is complicated if a large base cases are to

implemented for performance reasons.

2.4.6 Algorithm Performances for Convex Hull Problem

Table 2.1: Algorithms for convex hull problem

Algorithm Speed Discovered by

Brute Force O(n) [Anon,the dark]

Gift Wrapping O(nh) [Chan & Kapur,1970]

Graham Scan O(n log n) [Graham, 1972]

jarvis March O(nh) [Jarvis, 1973]

Quick Hull O(nh) [Eddy, 1977]

Divide-and-Conqure O(n log n) [Preparata]

Monotone O(n log n) [Andrew, 1979]

Incremental O(n log n) [Kallay, 1984]

Marriage O(n log n) [Kirkpatrick]

19

2.5 Closest Pair

The closest pair of points problem or closest pair problem is a problem of computational

geometry[16]: given n points in metric space, find a pair of points with the smallest distance

between them. The closest pair problem for points in the Euclidean plane was among the

first geometric problems which were treated at the origins of the systematic study of the

computational complexity of geometric algorithms. A naive algorithm of finding distances

between all pairs of points and selecting the minimum requires O(dn2) time. It turns out

that the problem may be solved in O(n log n) time in a Euclidean space or space of fixed

dimension d. In the algebraic decision tree model of computation, the O(n log n) algorithm

is optimal. In the computational model which assumes that the floor function is computable

in constant time the problem can be solved in O(n log log n) time. If we allow randomization

to be used together with the floor function, the problem can be solved in O(n) time[12].

Figure 2.5: Closest Pair in Separate Partition

2.5.1 Divide and Conquer for Closest Pair of Points

Given an array of n points in the plane, and the problem is to find out the closest pair of

points in the array. This problem arises in a number of applications. For example, in air-

traffic control, it may be required to monitor planes that come too close together, since this

may indicate a possible collision. We know the following formula for distance between two

points p and q.

‖pq‖=
√

(px−qx)2 +(py−qy)2

20

The Brute force solution is O(n2), compute the distance between each pair and return the

smallest. The smallest distance can be calculated in O(n log n) time using D & C strategy.

Here a O(n(logn)2) approach is discussed.

2.5.2 Algorithmic Steps

Following are the detailed steps of a O(n(logn)2) algorithm.

Input: An array of n points P [].

Output: The smallest distance between two points in the given array.

As a pre-processing step, input array is sorted according to x coordinates.

1) Find the middle point in the sorted array, we can take P [n/2] as middle point.

2) Divide the given array in two halves. The first subarray contains points from P[0] to

P[n/2]. The second subarray contains points from P [n/2+1] to P [n-1].

3) Recursively find the smallest distances in both subarrays. Let the distances be dl and dr.

Find the minimum of dl and dr. Let the minimum be d.

4) From above 3 steps, we have an upper bound d of minimum distance. Now we need to

consider the pairs such that one point in pair is from left half and other is from right half.

Consider the vertical line passing through passing through P[n/2] and find all points whose

x coordinate is closer than d to the middle vertical line. Build an array strip [] of all such

points.

5) Sort the array strip [] according to y coordinates. This step is O(nlogn). It can be opti-

mized to O (n) by recursively sorting and merging.

21

6) Find the smallest distance in strip []. This is tricky. From first look, it seems to be a

O(n2) step, but it is actually O(n). It can be proved geometrically that for every point in

strip, we only need to check at most 7 points after it (note that strip is sorted according to Y

coordinate).

7) Finally return the minimum of d and distance calculated in above step (step 6).

Figure 2.6: Closest Pair Across the Partitions

22

Algorithm 4 Closest pair
closestPair o f (xP,yP)

where xP is P(1).....P(N) sorted by x Coordinate, and

yP is P(1)....P(N) sorted by y Coodinate

if N ≤ 3 then

return closest points o f xP using brute− f orce algorithm

else

xL← points o f xP f rom 1 to [N
2]

xR← points o f xP f rom 1 to [N
2]+1 to N

xm← xP(N
2)x

yL←{p ∈ yP : px ≤ xm}

yR←{p ∈ yP : px > xm}

(dL, pairL)← closestPair o f (xL,yL)

(dR, pairR)← closestPair o f (xR,yR)

(dmin, pairMin)← (dR, pairR)

if dL < dR then

(dMin, pairMin)← (dL, pairL)

end if

yS← {p ∈ yP : |xm− px|< dmin}

nS← number o f points in yS

(closest,closestPair)← (dmin, pairMin)

for i f rom 1 to nS−1

k← i+1

while k < leqnS and yS(k)y− yS(i)y < dmin

if |yS− yS|< closest then

(closest,closestPair)← (|yS(k)− yS(i)| ,{yS(k)yS(i)})

endif

k← k+1

endwhile

endfor

return closest,closestPair

end if

23

CHAPTER 3

HEAPSORT AND ITS OPTIMIZATION WITH THREE

CHILD ANALYSIS

3.1 Heapsort

Heap sort is a comparison-based sorting algorithm to create a sorted array (or list), and is

part of the selection sort family. Although somewhat slower in practice on most machines

than a well-implemented quick sort, it has the advantage of a more favorable worst-case O(n

log n) runtime. The heap sort algorithm can be divided into two parts. In the first step, a heap

is built out of the data. In the second step, a sorted array is created by repeatedly removing

the largest element from the heap, and inserting it into the array. The heap is reconstructed

after each removal. Once all objects have been removed from the heap, we have a sorted

array. The direction of the sorted elements can be varied by choosing a min-heap or max-

heap in step one[3]. Heap sort can be performed in place. The array can be split into two

parts, the sorted array and the heap. The storage of heaps as arrays is diagrammed here. The

heap’s invariant is preserved after each extraction, so the only cost is that of extraction.

3.1.1 Heap Property

In a heap, for every node i other than the root, the value of a node is greater than or equal (at

most) to the value of its parent.

A[PARENT (i)] ≥ A[i]

Thus, the largest element in a heap is stored at the root[7].

By the definition of a heap, all the tree levels are completely filled except possibly for the

lowest level, which is filled from the left up to a point. Clearly a heap of height h has the

24

Figure 3.1: Heapsort Property

minimum number of elements when it has just one node at the lowest level. The levels

above the lowest level form a complete binary tree of height h -1 and 2h−1 nodes. Hence the

minimum number of nodes possible in a heap of height h is 2h. Clearly a heap of height h,

has the maximum number of elements when its lowest level is completely filled. In this case

the heap is a complete binary tree of height h and hence has 2h+1−1 nodes[1].

Height of a node

We define the height of a node in a tree to be a number of edges on the longest simple

downward path from a node to a leaf.

Height of a tree

The number of edges on a simple downward path from a root to a leaf is the height of a tree.

Note that the height of a tree with n node is log2n which is O(log2n). This implies that an

n-element heap has height log2n. In order to show this let the height of the n-element heap

be h. From the bounds obtained on maximum and minimum number of elements in a heap,

2h ≤ n≤ 2h+1−1

Where n is the number of elements in a heap[4].

2h ≤ n≤ 2h+1

Taking logarithms to the base 2

h≤ log2n≤ h+1

25

It follows that h = dlog2ne.

Maintaining the Heap Property

Heapify is a procedure for manipulating heap data structures. It is given an array A and

index i into the array. The subtree rooted at the children of A[i] are heap but node A[i] itself

may possibly violate the heap property i.e., A[i] < A[2i] or A[i] < A[2i +1]. The procedure

’Heapify’ manipulates the tree rooted at A[i] so it becomes a heap. In other words, ’Heapify’

is let the value at A[i] “float down” in a heap so that subtree rooted at index i becomes a

heap[23].

3.2 An Example on Heapsort

Let 6, 5, 3, 1, 8, 7, 2, 4 be the list that we want to sort from the smallest to the largest.

Table 3.1: Build heap

Heap Newly added element swap elements

Nil 6

6 5

6,5 3

6,5,3 1

6,5,3,1 8

6,5,3,1,8 5,8

6,5,3,1,5 6,8

8,6,3,1,5 7

8,6,3,1,5,7 3,7

8,6,7,1,5,3 2

8,6,7,1,5,3,2 4

8,6,7,1,5,3,2,4 1,4

8,6,7,4,5,3,2,1

Now, with the given data the heap is built. Data need to be sorted and for that following

procedure is followed. Each step is described in a row with explanation in the last column.

26

Table 3.2: Sorting

Heap Swap Delete Sorted array Details

8,6,7,4,5,3,2,1 8,1 swap 8 and 1 in order to delete 8 from heap

1,6,7,4,5,3,2,8 8 delete 8 from heap and add to sorted array

1,6,7,4,5,3,2 1,7 8 swap 1 and 7 to correct order in the heap

7,6,1,4,5,3,2 1,3 8 swap 1 and 3 to correct order in the heap

7,6,3,4,5,1,2 7,2 8 swap 7 and 2 in order to delete 7 from heap

2,6,3,4,5,1,7 7 8 delete 7 from heap and add to sorted array

2,6,3,4,5,1 2,6 7,8 swap 2 and 6 to correct order in the heap

6,2,3,4,5,1 2,5 7,8 swap 2 and 5 to correct order in the heap

6,5,3,4,2,1 6,1 7,8 swap 6 and 1 in order to delete 6 from heap

1,5,3,4,2,6 6 7,8 delete 6 from heap and add to sorted array

1,5,3,4,2 1,5 6,7,8 swap 1 and 5 to correct order in the heap

5,1,3,4,2 1,4 6,7,8 swap 1 and 4 to correct order in the heap

5,4,3,1,2 5,2 6,7,8 swap 5 and 2 in order to delete 5 from heap

2,4,3,1,5 5 6,7,8 delete 5 from heap and add to sorted array

2,4,3,1 2,4 5,6,7,8 swap 2 and 4 to correct order in the heap

4,2,3,1 4,1 5,6,7,8 swap 4 and 1 in order to delete 4 from heap

1,2,3,4 4 5,6,7,8 delete 4 from heap and add to sorted array

1,2,3 1,3 4,5,6,7,8 swap 1 and 3 to correct order in the heap

3,2,1 3,1 4,5,6,7,8 swap 3 and 1 in order to delete 3 from heap

1,2,3 3 4,5,6,7,8 delete 3 from heap and add to sorted array

1,2 1,2 3,4,5,6,7,8 swap 1 and 2 to correct order in the heap

2,1 2,1 3,4,5,6,7,8 swap 2 and 1 in order to delete 2 from heap

1,2 2 3,4,5,6,7,8 delete 2 from heap and add to sorted array

1 1 2,3,4,5,6,7,8 delete 1 from heap and add to sorted array

1,2,3,4,5,6,7,8 completed

27

3.3 Theoretical Complexity of Heapsort

In HeapSort the algorithm operated by first building a heap in a bottom-up manner, and then

repeatedly extracting the maximum element from the heap and moving it to the end of the

array. One clever aspect of the data structure is that it resides inside thearray to be sorted.

We argued that the basic heap operation of Heapify runs in O(log n) time, because the heap

has O(log n) levels, and the element being sifted moves down one level of the tree after a

constant amount of work.

Based on this we can see that (1) that it takes O(nlogn) time to build a heap, because we

need to apply Heapify roughly n=2 times (to each of the internal nodes), and (2) that it

takes O(nlogn) time to extract each of the maximum elements, since we need to extract

roughly n elements and each extraction involves a constant amount of work and one Heapify.

Therefore the total running time of HeapSort is O(nlogn).

In fact, it can be found out that it is not possible to sort faster than Ω(nlogn) time, assuming

that comparisons are used, which HeapSort does. However, it turns out that the first part of

the analysis is not tight. In particular, the BuildHeap procedure that we presented actually

runs in (n) time. Although in the wider context of the HeapSort algorithm this is not signif-

icant (because the running time is dominated by the (nlogn) extraction phase). Nonetheless

there are situations where it might not be needed to sort all of the elements. For example, it

is common to extract some unknown number of the smallest elements until some criterion

(depending on the particular application) is met. For this reason it is nice to be able to build

the heap quickly since it may not be needed to extract all the elements.

3.3.1 Build Heap Analysis

For BuildHeap analysis the most convenient assumption is that n is of the form n= 2h+1−1,

where h is the height of the tree. The reason is that a left-complete tree with this number

of nodes is a complete tree, that is, its bottommost level is full. This assumption nullify

the requirement of using floors and ceilings. With this assumption, level 0 of the tree has 1

node, level 1 has 2 nodes, and up to level h, which has 2h nodes. All the leaves reside on

level h.

28

Figure 3.2: Heapsort Tree

When Heapify is called, the running time depends on how far an element might shift down

before the process terminates. In the worst case the element might shift down all the way

to the leaf level. Let us count the work done level by level. At the bottommost level there

are 2h nodes, but we do not call Heapify on any of these so the work is 0. At the next to

bottommost level there are 2h−1 nodes, and each might sift down 1 level. At the 3rd level

from the bottom there are 2h−2 nodes, and each might sift down 2 levels. In general, at level

j from the bottom there are 2h− j nodes, and each might shift down j levels. So, if we count

from bottom to top, level-by-level, we see that the total time is proportional to

T (n) = ∑
h
j=0 j2h− j = ∑

h
j=0 j 2h

2 j

If we factor out the 2h term, we have

T (n) = 2h
∑

h
j=0

j
2 j

This is a sum that we have never seen before. We could try to approximate it by an integral,

which would involve integration by parts, but it turns out that there is a very cute solution to

this particular sum. We’ll digress for a moment to work it out. First, write down the infinite

general geometric series, for any constant x< 1.

∑
∞
j=0 x j = 1

1−x

29

Then taking the derivative of both sides with respect to x, and multiply by x giving:

∑
∞
j=0 jx j−1 = 1

(1−x)2 ∑
∞
j=0 jx j = x

(1−x)2

and putting x = 1/2, we have the desired formula:

∑
∞
j=0

j
2 j =

1
2

1−(1
2)

2 =
1
2
1
4
= 2

In our case we have a bounded sum, but since the infinite series is bounded, we can use it

instead as an easy approximation. Using this we have

T (n) = 2h
∑

h
j=0

j
2 j ≤ ∑

∞
j=0

j
2 j ≤ 2h.2 = 2h+1

Now we know that n = 2h+1− 1, so we have T (n) ≤ n+ 1 ∈ O(n). Clearly the algorithm

takes at least Ω(n) time (since it must access every element of the array at least once) so the

total running time for BuildHeap is Θ(n).

3.4 Comparison with Other Sorting Algorithm

Heapsort primarily competes with quicksort, another very efficient general purpose nearly-

in-place comparison-based sort algorithm. Quicksort is typically somewhat faster due to

some factors, but the worst-case running time for quicksort is O(n2), which is unacceptable

for large data sets and can be deliberately triggered given enough knowledge of the imple-

mentation, creating a security risk. Quicksort represrents a detailed discussion of this prob-

lem and possible solutions[11]. Thus, because of the O(n log n) upper bound on heapsort’s

running time and constant upper bound on its auxiliary storage, embedded systems with

real-time constraints or systems concerned with security often use heapsort[5]. Heapsort

also competes with merge sort, which has the same time bounds. Merge sort requires Ω(n)

auxiliary space, but heapsort requires only a constant amount. Heapsort typically runs faster

in practice on machines with small or slow data caches. On the other hand, merge sort has

several advantages over heapsort: Merge sort on arrays has considerably better data cache

performance, often outperforming heapsort on modern desktop computers because merge

sort frequently accesses contiguous memory locations (good locality of reference); heapsort

30

references are spread throughout the heap[19]. Heapsort is not a stable sort; merge sort is

stable[26]. Merge sort parallelizes well and can achieve close to linear speedup with a trivial

implementation; heapsort is not an obvious candidate for a parallel algorithm[2]. Merge sort

can be adapted to operate on linked lists with O(1) extra space.[4] Heapsort can be adapted

to operate on doubly linked lists with only O(1) extra space overhead[27]. Merge sort is

used in external sorting; heapsort is not. Locality of reference is the issue[8]. Introsort is

an alternative to heapsort that combines quicksort and heapsort to retain advantages of both:

worst case speed of heapsort and average speed of quicksort[9].

3.5 Optimality of Ternary Heapsort

Ternary heapsort uses a ternary heap instead of a binary heap; that is, each element in the

heap has three children. It is more complicated to program, but does a constant number of

times fewer swap and comparison operations. This is because each step in the shift operation

of a ternary heap requires three comparisons and one swap, whereas in a binary heap two

comparisons and one swap are required. The ternary heap does two steps in less time than

the binary heap requires for three steps, which multiplies the index by a factor of 9 instead

of the factor 8 of three binary steps. Ternary heapsort is about 12% faster than the simple

variant of binary heapsort[9].

31

CHAPTER 4

EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Experimental Setup

With the invention of computer the use of two parametric algebra, number system, graph,

tree is started rapidly. Binary system in particular binary tree established its supremacy in D

& C method and in other system. In sorting D & C method is most popular way. Here we

divide the given list of data and again merge them in sorted way. Binary system is used here

when to divide the data and when to merge them. Megiddo has placed an objection to the

standard translation of problems into languages via the binary coding. Extensive works have

already been done on optima and of ternary trees and their VLSI embedding. In this paper

we show that ternary system is more promising than traditional binary system applying on

heap sort.

Let us consider a tree consist of n node and each of node have d child and the total height of

the tree is h. for our theory we can consider following picture

Figure 4.1: A Tree with Height h and Branching Factor d

32

n≤ d0 +d1 ++dh−1

or, n≤ dh−1
d−1

or, dh−1≥ n(d−1)

or, h = dlogd{n(d−1)+1}e

now, at each level there will be at most d-1 comparison to find the elder son and 1 comparison

to decide whether to swap or not. So there can be d Comparisons per level. So, total

comparisons for this tree will be dh.

dh = d ∗ (lndn+ lndd−1)≈ d ln n
ln d

So cost= (dln n)/lnd where ln n is constant[13]. Therefore cost will vary depending on value

of d/ln d. In this equation we can put several values and try to find the optimal number of

child to reduce the cost. We have found that the cost value increases for larger value of d

except for 3 which is less than both d=2 and d=4. So, we get the following relation which

supports our claim.

2
ln2 > 3

ln3 < 4
ln4

This relation clearly indicates that 3 child or ternary heapsort theoritically is more optimal

than other variants of heapsort. So, attempt is made to support this claim by experimental

data.

4.2 Algorithms for Varying Child

We have the algorithm of heapsort for two child . For our experimental purpose we have

modified it for three child and four child . In two child heap sort algorithm we compare left

child and right child with their parent. In three child we get three child as left, middle and

right child and for four child we have got four child named as left, left middle, right middle

and right child. The algorithm we used for our experiment is given below.

33

Algorithm 5 HEAPSORT FOR TWO CHILD
Parent(i)

return
⌊ i

2

⌋
Le f t(i)

return 2i

Right(i)

return 2i+1

BUILD HEAP (A)

heap− size(A)← length[A]

for i←
⌊

length[A]
2

⌋
downto 1 do

HEAPIFY (A, i)

HEAPIFY(A, i)

l← Le f t(i)

r← Right(i)

if l ≤ heap− size[A] and A[l]> A[i] then

largest← l

else

largest← i

end if

if r ≤ heap− size[A] and A[r]> A[i] then

largest← r

end if

if largest 6= i then

exchange A[i]↔ A[largest]

end if

HEAPIFY (A, i)

HEAPSORT(A)

BUILD HEAP(A)

for i = length[A] down to 2 do

exchange A↔ A[i]

heap− size[A]← heap− size[A]−1

Heapi f y(A,1)
34

For three child version of the algorithm, we need to define an extra child which is named

‘middle’here. In this model height of the tree is reduced which contributes in reducing cost.

At the same time in the heapify phase each time one extra comparison is required. After the

modification the algorithm looks like the one presented below.

Algorithm 6 HEAPSORT FOR THREE CHILD
Parent(i)

return
⌊ i+1

3

⌋
Le f t(i)

return 3∗ i−1

Middle(i)

return 3∗ i

Right(i)

return 3i+1

BUILD HEAP (A)

heap− size(A)← length[A]−1

for i←
⌊

length[A]
3 +1

⌋
downto 1 do

HEAPIFY (A, i)

HEAPIFY(A, i)

l← Le f t(i)

m← Middle(i)

r← Right(i)

if l ≤ heap− size[A] and A[l]> A[i] then

largest← l

else

largest← i

end if

35

if m≤ heap− size[A] and A[m]> A[i] then

largest← m

end if

if r ≤ heap− size[A] and A[r]> A[i] then

largest← r

end if

if largest 6= i then

exchange A[i]↔ A[largest]

end if

HEAPIFY (A, i)

HEAPSORT(A)

BUILD HEAP(A)

for i = length[A] down to 2 do

exchange A[1]↔ A[i]

heap− size[A]← heap− size[A]−1

Heapi f y(A,1)

Four child version of the algorithm is modified in the same manner. Here we have defined

extra 2 child which are named ‘leftmiddle’and ‘rightmiddle’here. In this model height of

the tree is significantly reduced which contributes in reducing cost. At the same time in the

heapify phase number of comparison required is increased each time. After the modification

the algorithm looks like the one presented below.

36

Algorithm 7 HEAPSORT FOR FOUR CHILD
Parent(i)

return
⌊ i+2

4

⌋
Le f t(i)

return 4∗ i−2

LMiddle(i)

return 4∗ i−1

RMiddle(i)

return 4∗ i

Right(i)

return 4i+1

BUILD HEAP (A)

heap− size(A)← length[A]−1

for i←
⌊

length[A]
4 +1

⌋
downto 1 do

HEAPIFY (A, i)

HEAPIFY(A, i)

l← Le f t(i)

lm← Le f tMiddle(i)

rm← RightMiddle(i)

r← Right(i)

if l ≤ heap− size[A] and A[l]> A[i] then

largest← l

else

largest← i

end if

if lm≤ heap− size[A] and A[lm]> A[i] then

largest← m

end if

37

if r ≤ heap− size[A] and A[rm]> A[i] then

largest← rm

end if

if largest 6= i then

exchange A[i]↔ A[largest]

end if

HEAPIFY (A, i)

HEAPSORT(A)

BUILD HEAP(A)

for i = length[A] down to 2 do

exchange A[1]↔ A[i]

heap− size[A]← heap− size[A]−1

Heapi f y(A,1)

4.3 Experimental Result

Experimental results are obtained using the above stated algorithms. For each test we have

generated experimental data using random number generation. Effort were made to use

data that are as realistis as possible. We have started with 100 sample data and tested upto

20000000 data for all three algorithms. In one test, same set of data is used for 2 child,

3 child and four child so that we can compare the results. We have done the test for both

integer values and floating point numbers.

4.3.1 Number of Move for Heapsort

In heapsort, data need to be moved to appropriate places before they are sorted. These

movement require considerable amount of CPU time and contribute to complexity. For a

specific dataset, the less number of move will be required the more optimal will be the

algorithm. So, we have determined number of move required for heapsort with both integer

and float values.

38

Table 4.1: Number of Move Required for Heapsort (Integer Value)

value child Test-01 Test-02 Test-03

2 669 675 678

100 3 512 517 517

4 450 459 453

2 4497 4514 4525

500 3 3314 3310 3337

4 2873 2874 2870

2 62092 62064 62058

5000 3 43767 43737 43761

4 36994 36967 36948

2 134170 134249 134101

10000 3 93608 93576 93466

4 79396 79298 79200

2 288439 288370 288400

20000 3 200383 200321 200343

4 167966 167992 167906

2 787603 787392 787538

50000 3 542832 542661 542781

4 454691 454418 454641

2 1675061 1674889 1674691

100000 3 1145507 1145636 1145590

4 955176 955263 955259

2 9524679 9523635 9524174

500000 3 6476719 6476314 6476781

4 5365855 5365321 5365616

2 20047812 20047704 20049802

1000000 3 13561477 13561884 13563274

4 11244303 11244592 11245391

2 42095600 42095887 42096235

2000000 3 28397367 28397267 28395869

4 23461780 23461687 23462297

39

Table 4.2: Number of Move Required for Heapsort (Float Value)

value child Test-01 Test-02

2 673 692

100 3 509 526

4 509 464

2 4534 4537

500 3 3330 3331

4 2896 2877

2 62211 62068

5000 3 43773 43790

4 36999 36970

2 134224 134285

10000 3 93484 93556

4 79191 79234

2 288558 288253

20000 3 200426 200495

4 167938 167935

2 787716 787327

50000 3 543067 542528

4 454750 454525

2 1674765 1674843

100000 3 1145753 1145839

4 954709 955087

2 9523563 9523829

500000 3 6477326 6477090

4 5365117 5365058

2 10347431 20048029

1000000 3 7300528 13562091

4 6172534 11245873

2 42096843 42096441

2000000 3 28399178 28396791

4 23462206 23462078

40

Figure 4.2: Graph for Number of Move(Integer Value)

Figure 4.3: Graph for Number of Move(Float Value)

4.3.2 Number of Comparison for Heapsort

A value whether need to be moved or not is determined by number of comparisons. These

comparisons also contribute to complexity. For a specific dataset, the less number of com-

parison will be required the more optimal will be the algorithm. Number of comparisons for

integer and float values are tabulated below.

41

Table 4.3: Number of Comparison Required for Heapsort (Integer Value)

value child Test-01 Test-02 Test-03

2 1205 1225 1231

100 3 1211 1217 1225

4 1280 1288 1285

2 8379 8391 8429

500 3 8274 8262 8276

4 8804 8813 8801

2 117680 117673 117588

5000 3 114393 114363 114305

4 120817 120690 120757

2 255370 255504 255355

10000 3 246788 246733 246582

4 263174 262684 262496

2 550710 550674 550701

20000 3 533200 533182 533397

4 563312 563271 563253

2 1509888 1509712 1509773

50000 3 1459062 1458417 1458711

4 1546959 1546798 1547233

2 3219887 3219493 3219811

100000 3 3097345 3097288 3097589

4 3277686 3277948 3278181

2 18397368 18396350 18397203

500000 3 17732440 17731355 17733816

4 18748529 18747695 18748716

2 38792722 38793610 38795929

1000000 3 37291184 37292243 37294495

4 39551609 39552984 39553839

2 81586318 81586346 81588021

2000000 3 78403519 78404783 78401507

4 82992521 82993706 82995315

42

Table 4.4: Number of Comparison Required for Heapsort (Float Value)

value child Test-01 Test-02

2 1223 1246

100 3 1209 1229

4 1269 1299

2 8416 8423

500 3 8263 8259

4 8828 8792

2 117844 117632

5000 3 114346 114380

4 120820 120769

2 255389 255471

10000 3 246577 246601

4 262583 262642

2 550976 550709

20000 3 533537 533491

4 563092 563142

2 1510031 1509315

50000 3 1458933 1458358

4 1547222 1547170

2 3219500 3219291

100000 3 3097527 3097413

4 3276650 3277376

2 18396587 18396083

500000 3 17733491 17733920

4 18747136 18748637

2 21550579 38793454

1000000 3 21040889 37292201

4 22232631 39553927

2 81587739 81587699

2000000 3 78405481 78401907

4 82995911 82996570

43

Figure 4.4: Graph for Number of Comparison(Integer Value)

Figure 4.5: Graph for Number of Comparison(Float Value)

4.3.3 Time Required for Heapsort

Time is another important parameter that defines optimality of an algorithm. Therefore, in

our simulation we calculated the amount of time required as well for all possible combina-

tion. The test is performed in both windows 8 and linux 11.10 environment. We have used

a machine with processor Intel(R) core i3, clockspeed 2.93GHz and Ram 1.86 GB.

44

Table 4.5: Time Required for Heapsort in Linux and Windows Machine(Integer Value)

value child Test-01 Test-02

Linux Windows Linux Windows

2 226021 195981 228952 199480

100 3 226021 194931 204550 197380

4 236393 194230 240422 198081

2 570720 1262676 477084 1282974

500 3 474178 1262676 442581 1224530

4 683726 1559797 659793 1391463

2 2477909 1954908 2235097 1993054

5000 3 2286722 1924461 2027794 1911162

4 2637165 2089295 2563700 2053598

2 7261443 3345670 6410001 3426163

10000 3 6820791 3311025 5965735 3286177

4 6462947 3450311 6898447 3555650

2 5932292 7016110 6253252 6481012

20000 3 5386643 6386872 5918640 6305679

4 6125310 6515309 6063398 6527908

2 12529335 15236450 12618249 15345290

50000 3 11322036 13624160 11476509 13334388

4 12734967 13853037 13067133 13630459

2 27105518 28781868 27219154 28629633

100000 3 23150710 26073135 22674991 25786513

4 26102136 26543488 25669412 25860706

2 157835354 166660251 158427045 166829284

500000 3 131092896 141575069 131755902 142571421

4 146649505 143426387 147035389 144985133

2 403000000 353252440 344000000 356274742

1000000 3 290000000 317192338 287000000 306880253

4 315000000 320126100 309000000 309514444

2 760000000 847309675 800000000 813754627

2000000 3 661000000 682810461 668000000 707398692

4 716000000 683180025 714000000 688840718
45

Table 4.6: Time Required for Heapsort in Linux and Windows Machine(Float Value)

value child Test-01 Test-02

Linux Windows Linux Windows

2 209448 288372 207272 294322

100 3 192561 226429 201835 239027

4 206018 283473 209108 302021

2 1785971 975006 1270728 922860

500 3 1201782 961356 1202347 1055847

4 1256805 1293125 1246164 1322521

2 26167825 2194287 26495260 2126042

5000 3 24351576 2092097 24491238 2194985

4 25673879 2245730 25898246 2864819

2 56693780 3638244 58220559 3568250

10000 3 35960759 3520655 36585359 3512256

4 38271976 3666591 55469321 3791878

2 16239762 6646199 26224635 6700443

20000 3 14593914 6558707 19345959 6517061

4 17981931 6862127 21459762 6962917

2 21113349 16213210 22401178 15579073

50000 3 19399030 14685960 20867840 14661462

4 22529897 15475833 21818269 15225607

2 32697145 32175145 32375626 30410968

100000 3 32306802 29241033 31418026 28968060

4 35337080 29997309 35019767 30554804

2 137736446 172673419 142711690 180265925

500000 3 138676708 161111603 134541767 162089057

4 144169510 189426277 144388177 164800591

2 208453346 211193793 295747188 379948996

1000000 3 180860672 188088708 296667176 366867629

4 180607866 195648316 294818265 371138610

2 667035604 883147157 668785322 934004871

2000000 3 640019781 805433077 645587453 806117260

4 659041395 833739352 651123489 800463915
46

Figure 4.6: Time Taken in Windows Environment(Integer Value)

Figure 4.7: Time Taken in Linux Environment(Integer Value)

47

Figure 4.8: Time Taken in Windows Environment(Float Value)

Figure 4.9: Time Taken in Linux Environment(Float Value)

48

4.3.4 Discussion on Results

From the experimental results some observations can be identified. In case of move, 2 child

variant of heapsort requires maximum move, 3 child heapsort requires fewer move and four

child heapsort requires fewest move. This observation is true for both integer and float

values. But for comparison 3 child variant of heapsort is invariably less than both 2 child

and 4 child variant. So, we can comment that number of comparison contributes more in the

complexity than number of move.

Time require for heapsort is more in windows than that in linux. It is because windows

operating system runs number of background program which increases the time rquire to

complete the sort. On the other hand linux operating system exclusively completes one

operation. About the variants, two child heapsort requires more time where 3 and 4 child

heapsort takes simliar time to complete the heapsort. This observation holds true for both

integer and float values.

49

CHAPTER 5

CONCLUSION

Divide and conquer method is a widely used technology in computer science applications.

Some of the applications that use D & C technology can be named as mergesort, quicksort,

convex hull, closest pair etcetera. These algorithms have their own complexity which largely

depends on the performance of D & C technology. Most of these algorithms have average

case complexity O(nlogn) which do not take number of child into consideration.

Heapsort is another widely used algorithm based on D & C technology. To improve the per-

formance or optimality of heapsort we have worked with its number of child. Theoritically

it has been shown that if all the node of a tree has d child each then complexity of sort is

varied by d/logd. When replaced by value we found 3 to be the optimal value of number

of child. Therefore, standard algorithm of binary heapsort has been modified for 3 and 4

child variant. All three algorithms have been tested for optimality taking number of move,

number of compare and time as parameters.

Simulation with randomly generated numbers clearly supports our theoretically proven claim.

For both integers and floating point numbers we can see that heapsort with three child per-

forms better than 2 child or 4 child heapsort. Therefore we can say that optimal heapsort

can be done using the three child variant of heapsort.

5.1 Limitations

Our experiment was limited to heapsort only from the wide variety of applications that use D

& C technology. Due to resource and time limitation the thesis has been restricted to datasets

with maximum 20000000 values. The experiment was conducted on a single machine in two

different environment i.e windows and linux. Overcoming these limitations might display a

more decisive and acceptable result.

50

5.2 Recommendations for Further Research

Basing on our experimental results we recommend to extensively test three child variants

of the D & C based algorithms. This can certainly improve the performance of conven-

tionally used or practiced methods. If it is possible to obtain positive results for maximum

cases then it will be a impressive breakthrough in the respective field and may open further

opportunities to obtain more efficient and optimal algorithms.

51

REFERENCES

[1] Akepogu R. A., Palagiri R. R., Data Structures and Algorithms using C++, Dorling

Kindersley Pvt. Ltd., ISBN-978-81-317-5567-9, 1st Edition, page- 220, 2011.

[2] Barry W., Parallel Programming: Techniques And Applications Using Networked,

Pearson Education Inc. and Dorling Kindersley Publishing Inc., ISBN-81-317-0239-1,

2nd Edition, Page-335, 2007.

[3] Coreman T.H., Leiserso C.E., Rivest R.C., Stein C., Introduction to Algorithm, MIT

Press and McGraw-Hill, ISBN-0-262-03293-7, 2nd Edition, 2011.

[4] Du D.Z., Zhang X.S., Algorithms and Computation: 5th International Symposium,

ISAAC ’94, Beijing, P.R chaina, Proceedings, ISBN-3-540-58325-4, Page-295, Au-

gust 25-27, 1994.

[5] Du D. Z., Ko K. I, Advances in Algorithms, Languages, and Complexity, Kluwer Aca-

demic Publisher, ISBN-0-7923-4396-4, 1st Edition, Page-159, 1997.

[6] Gobel F. and Hoede C., On an optimality property of ternary trees, Information and

Control 42(1), 10-26 , July 1979.

[7] Gupta P., Agarwal V., Varshney M., Design and Analysis of Algorithms, PHI learning

Pvt Ltd, ISBN-978-81-203-3421-2, 2nd Edition, Page-38, 2008.

[8] http://en.wikipedia.org/wiki/External sorting, last accessed on November 30, 2013.

[9] http://en.wikipedia.org/wiki/Heapsort, last accessed on November 30, 2013.

[10] http://en.wikipedia.org/wikiKaratsuba algorithm, last accessed on December 17,

2013.

[11] http://pages.cs.wisc.edu/ṽernon/cs367/notes/14.SORTING, last accessed on November

29, 2013.

[12] http://en.wikipedia.org/wiki/Closest pair of points problem, last accesssed on Decem-

ber 18, 2013.

52

[13] Islam M., Kaykobad M., Murshed M.M. and Amyeen E., “3 is a more promising al-

gorithmic parameter than 2”, Computers and Mathematics with Applications, vol-36,

page 19-24, May 1998.

[14] Islam, T.M. and Kaykobad M., “Worst-case analysis of generalized heapsort algorithm

revisited”, International Journal of Computer Mathematics, Vol. 83, No.1, page 59-67,

January 2006.

[15] Islam, T.M. and Kaykobad M., “Worst-case analysis of generalized heapsort algorithm

revisited” Proceedings of the International Conference on Computer and Information

Technology, Dhaka,pp. 224-228, 18-20 December.

[16] Karim M.Z., Akter N. Optimum Partition Parameter of Divide-And-Conquer Algo-

rithm: Solving Closest-Pair Problem, Publisher: LAP LAMBERT Academic Publish-

ing, ISBN-10: 3848426722 ISBN-13: 978-3848426720, March 20 2012.

[17] Knuth D., The Art of Computer Programming, Volume 1, Addison-Wesley, Paris, 1972.

[18] Kolesnikov A., Design of Spatial Information Systems:Convex Hull, University of

Joensuu, Joensuu, Finland.

[19] Lin X., “Computing theory 98”: proceedings of the 4th Australasian Theory Sympo-

sium, CATS’98, Pert, Page-93, 2-3 February 1998.

[20] Megiddo N., Theoretical Computer Science 10, page-337-341, 1982.

[21] Miller R., Computational Geometry(Divide and Conquer), 1996.

[22] Mount D.M., Computational Geometry, University of Maryland, College Park, 2000.

[23] Neapolitan R. E., Naimipour K., Foundations of Algorithms Using Java Pseudo code,

Jones and Bartleet Publishers, ISBN-978-443-5000, 2nd Edition, 2004.

[24] Pinter S.S. and Wolfstahl Y. “Embedding ternary tree in VLSI arrays”, Information

Processing Letters 26, page-187-191, 1987.

[25] Roux S.D. The structure of Divide and Conquer Algorithms, 1983.

53

[26] Sedgewick R., Algorithms in C: Fundamentals, Data Structures, Sorting, Searching,

Parts 1-4, Dorling Kindersley Publishing Inc, ISBN-81-317-1291-5, 3rd Edition, Page-

336, 2007.

[27] Sedgewick R., Algorithms in Java, Pearson Education Inc., ISBN-0201361205, 4th

Edition, Page-348, 2004.

[28] Souvaine D., Dynamic Convex Hull and Order Decomposable Problems, Tufts Uni-

versity, 2005.

54

