
 

EXPERIMENTAL VERIFICATION OF THE INSIDE INTEGRATION METHOD (IIM) FOR THE 

SIMULATION OF SHALLOW WATER FLOW RUNNING ONTO A SLOPING GROUND 
 

Md. Abdul Aziz 
(1)

,  Md Sohail Us Samad 
(2)

, Upal Mahamud 
(3)

, Md Nurul Huda
 (4)

 
 

Military Institute of Science and Technology 
(1,2,4) 

Institute of Water Modeling
 (3) 

 

 This study shows the validation of a new numerical scheme with hydraulic experiment. The proposed 

scheme is a new computational scheme to solve shallow-water equations for surface waves shoaling on a 

slope. Experiment was carried out in a wave tank set on an oscillating bed, which can be moved, uniformly 

equal in both directions. Used flume had a flat bed of 50.5 cm and having a constant slope of 11.3
0
 in one 

end whereas the other end is fixed with a vertical wall. As initial condition, water depth was 2cm, wave 

period was 3.5 s and the movement of the oscillating bed was 6 cm. From the comparisons of the time 

variation of the moving boundary and the water level along the tank, numerical computation was found to 

provide good agreement with laboratory experiments. 
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1. INTRODUCTION 

 

The behavior of long-wave shoaling on sloping 

beaches has received intensive study by many 

scientists and engineers. Primary impacts of the 

behavior of wave shoaling with a moving boundary 

are inundation in the form of tsunamis and storm 

surge, causing exacerbation of flooding and beach 

erosion. These impacts, in turn, cause higher 

ordered impacts in a wide range of coastal system. 

Since there exist highly productive ecosystems, 

large portion of the world population, and intensive 

socioeconomic activities in the coastal zone, it is 

crucial to predict the degree and range of the 

possible impacts of wave shoaling in a wide coastal 

area. 

 

Several studies had been carried out to solve 

shallow-water equations to waves shoaling on a 

slope. Carrier and Greenspan (1958) derived a 

nonlinear transformation from Stoker non-linear 

theorem to reduce the two equations to a single 

linear equation and solved several initial value 

problems. But the analytical solution is obtained 

under some simplifications, like a uniform slope. 

The approach can solve some initial value 

problems, which is not conclusive for all the cases 
of wave shoaling. 

 

Eulerian scheme is used in the time varying 

fluid domain in the past. The common practice was 

either use wet-dry interface or a coordinate 

transformation technique. Gopalakrishnan and Tung 

(1983) developed a finite element model for one 

horizontal dimension, whish used a fixed grid, 

except at the coastline where an element was 

allowed to deform to follow the shoreline and to 

split into two elements if it became too stretched. 

Some other implementation of fixed grid method 

can be found in Liu et al. (1995) and Balzano 

(1998). These methods determine the position of 

the shoreline as one of the fixed grid points, which 

means shoreline is moved one or more x at a time. 

This makes the wet-dry methods more prone to 

instabilities.  

 

Most of the models used Lagrangian frame of 

scheme use fixed computational grid exclusively 

since the independent variables are the initial 

coordinates of the fluid particles, the computational 

grid does not distort, even as the shoreline moves 

that is the motivation for performing the 

computation in this frame of reference. Zelt and 

Raichlen (1989) describe a finite element technique 

to study the propagation of long waves in two 

dimensions in regions of arbitrary shape with 

vertical or shopping boundaries. 

 

 DeSilva et al. (1996) include effect of surface 

tension, in his model. R.S.Prasad, I.A. Svendsen 

(2003) used two different ways to solve in two 

steps, the first is to establish an equation that 

determines the motion of the shoreline based on the 

local momentum balance then to develop and 

implement into a shoreline model the capability of 

accommodating a changing computational domain.  

 

Ishikawa et al. and Nakayama et al. proposed a 

new computational algorithm where hydraulic 
boundary conditions are taken as constraint 

conditions at the moving shoreline at fixed regular 

grid and partially integrating the weighted residual 

equations to deduce its weak form in which the 

constraint conditions are embodied. Detail of the 

model is given in the succeeding chapter.    

 



 

 

2. MODEL DESCRIPTION 

 

2.1 Governing equations 

 

   Assuming the uniformity of horizontal velocity 

(in a water column) and the hydrostatic pressure, 

we obtain shallow-water Equations (1) and (2), in 

which Equation (1) is the equation of continuity and 

Equation (2) is the momentum equation. 
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Where t is time, x is the distance toward the shore, 

h is the water depth, z is the bed elevation and u is 

the water velocity in x direction. 

 

2.2. Time splitting 

 

   In a numerical simulation of wave shoaling, 

accurate estimation of the shoreline motion, which 

coincides with the water particle, is important 

essentially. Accordingly, Lagrangean tracing of the 

shoreline motion will be implemented more easily 

by introducing the “time splitting” of the governing 

equations because the procedure of tracing can be 

included in the advection phase calculation of flow 

field. 

 

Non-advection phase 
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Advection phase 
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2.3 Calculation of non-advection phase 

 

2.3.1 Shape and weight functions 

 

   To satisfy the boundary condition on a moving 

boundary, the finite-element method is applied to 

solve advection phase. For an element with a 

moving boundary, linear or higher order functions 

have to be used as shape and weight functions to 

include the condition on a moving boundary. In this 

paper, we decided to apply linear function as shape 

and weight functions. 

 

[Shape Function]
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Where is a local coordinate in an element 

,/)( xxx i ii xxx 1 is the length of element 

and xi and xi+1 is the locations of the left and right ends of 
the element, respectively. 

 
 

[Weight Function] 

   For an element with a moving boundary, we 

decided to use linear function as weight function. In 

contrast to an element with a moving boundary, it is 

not needed for an element filled with water to be 

solved with linear function as weight function 

because there are no moving boundaries and using 

simpler weight function enables computation time 

to be shortened. Delta function is, thus, applied to 

an element filled with water. 

 

For element filled with water 
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For elements on the moving boundary 
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Elementary matrix for inside water elements 

Substitution of Equations (7) to (9) into Equations 

(3) yields 
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Equations (10) can be modified for an element 

filled with water as 
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   In the same way for the momentum equation we 

can obtain the elementary equations.                                                                     
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The matrix of the elementary Equations (15)  
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Runge-kutta gill method was used for time 

integration. 

 

2.3.2  For an element with a moving boundary 
 

  We used linear functions as shape and weight functions. 
Here we defined xs to as the location of a moving boundary 

and integration is done in the area filled with water, 

si xxx . (Figure 1)          
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   The boundary condition at the moving boundary 

(x=xs) is h=0. Equation (3) becomes 
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Where s is the position of the shore point on the local 

coordinate ( xxs ) 

 

   By taking a partial integral of the term of the right 

hand side, substituting the first boundary condition 

at s , and taking the return process, we get the 

weak form of weighted residual equation. 
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Where, xxx iss /)(  

 

   The above equation can be written in a matrix 

form 

23

13

2

1

2221

1211

~

~

B

B

x

t

H

H

BB

BB                (19) 
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In case of momentum Equation (4) from x=xi to 

x=xs  gives 
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The matrix form of the equation (25)   
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Where, B11=A11, B12=A12, B21=A21,B22=A22 and 

 

)
~~

)(
2

()
~~

)(
2

( 22

2

11

2

13 ZHZHB
ns

s

ns
s

    (28) 

 

)
~~

()
~~

( 22

2

11

2

23
22

ZHZHB
nsns           (29) 

  h

0

xi+1

0

xi xs xi+1 x

s 1

hs=0

11

~
,

~
ixi hh

11, i
n

xi
n hh

ixi hh
~

,
~

n

ixi
n hh ,

11

~
,

~
ixi hh

11 , i
n

xi
n hh

Fig(a): Movement of shore point (Non-advection phase)

h

0

xi+1

0

xi xs xi+1 x

s 1

hs=0

11

~
,

~
ixi hh

11, i
n

xi
n hh

ixi hh
~

,
~

n

ixi
n hh ,

11

~
,

~
ixi hh

11 , i
n

xi
n hh

Fig(a): Movement of shore point (Non-advection phase)

h

0

xi+1

0

xi xs xi+1 x

s 1

hs=0

11

~
,

~
ixi hh

11, i
n

xi
n hh

ixi hh
~

,
~

n

ixi
n hh ,

11

~
,

~
ixi hh

11 , i
n

xi
n hh

0

xi+1

0

xi xs xi+1 x

s 1

hs=0

11

~
,

~
ixi hh

11, i
n

xi
n hh

ixi hh
~

,
~

n

ixi
n hh ,

11

~
,

~
ixi hh

11 , i
n

xi
n hh

Fig(a): Movement of shore point (Non-advection phase)
Figure 1. Movement of shoreline non-advection 

phase 



 

 

   Construction of the set of overall equations 

Total matrix is constructed from Equation 19 and 

Equation 27 the total matrix become as below 
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2.3.3 Calculation for advection phase 
 

   In the advection calculation, the water surface 

elevation is changed through the process of 

conventional CIP at each grid point in the water ( xi 

). Simultaneously, the moving boundary (xs) moves. 

Water depth at the outside grid point (xi+1) is 

extrapolated from the values at xi and xs. Velocity 

field is also shift in the same way. Velocity 

interpolated from the values at xi and xi+1. 
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  Figure 2.Movement of shore line advection phase. 

 

 

Modeling of wave breaking to shallow-water 

equations 

 

   Because wave nonlinearity is not large in this 

study, linear mild-slope assumptions by Watanabe 

and Dibajnia (1988) may be applied to this 

problem. The simplified damping term due to wave 

breaking in shallow-water equations is given as 
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   Where MD is the damping term D  (damping co-

efficient) is 2.5 and s  is the gradient of slope. 

Using bottom friction enables the second term in 

the right hand side of Equation (32) to define as 
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From Eq. (31) and (32) 
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Wave breaking is considered to occur when the 

horizontal velocity is larger than wave speed, which 

corresponds to that the Froude number is more than 

1. Because wave breaking disables shallow-water 

assumption to be satisfied, the Froude number may 

be 

assumed to be 1 in a wave-breaking zone to apply 

shallow water equations to this problem. 
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   In numerical computations, we define the wave-

breaking zone as the area from the wave-breaking 

point toward inshore and use Equation (35) to 

model wave breaking in a wave-breaking zone. 

Experimental works in this study are followed from 

the succeeding section. 

 

3. EXPERIMENTAL WORKS 
 

3.1. Experimental set up 
 

Extensive experiments had been carried out for 

checking the position of moving boundary and the 

flow profile at the time of run up and run down 

flow on a sloping beach. Figure 3 shows the 

dimensional sketch of the experiment set up.  

   The wave tank is 2 meter long, 0.7m high and 0.3 

m wide, which is equipped with a motor that is 

controlled by a computer. The bottom bed of the 

wave tank is oscillating type, which can be move 

uniformly equal distance in both directions as a pair 

of rail track is fixed in the bottom for smooth 

movement of the bed.  

 

   A flume is fixed in the bed of the wave tank, 

which is shown in Figure 4. The length of the flume 

is 80.5cm, height is 13.5 cm and width is 22.5 cm. 

One grid of 1 cm square is attached on the flume to 

read the value of the flow profile at different point. 
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One scale is also fixed on the top of the flume to 

measure the oscillation and another scale fixed on 

the bed of the slope to read the value of the moving 

boundary. One side of the flume is fixed with a 

rigid vertical wall where as in the other end of the 

flume has a constant slope of 11.3
0
.  

 

One mirror is fixed just above the flume (shown in 

figure 3) to locate the value of the moving boundary 

while using movie camera from the orthogonal 

view of the flume. Colored water is used and proper 

lighting was assured for betterment of analyzing 

flow profile. Special care was taken to locate the 

position of the flow accurately and to locate the 

position of the moving boundary at the edges due to 

flow running on both directions just before reaching 

the top. 

 

 Image processing technique was used to locate the 

position of the flow profile inside the grid to reduce 

the eye estimation error. Many trials had been given 

to find a uniform weakly nonlinear flow on the 

slope. The positioning of the video camera was 

poised just in the middle of the flume and bed 

elevation of the bed and moving camera made 

equal. By changing the different initial condition set 

the program we could change out wave period and 

oscillation of the flume. 

 

  The desire initial condition was achieved by 

giving many trials, using the same initial condition 

the experiment had been carried out several times to 

enhance its accuracy. Before reaching the pick 

some turbulence at the moving edge was observed 

and energy dissipation calculate was needed to 

match the simulation result with the actual 

phenomena of the experiment.  
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Figure 3. Dimensional sketch of the experimental setup 
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Figure 4. Dimensional sketch of the flume 
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3.2  Experimental results 
 

   From the experiment, it was found that the depth 

of water around 2 cm to 2.5cm, wave period of 3 

to 3.5 sec produce desire flow profile on the slope. 

In the study case used depth of water is 2 cm, 

wave period is 3.5 second and oscillation of the 

flume is 6 cm. 

 

   Consistent 4 cm interval data of the whole flume 

was analyzed. The moving boundary varies 5.5 

cm in its run-up and rundown process therefore 

amplitude variation of the wave is 1.1 cm which is 

quite big considering the initial water head, 

moreover before reaching the pick some 

turbulence at the moving edge was observed and 

energy dissipation calculate was needed to match 

the simulation result with the actual phenomena of 

the experiment.  

 

  Another important fact of this experiment is 

finding the uniform wave profile with respect to 

the moving flume. Figure 5 shows the variation of 

moving boundary with respect to the flume 

position. From this figure we can understand the 

initial high frequency flow is not uniform with the 

movement of the flume. After 10 sec of movement 

of the flume the variation of the moving boundary 

becomes uniform. 

 

 Figure 6 (a) to (d) of show the flow profile in run 

up and run down process on the sloping ground. 

From these figure we can understand more than 

one wave pick was found on the sloping ground in 

any instance of time. Consistent 4 cm interval data 

of the whole flume was analyzed. The moving 

boundary varies 5.5 cm in its run-up and rundown 

process therefore amplitude variation of the wave 

is 1.1 cm which is quite big considering the initial 

water head, moreover before reaching the pick 

some turbulence at the moving edge was observed 

and energy dissipation calculate was needed to 

match the simulation result with the actual 
phenomena of the experiment. 

Most of previous approaches made by many 

authors the use gauge to measure the depth of at 

some interval points therefore there is a possibility 

not to have consistent data but in the present study 

we use 4 cm uniform interval throughout the 

whole flume which good consistence data 

throughout the whole flume.  
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Figure 6. Flow profile in run up and 

rundown process on the sloping ground 

 

4. VALIDATION OF THE MODEL 

 

Many previous studies have applied shallow-

water equations to solve the problem with a 

moving boundary, Carrier and Greeenspan (1958), 

Sielecki and Wurtele (1970), Gopalakrishnan and 

Tung (1983) R.S.Prasad, I.A.Svendsen (2003). 

Using the present model surface waves shoaling 

on a slope was solved successfully by comparing 

with the analytical solution derived by Carrier and 

Greenspan (1958). However, most of all previous 

studies have been verified by comparing with the 

theory, and the models have not been applied to 

reproduce the laboratory experiments whose 

results may include energy dissipation due to a 

wall and wave breaking. Therefore, we apply the 

proposed model to reproduce the laboratory 

experiment results by including the energy 

dissipation due to a wall and wave breaking. 

 

4.1. Comparisons of results 

 

Two tests were used to verify the proposed 

model, the time series of the location of a moving 

boundary and water level along a tank. We used 

the same parameters for the modeling of wave 

breaking in all cases. With regard to the time 

series of the location of a moving boundary, the 

computation and experiment results agreed well 

(Figure 7). Higher frequency waves were also 

found to occur with the same phase between the 

computations and experiments. However, the peak 

values from computations were slightly larger 

than the experiments while the stable cyclic 

variations appeared Figure 8 (a) to (f). It may be 

because of the surface tension effect. As the depth 

of water is only 2cm the effect affect significantly 

the outcome of the result (Desilva et al 1996).  
 

   The used value of the theoretical bottom 

friction for calculating wave breaking is another 

factor that might influences the results. The delay 

time of the flume at the two edges might also 

influence the outcome of the results moreover the 

eye estimation error due to measuring gauge is 

also another factor to need to be noted. 
 

 
 

Figure: 12-a Showing flow profile of the moving boundary. 

 

Exp data: 

Numerical data: 

 
 

Figure 7. Time (s) vs height (cm) curve of the 

moving boundary 

 

The following figure shows the 

comparison of the numerical and 

experimental data. 
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(d) 
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(f) 

 

Figure 8. Run down and run up of long 

wave shoaling on to a sloping ground. 

Here distance of flow is in x directions 

whereas height of water is in y directions 

 

 

4.2. Discussion of the results 

 

Good agreements between the numerical 

simulation and laboratory experiment had been 

found. It should be noted that the parameters for 

wave-breaking model were determined from 

literatures in the numerical computations to 

reproduce the different experiment results with 

different conditions; the water depth, the 

oscillation period of the tank, and the amplitude of 

the oscillation. 

 

Some errors may have appeared due to the 

lack of accuracy of the measuring gauge. The 

delay time of the flume at the two edges might 

also influence the outcome of the results. 

Adhesion force between water and flume due to 

surface tension also may reduce the agreement 

between computations and experiments. 

 

4.3. Conclusion 

 

At the time of the experiment, we observed 

the flume stopped for a fraction of seconds 

before moving to the opposite directions. 

Therefore, special attention was given to 

measure the location of the moving boundary. 

 

Although high attention has been given to 

minimize eye estimation error, some irregularities 

of matching were found. Moreover, surface 

tension is quite significant at the edges because 

the water depth is relatively small with amplitude 

variation.  

 

Although there were some irregularities 

between the numerical computation and 

experimental results, most part of the result from 

laboratory experiments agreed with computation 

results. Therefore, the proposed model could be 

applicable to solve wave-shoaling problem. 
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