EFFICIENCY IMPROVEMENT OF DC TO DC BOOST CONVERTER WITH TWO INPUT POWER SOURCES FOR RENEWABLE ENERGY APPLICATION

THE THESIES IS SUBMITTED

By

LT MD. MEHADEE HASAN (201116009) ASHRAFUL ISLAM (201116050) SANZANA ISLAM SHOUMY (201116053)

IN PARTIAL FULFILLMENT OF THE REQUIRMENT FOR THE DEGREE OF

BACHELOR OF SCIENCE IN ELECTRICAL ELECTRONICS AND

COMMUNICATION ENGINEERING

MIST DEPARTMENT OF ELECTRICAL ELECTRONICS AND COMMUNICATION ENGINEERING MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY (MIST)

DECEMBER, 2014

APPROVAL

The Thesis Paper outline and execution on "EFFICIENCY IMPROVEMENT OF DC TO DC BOOST CONVERTER WITH TWO INPUT POWER SOURCES FOR RENEWABLE ENERGY APPLICATION." has submitted to the accompanying part in fractional satisfaction of the necessities for the level of Bachelor of Science in Electrical Electronic and Communication Engineering by the accompanying understudies and has been acknowledged as palatable.

SUBMITTED

BY

LT MD.MEHADEE HASAN (201116009) ASHRAFUL ISLAM (201116050) SANZANA ISLAM SHOUMY (201116053)

Supervisor

Dr. Mohammad Jahangir Alam Professor

Department of Electrical and Electronic Engineering, BUET

Declaration

It is hereby declared that this thesis or any part of it has not been submitted elsewhere for the award of any degree or diploma.

Signature of the Candidates

LT. Md. Mehadee Hasan (201116009)

Ashraful Islam (201116050)

Sanzana Islam Shoumy (201116053)

DEDICATED

TO OUR

BELOVED PARENTS

"If you undertake projects in mind, never leave for tomorrow."

Michelangelo Saez, Zori 2ª Parte

"It does not take much strength to do things, but it requires a great deal of strength to decide what to do."

Elbert Hubbard

Acknowledgement

We thank and praise Almighty Allah for giving us the ability to complete this thesis successfully.

We would like to express our gratitude and deep appreciation to our supervisor, Dr. Mohammad Jahangir Alam, Professor, Department of Electrical and Electronic Engineering, BUET, for his helpful suggestions, encouragement, guidance and individual assistance and constant supervision that have enabled us to finish this work.

We are grateful to the Dr. Mohammad Ali, Professor, Department of Electrical and Electronic Engineering, BUET. We would like to convey thanks to faculty of the department for their support during the work.

In addition we would like to thank Mr. Jannatul Ferdaous Rubel, Lecturer Uttara Universit for his regular support and required information regarding the subject. We also acknowledge the help of individuals who contributed to the success completion of the work.

Last but not the least, it would be unjust if we do not mention about the contribution of our family members who have always encouraged us and rendered their supports to continue our study and thesis work.

LT.MD.MEHADEE HASAN ASHRAFUL ISLAM SANZANA ISLAM SHOUMY

DHAKA, DECEMBER, 2014

Abstract

Most power electronic systems, the instantaneous input and output power vary by time and are not exactly identical with each other. Hence providing a good match between them is a complicated task to deal with if not impossible. A DC-to-DC converter is a device that accepts a DC input voltage and produces a DC output voltage. Typically the output produced is at a different voltage level than the input. The aim of this study is to develop a high-efficiency converter with two input power sources for a distributed power generation mechanism. There are different type of methods to get high voltage and efficiency of a dc-dc boost converter such as interleaving, switch capacitor based, SMPS etc. The proposed converter can boost the varied voltages of different power sources in the sense of hybrid power supply to a stable output dc voltage for the load demand. According to various situations, the operational states of the proposed converter can be divided into two states including a single power supply and a dual power supply. In the dual power-supply state, the input circuits connected in series together with the designed pulse width modulation can greatly reduce the conduction loss of the switches.

Table of Content

ii
iii
iv
vi
vii
viii
xi
xvi
xvii

Chapter 1: Introduction

1.1	Introduction	1
1.2	Background	2
1.3	State of the Problem	2
1.4	Objective	3
1.5	Layout of the Thesis	3

Chapter 2: DC-DC Converters

2.1	Introduction	4
2.2	DC/DC Converters	4
2.3	Basic Operation Principle	
	2.3.1 Basic (one coil) type DC/DC Switching Regulator	5
2.4	Basic operation Principles of DC/DC Converters	6
2.5	Switch Mode DC- DC Converters (SMPS)	8
2.6	Functions of DC-DC converters	10
2.7	Review of DC-DC Converters	10
	2.7.1 Buck Converter	10
	2.7.2 Boost Converter	12
	2.7.3 Buck- Boost Converter	14

	2.7.4 Ĉuk converter	16
2.8	Converter Comparison	19
2.9	Applications of DC-DC Converters	20
2.10	Application in Renewable Systems	21

Chapter 3: Study of Boost Converter

3.1	Boost	Converter		23
	3.1.1	Overview	of Boost Converter	23
	3.1.2	Backgrour	nd of DC/DC Boost Converter	23
	3.1.3	Operating	Principle of Boost Converter	24
	3.1.4	Continuou	is Mode	25
	3.1.5	Discontinu	ious Mode	27
	3.1.6	Advantage	es of Boost Converter	28
	3.1.7	Applicatio	ons of Boost Converter	28
3.2	Study	of Different	t Types Boost Converter	29
	3.2.1	Charge Pu	mp (Charge Capacitor Based) DC/DC Boost Converter 31	
	3.2.2	Inductor-E	Based DC/DC Boost Converter	33
	3.2.3	Single-end	led Primary-Inductor Boost Converter (SEPIC)	33
		3.2.3.1	Circuit operation	33
		3.2.3.2	Continuous Mode	34
		3.2.3.3	Discontinuous Mode	36
		3.2.3.4	Reliability and Efficiency	36
		3.2.3.5	Disadvantages	36
	3.2.4	Interleaved	d Boost DC-DC Converter	37
		3.2.4.1	Interleaved Boost Converter Operation	38
	3.2.5	Multiple (or Dual) Input Converter	39
		3.2.5.1	Conventional Parallel-Connected Converters	41

42

69

Chapter 4: Design of a Novel Dual Input DC/DC Boost Converter

4.1	Introduction	43
4.2	Circuit Description	44
4.3	Result and Simulation	45
4.4	Summary of Data	65
4.5	Comments on Result	66

Chapter 5: Conclusion, Limitation & Recommendation

5.1	Conclusion	67
5.2	Limitation	67
5.3	Recommendation for Future Work	68

REFERENCES

Х

LIST OF FIGURE

Fig 2.1	General Block Diagram of a DC/DC Switching Regulator	5
Fig 2.2	Step-Up Circuit	5
Fig 2.3	Step-Down Circuit	6
Fig 2.4	Current flow when the FET is turned ON in the Step-Up circuit	7
Fig 2.5	Current flow when the FET is turned OFF in the Step-Up circuit	7
Fig 2.6	Current flow when the FET is turned ON in the Step-Down circuit	8
Fig 2.7	Current flow when the FET is turned OFF in the Step-Down circuit	8
Fig 2.8	Block Diagram of an SMPS	9
Fig 2.9	DC-DC Buck Converter	11
Fig 2.9(a)	DC-DC Buck Converter Equivalent circuit	11
Fig 2.9(b)	DC-DC Buck Convert Equivalent Circuits with Continuous iL	11
Fig 2.10	DC-DC Boost Converter Circuit Diagram	13
Fig 2.10a	DC-DC Boost Converter Equivalent Circuit	13
Fig 2.10b	DC-DC Boost Converter Equivalent Circuit with Continuous i_{L}	13
Fig 2.11	DC-DC Buck-Boost Converter Circuit with Continuous $i_{\rm L}$	15
Fig2.11a	Buck-Boost Converter circuit with continuous iL	15
Fig2.11b	Buck-Boost Converter circuit with continuous i_L	15
Fig 2.12	DC-DC Cuk Converter Circuit with Continuous i_L	17
Fig 2.13	Comparison of voltage Ratio	19
Fig 3.1	The Basic Schematic of a Boost Converter	23
Fig3.2	Schematic of a boost converter	24
Fig 3.2.a	The Two Configurations of a Boost Converter	25
Fig 3.3	Waveforms of Current and Voltage in a Boost Converter	
	Operating In Continuous Mode	25

Fig 3.4	Waveforms of Current and Voltage in a Boost Converter	
	Operating In Discontinuous Mode	27
Fig 3.5	An Unregulated, Doubling Charge Pump	29
Fig 3.6	A Regulated Charge Pump	30
Fig 3.7	Fixed Frequency, Continuous Mode Inductor-based DC/DC	31
	Converter Timing	
Fig 3.8	A Buck Converter	32
Fig 3.9	A Boost Converter	32
Fig 3.10	SEPIC-Switching-Voltage-Regulator Topology	33
Fig 3.11	With S1 Closed Current Increases through L1 (green)	
	and C1 Discharges Increasing Current in L2 (red)	35
Fig 3.12	With S1 Open Current through L1 (green) and	
	Current through L2 (red) Produce Current through the Load	35
Fig 3.13	Power Supply System of FCEV	37
Fig 3.14	Interleaved Boost DC-DC Converter	38
Fig 3.15	Timing Diagram of Control Signal	38
Fig 3.16	Photovoltaic System using Multiple Converters	40
Fig 3.17	Hybrid Electric Vehicle System using Multiple Converters	41
Fig 3.18	Photovoltaic System using a Multiple Input Converters	41
Fig 3.19	Parallel Connected Converters	42
Fig 3.20	Series Connected Converter	42
Fig 4.1	Proposed Dual- Input Boost Converter	44
Fig 4.2	Dual input dc-dc boost converter at f=10 kHz, D=0.90, RL=50 Ω	45
Fig 4.3	Switching Pulse of Dual Input dc-dc Boost Converter at	
	f=10 kHz, D=0.90, RL=50Ω	46
Fig 4.4	Output Voltage of Dual Input DC-DC Boost Converter	
	at f=10 kHz, D=0.90, RL=50Ω	46
Fig 4.5	Output Current of Dual Input DC-DC Boost Converter	
	at f=10 kHz, D=0.90, RL=50Ω	46
Fig 4.6	Input Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=10 kHz, D=0.90, RL=50Ω	47

Fig 4.7	Output Voltage of Dual Input DC-DC Boost Converter	
115 4.7	at f=10 kHz, D=0.90, RL=100 Ω	47
Fig 4.8	Output Current of Dual Input DC-DC Boost Converter	1,
115 1.0	at f=10 kHz, D=0.90, RL=100 Ω	48
Fig 4.9	Input Current for Power Source-1&2 of Dual Input	10
119 119	DC-DC Boost Converter at f=10 kHz, D=0.90, RL=100 Ω	48
Fig 4.10	Output Voltage of Dual Input DC-DC Boost Converter	10
118 1110	at f=10 kHz, D=0.75, RL= 20Ω	49
Fig 4.11	Output Current for Power Source-1&2 of Dual Input	.,
8	DC-DC Boost Converter at f=10 kHz, D=0.75, RL= 20Ω	49
Fig 4.12	Input Current for Power Source-1&2 of Dual Input	-
8	DC-DC Boost Converter at f=10 kHz, D=0.75, RL= 20Ω	49
Fig 4.13	Output Voltage for Power Source-1&2 of Dual Input	
C	DC-DC Boost Converter at f=10 kHz, D=0.75, RL= 50Ω	50
Fig 4.14	Output Current for Power Source-1&2 of Dual Input	
C	DC-DC Boost Converter at f=10 kHz, D=0.75, RL= 50Ω	50
Fig 4.15	Input Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=10 kHz, D=0.75, RL=50Ω	50
Fig 4.16	Output Voltage for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=10 kHz, D=0.75, RL=200Ω	51
Fig 4.17	Output Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=10 kHz, D=0.75, RL=200Ω	51
Fig 4.18	Input Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=10 kHz, D=0.75, RL=200Ω	51
Fig 4.19	Output Voltage for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=10 kHz, D=0.50, RL=50Ω	52
Fig4.20	Output current of Dual input dc-dc boost converter at f=10 kHz,	
	D=0.5, RL=50Ω	52
Fig 4.21	Output Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=10 kHz, D=0.75, RL=20Ω	52
Fig 4.22	Output Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=10 kHz, D=0.75, RL=20Ω	52
Fig 4.23	Input Current for Power Source-1 of Dual Input	
	DC-DC Boost Converter at f=10 kHz, D=0.75, RL=20Ω	53

Fig 4.24	Input Current for Power Source-2 of Dual Input	
	DC-DC Boost Converter at f=10 kHz, D=0.75, RL=20Ω	53
Fig 4.25	Output Voltage for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=10 kHz, D=0.25, RL=50Ω	53
Fig 4.26	Output Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=10 kHz, D=0.25, RL=50Ω	53
Fig 4.27	Input Current for Power Source-1 of Dual Input	
	DC-DC Boost Converter at f=10 kHz, D=0.15, RL=50Ω	54
Fig 4.28	Output Current of Dual Input dc-dc boost converter	
	at f=10 kHz, D=0.15, RL=50Ω	54
Fig 4.29	Input Current for Power Source-1 of Dual Input	
	DC-DC Boost Converter at f=10 kHz, D=0.15, RL=50Ω	54
Fig 4.30	Input Current for Power Source-2 of Dual Input	
	DC-DC Boost Converter at f=10 kHz, D=0.15, RL=50Ω	54
Fig 4.31	Output Voltage for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=20 kHz, D=0.75, RL=50Ω	55
Fig 4.32	Output Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=20 kHz, D=0.75, RL=50Ω	55
Fig 4.33	Input Current for Power Source-1 of Dual Input	
	DC-DC Boost Converter at f=20 kHz, D=0.75, RL=50Ω	55
Fig 4.34	Input Current for Power Source-2 of Dual Input	
	DC-DC Boost Converter at f=20 kHz, D=0.75, RL=50Ω	55
Fig 4.35	Output Voltage for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=20 kHz, D=0.50, RL=20Ω	56
Fig 4.36	Output Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=20 kHz, D=0.50, RL=20Ω	56
Fig 4.37	Input Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=20 kHz, D=0.50, RL=20Ω	56
Fig 4.38	Output Voltage for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=20 kHz, D=0.25, RL=50Ω	57
Fig 4.39	Output Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=20 kHz, D=0.25, RL= 50Ω	57
Fig 4.40	Input Current for Power Source-1 &2 of Dual Input	
	DC-DC Boost Converter at f=20 kHz, D=0.25, RL= 50Ω	57

Fig 4.41	Output Voltage for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=20 kHz, D=0.1, RL=50Ω	58
Fig 4.42	Output Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=20 kHz, D=0.10, RL=50Ω	58
Fig 4.43	Input Current for Power Source-1 &2 of Dual Input	
	DC-DC Boost Converter at f=20 kHz, D=0.10, RL=50Ω	58
Fig 4.44	Output Voltage for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=25 kHz, D=0.9, RL=50Ω	59
Fig 4.45	Output Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=25 kHz, D=0.9, RL=50Ω	59
Fig 4.46	Input Current for Power Source-1 & 2 of Dual Input	
	DC-DC Boost Converter at f=25 kHz, D=0.9, RL=50Ω	59
Fig 4.47	Output Voltage for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=20 kHz, D=0.9, RL=100Ω	60
Fig 4.48	Output Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=20 kHz, D=0.9, RL=100Ω	60
Fig 4.49	Input Current for Power Source-1& 2 of Dual Input	
	DC-DC Boost Converter at f=20 kHz, D=0.9, RL=100Ω	60
Fig 4.50	Output Voltage for Power Source-1 & 2 of Dual Input	
	DC-DC Boost Converter at f=25 kHz, D=0.75, RL=1000Ω	61
Fig 4.51	Output Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=25 kHz, D=0.75, RL=1000Ω	61
Fig 4.52	Input Current for Power Source-1 & 2 of Dual Input	
	DC-DC Boost Converter at f=25 kHz, D=0.75, RL=1000Ω	61
Fig 4.53	Output Voltage for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=25 kHz, D=0.50, RL=100Ω	62
Fig 4.54	Output Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=25 kHz, D=0.50, RL=100Ω	62
Fig 4.55	Input Current for Power Source-1 & 2 of Dual Input	
	DC-DC Boost Converter at f=25 kHz, D=0.50, RL=100Ω	62
Fig 4.56	Output Voltage for power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=25 kHz, D=0.25, RL=50Ω	63
Fig 4.57	Output Current for Power Source-1&2 of Dual Input	
	DC-DC Boost Converter at f=25 kHz, D=0.25, RL=50Ω	63

Fig 4.58	Input Current for Power Source-1 & 2 of Dual Input		
	DC-DC Boost Converter at f=25 kHz, D=0.25, RL=50Ω	63	
Fig 4.59	Output Voltage for Power Source-1&2 of Dual Input		
	DC-DC Boost Converter at f=25 kHz, D=0.1, RL=20Ω	64	
Fig 4.60	Output Current for Power Source-1&2 of Dual Input		
	DC-DC Boost Converter at f=25 kHz, D=0.1, RL=20Ω	64	
Fig 4.61	Input Current for Power Source-1 & 2 of Dual Input		
	DC-DC Boost Converter at f=25 kHz, D=0.1, RL=20Ω	64	

LIST OF TABLE

Table 4.1	Component specification	44
Table 4.2	Summary of Experimental Data	65

LIST OF ABBREVIATION

	witch Mode Power Supply
IGBT In	nsulated Gate bipolar Transistor
PWM P	ulse Width Modulation
FET F	ield Effect Transistor
MOSFET M	letal Oxide Field Effect Transistor
LED L	ight Emitting Diode
ZVS Z	ero-Voltage Switching
FC F	uel Cell
PV P	Photovoltaic
DCM D	viscontinuous Conduction Mode
DCM D	viscontinuous Inductor Current Mode
CCM C	ontinuous Inductor Current Mode (CCM),
CCFL C	old Cathode Fluorescent Tubes (CCFL)
PFC Pe	ower Factor Correction (PFC
SBD Si	ilent But Deadly
LCD L	iquid Crystal Display
RMS R	oot mean square
THD T	otal Harmonic Distortion
SCR Si	ilicon Control Rectifier
V _{in} In	nput voltage
T _{ON} T	urn on time.
T _{OFF} T	urn off time.
T T	$_{ON} + T_{OFF}$.= Time period
D D	Puty cycle = T_{ON} / T .
I _a A	verage load current
F S	witching frequency
L In	nductor
	ieutenant (Rank in Defense)
LT L	ieutenant (Rank in Derense)