Statistical Leakage Current Analysis of Trapezoidal Tri-Gate FinFET

A thesis submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Electrical, Electronic and Communication Engineering

Submitted by

Farhana Afrin

Syeda Sanjidah

Student ID No:201116012

Student ID No:201116026

Twisha Titirsha

Student ID No:201116049

Under the Supervision of

Dr. Md. Kawsar Alam

Department of Electrical, Electronic and Communication Engineering Military Institute of Science and Technology December, 2014

CERTIFICATION

The thesis titled "Statistical Leakage Current Analysis of Trapezoidal Tri-Gate FinFET" submitted by Farhana Afrin, Syeda Sanjidah and Twisha Titirsha has been accepted as satisfactory in partial fulfillment of the requirements for the degree of Bachelor of Science In Electrical, Electronic And Communication Engineering on December, 2014.

APPROVAL OF THE SUPERVISOR

Dr. Md. Kawsar Alam Assistant Professor Department of Electrical and Electronic Engineering BUET, Dhaka-1000, Bangladesh.

DECLARATION

It is hereby declared that the work presented in the thesis titled "Statistical Leakage Current Analysis of Trapezoidal FinFET" is an outcome of the study carried out by the author under the supervision of Dr. Md. Kawsar Alam. It is also declared that neither of this thesis paper nor any part therefore has been submitted anywhere else for the award of any degree, diploma or other qualifications.

Authors:

Farhana Afrin

Student ID:201116012

Syeda Sanjidah

Student ID:201116026

Twisha Titirsha

Student ID:201116049

DEDICATION

To Our Beloved Parents

Acknowledgment

We would first like to express our deepest gratitude to our thesis supervisor, Assistant Professor Dr. Md. Kawsar Alam. His consistent encouragement, patient advice, and thorough guidance have been a key for us to accomplish this thesis. His high standards for innovation has always led us to work on the cutting-edge topics and execute them to the best of our abilities. We are thankful to him for giving us the opportunity to work on this topic and his invaluable guidance over the last year. The creative freedom given to us was the essential ingredient in turning this thesis into a successful venture. We are grateful to have him as our thesis supervisor, and are honored to be his thesis group.

We would like to thank our Dean Capt M Mahbubur Rahman,(L),psc,BN, Head of the Department Gp Capt Dr. Mohammed Hossam-e-Haider and Class Coordinator A N M Didarul Alam for their generous advice on our research work. Their insightful suggestions helped us to carry out our work successfully. We would like to thank the faculty of the EECE Department at MIST for assistance they have provided us over the past year. Their numerous guidance and advice have deeply enhanced our chances for completion of thesis. We would also like to thank our fellow mates for all the support they gave us.

Finally, we wish to thank our parents for their endless love and care. They have always been with us through the difficult times. Without their support and encouragement, this thesis would not have been possible.

Dhaka

December, 2014

Farhana Afrin Syeda Sanjidah Twisha Titirsha

Abstract

Leakage current due to process variation is a major issue for the devices technologies. Low leakage devices are a key enabler for long-life System-on-Chip applications with ultralow-power standby requirements. This thesis focuses on the study and development of statistical characteristics of Trigate trapezoidal FinFETs for the prediction of leakage current variation and its distribution using Monte-Carlo method. This paper propounds a statistical modeling approach for estimating the leakage distribution of trapezoidal shaped FinFETs (Tz-FinFETs) under random dopant fluctuation. The simulations have been performed using MATLAB. The purpose of a statistical leakage estimation tool is to get a specific leakage distribution of a FinFET device based on process inputs such as the mean threshold voltage (V_{Th}) and standard deviation of V_{Th} due to process parameter variation. The analysis consists of generating RDF in each fin of a multifin device which leads to an investigation of the impact of RDF on device characteristic and device evaluation. The width-dependent device leakage under atomistic random dopant fluctuation for Tri- gate FinFET could not be accurately modeled by conventional square-root approach. This thesis proposes a statistical leakage model which leads to a significant improvement of the leakage estimation. A comparative study of leakage current distribution of trapezoidal and rectangular FinFET reveals the advantages of trapezoidal FinFETs over rectangular FinFETs. We have also incorporated the effect of fin shape on leakage current. Leakage due to Short Chanel Effects(SCE) decreases as fin widths decreases. Statistical leakage currents due to process variation have been simulated for rectangular shape FinFETs (Re FinFETs) and triangular shape FinFET to compare their performance. Leakage Current increases in silicon on insulator FinFETs as the fin crosssectional shape changes from rectangular to triangular to trapezoidal. The triangular and trapezoidal shape FinFET has better performance i.e low leakage current over conventional rectangular shape FinFET. Additionally this paper demonstrates the effect of number of fins on leakage current.

Table of Contents

Certification	ii
Declaration	iii
Dedication	iv
Acknowledgement	v
Abstract	vi
Table of Contents	vii
List of Figure	xi
List of Table	xvi
List of Symbols	xvii

CHAPTER 1	INTRO	DDUCTION	1
1.1	Basic s	tructure of FETs	2
1.2	Basic s	tructure of MOSFETs	3
1.3	Multiga	te MOSFETs	5
	1.3.1	SOI MOSFETs	6
	1.3.2	Double gate SOI MOSFETs	7
	1.3.3	Triple gate SOI MOSFETs (Fin-FETs)	9
	1.3.4	Double gate vs. tri gate MOSFETs	11
1.4	FinFET	technology –a brief review	12
1.5	Literatu	ıre Review	16
CHAPTER 2	THEC	DRITICAL OVERVIEW	20

2.1	Introdu	ction to FinFET Device	21
	2.1.1	Types of FinFET	24

2.2	Modelir	ng	26
	2.2.1	Atomic RDF induced Threshold voltage variation in FinFET	26
	2.2.2	Statistical V_{Th} model for FinFET Device	31
	2.2.3	Conventional Statistical Leakage current Model and its Limitaton	33
	2.2.4	Proposed Statistical Leakage Model	36
	2.2.5	Impact of width quantization on FinFET Leakage estimation	36
	2.2.6	Statistical Leakage Estimation Under Width Quantization	38
	2.2.7	Leakage Model for Discrete Width Multiplication (Wy=nWx, n:integer)	41
	2.2.8	Leakage Model for Continuous Width Multiplication (Wy=αWx, α:positive rational number)	43
2.3	Simulat	tion Tool	44
	2.3.1	Monte Carlo Simulation	45
	2.3.2	Coding Process	48

CHAPTER 3 RESULT AND DISCUSSIONS

3.1	Thresh FinFE1	old Voltage and Leakage Current Analysis of Tz	51
	3.1.1	Variation of Threshold Voltage with Fin Height	52
	3.1.2	Leakage Current variation with changing Fin Height	53
	3.1.3	Variation of Threshold Voltage with Fin Width	54
	3.1.4	Leakage Current variation with changing Fin Width	55
	3.1.5	Variation of Threshold Voltage with Oxide Thickness	56

50

3.1.6	Leakage Current Distribution with changing Fin Oxide Thickness	57
3.1.7	Variation of Threshold Voltage with Doping Concentration	58
3.1.8	Leakage Current variation with Doping Concentration	59
3.1.9	Leakage Current variation with Fin Height relative to Fin number	60
3.1.10	Leakage Current variation with Fin Width relative to Fin number	61
3.1.11	Leakage Current variation with Fin Oxide Thickness relative to Fin number	62
3.1.12	Leakage Current variation with Doping Concentration relative to Fin number	63
3.1.13	Leakage Current Distribution for Tz FinFET	64
Compare FinFET	rison of Trapezoidal and Rectangular shape s	65
3.2.1	Comparison based on Threshold Voltage variation with Fin Height	66
3.2.2	Comparison based on Leakage Current variation with Fin Height	67
3.2.3	Comparison based on Threshold Voltage variation with Oxide Thickness.	68
3.2.4	Comparison based on Leakage Current variation with Oxide Thickness	69
3.2.5	Comparison of Threshold Voltage variation with Doping Concentration	70
3.2.6	Comparison based on Leakage Current variation with Doping Concentration	71
3.2.7	Comparison based on Leakage Current Distribution	72
Compa	rison of Trapezoidal and Triangular shape FinFETs.	73

3.2

3.3

		3.3.1	Comparison based on Threshold Voltage variation with Fin Height	74
		3.3.2	Comparison based on Leakage Current variation with Fin Height	75
		3.3.3	Comparison based on Threshold Voltage variation with Oxide Thickness.	76
		3.3.4	Comparison based on Leakage Current variation with Oxide Thickness	77
		3.3.5	Comparison of Threshold Voltage variation with Doping Concentration	78
		3.3.6	Comparison based on Leakage Current variation with Doping Concentration	79
		3.3.7	Comparison based on Leakage Current Distribution	80
	3.4	Compar Triangu	ison among Trapezoidal, Rectangular and lar shape FinFETs	81
		3.4.1	Comparison based on Leakage Current Distribution	81
		3.4.2	Comparison based on Threshold Voltage and Leakage Current variation with Fin Height	82
		3.4.3	Comparison based on Threshold Voltage and Leakage Current variation with Oxide Thickness	83
		3.4.4	Comparison based on Threshold Voltage and Leakage Current variation with Doping Concentration	84
СНАР	TER 4	CONC	CLUSION	85
	4.1	Conclus	ion	85
	4.2	Future \	Vork	86
	Refere	ences		88
	Apper	ndix		103

List of Figures

Figure no	Figure Title	Page no
1.1	Plot of CPU transistor counts against dates of introduction; the line corresponds to exponential growth with transistor count doubling every two years	1
1.2	Schematic illustration of a generic field effect transistor. This device can be viewed as a combination of two orthogonal two-terminal devices	2
1.3	Schematic of silicon on ultrathin BOX MOSFET developed for Ultra low power applications with a conventional bulk-MOSFET	3
1.4	Multigate MOSFET	5
1.5	SOI MOSFET	6
1.6	Double gate SOI MOSFET	8
1.7	Schematic illustration of the 3T and 4T FinFETs fabricated using a SOI substrate	10
1.8	Three categories of DG-FET structures describe a large variety of schemes used over the last two decades in attempts to realize DGCMOS	11
1.9	FinFET cross-section, with gate dielectric on fin sidewalls and top, and bulk silicon substrate	12
1.10	Multiple fins in parallel spaced s_fin apart, common gate input	13
1.11	SEM cross-section of multiple fins. Gate edge roughness over the fin is highlighted in the expanded inset picture	15
2.1	(a) 3D structure of a FinFET device (b) layout example of a width quantized FinFET inverter (c) cross section of a 21nm FinFET model (d) I-V characteristics of the FinFET model showing a near- ideal subthreshold swing of 83mV/dec at 110°C	23

2.2	(a) Structure of rectangular shape Tri-gate FinFET	24
	(b) Structure of rectangular shape Tri-gate FinFET	
2.3	Threshold voltage variation under atomistic random dopant fluctuation. (a) 3D model for CMOS channel region with uniform RDF(left) and atomistic RDF(right) (b) Simulation results on mean value (left) and standard deviation (right) of VThwith uniform RDF and atomistic RDF	29
2.4	Structure of FinFET device having 4 Fins. Inset: SEM image of a FinFET	31
2.5	Comparison between conventional square-root method and the actual (golden) case (a) Delay distribution; (b) Leakage distribution	35
2.6	Statistical leakage model comparison between the golden, square-root method, and proposed method	35
2.7	 (a) Leakage distribution of a 4-fin device based on the conventionalestimation approach and Monte Carlo simulation (golden) showing a large discrepancy. (b) Equations used in the conventional and proposed leakage estimation approaches for n- fin devices 	38
2.8	Algorithm of Coding Process	49
3.1.1	Variation of Threshold Voltage V_{th} with changing Fin height H_{fin} keeping W_{bot} = 15 nm, W_{top} = 13 nm, t_{ox} = 1 nm and N_{si} = 5×10 ¹⁸ cm ⁻³	52
3.1.2	Lekage Current Variation I_{leak} with changing Fin height H_{fin} keeping W_{bot} = 15 nm, W_{top} = 13 nm, t_{ox} = 1 nm and N_{si} = 5×10 ¹⁸ cm ⁻³	53
3.1.3	Variation of Threshold Voltage V_{th} with changing Fin width W_{fin} keeping H_{fin} =30 nm, t_{ox} = 1 nm and N_{si} = 5×10^{18} cm ⁻³	54
3.1.4	Leakage current variation of Threshold Voltage I_{leak} with changing Fin width W _{fin} keeping H_{fin} =30 nm, t_{ox} = 1 nm and N_{si} = 5×10 ¹⁸ cm ⁻³	55

3.1.5	Variation of Threshold Voltage V_{th} with changing Fin Oxide Thickness t_{ox} keeping W_{bot} = 15nm, W_{top} = 13 nm, H_{fin} = 30nm and N_{si} = 5×10 ¹⁸ cm ⁻³	56
3.1.6	Leakage Current variation I_{leak} with changing Fin Oxide Thickness t_{ox} keeping W_{bot} = 15 nm, W_{top} = 13 nm, H_{fin} = 30 nm and N_{si} = 5×10 ¹⁸ cm ⁻³	57
3.1.7	Variation of Threshold Voltage V_{th} with changing Doping Concentration N_{si} keeping W_{bot} = 15 nm, W_{top} = 13 nm, t_{ox} = 1 nm and H_{fin} = 30 nm	58
3.1.8	Leakage Current variation I_{tleak} with changing Doping Concentration N_{si} keeping W_{bot} = 15 nm, W_{top} = 13 nm, t_{ox} = 1 nm and H_{fin} = 30 nm	59
3.1.9	Lekage current variation I_{leak} with changing Fin height H_{fin} keeping W_{bot} = 15 nm, W_{top} = 13 nm, t_{ox} = 1 nm and N_{s} = 5×10 ¹⁸ cm ⁻³ for different Fin number	60
3.1.10	Leakage current variation of Threshold Voltage I_{leak} with changing Fin width W_{fin} keeping H_{fin} =30 nm, t_{ox} = 1 nm and N_{si} = 5×10 ¹⁸ cm ⁻³ for different Fin number	61
3.1.11	Leakage Current variation I_{leak} with changing Fin Oxide Thickness t_{ox} keeping W_{bot} = 15 nm, W_{top} = 13 nm, H_{fin} = 30 nm and N_{si} = 5×10 ¹⁸ cm ⁻³ for different Fin number	62
3.1.12	Leakage Current variation I_{leak} with changing Doping Concentration N_{si} keeping W_{bot} = 15 nm, W_{top} = 13 nm, t_{ox} = 1 nm and H_{fin} = 30 nm for different Fin number	63
3.1.13	Leakage current distribution of Tz FinFET keeping W_{bot} = 15 nm, W_{top} = 13 nm, t_{ox} = 1 nm, H_{fin} = 30 nm and N_{si} = 5×10 ¹⁸ cm ⁻³	64
3.2.1	Variation of Threshold Voltage V_{th} with Fin height H_{fin} for Tz and Rect shaped TG FinFETs keeping $t_{ox}= 1$ nm and $N_{si}= 5 \times 10^{18}$ cm ⁻³	66
3.2.2	Lekage current variation I_{leak} with changing Fin height H_{fin} for Tz and Rect shaped TG FinFETs keeping t_{ox} = 1 nm and N_{sr} = 5×10 ¹⁸ cm ⁻³	67

3.2.3	Variation of Threshold Voltage V_{th} with Fin Oxide Thickness t_{ox} for Tz and Rect shaped TG FinFETs keeping H_{fin} = 30 nm and N_{si} = 5×10 ¹⁸ cm ⁻³	68
3.2.4	Leakage Current variation I_{leak} with changing Fin Oxide Thickness t_{ox} for Tz and Rect shaped TG FinFETs keeping H_{fin} = 30 nm and N_{sr} = 5×10 ¹⁸ cm ⁻³	69
3.2.5	Variation of Threshold Voltage V_{th} with changing Doping Concentration N_{si} for Tz and Rect shaped TG FinFETs keeping t_{ox} = 1 nm and H_{fin} = 30 nm	70
3.2.6	Leakage Current variation of I_{leak} with changing Doping Concentration N_{si} for Tz and Rect shape TG FinFETs keeping t_{ox} = 1 nm and H_{fin} = 30 nm	71
3.2.7	Leakage Current Distribution of Rect and Tz shaped FinFETs keeping t_{ox} = 1 nm, H_{fin} = 30 nm and N_{si} = 5×10^{18} cm ⁻³ . For Tz shape W_{bot} =15 nm, W_{top} =13 nm.For Rect W_{fin} =15 nm	72
3.3.1	Variation of Threshold Voltage V_{th} with Fin height H_{fin} for Tz and Tr shape TG FinFETs keeping t_{ox} = 1 nm and N_{sr} = 5×10 ¹⁸ cm ⁻³	74
3.3.2	Leakage Current variation of Threshold Voltage V_{th} with Fin height H_{fin} for Tz and Tr shaped TG FinFETs keeping t_{ox} = 1 nm and N_{sr} = 5×10 ¹⁸ cm ⁻³	75
3.3.3	Variation of Threshold Voltage V_{th} with Fin Oxide Thickness t_{ox} for Tz and Tr shaped TG FinFETs keeping H_{fin} = 30 nm and N_{sr} = 5×10 ¹⁸ cm ⁻³	76
3.3.4	Leakage Current variation I_{leak} with changing Fin Oxide Thickness t_{ox} for Tz and Tr shaped TG FinFETs keeping H_{fin} = 30 nm and N_{sr} = 5×10 ¹⁸ cm ⁻³	77
3.3.5	Variation of Threshold Voltage V_{th} with changing Doping Concentration N_{si} for Tz and Tr shaped TG FinFET keeping t_{ox} = 1 nm and H_{fin} = 30 nm	78
3.3.6	Leakage Current variation of I_{leak} with changing Doping Concentration N_{si} for Tz and Tr shape TG FinFET keeping t_{ox} = 1 nm and H_{fin} = 30 nm	79
3.3.7	Leakage Current Distribution of Tr and Tz shaped FinFETs keeping t_{ox} = 1 nm, H_{fin} = 30 nm and N_{si} =	80

	5×10^{18} cm ⁻³ . For Tz shape W_{bot} =15 nm, W_{top} =13 nm.For Tr W_{fin} =15 nm	
3.4.1	Leakage Current Distribution of Tz, Rect and Tr shaped FinFETs keeping t_{ox} = 1 nm, H_{fin} = 30 nm and N_{si} = 5×10 ¹⁸ cm ⁻³ . For Tz shape W_{bot} =15 nm, W_{top} =13 nm.For Tr W_{fin} =15 nm	81
3.4.2	(a) Variation of Threshold Voltage V_{th} with Fin height H_{fin} for Tz, Rect and Tr shape TG FinFETs keeping t_{ox} = 1 nm and N_{si} = 5×10 ¹⁸ cm ⁻³ (b) Leakage Current variation I_{leak} with Fin height H_{fin} for Tz, Rect and Tr shape TG FinFETs keeping t_{ox} = 1 nm and N_{si} = 5×10 ¹⁸ cm ⁻³	82
3.4.3	(a) Variation of Threshold Voltage V_{th} with Fin Oxide Thickness t_{ox} for Tz, Rect and Tr shape TG FinFET keeping H_{fin} = 30 nm and N_{si} = 5×10 ¹⁸ cm ⁻³ (b) Leakage Current variation I_{leak} with changing Fin Oxide Thickness t_{ox} for Tz, Rect and Tr shaped TG FinFET keeping H_{fin} = 30 nm and N_{si} = 5×10 ¹⁸ cm ⁻³	83
3.4.4	(a) Variation of Threshold Voltage V_{th} with changing Doping Concentration N_{si} for Tz, Rect and Tr shaped TG FinFET keeping t_{ox} = 1 nm and H_{fin} = 30 nm (b) Leakage Current variation of I_{leak} with changing Doping Concentration N_{si} for Tz, Rect and Tr shape TG FinFET keeping t_{ox} = 1 nm and H_{fin} = 30 nm	84

List of Table

Table no	Table Title	Page no
3.1	Reference values of Device parameters used in simulation	51

List of Symbols

VTh	Threshold Voltage	
W _{fin}	Fin Width	
T _{si}	Body Thickness	
H _{fin}	Fin Height	
T _{fin}	Fin Thickness	
S _{fin}	Fin Spacing	
I _{ON}	On Current	
IOFF	Off Current	
VT	Thermal Voltage	
σV_{th}	Standard deviation of Threshold Voltage	
V _{FB}	Flatband voltage	
Nsi	Doping concentration	
n _i	Intrinsic carrier concentration	
Cg	Gate Oxide Capacitance Per Unit Length	
C_{ch}	Channel Capacitance Per Unit Length	
Qd	Depletion Charge Per Unit Length	
Weff	Effective Width	
Tox	Oxide Thickness	
ε _{οx}	Relative Permittivity Of The Oxide	
L _{eff}	Effective Length	
μ(V _{Th})	Mean Threshold Voltage	
n	Number of Fins	
E si	Relative permittivity of the Silicon	