# Fault Detection and Localization of 8 bit Digital to Analog Converter Circuit

(ITC'97 Benchmark Circuit)

Submitted by Saima Qucer Asha (St. No-201116024) Naureen Rahman (St. No-201116043) Farzana Yasmin (St. No-201116048)

Supervised by Associate professor Hamidur Rahman

Thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Electrical, Electronics and Communication Engineering



A Thesis Submitted to Military Institute of Science and Technology Dhaka-1216, Bangladesh

December 21, 2014

### **DECLARATION**

We declare that this thesis entitled "Fault Detection and Localization of 8 bit Digital to Analog Converter Circuit (ITC'97 Benchmark Circuit)" is a piece of original research work. This work has not been presented any where before for this award of any degree or diploma.

| Counter Signed                     | Signature of the Students |
|------------------------------------|---------------------------|
| Associate Professor Hamidur Rahman | Saima Qucer Asha          |
|                                    | St. No-201116024          |
|                                    |                           |
|                                    | Naureen Rahman            |
|                                    | St. No-201116043          |
|                                    |                           |
|                                    | Farzana Yasmin            |
|                                    | St. No-201116048          |

#### **Abstract**

With the advent of high performance (in terms of speed, power and area) digital circuits, the need for data converters with high accuracy for various kinds of applications, has attracted the attention of scientists and technologists all over the world. The existing literature indicates that there is a need to have a very highly accurate circuit for data converters to achieve these goals. It is really difficult to achieve a fault free circuit with a huge number of components.

In view of this, this thesis proposes a method which works efficiently in conjunction with gain waveforms of faulty & faults free Digital to Analog Converter (DAC) circuit as well as internal node voltages of two stage CMOS Operational Amplifier. We have developed an effective & efficient technique to detect & localize the fault. We have tested this technique on the DAC circuit & manipulated simulation result by Hspice and Matlab program.

#### Acknowledgments

This work would not have been possible without the help and support of many individuals. We offer our sincerest gratitude to our supervisor, Associate Professor Hamidur Rahman, who has supported us throughout our research work with his patience and immense knowledge.

We attribute the level of our Bachelor degree to his encouragement and effort and without him this thesis, too, would not have been completed. He taught us how to pursue research and gave us the much needed exposure and skill to think and give shape to our thoughts. He helped to shape the direction of this work and filled in many of the gaps in our knowledge.

We are sincerely grateful to Capt M Mahbubur Rahman sir for his constant support, encouragement and cheerful applause for my accomplishments.

We also want to thank Dept of EECE in MIST for financial assistance which was highly essential for our thesis.

Lastly but not the least we would like to thank our parents for their moral support and encouragement.

## Contents

| Chapter 1                                                           |       |
|---------------------------------------------------------------------|-------|
| Introduction                                                        | 1-2   |
| 1.1 Problem Description                                             | 1     |
| 1.2 Thesis Contribution                                             | 2     |
| 1.3 Thesis Organization                                             | 2     |
| Chapter 2                                                           |       |
| Digital to Analog Converter & Concerned Faults                      | 4-11  |
| 2.1 Basic Digital to Analog Converter                               | 4     |
| 2.2 Digital to Analog Converter Classification                      | 5     |
| 2.2.1. Digital to Analog Converter using Binary-Weighted Resistors: | 5     |
| 2.2.2. Digital to Analog Converter with R and 2R Resistors:         | 7     |
| 2.3 Fault models of DA Converter                                    | 9     |
| 2.3.1 Defect Model: Stuck-At Faults                                 | 9     |
| 2.3.2 Stuck on Faults                                               | 10    |
| 2.3.3 Stuck open faults                                             | 12    |
| Chapter 3                                                           |       |
| Related Work                                                        | 13-14 |
| 3.1 Fault Testing of Benchmark Circuits                             | 13    |

| Chapter 4                                            |       |
|------------------------------------------------------|-------|
| Digital-to-Analog Converter ITC'97                   | 15-16 |
| 4.1 Operation of 8 Bit Digital to Analog Converter   | 15    |
| Chapter 5                                            |       |
| Simulation & Result of Faulty & Fault free 8 bit DAC | 17-65 |
| 5.1 Main Circuit Faults                              | 17    |
| 5.2 Op Amp Faults                                    | 48    |
| 5.3 Localization & Percentage of detectable fault    | 62    |
| Chapter 6                                            |       |
| Conclusion.                                          | 66-67 |
| Bibliography                                         | 68-69 |
| Appendix                                             | 70-76 |

## **Table of Contents**

| Table 3.1: Benchmark Circuits                                            | 14 |
|--------------------------------------------------------------------------|----|
| Table 3.2: Comparison of gain detection between the benchmark circuits   | 14 |
| Table 4.1: Components of Operational amplifier used in digital-to-analog |    |
| converter                                                                | 15 |
| Table 4.2: Fault Table of DA Converter                                   | 15 |
| Table 5.1: Pmos faults (stuck open) in DAC                               | 18 |
| Table 5.2: Nmos faults(stuck open) in DAC                                | 22 |
| Table 5.3: Pmos faults(stuck on) in DAC                                  | 26 |
| Table 5.4: Nmos faults(stuck on) in DAC                                  | 30 |
| Table 5.5: Fault(short) in Resistance in DAC                             | 34 |
| Table 5.6: Fault (stuck on) in Resistance & Capacitance across op-amp    | 41 |
| Table 5.7: Fault (open) in Resistance & Capacitance in DAC               | 42 |
| Table 5.8: Fault (open) in Resistance & Capacitance across op-amp        | 48 |
| Table 5.9: Stuck on Fault of MOSFETs in op-amp                           | 49 |
| Table 5.10: Stuck open Fault of MOSFETs in op-amp                        | 51 |
| Table 5.11: Open & short fault for Rb in op-amp                          | 61 |
| Table 5.12: Open & short fault for Cc in op-amp                          | 62 |
| Table 5.13: for negligible faults.                                       | 63 |
| Table 5.14: Localization of total stuck at faults in DAC                 | 64 |

## TABLE OF FIGURE

| Fig 2.1: Ideal Digital to Analog Converter4                                                       |
|---------------------------------------------------------------------------------------------------|
| Fig 2.2: Ideally sampled signal5                                                                  |
| Fig 2.3: Digital to Analog Converter circuit-Binary-Weighted Resistor Method6                     |
| Fig 2.4: Digital to Analog Converter circuit-Binary-Weighted Resistor Method  Graph               |
| Fig 2.5: Digital to Analog Converter circuit- with R and 2R Resistors8                            |
| Fig 2.6: Digital to Analog Converter circuit- with R and 2R Resistors8                            |
| Fig 2.7: Digital to Analog Converter with R and 2R Resistors Graph9                               |
| Fig 2.8: Defect Model: Stuck-At Faults                                                            |
| Fig 2.8: 2 input NOR CMOS11                                                                       |
| Fig 4.1: 8 Bit D/A Converter                                                                      |
| Fig 5.1: 3 Bit Digital to Analog Converter                                                        |
| Fig 5.2: faulty circuit when M1 is stuck open                                                     |
| Fig 5.3: Gain Vs Frequency comparison between golden circuit and faulty circuit for M1 stuck open |
| Fig 5.4: Gain Vs Frequency comparison between golden circuit and faulty circuit for M3 stuck open |
| Fig 5.5: Gain Vs Frequency comparison between golden circuit and faulty circuit for M5 stuck open |
| Fig 5.6: Gain Vs Frequency comparison between golden circuit and faulty circuit for M7 stuck open |
| Fig 5.7: Gain Vs Frequency comparison between golden circuit and faulty circuit for M9 stuck open |

| Fig 5.8: Gain Vs Frequency comparison between golden circuit and faulty circuit for M11 stuck open  |
|-----------------------------------------------------------------------------------------------------|
| Fig 5.9: Gain Vs Frequency comparison between golden circuit and faulty circuit for M13 stuck open  |
| Fig 5.10: Gain Vs Frequency comparison between golden circuit and faulty circuit for M15 stuck open |
| Fig 5.11(a): faulty circuit when M4 is stuck open; (b): fault free circuit23                        |
| Fig5.12: Gain Vs Frequency comparison between golden circuit and faulty circuit for M2 stuck open   |
| Fig 5.13: Gain Vs Frequency comparison between golden circuit and faulty circuit for M4 stuck open  |
| Fig5.14: Gain Vs Frequency comparison between golden circuit and faulty circuit for M6 stuck open   |
| Fig 5.15: Gain Vs Frequency comparison between golden circuit and faulty circuit for M8 stuck open  |
| Fig 5.16: Gain Vs Frequency comparison between golden circuit and faulty circuit for M10 stuck open |
| Fig 5.17: Gain Vs Frequency comparison between golden circuit and faulty circuit for M12 stuck open |
| Fig 5.18: Gain Vs Frequency comparison between golden circuit and faulty circuit for M14 stuck open |
| Fig 5.19: Gain Vs Frequency comparison between golden circuit and faulty circuit for M16 stuck open |
| Fig 5.20(a): faulty circuit when M3 is stuck on; (b): fault free circuit28                          |
| Fig 5.21: Gain Vs Frequency comparison between golden circuit and faulty circuit for M1 stuck on    |
| Fig 5.22: Gain Vs Frequency comparison between golden circuit and faulty circuit for M3 stuck on    |
| Fig 5.23: Gain Vs Frequency comparison between golden circuit and faulty circuit for M5 stuck on    |

| Fig 5.24: Gain Vs Frequency comparison between golden circuit and faulty circuit for M7 stuck on  |
|---------------------------------------------------------------------------------------------------|
| Fig 5.25: Gain Vs Frequency comparison between golden circuit and faulty circuit for M9 stuck on  |
| Fig 5.26: Gain Vs Frequency comparison between golden circuit and faulty circuit for M11 stuck on |
| Fig 5.27: Gain Vs Frequency comparison between golden circuit and faulty circuit for M13 stuck on |
| Fig 5.29 (a): faulty circuit when M2 is stuck on; (b): fault free circuit33                       |
| Fig 5.30: Gain Vs Frequency comparison between golden circuit and faulty circuit for M2 stuck on  |
| Fig 5.31: Gain Vs Frequency comparison between golden circuit and faulty circuit for M4 stuck on  |
| Fig 5.32: Gain Vs Frequency comparison between golden circuit and faulty circuit for M6 stuck on  |
| Fig 5.33: Gain Vs Frequency comparison between golden circuit and faulty circuit for M8 stuck on  |
| Fig 5.34: Gain Vs Frequency comparison between golden circuit and faulty circuit for M10 stuck on |
| Fig 5.35: Gain Vs Frequency comparison between golden circuit and faulty circuit for M12 stuck on |
| Fig 5.36: Gain Vs Frequency comparison between golden circuit and faulty circuit for M14 stuck on |
| Fig 5.37: Gain Vs Frequency comparison between golden circuit and faulty circuit for M16 stuck on |
| Fig 5.38: Gain Vs Frequency comparison between golden circuit and faulty circuit for R1 short     |
| Fig 5.39: Gain Vs Frequency comparison between golden circuit and faulty circuit for R2 short     |
| Fig 5.40: Gain Vs Frequency comparison between golden circuit and faulty circuit for R3 short     |

| Fig 5.41: Gain Vs Frequency comparison between golden circuit and faulty circuit for R4 short    |
|--------------------------------------------------------------------------------------------------|
| Fig 5.42: Gain Vs Frequency comparison between golden circuit and faulty circuit for R5 short    |
| Fig 5.43: Gain Vs Frequency comparison between golden circuit and faulty circuit for R6 short    |
| Fig 5.44: Gain Vs Frequency comparison between golden circuit and faulty circuit for R7 short    |
| Fig 5.45: Gain Vs Frequency comparison between golden circuit and faulty circuit for R8 short    |
| Fig 5.46: Gain Vs Frequency comparison between golden circuit and faulty circuit for R9 short    |
| Fig 5.47: Gain Vs Frequency comparison between golden circuit and faulty circuit for R10 short   |
| Fig 5.48: Gain Vs Frequency comparison between golden circuit and faulty circuit for R11 short44 |
| Fig 5.49: Gain Vs Frequency comparison between golden circuit and faulty circuit for R12 short44 |
| Fig 5.50: Gain Vs Frequency comparison between golden circuit and faulty circuit for R13 short45 |
| Fig 5.51: Gain Vs Frequency comparison between golden circuit and faulty circuit for R14 short45 |
| Fig 5.52: Gain Vs Frequency comparison between golden circuit and faulty circuit for R15 short45 |
| Fig 5.53: Gain Vs Frequency comparison between golden circuit and faulty circuit for R16 short46 |
| Fig 5.54: Gain Vs Frequency comparison between golden circuit and faulty circuit for r short     |
| Fig 5.55: Gain Vs Frequency comparison between golden circuit and faulty circuit for C2 short    |

| Fig 5.56: Gain Vs Frequency comparison between golden circuit and faulty circuit for R1 open   |
|------------------------------------------------------------------------------------------------|
| Fig 5.57: Gain Vs Frequency comparison between golden circuit and faulty circuit for R2 open   |
| Fig 5.58: Gain Vs Frequency comparison between golden circuit and faulty circuit for R3 open   |
| Fig 5.59: Gain Vs Frequency comparison between golden circuit and faulty circuit for R4 open   |
| Fig 5.60: Gain Vs Frequency comparison between golden circuit and faulty circuit for R5 open   |
| Fig 5.61: Gain Vs Frequency comparison between golden circuit and faulty circuit for R6 open   |
| Fig 5.63: Gain Vs Frequency comparison between golden circuit and faulty circuit for R8 open   |
| Fig 5.64: Gain Vs Frequency comparison between golden circuit and faulty circuit for R9 open   |
| Fig 5.65: Gain Vs Frequency comparison between golden circuit and faulty circuit for R10 open  |
| Fig 5.66: Gain Vs Frequency comparison between golden circuit and faulty circuit for R11 open  |
| Fig 5.67: Gain Vs Frequency comparison between golden circuit and faulty circuit for R12 open  |
| Fig 5.68: Gain Vs Frequency comparison between golden circuit and faulty circuit for R13 open5 |
| Fig 5.69: Gain Vs Frequency comparison between golden circuit and faulty circuit for R14 open  |
| Fig 5.70: Gain Vs Frequency comparison between golden circuit and faulty circuit for R15 open  |
| Fig 5.71: Gain Vs Frequency comparison between golden circuit and faulty circuit for R16 open  |

| Fig 5.72: Gain Vs Frequency comparison between golden circuit and faulty circuit for r open                 |
|-------------------------------------------------------------------------------------------------------------|
| Fig 5.73: Gain Vs Frequency comparison between golden circuit and faulty circuit for C2 open                |
| Fig 5.74: Gain Vs Frequency comparison between golden circuit and faulty circuit for M1 stuck on(op-amp)    |
| Fig 5.75: Gain Vs Frequency comparison between golden circuit and faulty circuit for M2 stuck on(op-amp)    |
| Fig 5.76: Gain Vs Frequency comparison between golden circuit and faulty circuit for M3 stuck on(op-amp)    |
| Fig 5.77: Gain Vs Frequency comparison between golden circuit and faulty circuit for M4 stuck on(op-amp)    |
| Fig 5.78: Gain Vs Frequency comparison between golden circuit and faulty circuit for M5 stuck on(op-amp)60  |
| Fig 5.79: Gain Vs Frequency comparison between golden circuit and faulty circuit for M6 stuck on(op-amp)    |
| Fig 5.80: Gain Vs Frequency comparison between golden circuit and faulty circuit for M7 stuck on(op-amp)    |
| Fig 5.81: Gain Vs Frequency comparison between golden circuit and faulty circuit for M8 stuck on(op-amp)    |
| Fig 5.82: Gain Vs Frequency comparison between golden circuit and faulty circuit for M9 stuck on(op-amp)    |
| Fig 5.84: Gain Vs Frequency comparison between golden circuit and faulty circuit for M11 stuck on(op-amp)   |
| Fig 5.85: Gain Vs Frequency comparison between golden circuit and faulty circuit for M12 stuck on(op-amp)   |
| Fig 5.86: Gain Vs Frequency comparison between golden circuit and faulty circuit for M13 stuck on(op-amp)   |
| Fig 5.87: Gain Vs Frequency comparison between golden circuit and faulty circuit for M14 stuck on(op-amp)65 |

| Fig 5.88: Gain Vs Frequency comparison between golden circuit and faulty circuit for M15 stuck on(op-amp)65     |
|-----------------------------------------------------------------------------------------------------------------|
| Fig 5.90: Gain Vs Frequency comparison between golden circuit and faulty circuit for M1 stuck open(op-amp)      |
| Fig 5.91: Gain Vs Frequency comparison between golden circuit and faulty circuit for M2 stuck open(op-amp)      |
| Fig 5.92: Gain Vs Frequency comparison between golden circuit and faulty circuit for M3 stuck open (op-amp)     |
| Fig 5.93: Gain Vs Frequency comparison between golden circuit and faulty circuit for M4 stuck open (op-amp)     |
| Fig 5.94: Gain Vs Frequency comparison between golden circuit and faulty circuit for M5 stuck open (op-amp)     |
| Fig 5.95: Gain Vs Frequency comparison between golden circuit and faulty circuit for M6 stuck open (op-amp)69   |
| Fig 5.96: Gain Vs Frequency comparison between golden circuit and faulty circuit for M7 stuck open (op-amp)     |
| Fig 5.97: Gain Vs Frequency comparison between golden circuit and faulty circuit for M8 stuck open (op-amp)     |
| Fig 5.98: Gain Vs Frequency comparison between golden circuit and faulty circuit for M9 stuck open (op-amp)     |
| Fig 5.100: Gain Vs Frequency comparison between golden circuit and faulty circuit for M11 stuck open (op-amp)   |
| Fig 5.101: Gain Vs Frequency comparison between golden circuit and faulty circuit for M12 stuck open (op-amp)72 |
| Fig 5.102: Gain Vs Frequency comparison between golden circuit and faulty circuit for M13 stuck open (op-amp)73 |
| Fig 5.103: Gain Vs Frequency comparison between golden circuit and faulty circuit for M14 stuck open (op-amp)   |
| Fig 5.104: Gain Vs Frequency comparison between golden circuit and faulty circuit for M15 stuck open (op-amp)74 |

| Fig 5.105: Gain Vs Frequency comparison between golden circuit and faulty circuit for M16 stuck open (op-amp) | 74 |
|---------------------------------------------------------------------------------------------------------------|----|
| Fig 5.106: Gain Vs Frequency comparison between golden circuit and faulty circuit for Rb open (op-amp)        | 75 |
| Fig 5.107: Gain Vs Frequency comparison between golden circuit and faulty circuit for Rb short (op-amp)       |    |
| Fig 5.108: Gain Vs Frequency comparison between golden circuit and faulty circuit for Cc stuck open (op-amp)  | 76 |
| Fig 5.109: Gain Vs Frequency comparison between golden circuit and faulty circuit for Cc stuck on (op-amp)    | 76 |