
 

 
 

FLOW BASED ANOMALY DETECTION IN SOFTWARE 

DEFINED NETWORKING: A DEEP LEARNING APPROACH 

WITH FEATURE SELECTION METHOD 

 

 

 

 

 

SAMRAT KUMAR DEY 

(BSc Engg., PSTU) 

 

 

 

 

 

A THESIS SUBMITTED 

FOR THE DEGREE OF MASTER OF SCIENCE IN 

COMPUTER SCIENCE AND ENGINEERING 

DEPARTMENT OF COMPUTER SCIENCE AND 

ENGINEERING 

MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY 

 

 

 

2018 



 

ii 

  



 

iii 

APPROVAL 

 

The thesis titled “FLOW BASED ANOMALY DETECTION IN SOFTWARE 

DEFINED NETWORKING: A DEEP LEARNING APPROACH WITH FEATURE 

SELECTION METHOD” Submitted by Samrat Kumar Dey, Roll No: 1016140003 

Session: 2015-2016 has been accepted as satisfactory in partial fulfillment of the 

requirement for the degree of Master of Science in Computer Science and Engineering 

on 15 December 2018 

 

 

BOARD OF EXAMINERS 

 

1.                                  Chairman 

 Dr. Md. Mahbubur Rahman  

            Professor, Dept. of CSE, Military Institute of Science and Technology 

 

2.                                    Member 

 Brig Gen A K M Nazrul Islam, PhD 

Senior Instructor, Dept. of EECE, Military Institute of Science and Technology 

 

3.                           Member 

Air Commodore Md. Afzal Hossain, ndc, psc   (Ex-officio) 

Head, Dept. of CSE, Military Institute of Science and Technology   

 

4.                                      Member 

 Dr. Hafiz Md. Hasan Babu                  (External) 

            Professor, Dept. of CSE, University of Dhaka       

            Professor, University of Dhaka 

  



 

iv 

DECLARATION 

 

 

I hereby declare that this thesis is my original work and it has been written by me in its 

entirety. I have duly acknowledged all the sources of information which have been used 

in the thesis. 

 

 

This thesis has also not been submitted for any degree in any university previously. 

 

 

 

 

 

____________________ 

Samrat Kumar Dey 

15 December 2018 

 



 

ACKNOWLEDGEMENTS  

 

 

I am precisely thankful to Almighty for his unceasing and immense blessings without 

which my thesis completion would remain scattered and incomplete. I express my 

heartiest gratitude, profound indebtedness and deep respect to my supervisor, Dr. Md. 

Mahbubur Rahman, Professor, Department of CSE, Military Institute of Science and 

Technology, for his constant supervision, affectionate guidance and great encouragement 

and motivation. His keen interest on the topic and valuable advices throughout the study 

was of great help in completing thesis. 

 

I am especially grateful to the Department of Computer Science and Engineering of 

Military Institute of Science and Technology (MIST) for providing their all out support 

during the thesis work. 

 

Finally, I would like to thank my parents, family members and friends for their 

appreciable assistance, patience and suggestions during the course of my thesis.  

 

 

 

 

Dhaka                                                                                               Samrat Kumar Dey 

December 2018 

 

 

  



 

vi 

TABLE OF CONTENTS 

LIST OF TABLES ......................................................................................................... X 

LIST OF FIGURES ...................................................................................................... XI 

LIST OF ABBREVIATION ..................................................................................... XIII 

LIST OF SYMBOLS ................................................................................................. XIV 

 INTRODUCTION ................................................................................... 1 

1.1 Introduction ............................................................................................................. 1 

1.2 The Software Defined Networking Paradigm ......................................................... 1 

1.2.1 Planes in software defined networks ............................................................. 2 

1.2.2 Abstractions in software defined networks ................................................... 3 

1.3 Motivations .............................................................................................................. 4 

1.3.1 Monitoring and measurements in SDN ......................................................... 6 

1.3.2 OpenFlow ...................................................................................................... 6 

1.3.3 The OpenDaylight controller ........................................................................ 8 

1.4 Problem Statement .................................................................................................. 9 

1.5 Purpose, Scope and Contribution ............................................................................ 9 

1.6 Organization of Thesis .......................................................................................... 10 

 LITERATURE REVIEW ..................................................................... 13 

2.1 Objectives with Specific Aims and Possible Outcome ......................................... 17 

 BACKGROUND .................................................................................... 18 

3.1 Introduction ........................................................................................................... 18 

3.2 Intrusion Detection Method .................................................................................. 18 

3.2.1 Signature based detection ............................................................................ 18 

3.2.2 Anomaly based detection ............................................................................ 19 

3.2.3 Flow based detection ................................................................................... 19 



 

vii 

3.2.4 Packet based detection ................................................................................ 20 

3.3 What is Software Defined Networking? ............................................................... 20 

3.3.1 SDN overview ............................................................................................. 21 

3.3.2 OpenFlow .................................................................................................... 21 

3.3.3 Flow based detection using SDN ................................................................ 22 

3.4 Data Set for Intrusion Detection ............................................................................ 23 

3.4.1 Public labeled dataset for an IDS ................................................................ 23 

3.4.2 NSL KDD dataset ....................................................................................... 24 

3.5 Machine Learning and Deep Learning .................................................................. 32 

3.5.1 Why is deep learning better than machine learning? .................................. 32 

3.5.2 Recurrent neural network (RNN) ................................................................ 33 

3.5.3 Long short term memory (LSTM) .............................................................. 33 

3.5.4 Gated recurrent unit (GRU) ........................................................................ 34 

3.5.5 Multi-layer GRU RNN ................................................................................ 35 

3.6 Hyper Parameters .................................................................................................. 36 

3.7 Evaluation Metrics ................................................................................................ 37 

 METHODOLOGY AND IMPLEMENTATION ............................... 39 

4.1 Introduction ........................................................................................................... 39 

4.2 Proposed Architecture ........................................................................................... 39 

4.3 Recurrent Neural Network (RNN) ........................................................................ 40 

4.4 Long Short Term Memory (LSTM) ...................................................................... 41 

4.5 Gated Recurrent Unit (GRU) ................................................................................ 42 

4.6 Dataset ................................................................................................................... 43 

4.7 Description of Scikit-Learn ................................................................................... 44 

4.8 ANOVA F-test and RFE ....................................................................................... 44 



 

viii 

4.9 SDN Based Flow Based Anomaly Detection Architecture ................................... 45 

 EXPERIMENTAL PROCEDURES FOR METHODOLOGY 

ASSESSMENT .................................................................................................. 48 

5.1 Introduction ........................................................................................................... 48 

5.2 Data Cleaning and Pre-processing ........................................................................ 49 

5.3 Feature Scaling ...................................................................................................... 49 

5.4 Features Selection ................................................................................................. 49 

5.5 Building the Model ................................................................................................ 50 

5.5.1 LSTM model ............................................................................................... 51 

5.5.2 GRU model ................................................................................................. 51 

5.6 Loss Function Definition ....................................................................................... 52 

 EXPERIMENTAL RESULTS AND DISCUSSIONS ........................ 53 

6.1 Introduction ........................................................................................................... 53 

6.2 Appropriate Features Selection ............................................................................. 53 

6.3 Hyper Parameter Tuning ....................................................................................... 54 

6.4 Performance Results of IDS Classifier: ................................................................ 55 

6.5 Comparison with Existing Work ........................................................................... 58 

 CONCLUSIONS AND FUTURE WORK .......................................... 60 

REFERENCES .............................................................................................................. 62 

APPENDIX A FEATURE SELECTION CODE SEGMENT .................................. 69 

APPENDIX B ANOMALY DETECTION MODEL BUILD CODE SEGMENT .. 70 

LIST OF PUBLICATIONS ......................................................................................... 72 

 

  



 

ix 

ABSTRACT  

Software Defined Networking (SDN) has come to prominence in recent years and 

demonstrates an enormous potential in shaping the future of networking by separating 

control plane from data plane. As a newly emerged technology, SDN has its inherent 

security threats that can be mitigated by securing the OpenFlow controller that manages 

flow control in SDN. On the other hand, Recurrent Neural Networks (RNN) show a 

remarkable result in sequence learning, particularly in architectures with gated unit 

structures such as Long Short-term Memory (LSTM). In recent years, several 

permutations of LSTM architecture have been proposed mainly to overcome the 

computational complexity of LSTM. Therefore, in this dissertation, a novel study is 

presented that will empirically investigate and evaluate flow-based anomaly detection 

method in OpenFlow controller using LSTM architecture variants such as Gated 

Recurrent Unit (GRU). Hence, in this exploration, we propose a combined Gated 

Recurrent Unit Long Short-Term Memory (GRU-LSTM) Network intrusion detection 

architecture. In order to improve the classifier performance, an appropriate ANOVA F-

Test and Recursive feature Elimination (RFE) (ANOVA F-RFE) feature selection method 

also have been applied. The proposed approach is tested using the benchmark dataset 

NSL-KDD. A subset of complete dataset with convenient feature selection ensures the 

highest accuracy of 87% with GRU-LSTM Model. 
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INTRODUCTION 

1.1 Introduction 

This chapter provides an introduction including the main topics and technologies related 

to the architecture developed for this master thesis. Firstly, we provide a section 

describing the scope of the topic. There, we briefly discuss the origin of the emerging 

Software-Defined Networking (SDN) paradigm and describe some details to better 

understand how these new networks operate. In particular, we focus on traffic monitoring 

and the new challenges to address in SDN. 

 

Then, we provide a section motivating the main issues around the proposed model and 

some technologies we used in this thesis. This section is followed by another section that 

describes the main contributions of the proposal presented in this thesis. Finally, we 

outline the structure of this report including a description of the chapters and appendices 

included in this thesis. 

1.2 The Software Defined Networking Paradigm 

Current Internet protocol (IP) networks are increasingly more multifaceted and hard to 

manage, and this is a tendency that it is going to be more accused with new emerging 

paradigms of services such as virtualized cloud computing, big data applications, data 

center services or multimedia content delivery. With the aim of reverse this situation, the 

Software-Defined Networking (SDN) paradigm was proposed as a solution to build a 

more flexible network infrastructure with programmable devices, where new protocols 

and policies can be implemented via software without needing any hardware 

modification. 

 

The SDN paradigm proposes to separate the control and data planes of “legacy” networks 

for the sake of flexibility. In this way, the data plane is located in the SDN-enabled 

forwarding devices (i.e., SDN switches), while the control plane is logically centralized 

in new entities called SDN controllers. Thus, the different planes in SDN allow to create 

different layers of abstraction and, thereby, providing an unprecedented level of flexibility 
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in network management. Following Figure 1.1 depicts the architecture of an SDN-based 

network. There, we can see the different entities, planes and layers of abstraction in SDN. 

We briefly describe the main elements below. 

 

 

 

Figure 1.1: Software Defined Networking architecture [1] 

1.2.1 Planes in software defined networks 

 Control plane: This plane is in charge of calculating the local state of the 

forwarding devices in the network and enforcing the proper policies for the correct 

operation of the network. This includes all the network management tasks such as 

routing, traffic engineering or security policy enforcement. Unlike traditional 

networks, in SDN forwarding decisions are flow-based, instead of destination-

based. All the packets matching a specific criterion are applied the same actions. 

This flow abstraction enables to unify the behavior of different types of network 

devices (e.g., switches, routers, firewalls). In a nutshell, the control plane makes 

decisions about how and where the traffic is sent and manages all the signaling of 

the network to properly configure the network devices.  
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 Data plane: This plane performs traffic forwarding in the network devices (i.e., 

the switches) according to the rules defined by the control plane. This also 

includes traffic filtering and the different actions that can be typically executed 

for new incoming packets in a switch. It is worth noting that switches in SDN are 

of general purpose, i.e., they execute the flow-level rules installed by the control 

plane and can combine actions that used to correspond to different types of 

network devices (e.g., routers, switches, middle boxes) in traditional networks. 

This plane is also known as the “forwarding plane”. 

1.2.2 Abstractions in software defined networks 

Following the definition in [1], we distinguish the three abstractions described below: 

 Forwarding abstraction: This abstraction allows the data plane to ideally 

perform any forwarding action determined by the control plane while hiding the 

underlying hardware in the network infrastructure. Currently, OpenFlow [2] is the 

dominant protocol of SDN that implements this abstraction. This protocol 

provides a standard API (Southbound API) for the communication between the 

control and the data planes, i.e., between the SDN controllers and the OpenFlow 

enabled switches. 

 

 Distribution abstraction: This abstraction enables SDN applications to operate 

without the necessity of being aware of the distributed state of the network. In 

comparison to traditional networks, the status information in SDN is logically 

centralized and it enables to make much better decisions with a global view of the 

network in the controllers. This is possible only due to “Network Operating 

Systems” (NOS) of SDN, which collect the status information of the network and 

it is in charge of installing the desired rules in the switches through a standard 

communication protocol. 

 

 Specification abstraction: This abstraction allows to describe the desired 

operation of the network by means of high-level policies defined by network 

management applications. Thus, these policies are then mapped into sets of 



 

4 

physical configurations for the global network view exposed by the SDN 

controller. This abstraction provides an interface (Northbound API) which ideally 

allows network applications to operate over simplified abstract models of the 

network which are oblivious of the underlying network topology.  

The design of the SDN paradigm enables to perform a fine-grained management of the 

network, taking advantage of the decision making from the global perspective of the 

network in the controller. However, to be successful in current dynamic environments, 

traffic monitoring becomes a cornerstone in SDN given that management applications 

often need to make use of accurate and timely traffic measurements. Scalability is 

considered one of the inherent issue of SDN.  For an appropriate design of a monitoring 

system, it is required to consider the network and processing overhead to store and gather 

the flow statistics. On the one hand, note that controllers are critical points in the 

infrastructure since all the management decisions are made and communicated from there 

to each switch under its control. On the other hand, the most straightforward way of 

implementing per flow monitoring is by maintaining an entry for each flow in a table of 

the switch. Each of these entries has some counters which are updated every time a packet 

matches them. Thus, obtaining accurate measurements of all flows results in a great 

constraint, since nowadays OpenFlow commodity switches do not support a large number 

of flow entries due to their limited hardware resources available [3]. 

 

This thesis covers a study of flow based traffic monitoring in SDN-based networks. More 

specifically, it aims to identify all the issues around traffic measurement derived from the 

SDN paradigm and proposes a scalable and OpenFlow compliant monitoring system 

more suitable for those networks of the future by developing a deep learning model. The 

approach of this solution is to obtain flow-level measurement reports equivalent to those 

of NetFlow [4] in traditional networks and to design an architecture which can detect 

intrusion for flow based traffic. Likewise, we evaluated our system to analyze its 

feasibility and to quantify its accuracy, resource requirements and network overhead. 

1.3 Motivations 

The SDN paradigm was the outcome of some works of the research world that suggested 

the necessity of building programmable networks as a practical way to experiment with 

new protocols in production networks. From its inception, it has gained lots of attention 
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from academia and industry. It is supported by giants of the Internet world like Google, 

Cisco, HP, Juniper or NEC and by standardization organizations like the Open Network 

Foundation (ONF) or the Internet Engineering Task Force (IETF), so one can state that 

this network paradigm has a lot of potential to succeed. The proposal of the OpenFlow 

protocol [2] in 2008 was its major driver. In that text, they talk about the commonly held 

belief that the network infrastructure was “ossified”. Thus, they proposed OpenFlow as a 

protocol for the communication between the forwarding and control planes in order to 

decouple logically and physically these two planes. 

 

SDN introduces the benefits of a centralized approach to network configuration. That 

way, each time network administrators want to make a policy change do not have to 

configure individually by-hand each network device using its own vendor-specific code. 

Unlike traditional networks with distributed management, in SDN the administrator can 

apply some new high level policies from the controller and this is the responsible for 

translating the policies into rules and install them in the forwarding devices involved. 

This allows software developers to be oblivious of the underlying devices and develop 

their networking logic the same way they do in computer software. 

 

Furthermore, SDN-based networks offer a level of flexibility never seen before. It allows 

to perform a fine-grained flow-level management ideal for services with strict QoS 

requirements. It successfully adapts to current environments with high fluctuate traffic to 

make an efficient use of the network resources. In SDN, the forwarding devices are of 

general purpose, i.e., they are not designed for a specific network function (router, 

firewall). This results in the possibility of re-configuring via software the topology and 

change the role of the different devices at run-time, taking advantage of the global 

knowledge of the network state in the controller. This is an arduous task in traditional 

networks, since forwarding devices are inflexible due to the underlying hardwired 

implementation of routing rules. Concerning the measurements and monitoring tasks, 

SDN allows to collect some traffic statistics that in traditional large networks in some 

cases it is unfeasible. 

 

In [3], they envision that, for the moment, the majority of research efforts are focused on 

providing solutions and services over SDN-based networks, while network Security is 
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not given much attention. Likewise, they remark the importance to consider the network 

security before the technology is widely deployed and, therefore, network security of 

SDN arises as a real need. 

1.3.1 Monitoring and measurements in SDN 

The huge scale and diversity of today’s Internet traffic make it difficult for the operators 

to measure and maintain the status and dynamics of the network in short timescales. This, 

in turn, has become a great challenge, since there are more and more services and 

applications with guaranteed QoS requirements to be maintained along end-to-end 

network paths. It motivates the necessity of ubiquitous accurate traffic measurement and 

monitoring mechanisms. 

  

The SDN paradigm makes it easier to perform QoS measurements and enables to perform 

a fine-grained management as well as making an efficient use of the network resources. 

However, although the SDN paradigm solves some classical problems of the traditional 

networks, it brings new challenges. The decoupling of the control and forwarding planes 

has some new implications that need to be identified and considered in order to devise 

new smart solutions. Among these issues, the introduction of a centralized control plane 

makes necessary to consider now a latency between the forwarding and control planes 

that did not exist in legacy networks. This latency depends on the delay due to the network 

connection as well as the availability of the SDN controller. Thus, the controller becomes 

a critical point in the infrastructure and it is prone to become a network bottleneck. In this 

way, it is of vital importance to find a tradeoff between the tasks where the controller is 

involved and those that may be devolved to the forwarding devices. 

 

As a conclusion, we see that nowadays there are a number of proposals around 

measurement and monitoring in SDN with their respective advantages and drawbacks, 

but there is still much work to be done. 

1.3.2 OpenFlow 

Since its inception in 2008, OpenFlow [2] has become the de facto protocol for the South 

bound interface (communication between control and data planes) in SDN. This makes 

this protocol the main enabler of the SDN paradigm, since it was the first proposal that 
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allowed to completely decouple the control and data planes of a network, which is the 

basis of the SDN paradigm. This proposal also introduced the idea of performing flow-

level management with the aim of creating a standard where the control plane could be 

oblivious of the underlying hardware of the forwarding devices in the network. 

 

OpenFlow allows to dynamically define the forwarding state of the network from the 

SDN controller by installing in the switches sets of flow entries. These flow entries are 

stored in flow tables in the switches and determine their behavior. Figure 1.2 illustrates 

the main components of a flow entry. 

 

 

Figure 1.2: Components of a flow entry in OpenFlow 

We describe below these components: 

 Match fields: This field defines a filter (packet headers, ingress port, metadata, 

and others) to specify the packets that will be processed by this flow entry. 

 

 Priority: Defines a priority to determine the flow entry to be applied to a packet 

when some flow entries have an overlap. 

 

 Counters: These are some records that maintain the number of packets and bytes 

processed by the flow entry. It also store the life time of the flow entry since it 

was installed in the switch. 

 

 Instructions:  For packets matching the flow entry a set of actions to be applied.  

 

 Timeouts: Defines how the flow entry is expired by the switch according to time. 

There are two types of timeouts: 1. the hard timeout defines the maximum amount 

of time since the flow entry was installed by the SDN controller in the switch. 2. 

The idle timeout defines the maximum time interval between two consecutive 

packets matching the flow entry. Both timeouts can be installed simultaneously to 

decide when the flow entry will be evicted from the switch. 



 

8 

  

 Cookie: Unique opaque value selected by the SDN controller to identify the flow 

entry. This allows the controller to filter specific flow entries when modifying or 

deleting flow entries.  

 

 Flags: These fields define how the flow entries are managed in the switch. For 

instance, it is possible to define if the switch sends a flow removed message to the 

controller including the data of the counters when the flow entry expires 

1.3.3 The OpenDaylight controller 

The OpenDaylight controller [5] is the result of an open-source project leaded by the 

Linux foundation which was announced in 2008. This project is strongly supported by 

both academia and industry and it was created with the aim of accelerating as much as 

possible the adoption of Software-Defined Networking (SDN) and Network functions 

virtualization (NFV) in future networks. This project has a vast support from big players 

of the current Internet world including companies such as Cisco, Ericsson, Red Hat, ZTE, 

NEC, AT&T, DELL, Fujitsu, Huawei, Intel, Juniper and many others [6]. 

 

OpenDaylight is a vendor-independent platform, which makes it much easier to be 

adopted in any SDN-based network using switches from different vendors with support 

for different protocols. Thus, it offers support for a wide range of protocols for the 

Southbound interface in SDN. It includes support for protocols such as OpenFlow, OF-

Config, NETCONF, LISP, OVSDB, BGP or SNMP. This allows also to operate in 

network environments combining pure SDN devices (e.g., OpenFlow-based switches) 

with other network devices that support popular protocols already used in traditional 

networks (e.g., BGP, SNMP). 

 

Probably, the key success of the rapid growth of OpenDaylight lies in its large support 

community. Since it is open-source, anyone can collaborate in the development of the 

product. Thus, the members of the community can either contribute in many different 

projects that are already in progress or propose new ones which are evaluated for their 

approval. Likewise, members in the community are very active answering questions, 

which eases even more the collaboration among developers. As a result, they are able to 
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constantly release new versions including many novel features. Figure 1.3 depicts all the 

different plugins that offers OpenDaylight in its Beryllium version, which is the release 

we used for the implementation of the monitoring system presented in this report. 

Typically, each of these plugins belong to different projects that are independently 

developed by different groups of developers following some common programming 

guidelines. 

 

Figure 1.3: Architecture of the OpenDaylight beryllium release [7] 

1.4 Problem Statement 

The goal of this thesis is to analyze and answer the following research questions:  

 What are the security and privacy issues relevant to the SDN environment? 

 Does GRU-LSTM better than the other machine learning approaches for 

Intrusion Detection on the SDN?  

 Does a feature selection mechanism for NSL KDD dataset perform better 

for a Network intrusion detection architecture?   

1.5 Purpose, Scope and Contribution 

The purpose of this thesis is to analyze the applications of deep learning to the SDN 

environment by evaluating recurrent neural network algorithms on the intrusion detection 

dataset. I believe that this research has an immense potential to open the doors for Deep 

Learning applications to both the cyber security domain and the SDN domain. The 

importance of security in today’s connected world requires analyzing the humongous 
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amount of heterogeneous data, and this cannot be possible without the help of artificial 

intelligence. This research can be extended by applying the algorithms on GPU 

environment on real-time SDN data. 

 

Though there are various deep learning algorithms such as deep neural networks, auto 

encoders, convolutional neural networks and recurrent neural networks, the research 

problem requires an algorithm that can learn from historical data. Therefore, we have 

selected the family of recurrent neural networks for the research. Considering the need of 

building smart and lightweight solutions for the SDN Environment, we have performed 

the experiments with only the Long Short Term Memory (LSTM) and Gated Recurrent-

Unit (GRU) algorithm. However we have evaluated various versions of LSTM and GRU 

to obtain optimized results on the dataset. Due to the unavailability of intrusion detection 

data for an SDN network, we have considered the NSL-KDD dataset, an improved 

version of KDDCup99, which is used as a benchmark by most other IDS-Machine 

Learning researchers.  

 

As this is an inter disciplinary research work which involved cybersecurity, artificial 

intelligence and computer networks, a lot of time has been spent in understanding the 

depth of the concepts in each field. We started with understanding the attack types in an 

intrusion detection dataset. We followed up with learning the architecture of SDN and 

analyzed the possible malware attacks in OpenFlow controller. We then realized that the 

intrusion detection dataset must be classified with machine learning algorithms. However, 

we recognized that the application of deep learning algorithms is the most suitable 

approach for the research problem defined. We performed the experiments using a robust 

deep learning tool called Google’s TensorFlow. We have also applied the higher versions 

of recurrent neural networks. The performance results are compared for each designed 

IDS with existing IDS available in literature. This overall interdisciplinary practical 

approach made this research unique. 

1.6 Organization of Thesis  

With the aim of providing an overview of this thesis to the reader, we describe in this 

section the structure of the report. The present report is composed of the seven chapters 

and two appendices described below. 
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In chapter One, I describe all the main aspects related to the model developed for this 

thesis. It begins with an introduction to the SDN paradigm. Then, we provide a section 

with motivations around SDN and, particularly, traffic monitoring in SDN-based 

networks. Finally, there is a section that provides a description of all the contributions 

achieved in this thesis. 

 

In chapter Two, I covered most relevant research efforts around the topics addressed in 

this thesis. It includes numerous proposals in the literature that were the part of SDN 

security with feature selection approach as well as the main solution around the Deep 

learning approach. In particular we showed most relevant flow monitoring solution using 

different deep learning approach and described their drawbacks and advantages.          

 

Chapter Three provides information on the background involved in developing this 

research. It introduces the concepts and technologies of Deep learning methods followed 

by SDN security and privacy concerns. Further, this chapter addresses the characteristics 

to be considered while developing SDN based flow monitoring systems. The main 

intention of this chapter is to provide a complete overview of the concepts and algorithms 

for the reader with minimal knowledge in this field of research 

  

Chapter Four provides information regarding in detail methodology and how these theory 

utilized in this thesis work. Apart from that it also addresses the key issues of 

methodologies for implementation. It also demonstrates each algorithm architecture and 

its equations, along with all related topics including intrusion detection, parameter 

definitions, and evaluation matrices used in this thesis.      

 

Chapter Five showed the procedure of experiment conduction for the successful 

assessment of our methodology. It also describes the design and model of the flow 

monitoring mechanism for Software Defined Networking. Initially, it provides some 

theoretical background with algorithm and model about our methodology. Then, the 

procedure of experiment is thoroughly explained. Finally, with coding we showed and 

analyzed developed model for achieving our experimental results.  
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In chapter Six the result of the experiment is reported, as well as a discussion of the 

performance of each algorithm with an overall analysis. Furthermore, we also compared 

our experimental results with other state-of-the-art approaches and showed how our 

proposed model outperformed others results in terms of methodology and experiment 

conduction.  

 

Chapter Seven summarizes the core aspects about the model developed for this master 

thesis. It also includes some guidelines for future work to extend the monitoring system and 

the experiments we describe in this thesis. 
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LITERATURE REVIEW 

This section focuses on highlighting the related work for network intrusion detection in 

SDN with deep learning algorithms. In particular, GRU based LSTM architectures with 

feature selection mechanism, as it is considered to be a special kind of RNN. According 

to [8-10] LSTM architecture is widely used in sequential data problems. RNN, GRU, and 

LSTM are being used in many studies in the field of intrusion detection.  

 

Nowadays, Flow-based anomaly detection systems are widely studied. Flow-based 

anomaly detection system using a Multi-Layer Perceptron (MLP) neural network with 

one hidden layer and Gravitational Search Algorithm (GSA) proposed in [11] can classify 

benign and malicious flows with a high degree of accuracy. Authors of [12] introduce a 

novel concept for an inductive NIDS that uses One-Class Support Vector Machines for 

analysis and is trained with malicious network data in contrast to other systems gives a 

low false alarm rate. A lightweight method for DDoS attack detection based on traffic 

flow features is presented in [13], in which such information is extracted with a very low 

overhead by taking advantage of a programmatic interface provided by the NOX 

platform. This method produces a high rate of detection obtained by flow analysis using 

Self Organizing Maps.  

 

Kokila RT et al. [14] analyze the SVM classifier for DDoS detection and their 

experiments show that SVM classifier gives less false positive rate and high classification 

accuracy as compared to other techniques. Trung et al. [15] propose an optimized 

protection mechanism (OpenFlowSIA) that uses SVM classifier along with the authors' 

proposed Idle−timeout Adjustment (IA) algorithm to secure and save the network 

resources under flooding attacks in SDN.  

 

In [16] a lightweight solution based on the entropy variation of the destination IP address 

is provided to detect DDoS attacks within first 250 packets of the traffic that carries 

malicious packets. Authors of [17] design a Markov-based graph model that outperforms 
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k-nearest neighbors classification. Niyaz et al. [18] use stacked auto encoder (SAE) based 

DL model to detect multi-vector DDoS attacks in SDN. Tang et al. [19] propose a Gated 

Recurrent Unit Recurrent Neural Network (GRU-RNN) enabled intrusion detection 

systems for SDNs which is tested using the NSL-KDD dataset and they achieve 89% 

accuracy. 

 
Tuor et al. [20] presented an online deep learning method for intrusion detection due to 

its excellent ability to learn patterns, where they employed deep neural network auto 

encoders for unsupervised network anomaly detection using time aggregated statistics as 

features.  

 

An intelligent attack detection method in social network works based on LSTM with NSL 

KDD dataset has proposed by Yunsheng Fu. et al. [21]. Their experiment consist of data 

preprocessing, feature abstraction, training and detection.  

 

Yunsheng Fu. et al. [21] proposed an intelligent attack detection method in social network 

works based on LSTM, with the purpose of achieving a high detection rate. They used 

the NSL-KDD dataset to evaluate the performance of their proposed method. 

Experimental results demonstrated that their proposed intelligent attack detection method 

achieved state-of-the-art performance and is much faster than most post-processing 

algorithms. Their developed intelligent attack detection method scored more than 98%  

 

Al-kasassbeh et al. [22] showed that Random Forest with higher accuracy at 94% and 

Meena et al. showed accuracy for J48 and Naïve Bayes at 99.49% and 92.72%, 

respectively. But none of them has followed any feature selection mechanism. Apart from 

that they analyzed their model with the KDD Cup 99 dataset, which is a predated version 

of current NSL KDD Dataset.  

 

In another experiment Kim et al. [23] showed effective results using LSTM with different 

values for learning rate and hidden layer size with high detection rate and accuracy. They 

applied their experiment on 10% of the KDD Cup 99 training dataset and 10% of the 

KDD Cup 99 testing dataset. As we know the performance of the algorithm changed 

depending on the tuning of algorithms parameter values. Therefore appropriate learning 
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rate and choice of number of hidden layers had a great impact on the classifier 

performance. Authors found that the detection rate and false alarm rate showed 

improvement precisely when the learning rate parameter was set to 0.01 and hidden layers 

size set to 80. 

 

Miao et al. [24] have simplified LSTM based on their analysis of activation function and 

proposed two simplifications (1) deriving input gates from forget gates, and (2) removing 

recurrent inputs from output gates. Lyu et al. [25] also proposed another simplification 

for LSTM.  

 

Moreover, Gers and Schmidhuber [26] introduced “peephole” connections which allows 

the gates to not only depend on the previously hidden state (St-1), but also on the previous 

internal state (Ct- 1).  

  

One of the crucial observation provided by Greg et al. [27] as it introduced GRU as a 

light version of LSTM. The architecture addressed the complexity of LSTM by 

eliminating the “output gate”, at each time step which writes the contents from its memory 

cell to the more substantial net. 

 

A challenge has been addressed by Ahmed E. [28], which is to achieve a low false alarm 

rate with new unseen threats. Author tested the model with NSL-KDD Dataset. He built 

a model using different RNN models and used Bi-Directional RNN, LSTM, BLSTM to 

detect anomalies in sequence.  

 

An auto encoder framework is proposed for both steady and variable length data Ali H. 

et al. [29] utilized LSTM for computer network intrusion detection. They used LSTM 

encoders such as GRU, and BLSTM through a comprehensive set of experiments. They 

developed an online sequential unsupervised dataset for network intrusion detection using 

LSTM auto encoders.  

 

Thi-Thu-Huong Le et al. [30] built a classifier of IDS using LSTM with six optimizers: 

RMSprop, Adagrad, Adadelta, Adam, Adamax, and Nadam. They evaluated the 

performance of each optimizer using the KDD Cup’99 dataset on each attack type as 
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follows: DoS, Probe, R2L, U2R and Normal. The main purpose of their experiment was 

to enhance the classification performance by increasing accuracy decreasing false alarm 

rate. Their experiment consists of two stages. The first stage determined hyper parameter 

values. The second stage applied LSTM with the six optimizers.  

 

Bontemps et al. [31] present a collective anomaly detection model using LSTM in real-

time network traffic. They demonstrate the efficient performance of the proposed model 

using the KDD Cup’99 dataset. The results showed the capability of the model to detect 

collective anomalies. However, they recommended that their model training data must be 

organized in a coherent manner to guarantee the stability of the system. 

 

Current work by Benjamin et al. [32] has revealed that LSTM RNN can be applied to the 

problem of anomaly detection in computer network flow data. They applied a public 

dataset “ISCX IDS” for IDS taken from the University of New Brunswick’s Canadian 

Institute for Cybersecurity (CIC) and the Information Security Centre of Excellence 

(ISCX). Their model can identify anomalous network traffic. Observed anomalies were 

the focus for training the models for prediction attacks. But no feature section method 

have employed by them. 

 

Furthermore, SKIP-RNN is a newly proposed architecture by Campos et al. [33] in which 

they extend the existing LSTM model by learning to reduce the number of sequential 

operations and the effective size in the computational graph. Their experiment was based 

on developing SKIP-LSTM and SKIP-GRU on the MNIST dataset (a large database of 

handwritten digits developed by Modified National Institute of Standards and Technology 

database). All parameters were trained using backpropagation. Unfortunately the 

algorithm did not converge despite numerous attempts to train the model with different 

set values of its parameters. 

 

In comparison to existing literature, this research offers insight into RNN architectures. 

Different feature selection techniques were compared, the best technique that fit intrusion 

detection was selected, and applied to a different deep learning model for intrusion 

detection. This resulted in presenting suitable parameter tuning to be changed while 
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increasing the accuracy for this set of algorithm, which will be explained in detail in the 

results and analysis section. 

2.1 Objectives with Specific Aims and Possible Outcome 

This work focuses three general research fields’ i.e. Machine Learning, Network Security, 

and Feature Selection. The objectives of this research are: 

 

i. To detect flow-based traffic anomaly in an SDN Environment. 

ii. To implement a deep learning algorithm for detecting network intrusion in the 

OpenFlow controller segment of SDN. 

iii. To develop a deep learning model and train that model with NSL-KDD Dataset 

 

As a result, this research will provide following expected outcomes 

 

i. Both complete and reduced dataset (after using feature selection method) will be   

used for the performance analysis of our proposed model. 

ii. Comparison will be made by using deep learning model for flow based anomaly 

detection in SDN.  

iii. Through Experiments, the potential of deep learning approach will be observed in 

flow- based anomaly detection. 
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BACKGROUND 

3.1 Introduction 

This chapter provides information on the background involved in developing this 

research. It introduces the concepts and technologies of Software Defined Networking 

(SDN) followed by its security and privacy concerns. Further, this chapter addresses the 

characteristics to be considered while developing security solutions for OpenFlow 

controller. This chapter continues to elucidate the concepts of network security and 

intrusion detection systems. Later, explanation of the network architecture is provided for 

the Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) recurrent neural 

networks. The final sections of the chapter explain the importance of Machine Learning 

and Deep Learning for SDN environment by quoting their relevant applications. The main 

intention of this chapter is to provide a complete overview of the concepts and algorithms 

for the reader with minimal knowledge in this field of research. 

3.2 Intrusion Detection Method  

 

Intrusion detection is a key research area in network security. A common approach for 

intrusion detection is detecting anomalies in network traffic, however, network threats are 

evolving at an unprecedented rate. The difference between the evolution of threats and 

the current detection response time of a network leave the system vulnerable to attacks. 

Over the years, a number of intrusion detection techniques have been developed to detect 

network intrusions using various detection mechanism. 

3.2.1 Signature based detection  

 

Signature-based detection is the way to detect packets that have a signature in the network 

traffic corresponding to the rules established in the IDS [34]. Each rule has attributes and 

conditions about an attack. When the traffic from the network comes into the IDS, we 

must find some rules to match the provided data in the IDS. If matched rules were found 

in the traffic data, the IDS decides if the transmitted traffic contains an intrusion. In this 

respect, signature-based detection is similar to the operation of an anti-virus application. 

Because the actual IDS should be applied at the same time for at least several thousand 



 

19 

rules for all traffic, we do not need to compare each rule, but use a decision tree or some 

kind of automated algorithm to speed up the process. Well-written signature rules can 

perform detection of known attacks with high probability, so misjudged results are very 

few. Because of these characteristics, signature based detection is used frequently in 

commercial usage, and an IPS in particular will use this detection to essentially perform 

the preventive reactions without mistakes.  

3.2.2 Anomaly based detection 

Anomaly-based detection will not find attacks using one-to-one correspondence, like 

signature based detection; this detection uses the tendency of the attack traffic to 

determine whether an attack is occurred or not. To operate this detection method, a prior 

learning process is required. First, security experts collect a great deal of general traffic 

and attack traffic, and generate an algorithm or heuristics based on statistics, artificial 

intelligence, or machine learning to judge each attack type [35]. When detecting attacks, 

the IDS tries to distinguish which pre-classified group is correct for the entered traffic. If 

a proper group for the traffic is found in pre-classified group, the IDS decides this traffic 

is a known attack. Otherwise the IDS decides the other traffic as an outlier, which means 

a new kind of attack. Anomaly-based detection can distinguish outlier traffic, so the IDS 

has the possibility of detecting new attacks if the detection algorithm is trained well.  

 

However, because the learning outcomes of anomaly-based detection are represented by 

a sequence of numbers, most experts have difficulty seeing the working method. 

Consequently, even though a learned algorithm potentially has the critical problems, they 

cannot be found fast, or found when the IDS operates in a real environment in certain 

cases. Also, anomaly-based detection generally has a lower detection rate, compared to 

signature-based detection, and has a high false alarm rate. This result reduces reliability 

of the IDS, so flow-based detection is commonly used along with signature-based 

detection together. 

3.2.3 Flow based detection  

Flow-based detection is used to minimize network overhead when the IDS operates. In 

flow-based detection, flow is the basic unit between connections to be detected [36]. Even 

if connection time is long and the number of packets is large, they can be represented as 
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one flow or a few flows. This is the reason flow-based detection requires far fewer network 

resources, compared to packet-based detection. 

 

In flow-based detection, a network switch and router collect flow information from the 

network traffic, and send this information to the server during some intervals. Because 

switches and routers are installed throughout the entire network, not only on the boundary 

of the network, flow-based detection can detect insider attacks as well as outsider attacks. 

Therefore flow-based detection can be used in a university network, an industrial network 

and a city-wide network, in which all of the network members are not guaranteed 

harmless. A flow contains source internet protocol (IP) address, destination IP address, 

protocol, packets per flow, TCP flags (if possible), bytes per flow, and duration. A flow 

is not used with signature-based detection which requires many features, and is generally 

combined with anomaly-based detection. 

3.2.4 Packet based detection  

Packet-based detection (or payload-based detection) is a way to choose a data source from 

network traffic which requires the entire packet payload to detect an attack. Packet-based 

detection is mainly combined with signature-based detection, which requires a lot of 

features of the traffic, especially for operating an IPS. For example, Snort is a well-known 

IDS based on packet-based and signature-based detection. This detection method requires 

all packet payloads for detection. Therefore the IDS using packet-based detection is 

mainly installed near the gateway or root of a tree network structure, where almost all 

packets are transmitted.  

 

In theory, packet-based detection can provide the highest detection rate due to detection 

target which implies all the information from the traffic. But detection hardware must be 

should have powerful devices to process several terabits of traffics. To address this 

limitation, NetFPGA [37] which processes packets at high speed, or a distributed IDS 

[38], can be used for a packet-based IDS. 

3.3 What is Software Defined Networking?   

Software Defined Networking (SDN) has come to prominence in recent years and 

demonstrates an enormous potential in shaping the future of networking by separating 
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control plane from data plane. OpenFlow is the first and most widely used protocol that 

makes this separation possible in the first place. As a newly emerged technology, SDN 

has its inherent security threats that can be eliminated or at least mitigated by securing 

the OpenFlow controller that manages flow control in SDN. 

3.3.1 SDN overview 

Up to now, each network device has had limited settings for the network layer and for 

only the device itself. So if changing network policy is required, network operators must 

change settings of each devices. Because the equipment is not connected organically, the 

settings between devices can be confused within several modification of network 

configuration. A software-defined network [39] divides the existing network into the 

control layer, the infrastructure layer (data layer), and the application layer, as shown in 

Figure 3.1. Common routers and switches contain the link status and manage routing, 

forwarding the table itself. In an SDN, these devices have only link status and just transmit 

data, and devolve management functions to an SDN controller and network application, 

such as NAT, load balancer linked with an SDN controller. This separation allows the 

network administrator to easily change the entire network policy. 

 

 

Figure 3.1: Layer representation in SDN [39] 

3.3.2 OpenFlow 

OpenFlow (OF) [39] is the most widely used protocol, which provides the functionality 

of an SDN. OpenFlow describes how the SDN controller and the OpenFlow switch (OF 
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switch) communicate, and which message block is sent by them. In an OpenFlow 

network, OF devices (including OF controller and OF switches) have their own OF port 

number (DPID as SDN) and set destinations using the OF port number in the OpenFlow 

network. To communicate between controllers and not directly connect switches, they 

build a secure channel virtually using transport layer security (TLS) encryption.  

 

In SDN and OpenFlow [40], forwarding and routing of packets are treated as follows. 

When a packet enters the OF switch, the switch will make sure a proper rule in the match 

table, and a rule contains match information as seen in Table 3.1. If a matched rule is 

found in the table, the OF switch does the action in the rule. If not, the OF switch requests 

the proper action by sending the packet to the controller. The OF controller forwards the 

packet to the OF application in the controller. If the controller receives the proper action 

for the packet from the application, then this provides a response rule and action to the 

OF switch to transmit the packet properly. 

 

OpenFlow can do many things, not just receive packet information and send routing 

information, but also communicates with switches with a variety of information. For 

example, OpenFlow can receive port status, flow status, lookup table status by switch, 

and make new packets in the network. Therefore, various network application can be 

adopted in OpenFlow. 

3.3.3 Flow based detection using SDN 

OpenFlow uses the flow as a minimum unit of the routing table to reduce processing 

throughput. The flow status was created automatically without third-party tools to allow 

implementation of flow based IDS using Open Flow’s flow status. Information that is a 

response to a flow stats request message is shown in Table 3.1 and Table 3.2 respectively. 

Bold face attributes are the same as those provided in Labeled Data Set for Intrusion 

Detection [36]. Therefore, by using the flow stats request of the OpenFlow message, to 

perform flow-based detection without any limitations is feasible. 
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Table 3.1: Structure of Match Information 

Attribute Description 

ingress port Length of action entry 

ether source MAC address of source 

ether dest MAC address of the destination 

VLAN id VLAN id of flow 

VLAN priority VLAN priority of flow 

IP src IP address of source 

IP dest IP address of the destination 

IP proto IP protocol 

IP ToS bits Type of service of IPv4 

source port TCP, UDP source port and ICMP Type 

dest port TCP, UDP destination port and ICMP Code 

 

Table 3.2: Structure of Flow Information 

Attribute Description 

length Length of action entry 

table id ID of match table flow came from 

match Match information of flow 

duration_sec Time flow has been alive in seconds duration in sec 

duration_nsec Time flow has been alive in seconds duration in nanosec 

priority Priority of the entry 

idle timeout Number of seconds idle before expiration hard timeout 

hard timeout Number of seconds before expiration  

packet count Number of packets in flow 

byte count Number of bytes in  flow 

3.4 Data Set for Intrusion Detection 

As described above, selecting a data set is very important, because the data set is used to 

evaluate the performance of the IDS, or to make a pre-learned detection algorithm.  

However to make a useful data set, a well-designed data collection plan is required. 

Because of the difficulty in making a data set, using a public data set for intrusion 

detection is also a good idea in researching an intrusion detection system. 

3.4.1 Public labeled dataset for an IDS 

The Defense Advanced Research Projects Agency (DARPA) Data Set [41] is a data set 

for intrusion detection produced by the MIT Lincoln Laboratory at the request of 

DARPA. DARPA data sets were made in 1998, 1999, 2000, and each data set has a 

different purpose for detection. Regardless of the year, all DARPA data sets provide tcp 
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dump for all the traffic, and expected attack types are in the data set. Among the data sets, 

the DARPA 1998 data set is most used for network intrusion detection systems because 

this dataset contains very huge network traffic and various attack types. The DARPA 

1998 data set was made over eight weeks and has approximately 20GiB of network traffic. 

Also, this data set classified 27 attack types and contains about 15,000 IP addresses, 

including fake IPs for attacks. 

 

The KDD99 Data Set [42] is a data set for the Knowledge Discovery and Data Mining 

Tools KDD Cup 99 competition which is based on the DARPA 1998 data set. This dataset 

extracted 41 features from the entire packet dump, and reclassified as 24 attack types from 

DARPA 1998 data set. By 2010, the DARPA 1998 and KDD99 data sets had been used 

most frequently for performance evaluation of IDS systems. 

 

However, there are criticisms that the learned algorithms using the DARPA data set and 

the KDD99 data set are not proper for detecting attacks in real network environments 

[43]. When evaluating the DARPA 1998 data set using a commercial signature-based 

IDS, the IDS showed a lower detection rate, even if the IDS showed good performance 

on a real network. As a result of the analysis, the recorded TCP dump of attacks is quite 

different from general attack tools. To solve this problem, NSL-KDD [43], which 

removed and fixed the improper attack dump, was suggested. However, DARPA 1998 

which is the basis of NSL-KDD is too old a data set, so NSL-KDD can not represent 

‘current’ dataset. 

3.4.2 NSL KDD dataset  

Different statistical analyses discovered by researchers that prime drawbacks of KDD cup 

99 dataset [44] has affected the detection accuracy of many network intrusion detection 

model. A refined version of KDD cup 99 dataset is NSL KDD [45] and it can be stated 

as predecessor of KDD cup 99. Following Table 3.3 presents a collection of downloadable 

files at the disposal for the researchers. 
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Table 3.3: List of NSL-KDD Dataset Files and their Description [46] 

Serial No. File Name File Description 

1 KDDTrain+.ARFF 
The full NSL-KDD train set with binary 

labels in ARFF format  

2 KDDTrain+.TXT 

The full NSL-KDD train set including 

attack-type labels and difficulty level in 

CSV format  

3 KDDTrain+_20Percent.ARFF 20% subset of the KDDTrain+.arff file  

4 KDDTrain+_20Percent.TXT 20% subset of the KDDTrain+.txt file  

5 KDDTest+.ARFF 
The full NSL-KDD test set with binary 

labels in ARFF format  

6 
KDDTest+.TXT 

 

The full NSL-KDD test set including attack-

type labels and difficulty level in CSV 

format  

7 
KDDTest-21.ARFF 

 

A  subset  of the KDDTest+.arff file 

which does not include records with 

difficulty level of 21 out of 21  

8 KDDTest-21.TXT 

A subset of the KDDTest+.txt file which 

does not include records with difficulty 

level of 21 out of 21  

 

Following observation represents how NSL KDD dataset differs from traditional KDD 

cup 99 dataset 

   

 In order to produce unbiased results from the classifier redundant records are 

removed 

 In train and test dataset sufficient records is available, which is practically rational 

and enables us to perform the experiment on complete dataset.  

 Comparing with the original KDD data set, NSL KDD dataset contains sufficient 

number of records which is inversely proportional for the selection of records 

from each difficulty level.  

 

There are 41 attributes classifying different features of the flow in each record. A label is 

assigned to each either as an attack type or normal type. According to following Table 

3.4, Table 3.5, Table 3.6, and Table 3.7 details of the attributes namely their attribute 

number, attribute name with description, and sample form of data. In following every 

table contain different types of features of each network connection. Table 3.4 contains 

all the basic features of the dataset whereas content, time and host based features of each 

network connection enlisted in Table 3.5, Table 3.6, and Table 3.7 respectively. The last 
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attribute position as 42nd contains data about 5 classes in which they are categorized as 

one normal class and four attack class. In general this 5 classes are considered as network 

connection vector. Among the 4 attack classes theses can be further grouped as 4 attack 

pattern namely DoS, Probe, R2L and U2R. The description of the attack classes are 

described in following section.     

Table 3.4:   Basic features of each network connection [46] 

 

Attribute   No. Attribute  Name Description Sample  Data 

1 Duration 
Length of time duration 

of  the connection 
0 

2 Protocol_type 
Protocol used in the 

connection 
Tcp 

3 Service 
Destination network 

service used 
ftp_data 

4 Flag 
Status of the connection:  

Normal or Error  
SF 

5 Src_bytes 

Number of data bytes  

transferred from source 

to destination in single 

connection  

491 

6 Dst_bytes 

Number of data bytes 

Transferred from 

destination to source in 

single connection  

0 

7 Land 

if source and destination 

IP addresses and port 

numbers are equal then, 

this variable takes value 

1 else 0  

0 

8 Wrong_fragment 

Total number of wrong 

fragments in  

this connection  
0 

9 Urgent 

Number of urgent 

packets in this 

connection. Urgent 

packets are packets with 

the urgent bit activated  

0 
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Table 3.5: Content related traffic features of each network connection [46]   

Attribute  No. Attribute Name Description Sample  Data 

 

 

10 

Hot Number of hot indicators 

in the content such as: 

entering a system 

directory ,creating and 

executing program 

0 

11 Num_failed 

_logins 

Count of failed login 

attempts 
0 

 

12 

Logged_in Login   Status : 1 if 

successfully logged in; 0 

otherwise 

0 

 

13 
Num_compromised Number of 

``compromised' ' 

conditions 

0 

14 Root_shell 1 if root shell is obtained; 

0 otherwise 

0 

15 
 

Su_attempted 

1 if ``su root'' command 

attempted or used; 0 

otherwise 

0 

16 Num_root 
Number of ``root'' 

accesses or number of 

operations performed as a 

root in the connection 

 

0 

 

17 

 

Num_file_creations 

Number of file creation 

operations in the 

connection 

 

0 

18 Num_shells Number of shell prompts 0 

19 Num_access_files Number of operations on 

access control files 

 

0 

 

20 

 

Num_outbound_cmds 

Number of outbound 

commands in 

an ftp session 

 

0 

 

21 

 

Is_hot_login 

1 if the login belongs   to 

the ``hot'' list i.e., root  or  

admin; else 0 

 

0 

22 Is_guest_login 1 if the login is a  `guest'' 

login; otherwise 0  

 

0 
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Table 3.6: Time related traffic features of each network connection [46]  

Attribute  No. Attribute Name Description Sample  Data 
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Count 

Number of connections to 

the same destination host as 

the current connection in 

the past   two 

 

2 
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Srv_count 

Number of connections to 

the same service (port 

number) as the current 

connection   in 

the past two seconds 

     2 
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Serror_rate 

The percentage of 

connections that have 

activated the flag (4) s0, 

s1, s2  or   s3, among the 

connections aggregated in 

count (23) 

 

    0 
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Srv_serror_rate 

The percentage of 

connections that have 

activated the flag (4) s0, 

s1, s2 or s3, among the 

connections aggregated   

in srv_count (24) 

 

 

   0 
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Rerror_rate 

The percentage of 

connections that have 

activated the flag (4) REJ, 

among the connections 

aggregated   in count (23) 

 

 

 0 
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Srv_rerror_rate 

The percentage of 

connections that have 

activated the flag (4) REJ, 

among the connections 

aggregated   in srv_count 

(24) 

 

 

 0 

 

29 

 

Same_srv_rate 

The percentage of 

connections that were to 

the same service, among 

the connections aggregated 

in count (23) 

 

 1 

 

30 

 

Diff_srv_rate 

The percentage of 

connections that were to 

different services, among 

the connections 

aggregated in count (23) 

 

0 
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Table 3.7: Host related traffic features of each network connection [46] 

Attribute No. Attribute Number Description Sample Data 

 

32 

 

Dst_host_count 

Number  of connections 

having the same 

destination host IP address 

 

 

150 

 

33 

 

Dst_host_srv_count 

Number  of connections 

having the same port 

number 

 

25 
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Dst_host_same_srv_rate 

The percentage of 

connections that were to 

the same service, among 

the connections 

aggregated in 

dst_host_count (32) 

 

 

0.17 
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Dst_host_diff_srv_rate 

The percentage of 

connections that were to 

different services, among 

the connections 

aggregated in 

dst_host_count (32) 

 

 

0.03 
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Dst_host_same_src_port_r

ate 

The percentage of 

connections that were to 

the same source port, 

among the connections 

aggregated in 

dst_host_srv_count (33) 

 

 

 

0.17 
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Dst_host_srv_diff_host_r

ate 

The percentage of 

connections that were to 

different destination 

machines, among the 

connections aggregated in 

dst_host_srv_c 

 

 

 

 

0 
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Dst_host_serror_rate 

The percentage of 

connections that have 

activated the flag (4) s0, 

s1, s2 or s3, among the 

connections aggregated in 

dst_host_count 

(32) 

 

 

 

 

0 
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Table 3.8: Host related traffic features of each network connection [46] (continued) 
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Dst_host_srv_serror_rate 

The percent of 

connections that have 

activated the flag (4) s0, 

s1, s2 or s3, among the 

connections aggregated in 

dst_host_srv_count (33) 

 

 

 

0 
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Dst_host_rerror_rate 

The percentage of 

connections that have 

activated the flag (4) 

REJ, among the 

connections aggregated in 

dst_host_count (32) 

 

 

 

0.05 
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Dst_host_srv_rerror_rate 

The percentage of 

connections that have 

activated the flag (4) 

REJ, among the 

connections aggregated in 

dst_host_srv_count (33) 

 

 

0 

 

In the NSL-KDD dataset the following attack classes are present and they can be grouped 

as four categories [42], [44]: 

 

 DOS: DOS stands for Denial of service, is an attack category, which depletes the victim’s 

resources. By depleting victims resources it stops the flow of handling legitimate 

requests- e.g. syn flooding. “source bytes” and “percentage of packets with errors” are 

treated as relevant features.    

 

Probing: The prime objective of this attack type is to gain information about the remote 

victim- e.g. port scanning. Relevant features: “duration of connection” and “source 

bytes”  

  

U2R: In user to root attack type an attacker uses a normal account to login into a victim 

system and tries to gain administrator privileges by exploiting some vulnerability in the 

victim- e.g. buffer overflow attacks. Relevant features: “number of file creations” and 

“number of shell prompts invoked,”  
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R2L: In remote to local attack type attacker gets unauthorized access from a remote 

machine as well as intrudes into a remote machine and gains local access of the victim 

machine- e.g. password guessing. Relevant features:  Network level features – “duration 

of connection” and “service requested” and host level features - “number of failed login 

attempts” 

Table 3.9: Attribute value type of NSL KDD dataset [46] 

Type Features 

Nominal Protocol_type(2), Service(3), Flag(4) 

Binary Land(7), logged_in(12), root_shell(14), su_attempted(15), 
is_host_login(21),is_guest_login(22) 

Numeric 
Duration(1), src_bytes(5), dst_bytes(6), wrong_fragment(8), urgent(9), 
hot(10), num_failed_logins(11), num_compromised(13), num_root(16), 
num_file_creations(17), num_shells(18), num_access_files(19), 
num_outbound_cmds(20), count(23) srv_count(24), serror_rate(25), 
srv_serror_rate(26), rerror_rate(27), srv_rerror_rate(28), 
same_srv_rate(29) diff_srv_rate(30), srv_diff_host_rate(31), 
dst_host_count(32), dst_host_srv_count(33), 
dst_host_same_srv_rate(34), dst_host_diff_srv_rate(35), 
dst_host_same_src_port_rate(36), dst_host_srv_diff_host_rate(37), 
dst_host_serror_rate(38), dst_host_srv_serror_rate(39), 
dst_host_rerror_rate(40), dst_host_srv_rerror_rate(41) 

 

Table 3.10: Different attacks types in NSL KDD dataset [46]  

Category Training Set Testing Set 

DoS back, land, neptune, pod, 

smurf, teardrop 

back, processtable, land, neptune, 

mailbomb, pod, smurf, apache2, teardrop, 

udpstorm, worm 

R2L fpt-write, guess- passwd, 

imap, multihop, phf, spy, 

warezclient, warezmaster 

fpt-write, guess-passwd, snmpgetattack, 

imap, sendmail, multihop, named phf, 

snmpguess, spy, warezmaster, xlock, 

xsnoop, httptunnel, 

U2R buffer-overflow, 

loadmodule, perl, rootkit 

buffer-overflow, sqlattack, 

loadmodule, rootkit, perl, xterm, ps 

Probe ipsweep, nmap, portsweep, 

satan 

ipsweep, mscan, nmap, portsweep, satan, 

saint 
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3.5 Machine Learning and Deep Learning 

Machine Learning is a branch of artificial intelligence that deals with the analysis and 

construction of systems from the knowledge gained from the data [47]. The wide range 

of applications of machine learning includes regression, classification, and prediction and 

so on. It is categorized mainly into three types based on the use of labeled data– a) 

Supervised learning, b) Unsupervised learning, and c) Semi-supervised learning. The 

commonly used algorithms in machine learning include linear regression, Naive-Bayes 

classifier, logistic regression, support vector machines, artificial neural networks and so 

on.  

 

Deep Learning is a complex version of machine learning with multiple levels of 

abstraction of data at multiple processing layers [48].  Deep Learning can learn the 

intricate structures in the dataset through backpropagation and indicates how machine 

changes the internal parameters at each layer. The frequently used deep learning 

algorithms include deep belief networks, auto encoders, convolutional neural networks 

and recurrent neural networks. 

3.5.1 Why is deep learning better than machine learning? 

Deep learning, which is also known as hierarchical learning or deep structural learning, 

is a broader version of machine learning in terms of complexity in the structure and 

learning data representations. The key difference between machine learning and deep 

learning is the change in the performance as the scale of the data increases. Deep Learning 

algorithms require a larger amount of data to find the patterns in the network where 

machine learning requires the less data.  

 

Artificial Neural Networks (ANN) that contain one or more hidden layers will make the 

structure deep and the data is processed at each layer, thus, making the learning task 

deeper. The commonly used deep learning architectures include deep belief networks 

(DBN), deep neural networks, (DNN) and recurrent neural networks (RNN), which are 

applied to research fields such as natural language processing, speech recognition, 

computer vision, audio recognition, machine translation and social network filtering. 

Deep Learning can also be applied to network intrusion data research where the data is 

heterogeneous and multi-modal. Traditional machine learning algorithms fail to deliver 
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long term results for SDN based devices which are usually connected for longer time-

periods.  

3.5.2 Recurrent neural network (RNN) 

Recurrent neural networks (RNN) in deep learning have the capability to learn from the 

previous time-steps and can be used with less human intervention. In RNN, the output of 

each node in the hidden layer is given as input to the same node at each time-step. The 

useful information is stored in the memory and can be used for learning purposes in future 

time steps. The structural difference between an RNN and Feed forward neural network 

(FNN) can be observed from Figure 3.2 and Figure 3.3 respectively. 

 

 

Figure 3.2: Structure of Feed Forward Neural Network 

 

Figure 3.3: Structure of Recurrent Neural Network 

3.5.3 Long short term memory (LSTM) 

Recurrent Neural Networks (RNN), when trained in real-time learn from previous time 

steps by backpropagation through time (BPTT).  A deep neural network is unfolded in 

time and constructs an FNN for every time-step. Then, the gradient rule updates the 

weights and biases for each hidden layer, thus, minimizing the loss between the expected 

and actual outputs. However, standard RNNs cannot perform better when the time-steps 

are more than 5-10. The prolonged back-propagation leads to vanishing or blow up of 
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error signals, leading to oscillating weights, which makes the network performance poor. 

To overcome this vanishing gradient problem, researchers came up with the Long-Short-

Term-Memory (LSTM) network which bridges the minimal time gaps. LSTM makes use 

of a gating mechanism to handle long-term dependencies. The LSTM structure can be 

seen in Figure 3.4 LSTM has a cell state which is passed to every-time step. A gating 

mechanism is used to optimize the information that is passing through. It contains a 

sigmoid function layer which outputs between one and zero. A value of one means “pass 

all the information through”, whereas the value of zero means “do not pass any 

information through”. The "forget gate" decides the information that needs to be let 

through between the current input and previous cell state output using the sigmoid 

function. The "input gate" decides what information is required to store in the cell state. 

This gate contains two functions - "sigmoid" to decide what values need to be updated, 

and the “tanh” function to create a new vector of values that are to be added to the cell 

state. The “output gate” decides on what information from the cell state is required to 

output with the help of a sigmoid function. The output information is passed through the 

tanh function before passing through sigmoid to make sure that the values are between     

-1 and +1. 

 

 

Figure 3.4: Basic structure of Long-Short-Term Memory RNN [49] 

3.5.4 Gated recurrent unit (GRU) 

A Gated Recurrent Unit (GRU) is a lighter version of an LSTM where the complexity in 

the structure is reduced by decreasing the gates in the architecture. The GRU merges both 

the “forget gate” and “input gate” in an LSTM to an “update gate” and combines the 
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hidden state and cell state, resulting in a simpler architecture of the network as shown 

below in Figure 3.5.  

 

GRU is a variant of LSTM which was introduced by K.Cho [22], [13]. GRU is basically 

an LSTM without an output gate, which therefore fully writes the contents from its 

memory cell to the larger net at each time-step. Its internal structure is simpler and 

therefore considered faster to train as there are fewer computations needed to make 

updates to its hidden state. GRU has two gates: reset gate r, and update gate z. Intuitively, 

the reset gate determines how to combine the new input with the previous memory cell, 

and the update gate defines how much of the previous memory cell to keep.  

 

 

Figure 3.5: Structure of a Single layer Gated Recurrent Unit [49] 

3.5.5 Multi-layer GRU RNN 

Deep recurrent neural networks can have various architectures which influence greatly 

the performance of the algorithm. One can add many layers of RNN (plain RNN, LSTM 

or GRU) cells and stack the network into a deep structure called a Multi-Layer RNN as 

shown in Figure 3.6. This technique has a wide range of applications in speech 

recognition systems and weather forecast systems with high dimensional data. When 

GRU cells are used in each hidden layer of a recurrent neural network it is said to be a 

Multi-Layer GRU. In the multilayer structure, the input of the network is passed through 

multiple GRU layers apart from back propagation through the time. It has been proven 

that multi-layered RNNs learn from the different time lengths of input sequences [48]. 

Another key important feature of multi-layered RNNs is that they share the hyper 

parameters, weights, and biases across the layers, thus achieving optimized performance.   
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Figure 3.6: Structural representation of Multi-layer GRU [50] 

3.6 Hyper Parameters  

The hyper parameters used in the design of the recurrent neural network have a great 

impact on the performance of the network [51]. Although there are many hyper-

parameters involved in the design of a recurrent neural network, the parameters having 

the largest impact on the performance of the network are learning rate, number of hidden 

layers, number of cells in the hidden layer and the number of time-steps. 

 

Learning rate: It is a measure of the rate at which the network optimizes the 

minimization of the loss function in a neural network. Mathematically, if the loss function 

is L (X; W, b), then the goal of the network is to minimize the loss (cost) function L. The 

weights are constantly updated to achieve the best possible output reducing the loss value. 

The learning rate determines how fast the parameters are updated. One must vary the 

learning rate during the training of the neural network to obtain the best results.  

 

Time steps: Selecting the number of time-steps also plays a crucial role in the 

Performance of the system. The information required to find the correct patterns depends 

on the number of time-steps that are required to back propagate. Tuning the number of 

time-steps improves the output of the network. When more time-steps are selected, the 

network takes longer to time to train and vice-versa. 
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Hidden units: The number of cells in a hidden layer determines the amount of 

computation performed on the input data [52]. The more hidden units in the network, the 

longer it takes to train. The neural network should be trained for a various numbers of 

hidden units to verify the performance of the system.   

 

Hidden layers: The stacking of GRU layers as discussed in the above multilayer GRU 

section, has a great impact on higher dimensional datasets. However, most deep neural 

networks obtain optimized performance with a single hidden layer [52]. One must decide 

on the number of hidden layers to be used with respect to their data-set size and the 

dimensions. 

3.7 Evaluation Metrics  

A good intrusion detection scheme entails high rate of accuracy and high detection rate 

with a very low false alarm rate. The relation between false alarm rates with 

misclassification rate that they are directly proportional to each other. The following 

metrics are used for evaluating a model. A brief discussion and calculating formula are 

showing below for each metric. In general, the confusion matrix visualizes the 

performance of the algorithm in a tabular form as shown in the Figure 3.7 below. 

 

 

 

Figure 3.7: Tabular form of confusion matrix 

Where,  

 

 True Positive (TP) is the total number of samples predicted as “normal” while 

they were “normal”.  

 False Negative (FN) is the total number of samples predicted “normal” while they 

were “attack”. 
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 False Positive (FP) is the total number of samples predicted “attack” while they 

were “normal”.   

 True Negative (TN) is the total number of samples predicted “attack” while they 

were “attack”. 

 

All other important metrics such as Precision, Accuracy, Recall, and False Alarm Rate 

(FAR) with F1 score can be calculated using these 4 measures taken from the confusion 

matrix and their formula can be established as follows. 

 

Accuracy (AC): shows the proportion of the classification from overall N Examples that 

were correct. 

𝑨𝑪 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵
 

 

Precision (P): shows the proportion of intrusion anticipated by a Network intrusion 

detection systems are a real intrusion. As the value of P is higher, then the probability of 

lower false alarm rate is: 

𝑷 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

Recall (R): shows the proportion of positive examples that were correctly classified. We 

are in search of a high value of R   

𝑹 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

F-measure (F): By conveying balance between accuracy and recall, it gives a better 

measure of accuracy. We are in quest of a high F-measure value. 

 

 F =
2

1

P
+

1

R
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METHODOLOGY AND IMPLEMENTATION 

4.1 Introduction  

This chapter provides information on the methodology and our proposed architecture 

involved in developing this research. It introduces the concepts and technologies of 

various deep learning methods and feature section algorithm with the code segment of 

our developed intrusion detection model. Finally, we conclude this chapter by providing 

our SDN based flow-based anomaly detection architecture.   

4.2 Proposed Architecture  

Domain issues and challenges were identified with regards to intrusion detection through 

literature reviews. The most often used algorithms and experiments conducted were 

identified as well as the accuracy rate for each. As a result, it became evident that RNN 

architectures are new techniques in the intrusion detection domain. Proof of the concept 

of using LSTM and GRU algorithms in the field of intrusion detection is scarce due to 

lack of intensive experiments. None of the literature consulted demonstrated the best 

architecture or were compared among the algorithms in terms of their parameters to 

achieve the best performance with high accuracy. There are some challenges facing IDS 

which make it difficult to achieve that goal. Classification of data and labeling of 

unlabeled data seems to be a challenging task, as the current high volume of network 

traffic increases the number of attacks. 

 

A module for each selected architecture was therefore developed. Feature selection was 

then implemented to ensure the best representation of all the data and better represent the 

underlying problem to each prediction model, resulting in improved model accuracy on 

unseen data. In this research, two phases were demonstrated for the experiment. One can 

be described as the features selection phase, using the two different selection mechanisms, 

Analysis of variance test (ANOVA F-test) and Recursive Feature Elimination (RFE). The 

second phase is to attempt to evaluate the selected algorithms on a full NSL KDD dataset 

which is a benchmark intrusion detection dataset. A baseline was created with initial 

values for each parameter, based on literature review. Different values were used with 
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each run to fine tune the parameters and to identify the suitable ones that showed best 

prediction accuracy. Research methodology illustrated in following Figure 4.1. 

 

 

Figure 4.1: Proposed research methodology for Network Intrusion Detection 

 

4.3 Recurrent Neural Network (RNN) 

In deep learning, recurrent neural network has the capability to learn from previous time-

steps. Basically, a Recurrent Neural Network (RNN) is an extension of traditional Feed-

forward neural network (FNN). A Simple structure of RNN can be seen in Figure 4.2. 

The RNNs are called recurrent since the output of each node in the hidden layer is given 

as input of the same node at each time-step.  
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Figure 4.2: Working procedure of Recurrent Neural Network 

 

From the above figure, 𝑥𝑡 and 𝑜𝑡 are input and output respectively. 𝑠𝑡 Considered as 

hidden state. Nonlinear function like 𝑡𝑎𝑛ℎ or  𝑅𝑒𝐿𝑈 are indicated by f. Based previous 

hidden state and the input at the current step 𝑠𝑡 is calculated: 𝑠𝑡 = 𝑓(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1).. 𝑠−1, 

which is required to calculate the initial hidden state, by default which is initialized to 

zeroes. Computational formula of RNN hidden sates is  

 

𝑠𝑡 = 𝑓(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1),   for 𝑡 = 𝑇,… ,1,                                                                  (1) 

Backpropagation through Time (BPTT) algorithm is usually required to train the RNN. 

However, the simplest RNN Model has a major drawback, called vanishing gradient 

problems as it prevents it from being accurate. That is why more powerful combined 

models like Long short-term memory (LSTM) and Gated Recurrent Units (GRUs) were 

suggested to evolve above mentioned issue. 

4.4 Long Short Term Memory (LSTM) 

A deep neural network is unfolded in time and constructs an FNN for every time-step. 

Then, the gradient rule updates the weights and biases for each hidden layer, thus, 

minimizing the loss between the expected and actual outputs. However, standard RNNs 

cannot perform better when the time-steps are more than 5-10. The prolonged back-

propagation leads to vanishing or blow-up of error signals, leading to oscillating weights, 

which makes the network performance poor. To overcome this vanishing gradient 

problem, researchers came up with the Long-Short-Term-Memory (LSTM) network, 
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which bridges the minimal time gaps. LSTM makes use of a gating mechanism to handle 

long-term dependencies. The LSTM structure can be seen in Figure 4.3. 

 

 

Figure 4.3: Working procedure of Long-Short-Term Memory  

4.5 Gated Recurrent Unit (GRU) 

A Gated Recurrent Unit (GRU) is considered to be a lighter version of an LSTM where 

the complexity in the structure is reduced by decreasing the gates in the architecture. To 

resolve the vanishing gradient problem of a standard RNN, both update gate and reset 

gate are used by GRU. Basically, these are two vectors which decides what kind of 

information should be passed to the output. Because of their smooth and faster training 

phase in comparison with LSTM, GRU has been selected for our model development. 

The GRU merges both the “forget gate” and “input gate” in an LSTM to an “update gate” 

and combines the hidden state and cell state, resulting in a simpler architecture as shown 

in Fig 4.4.  

 

Figure 4.4: Architecture of single layer Gated Recurrent Unit 
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The following relationship can be obtained from Figure 4.4. 

 

Update gate 𝑧𝑡 = 𝜎(𝑊(𝑧)𝑥𝑡 + 𝑈(𝑧)ℎ𝑡−1),                                                                  (2) 

Candidate activation ℎ�̃� = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑡 + 𝑟𝑡 ⊙ 𝑈ℎ𝑡−1),                                          (3) 

Reset gate 𝑟𝑡 = 𝜎(𝑊(𝑟)𝑥𝑡 + 𝑈(𝑟)ℎ𝑡−1,                                                                       (4) 

Activation function ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ𝑡
′ ,                                          (5)     

4.6 Dataset 

For network intrusion detection systems evaluation NSL-KDD is one of the cutting-edge 

benchmark datasets [42].  A total of 41 features contained by NSL-KDD which are 

categorized according to different pattern of features. Four main files of two-train 

(KDDTrain+.TXT, KDDTrain+_20percent.TXT) dataset and two test dataset 

(KDDTest+.TXT,  KDDTest-21.TXT) are contained by NSL-KDD. In this research, full 

dataset of train and test are used for training and testing our Intrusion Detection System. 

Number of record contained by KDDTrain+ dataset and KDDTest+ dataset 126,620 and 

22,850 respectively. Figure 4.5. Shows complete description of NSL-KDD dataset with 

different data pattern and attribute position. 

 

 

Figure 4.5: Description of NSL-KDD dataset with features and type 
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4.7 Description of Scikit-Learn 

During experiment a python based machine learning library namely scikit-learn was 

used [53]. As, Data of most machine learning algorithm needs to be stored in 2D array 

or in a matrix shape, scikit-learn is capable of storing these 2D shaped data effectively. 

Following matrix shows the scikit-learn data representation. Here, there are N samples 

and D features. 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑡𝑟𝑖𝑥: 𝑥 =

[
 
 
 
 
 
𝑥11 𝑥12 … 𝑥1𝐷

𝑥21 𝑥22 … 𝑥2𝐷

𝑥31 𝑥32 … 𝑥3𝐷

⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋱ ⋮

𝑥𝑁1 𝑥𝑁2 … 𝑥𝑁𝐷]
 
 
 
 
 

 

𝑙𝑎𝑏𝑒𝑙 𝑣𝑒𝑐𝑡𝑜𝑟: 𝑦 = [𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑁] 

4.8 ANOVA F-test and RFE 

To eliminate the irrelevant and redundant data form the dataset it is necessary to perform 

a feature selection mechanism. According to Reference [53] feature selection is a method 

of selecting a subset of relevant feature without small decay of presentation. The existence 

of extraneous attributes in the intrusion dataset often deterred the detection of accuracy. 

Number of causes were analyzed why it would be obligatory to restrict the features. 

Irrelevant features increased the computation time without classifier improvement and 

sometimes suggest correlation between feature and desire class, which arises by chance. 

In our experiment, we have used a Univariate feature selection with ANOVA F-test. This 

analyzes each feature individually to determine the strength of the relationship between 

the feature and labels. SelectPercentile method (sklearn.feature_selection) is used to 

select features based on percentile of the highest scores. When this subset is found: 

Recursive Feature Elimination (RFE) is applied. RFE is a method which frequently build 

a model where features are kept aside and reiterating the process until all features in 

dataset are removed. The basic idea is, to develop a feature ranking it uses the weight of 

a classifier. Following table represents the selected features after applying both ANOVA 

F-test and RFE. 
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4.9 SDN Based Flow Based Anomaly Detection Architecture 

The SDN based flow based anomaly detection model is described in Figure 4.6 with three 

prime components: Flow Collector, Anomaly Detector, and Anomaly Mitigator. This 

segment focuses on the use of SDN model as a network infrastructure for the Intrusion 

Detection System (IDS). Finally IDS is implemented as an application on the SDN 

controller.   

 

Flow collector: Flow collector is considered as one of the prime module of this 

architecture where this module is triggered by a timer method to aggregate all the flow 

statistics such as protocol, source and destination IP and source and destination port. This 

all features then sent to Anomaly Detector Module.   

 

Anomaly detector: According to our proposed methodology Anomaly Detector module 

loads a GRU-LSTM trained model, receives the network statistics and take decision if a 

flow is anomaly or normal. 

 

Anomaly mitigator: Based on the results of anomaly detector Anomaly Mitigator can 

take decision on the packet flow by dropping or forwarding the flow. 

 

 

Figure 4.6: SDN controller based IDS architecture [19] 

For requesting network data, on OpenFlow stats request message will be sent from the 

controller to all OpenFlow switches. As controller request for all the available statistics, 

an OpenFlow stats reply message with all available data send back to the controller by 

OpenFlow switch. Figure 4.7 describes the architecture of how OpenFlow switch handles 
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the incoming packet and responds according to the availability of data in Flow table by 

using OF protocol. 

 

The centralized controller of SDN can take Opportunities of the complete network to 

evaluate and associate feedback from the network. For analyzing and detecting any real 

time network intrusion will then be sent to Intrusion detection segment according to 

Figure 4.7 OF protocol can effectually alleviate an intrusion via flow table adjustment if 

once a network anomaly is discovered and recognized. 

 

 

Figure 4.7: Working procedure of OpenFlow Protocol in SDN 

 

SDN controller is capable of monitoring all the OpenFlow switches and send the request 

to all network data whenever it is necessary. Therefore, our proposed and designed 

intrusion detection segment is implemented in SDN controller, which is depicted in 

Figure 4.8. Following Algorithm 1 encapsulates our suggested approach. 

 

Algorithm 1    Deep Learning based anomaly class detector for SDN attacks 

1: procedure FLOW BASED ANOMALY DETECTOR BASED ON DEEP MODEL 

2:  Selection of appropriate Deep learning algorithm  

3: Train the Deep Neural Network (DNN)-based model using benchmark dataset NSL-

KDD 

4: Nomination of appropriate feature after using different feature selection methods 

5: if The trained model predicts an anomaly class on a  OpenFlow Controller by the 

DNN based Intrusion   Detection Model 

     then 

6: Update the SDN OpenFlow controller rules to block that class attack type 

7: Else, Allow the normal class to pass through SDN controller and access the available 

resources. 

 



 

47 

 

Figure 4.8: Proposed flow based anomaly detection architecture in SDN   

 

In this chapter, we have presented a deep learning based GRU-LSTM model for detecting 

network intrusion in SDN with ANOVA F-Test and RFE feature selection mechanism. 

In SDN environment, Deep learning approach has enormous potential to detect malicious 

activity. SDN supports the nature of centralized controller and a very flexible structure. 

Our proposed intrusion detection module which is depicted in Figure 4.8 capable of easily 

extract the information about network traffic due to its centralized controller and flexible 

nature. In near future, I plan to implement this proposed model in a real environment of 

SDN with real traffic of network. 
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EXPERIMENTAL PROCEDURES FOR METHODOLOGY 

ASSESSMENT 

5.1 Introduction 

This chapter gives examples of all the experimental procedures and tools that we have 

used for our experiment. In this segment we will discuss how different methodology and 

tools are combined together to assess the limits of Methodology scientifically and 

impartially.  

 

In this research the most current framework is used, Tensorflow [54], in implementing a 

model for each architecture. The experiments were performed in an environment of Intel 

i5 3.2 GHz, 16 GB RAM, and NVIDIA GTX 1070 with Linux based Ubuntu 16.10 

Distribution Operating System. The experiments were designed to evaluate the 

performance of each model (GRU, LSTM and GRU-LSTM) on the full NSL-KDD 

dataset in terms of accuracy and training time required for each model. 

 

The experiment was executed using the developed prediction model (LSTM, GRU) on 

the NSL-KDD Dataset. First, by preprocessing the dataset by scaling the features and 

converting non-numerical features to numerical values. Second, by implementing feature 

selection using two different algorithms for feature selection: ANOVA-F and RFE, for 

the purpose of evaluating the best technique with the NSL-KDD dataset. Two models, 

LSTM and GRU, were evaluated to determine which algorithm to move forward with 

evaluating the rest of the experiment models. Third, by splitting the dataset into two sets: 

80% for training and 20% for testing. The prediction model was run for both training and 

testing classifiers about 10 times, recording the best values of all readings. 

 

Finally the accuracy of all prediction models and the time required to train the models 

was logged. All the matrices were calculated including True False Alarm Rate (Recall), 

False Alarm Rate (FAR), Efficiency and Precision. 
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5.2 Data Cleaning and Pre-processing 

In order to remove the duplicate records, the NSL KDD dataset has to go through a 

cleaning process. It’s one of the primary need for preprocessing the dataset. As NSL KDD 

is the updated version of KDD Cup 99 therefore this step is not anymore required. As the 

dataset contains both numerical and non-numerical instances therefore a mandatory pre-

processing operation has to be taken in place. The classifier we defines in scikit-learn 

work significantly well with numerical inputs, therefore one-hot-encoding method is used 

to make that transformation. This method will transform each categorical featured with 

m possible inputs to n binary features. This binary features will then go through for 

feature scaling which described in next section.  

 

5.3 Feature Scaling  

Scaling of features is a mandatory requirement for deep learning or machine learning 

methods to evade that large values features may weights too much on the final results. 

For any single features we need to calculate the average, subtract the mean value from 

the feature value, and divide their results by their Standard Deviation (SD).  After 

successful scaling of feature data, each feature will have a zero average, with a standard 

deviation of one. 

5.4 Features Selection 

In order to remove the redundant and irrelevant data selection of appropriate features is 

entirely necessary. It is a method of selecting a subset of pertinent features that completely 

represents full problem with a minimum worsening of presentation [26]. Generally two 

possible reasons were investigated that why it would be needed to restrict number of 

features: Firstly, it is possible that irrelevant features could suggest correlations between 

features and target classes that arise just by chance and do not correctly model the 

problem. This aspect is also related to over-fitting, usually in a decision tree classifier. 

Secondly, a large number of features could greatly increase the computation time without 

a corresponding classifier improvement. In our experiment we starts our feature selection 

process with a univariate feature selection Analysis of Variance (ANOVA F-test) for 

feature scoring. The reason behind using a univariate technique as this methods of feature 

selection analyzes each feature individually to determine the strength of the relationship 
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of the feature with labels. The SelectPercentile method in the sklearn.feature_selection 

module were used as SelectPercentile select features based on a percentile of the highest 

scores. Once, the best subset of features were found, a Recursive Feature Elimination 

(RFE) was applied which repeatedly build a model, placing the feature aside and then 

repeating the process with the remained features until all features in the dataset are 

exhausted. As such, it is a good optimization for finding the best performing subset of 

features. The idea is to use the weights of a classifier to produce a feature ranking. 

5.5 Building the Model 

In phase two, RNN architectures: LSTM-GRU are used to be trained to detect anomalies. 

The implemented models were developed using Python and TensorFlow platforms [54] 

to show the capability of each model to learn the definition of being normal and 

anomalous from labeled datasets. Each model on the NSL-KDD dataset was evaluated as 

previously mentioned. The first model was a vanilla LSTM, which was trained and 

evaluated, as all RNN models selected for this experiment. For each model the best 

defaulted value parameter setup was identified to begin, tuning each model to achieve the 

best performance and the highest accuracy. Several runs were conducted with different 

values as shown in Table 5.1, such as learning rate, training cycle, time-step and hidden 

layers. Batch size limits the number of samples to be shown to the network before a 

weight update can be performed. For building our model we need to specify a loss 

function. Loss indicates how bad the model's prediction was on a single example; we try 

to minimize that while training across all the examples. Here, our loss function is the 

cross-entropy between the target and the softmax activation function applied to the 

model's prediction. We have used tf.train.AdamOptimizer that uses Kingma and Ba's 

Adam algorithm to control the learning rate. Adam offers several advantages over the 

simple tf.train.GradientDescentOptimizer. Foremost is that it uses moving averages of 

the parameters (momentum). 

Table 5.1: Parameter Values 

Parameter Name Value Note 

Learning Rate 0.01 - 

Training Cycle 100 / 500 / 1000 - 

Hidden Layers 25/50 - 

Time-step 5/10 - 
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5.5.1 LSTM model 

First, a vanilla LSTM model was developed, and then determined through the experiment 

what the suitable learning rate was for this model. The learning rate is one of the most 

important parameters to be tuned due to its impact on the training model for faster and 

effective training. It is important to not over fit the training model. The experiment was 

run with three different learning rates: 0.0001, 0.001, and 0.01. After running the 

experiment several times at value 100, the training cycle’s results show that the learning 

rate 0.001 gives the best loss value, which then decreases during training to allow more 

weight updates.  LSTM model was trained at three different cycles; 100, 500, and 1000. 

The accuracy, precision, recall, FAR and time required for the model to be trained for 

each training cycle was calculated.  

5.5.2 GRU model 

The same steps were followed as the LSTM model to train the GRU model, with a 

learning rate once more at 0.01. The GRU model was trained at three different training 

cycles; 100, 500, and 1000, calculating the accuracy, precision, recall, FAR and the time 

required for the model to be trained for each of the training cycles. However, it is 

important to keep in mind that the training time was less than LSTM due to the fact that 

GRU architecture consists of two gates only.  

 

#Unstacking the inputs with time steps to provide the inputs in seq

uence 

# Unstack to get a list of 'time_steps' tensors of shape (batch_siz

e, input_features) 

x_ = tf.unstack(x,time_steps,axis =1) 

 

#Defining a single GRU cell 

gru_cell = tf.contrib.rnn.GRUCell(hidden_units) 

 

#GRU Output 

with tf.variable_scope('MyGRUCel36'): 

    gruoutputs,grustates = tf.contrib.rnn.static_rnn(gru_cell,x_,dt

ype=tf.float64) 

     

#Linear Activation , using gru inner loop last output 

output =  tf.add(tf.matmul(gruoutputs[-1],tf.cast(W,tf.float64)),tf

.cast(b,tf.float64)) 

 

Figure 5.1: Code segment of GRU LSTM Model build   
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5.6 Loss Function Definition 

We can specify a loss function just as easily. Loss function indicates how bad the model's 

prediction was on a single example; we try to minimize that while training across all the 

examples. Here, our loss function is the cross-entropy between the target and the softmax 

activation function applied to the model's prediction. Note that 

tf.nn.softmax_cross_entropy_with_logits internally applies the softmax on the model's 

unnormalized model prediction and sums across all classes, and tf.reduce_mean takes the 

average over these sums. The tf.train.AdamOptimizer uses Kingma and Ba's Adam 

algorithm to control the learning rate. Adam offers several advantages over the simple 

tf.train.GradientDescentOptimizer. Foremost is that it uses moving averages of the 

parameters (momentum). 

 

#Defining the loss function 

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(label

s=y,logits = output)) 

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).min

imize(cost) 

 

Figure 5.2: Code segment of Loss function definition of our Model 
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EXPERIMENTAL RESULTS AND DISCUSSIONS 

6.1 Introduction 

In this chapter, we provide the detailed results for each IDS classifier obtained using a 

Gated-Recurrent-Unit (GRU) neural network and their evaluation measures. We started 

the experiments with a light-weight GRU where we used one hidden layer and one hidden 

unit. We performed 10 sets of experiments for each hyper parameter set (learning rate, 

time-steps, hidden layers) and tuned them to obtain the optimized results. This turned out 

to be a binary classification problem where the classifier classifies each sample as 

“normal” or “attack”. Hence, we used the evaluation metrics for classification like 

accuracy, precision, recall, false positive rate and F1 Score. 

6.2 Appropriate Features Selection 

Feature selection mechanism is a required process to get rid of the irrelevant and 

extraneous data form the dataset. According to [34] feature selection is a process of 

deriving a subset of relevant features from the complete feature set without decaying 

presentation. Intrusion dataset containing superfluous attributes often prevents detection 

from being accurate. Numerous reasons were analyzed to show why restricting the 

features is obligatory. Irrelevant features increase computation time without contributing 

to classifier improvement and sometimes incorrectly indicate correlation between feature 

and desired class. In our experiment, we have used a univariate feature selection with 

Analysis of Variance (ANOVA) F-test. ANOVA is used to determine whether the means 

of some groups are different using F-test which statistically checks the equality of means. 

Each feature is individually analyzed which calculates the strength of feature-labels 

relationship. Percentile of the highest scores based feature selection is performed by 

SelectPercentile method (sklearn.feature_selection). Upon finding a subset Recursive 

Feature Elimination (RFE) is applied. REF frequently builds a model where features are 

kept aside and reiterates the process until all features in dataset are removed. Feature 

ranking is developed by using the weight of a classifier. Following table represents the 

selected features after applying both ANOVA F-test and REF. 
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Table 6.1: Selected Features after Applying ANOVA F-Test and REF 

Attack Category Selected Features 

DoS (1, 'flag_SF'), (2, 'dst_host_serror_rate'), (3, 'same_srv_rate'), (4, 'c

ount'), (5, 'dst_host_srv_count'), (6, 'dst_host_same_srv_rate'), (7, '

logged_in'), (8, 'dst_host_count'), (9, 'serror_rate'), (10, 'dst_host_s

rv_serror_rate'), (11, 'srv_serror_rate'), (12, 'service_http'), (13, 'fla

g_S0') 

Probe (1, 'service_private'), (2, 'service_eco_i'), (3,dst_host_srv_count'), 

(4, 'dst_host_same_src_port_rate'), (5, 'dst_host_srv_rerror_rate'), 

(6, 'dst_host_diff_srv_rate'), (7, 'dst_host_srv_diff_host_rate'), (8, 

'dst_host_rerror_rate'), (9, 'logged_in'), (10, 'srv_rerror_rate'), 

(11,'Protocol_type_icmp'), (12, 'rerror_rate'), (13, 'flag_SF') 

R2L (1, 'src_bytes'), (2, 'hot'), (3, 'dst_host_same_src_port_rate'), (4, 

'dst_host_srv_count'), (5, 'dst_host_srv_diff_host_rate'), (6, 

'dst_bytes'), (7, 'service_ftp_data'), (8, 'num_failed_logins'), (9, 

'is_guest_login'), (10, 'service_imap4'), (11, 'service_ftp'), (12, 

'flag_RSTO'), (13, 'service_http') 

U2R (1, 'hot'), (2, 'dst_host_srv_count'), (3, 'dst_host_count'), (4, 

'num_file_creations'), (5,'root_shell'), 

(6,'dst_host_same_src_port_rate'), 

(7,'dst_host_srv_diff_host_rate'), (8, 'service_ftp_data'), (9, 

'service_telnet'), (10, 'num_shells'), (11, 'urgent'), (12, 

'service_http'), (13, 'srv_diff_host_rate') 

6.3 Hyper Parameter Tuning 

In this section, we have evaluated the performance of the IDS classifiers by tuning the 

hyper-parameters of the GRU algorithm. We have performed a similar type of 

experiments on each IDS classifier for different learning rate. We compared the values of 

training accuracy, recall and false alarm rate with learning rate and time-steps to 

understand the behavior of model with change in hyper-parameters. 

 

 

Figure 6.1: Hyper Parameter set initilization for proposed model 
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6.4 Performance Results of IDS Classifier:  

In this experiment section, first, we started with a time-step range 

[10,20,30,40,50,60,70,80,100] and selected the time-steps which has best training 

accuracy. After selecting the time-step we searched for the learning-rate which produces 

best training accuracy. We used one hidden layer and one hidden unit in the network. The 

detailed results are shown in Table 6.2, 6.3 and 6.4. The detailed Evaluation Matrix for 

IDS classifier with the best hyper-parameter combination (time-steps = 70, learning_rate 

= 0.01) is presented in Table 6.2 and Figure 6.2. 

 

Table 6.2: Evaluation Metrics for IDS Classifier (learning rate =0.01) 

Time-Steps 
Train 

Accuracy 
Precision Recall F-1 Score FAR 

10 86.632 0.829 0.747 0.785 0.43 

20 85.534 0.186 0.431 0.259 0.525 

30 84.51 0.817 0.711 0.76 0.505 

40 86.613 0.794 0.606 0.687 0.691 

50 85.434 0.858 0.819 0.838 0.293 

60 72.89 0.86 0.829 0.858 0.297 

70 87.911 0.835 0.779 0.806 0.362 

80 83.243 0.832 0.762 0.795 0.398 

90 83.323 0.814 0.726 0.767 0.461 

100 82.167 0.828 0.752 0.788 0.419 

 

 

From the Table above, it can be inferred that the model performance is optimized when 

the input is given with ‘70’ time-steps and thus, this value is selected for further 

experiments for the IDS in this research.  
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Figure 6.2: Evaluation metrics for IDS classifier (learning rate =0.01) 

 

In this experiments section, a similar series of experiments is performed with a learning 

rate of 0.1 and we have achieved the best training accuracy with ‘100’ time steps. The 

complete results this IDS can be interpreted in Table 6.3 and Figure 6.3. 

 

Table 6.3: Evaluation Metrics for IDS Classifier (learning rate =0.1) 

Time-Steps 
Train 

Accuracy 
Precision Recall F1 score FAR 

10 78.006 0.84 0.781 0.809 0.364 

20 79.36 0.846 0.794 0.819 0.341 

30 77.102 0.835 0.771 0.802 0.382 

40 72.068 0.789 0.721 0.753 0.442 

50 72.595 0.814 0.726 0.767 0.461 

60 71.965 0.787 0.72 0.752 0.441 

70 73.203 0.816 0.732 0.772 0.45 

80 73.984 0.82 0.74 0.778 0.436 

90 74.84 0.823 0.748 0.784 0.42 

100 79.249 0.839 0.792 0.815 0.333 
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Figure 6.3: Evaluation metrics for IDS classifier (learning rate =0.1) 

 

Again in following section, a similar series of experiments is performed with a learning 

rate of 0.001 and we have achieved the best training accuracy with ‘20’ time steps. The 

complete results this IDS can be interpreted in Table 6.4 and Figure 6.4. 

 

Table 6.4: Evaluation Metrics for IDS Classifier (learning rate =0.001) 

Time-

Steps 

Train 

Accuracy 
Precision Recall F1 score FAR 

10 78.927 0.853 0.804 0.828 0.348 

20 80.708 0.848 0.733 0.786 0.317 

30 80.371 0.813 0.726 0.767 0.318 

40 73.292 0.814 0.735 0.772 0.444 

50 72.595 0.812 0.716 0.761 0.461 

60 73.522 0.808 0.781 0.794 0.438 

70 71.562 0.838 0.801 0.819 0.478 

80 78.051 0.85 0.78 0.813 0.363 

90 80.132 0.84 0.726 0.779 0.328 

100 77.989 0.79 0.726 0.757 0.367 
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Figure 6.4: Evaluation metrics for IDS classifier (learning rate =0.001) 

 

6.5 Comparison with Existing Work 

Initially, we implemented the network intrusion detection for 2-class based classification 

namely normal and anomaly. In addition, we assessed our work by assimilate the results 

and proposed a model security architecture for detecting flow based anomaly in 

OpenFlow based Controller. From the above discussion and also from Figure 6.2 its 

clearly shows that with the ANOVA F-Test and RFE feature selection methods GRU-

LSTM classifier provides highest Accuracy of 87% with a very low false alarm rate of 

0.76%. Moreover, our results is generated based on the selection of features from 

complete dataset of NSL-KDD. Very few approaches has been presented from different 

authors in order to show the accuracy of Deep learning algorithm for NSL-KDD Dataset. 

However, there also exists some lacking of preprocessing of dataset and appropriate 

feature selection for testing and training. For comparing with others work we will only 

consider that approaches which is only based on NSL-KDD dataset for the detection of 

flow based anomaly in Software Defined Networking. Following Table 6.5 shows the 

accuracy of the anomaly detection scheme of the state-of-the-art results against our 

proposed model. The optimized results of our GRU-LSTM classifier are compared and it 

was found that the performance of our model are comparatively lower than others. 

However, all the compared methods are not aware of using an appropriate feature 



 

59 

selection with updated dataset whereas we have showed a strong potential in terms of 

accuracy detection by applying ANOVA F-Test and RFE Methods with NSL-KDD 

dataset. Though, our results are not high enough but for anomaly detection in SDN with 

proper feature selection it will produce a great significance in terms of accuracy 

calculation. 

Table 6.5: Comparison of accuracy with other studies 

IDS Methods Dataset Feature 
Selection 
Method 

Accuracy False Alarm Rate 

GRU-RNN [23] KDD Cup 99 -------- 97.65% 10.01% 

FNN  [55] KDD Cup 99 --------- 97.35% 2.65% 

GRNN [55] KDD Cup 99  93.05% 12.46% 

RBNN [55] KDD Cup 99 ----- 93.05% 6.95% 

SVM [42] KDD Cup 99 ----- 69.52% ----- 

LSTM-RNN [23] KDD Cup 99 ----- 97.54% ------ 

DNN [56] NSL-KDD ----- 75.75% ----- 

GRU-RNN [19] NSL-KDD ----- 89% ----- 

NB Tree [42] KDD Cup 99 ----- 82.02% ----- 

GRU-LSTM 
(proposed) 

NSL KDD ANOVA F-
Test and 

RFE 

87% 0.76% 
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CONCLUSIONS AND FUTURE WORK 

In this thesis, we have presented a Deep learning based GRU-LSTM model for detecting 

network intrusion in SDN and shows the best classifier in terms of different evaluation 

metrics with ANOVA F-Test and REF feature selection mechanism. Although our 

experimental results are not yet high enough comparing with others but it still has 

significant contribution in the field of appropriate feature selection from a dataset. In SDN 

environment, Deep learning approach has enormous potential to detect malicious activity. 

SDN supports the nature of centralized controller and a very flexible structure.  

 

The novelty of this research stems from the fact that it is the first experiment that 

implements and compares RNN’s architecture and offers more insight into each 

architecture, particularly LSTM and GRU, on a benchmark intrusion detection dataset 

NSL-KDD. Most literature in the domain demonstrates the concept of using LSTM as 

one of the RNN architectures to improve the accuracy in predicting attacks, as well its 

different variants, however they only focused on one architecture for one application, 

comparing it with other deep learning approaches. This research took the path further in 

understanding the architecture of each RNN algorithm, then applying it in an intrusion 

detection dataset. It evaluates the performance of each architecture in terms of prediction 

accuracy and the time required for each architecture to be trained.  

 

Moreover, this experiment is unique as it runs these architectures on the full NSL KDD 

dataset rather than the commonly used NSL-KDD 10% dataset. Feature selection was 

performed using two different mechanisms, ANOVA F-Test and Recursive Feature 

Elimination, which are suitable for intrusion detection. This has offered a clean dataset 

that carries all the important features. Feature selection reduced the dataset features to 

improve the performance of accuracy, recall, training time and false alarm rate. As part 

of this research, the experiment was limited in tuning the set of parameters with the goal 

of finding the optimal parameters such as learning rate, hidden layers, and training cycle 

to improve the model’s prediction accuracy and the amount of time required to be trained. 

 



 

61 

The results of this evaluation revealed that GRU-LSTM still stands up and outperforms 

other architectures. GRU has fewer parameters resulting in a faster-trained model 

compared to LSTM. In a large-scale implementation, however, LSTM may yield better 

results. Our proposed intrusion detection module is capable of easily extract the 

information about network traffic due to its centralized controller and flexible nature. 

From the experiment, it’s clear that GRU-LSTM shows a high test accuracy comparing 

with all other algorithms therefore for flow based anomaly detection use of our model is 

very essential in order to achieve high accuracy and speeding up the process of intrusion 

detection in SDN. 

 

For future work, the aim is to evaluate further architectures on the intrusion detection 

dataset. Moreover, the aim is to investigate the application of deep learning by having 

multiple layers and hybrid layers of different architectures in one framework, as well as 

deploying these techniques in SDN applications to develop robust security solutions. In 

near future, we plan to implement this proposed model in a real Environment of SDN 

with real traffic of Network. 
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APPENDIX A 

Feature Selection Code Segment  

One-Hot-Encoding 

  

enc = OneHotEncoder() 

df_categorical_values_encenc = enc.fit_transform(df_categorical_values_enc) 

df_cat_data = pd.DataFrame(df_categorical_values_encenc.toarray(),columns=dumcols

) 

# test set 

testdf_categorical_values_encenc = enc.fit_transform(testdf_categorical_values_enc) 

testdf_cat_data = pd.DataFrame(testdf_categorical_values_encenc.toarray(),columns=te

stdumcols) 

 

df_cat_data.head() 

 

Feature Scaling 

# Split dataframes into X & Y 

# assign X as a dataframe of feautures and Y as a series of outcome variables 

X_DoS = DoS_df.drop('label',1) 

Y_DoS = DoS_df.label 

X_Probe = Probe_df.drop('label',1) 

Y_Probe = Probe_df.label 

X_R2L = R2L_df.drop('label',1) 

Y_R2L = R2L_df.label 

X_U2R = U2R_df.drop('label',1) 

Y_U2R = U2R_df.label 

# test set 

X_DoS_test = DoS_df_test.drop('label',1) 

Y_DoS_test = DoS_df_test.label 

X_Probe_test = Probe_df_test.drop('label',1) 

Y_Probe_test = Probe_df_test.label 

X_R2L_test = R2L_df_test.drop('label',1) 

Y_R2L_test = R2L_df_test.label 

X_U2R_test = U2R_df_test.drop('label',1) 

Y_U2R_test = U2R_df_test.label 

 

Univariate Feature Selection 

np.seterr(divide='ignore', invalid='ignore'); 

selector=SelectPercentile(f_classif, percentile=10) 

X_newDoS = selector.fit_transform(X_DoS,Y_DoS) 

X_newDoS.shape 
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APPENDIX B 

Anomaly Detection Model Build Code Segment 

Building the Model  

 

#Unstacking the inputs with time steps to provide the inputs in sequence 

# Unstack to get a list of 'time_steps' tensors of shape (batch_size, input_features) 

x_ = tf.unstack(x,time_steps,axis =1) 

 

#Defining a single GRU cell 

gru_cell = tf.contrib.rnn.GRUCell(hidden_units) 

 

#GRU Output 

with tf.variable_scope('MyGRUCel36'): 

    gruoutputs,grustates = tf.contrib.rnn.static_rnn(gru_cell,x_,dtype=tf.float64) 

     

#Linear Activation , using gru inner loop last output 

output =  tf.add(tf.matmul(gruoutputs[-1],tf.cast(W,tf.float64)),tf.cast(b,tf.float64)) 

 

Model Training  

 

#Training the Model 

sess = tf.InteractiveSession() 

sess.run(tf.global_variables_initializer()) 

for i in range (training_cycles): 

    _,c = sess.run([optimizer,cost], feed_dict = {x:newtrain_X, y:newtrain_Y}) 

     

    if (i) % display_step == 0: 

        print ("Cost for the training cycle : ",i," : is : ",sess.run(cost, feed_dict ={x :newtrai

n_X,y:newtrain_Y})) 

correct = tf.equal(tf.argmax(output, 1), tf.argmax(y,1)) 

accuracy = tf.reduce_mean(tf.cast(correct, 'float')) 

print('Accuracy on the overall test set is :',accuracy.eval({x:newtest_X, y:newtest_Y})) 

 

Evaluation Matrix  

 

pred_class = sess.run(tf.argmax(output,1),feed_dict = {x:newtest_X,y:newtest_Y}) 

labels_class = sess.run(tf.argmax(y,1),feed_dict = {x:newtest_X,y:newtest_Y}) 

conf = tf.contrib.metrics.confusion_matrix(labels_class,pred_class,dtype = tf.int32) 

ConfM = sess.run(conf, feed_dict={x:newtest_X,y:newtest_Y}) 

print ("confusion matrix \n",ConfM) 

 

#Plotting the Confusion Matrix 



 

71 

labels = ['Normal', 'Attack'] 

fig = plt.figure() 

ax = fig.add_subplot(111) 

cax = ax.matshow(ConfM) 

plt.title('Confusion matrix of the classifier') 

fig.colorbar(cax) 

ax.set_xticklabels([''] + labels) 

ax.set_yticklabels([''] + labels) 

plt.xlabel('Predicted') 

plt.ylabel('True') 

plt.show() 
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