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ABSTRACT

Decision Support Systems (DSS) are computerized information system that helps decision

makers with decision-making activities. DSS are interactive computer-based system that

uses data, document, communication technologies, knowledge and model to support de-

cision making process. In this thesis, we consider top two data mining algorithms in the

research community: k-means and k-nearest neighbor (kNN). Given C = {c1, ...,cm} is a set

of pre-defined categories, an initial corpus Co = {d1, ...,ds} of documents previously cate-

gorized under the same set of categories and a training set Tr = {d1, ...,dg}. This is the set

of example documents observing the characteristics of which the classifiers for the various

categories are induced and D = {d1, ...,dn} is a set of documents to be categorized. The

problem is to assign a value from {0,1} to each entry, ai j where 1≤ i≤m, 1≤ j ≤ n of the

decision matrix. A value of 1 for ai j is interpreted as a decision to file d j under ci, while a

value of 0 is interpreted as a decision not to file d j under c. A test set Te = dg+1, ...,ds will be

used for the purpose of testing the effectiveness of the induced classifiers. Each document in

Te will be fed to the classifiers and a measure of classification effectiveness will be based on

how often the values for the ai j’s obtained by the classifiers match the values for the cai j’s

provided by the experts where cai j is the element of correct decision matrix and 1 ≤ i ≤ m

, 1 ≤ j ≤ s. We implemented these two algorithms and perform cross-validation test to

measure accuracy of them. It comes out that; kNN is more accurate than that of k-mean.

Then we develop tracing of document-driven DSS to provide an explanation to improve the

acceptance of decision makers, because decisions are based on both the inheritance among

documents and acceptance of those advices for decision makers. So, we develop a tracing

on the contents and the classification of interrelated documents to improve the explanation.

Keywords: Document-driven DSS, Document Categorization, Document Lineage, Expla-

nation.
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CHAPTER 1

INTRODUCTION

In 1970s, DSS was brought forward first by American scientist Scott Morton. And it had a

great development in 1980s. A new subject and study has been produced. Its functions are

the integration of making use of mass data, the organization of many patterns and the real-

ization of scientific decision by assistance of all directors through man-machine alteration

system. Intelligentizing is one of the developmental directions of the study of DSS.

Data mining is knowledge discovery in database. It is a non-common process that effective,

novel and valuable data have been mined out among the mass data. It is that data mining is

the mining of knowledge among the mass data.

Figure 1.1: Configuration Block Drawing of DSS

As shown in figure 1.1, it is the general configuration of DSS. There are three departments

of DSS. They are language system (LS), problem process system (PPS) and knowledge
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system (KS). Problem process system is composed of reasoning system (RS), model base

management system (MBMS), knowledge base management system (KBMS) and data base

management system (DBMS). Knowledge system is composed of document, model base

(MB), knowledge base (KB), data base (DB) and communication.

Forest Research [1] predicts that unstructured data, such as text, will become the predom-

inant data type stored online. Also Gartner group [22] predicts that the amount of textual

information double in every month. The data grows too fast. It has exceeded human capacity

to retrieve and utilize. This is a problem that today’s decision makers have to face. In order

to get rid of the plight of this information explosion, decision makers often use decision sup-

port system (DSS). However, “decision makers choose to trust and use these forecast only if

they believe these predictions are justifiable, relevant, and valuable if effectively managing

the uncertainties about the future”[26]. In other word, a successful DSS depends not only

on the accuracy of the results, but also on acceptance of these results by its users.

Teach and Shortliffe[36] show that “the users of a system that dogmatically offers advice are

very likely to reject it, even if the system has impressive accuracy and the ability to provide

reliable results”. DSS should be able not only to provide accurate results but also to explain

their own reasoning. Davis and Kotteman[9] carry on an experiment using a production

planning DSS , and Lim and O’Connor[25] do the same thing using a forecasting DSS.

The results show that students trained continue to ignore the good advice given by the DSS

even when they could see the DSS was outperforming their own efforts. It seems clear then

that the key element in DSS design is to enhance the effective communication between the

users and DSS. People want to use computer systems to solve semi structured or unstruc-

tured problems. Those problems are characterized by a complex decision-making process.

There are no universal rules and models to solve them. Decision makers’ subjective behav-

iors, such as knowledge, experience, intuition, common sense, insight, personal preferences

and decision-making style, greatly affect the results. Semi-structured and non-structured

problems cannot use a particular formula or fixed way to solve. The right way is to collect

information relevant to the issue, and then classify, sort and establish associate relations be-

tween information. The aim is to arrange the information into a form of easy-to-view and

understanding. Different types of information apply to the performance of different forms,

such as text, images and sounds. Decision makers’ subjective behavior could be affected by
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the expression of information. Personal preferences and decision-making style makes them

show the different interests for different forms of information. And decision makers have

different sensitivity when they face the same information. So it is necessary to make infor-

mation easier to accept when DSS organize them. According of information from different

source, DSS can be divided into data-driven DSS, document-driven DSS, knowledge-driven

DSS, and communication-driven DSS.

Power called such DSS use large amount of documents for decision as “document-driven

decision support system”in his books [27]. Such DSS is characterized by “uses computer

storage and processing technologies to provide document retrieval and analysis, a search

engine is a primary decision aiding tool [28]”. In order to get the better results, decision

makers often need to collect all possible documents. Those documents contain the amount of

information is often more than necessary. Attendant problem is that decision makers need to

spend a lot of time to read these documents. So the main function of document-driven DSS is

documents management, retrieval and tracking. The typical tools such as Google and Baidu

search engine. These tools can locate and inquiry documents information, but they are lack

of a means to analyze the association between the relevant documents, cannot explain the

relationship in the information transmission. In the face of that “independent”information,

decision maker’s acceptance is relatively low. Led to this situation, there are two major

factors:

(1)To decision maker’s point of view, the advice generation process is a “black box”. They

cannot see the internal calculation, reasoning process, thus, decision maker find it is hard to

believe that the advice is reliable.

(2)The forms of recommendations are diverse. There are graphics, text, sounds and images.

Because of the existence of human cognitive bias, so that different people have different

understanding for the same advice.

To resolve the problem of advice acceptability in DSS, the main proposal is to make the

necessary “explanations”for those advices. “Explanation is the procedure of describing the

operation of a system and designing computer programs so that they can be explained [34]”.

“Provision of an explanation may constitute one of the most effective methods for improving

the acceptance of forecasts or other decision support advice [24]”. This shows that the ex-

planation is an important method to improve the acceptability of advices, thereby improving

3



decision-making effects.

The research of explanation is started from Expert System (ES), and the research methods

are followed in DSS. L. Richard Ye and E. Johnson discussed the content of explanations

needs to be studied in their paper [30], there are three main categories:

(1)Trace, this kind of explanation provides a perspective about the internal outcome proce-

dure that is used by the DSS. Thus a trace explanation usually answers the question “how”.

(2)Justification, these explanations often taps into the deep knowledge that is behind a gen-

erated outcome, and they provide the rational behind a decision. They generally answer the

question “why”.

(3)Strategy, these explanations provide an insight about the overall problem-solving strategy

used by system.

They try to form a global perspective on the operation of the system by tapping into the plan-

ning.Explanations should be provided throughout the entire decision-making process. Dif-

ferent levels of decision making need different explanations. In the document-driven DSS,

the inheritance and reference relations exist between documents. Just like blood system in

biological systems, there are some lineage relationships in documents. These relationships

play an important role to explain the document’s trace and cluster related documents.

1.1 Contribution of this thesis

Our first discussed algorithm was k-mean algorithm. Regarding computational complexity,

the k-means clustering problem for observations in d dimensions is: If k and d are fixed, the

problem can be exactly solved in time O(ndk+1 logn), where n is the number of entities to

be clustered. And the second discussed algorithm was kNN algorithm. The computational

load of the kNN classification into k clusters is O(knd), where d is the dimension of feature

vectors and n is the number of training samples. We tried to find out a experimental result

about which algorithm can classify all observations into user specified clusters. After imple-

menting the algorithms and then performing accuracy test we observed that kNN algorithm

has a better correction rate than k-mean algorithm. Then we developed a document linage

pattern among the documents of k clusters. This patter helps to find an explanation of a
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decision.

1.2 Organization of this thesis

The organization of the rest of the thesis is as follows. In Chapter 2.1, we present previous

works on DSS. In Chapter 3, we give preliminary concepts. In Chapter 4, we focus on the

performance of the algorithms. In Chapter 5, we describe our experimental result. Finally

we conclude in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

2.1 Previous Work

The concept of a Decision Support System (DSS) is extremely broad and its definitions

vary depending upon the author’s point of view [12]. A DSS can take many different forms

and the term can be used in many different ways [2]. On the one hand, [13] and others

defined it broadly as “a computer-based system that aids the process of decision making”.

In a more precise way, Turban (1995) defines it as “an interactive, flexible, and adaptable

computer-based information system, especially developed for supporting the solution of a

nonstructured management problem for improved decision making. It utilizes data, provides

an easy-to-use interface, and allows for the decision maker’s own insights”. On the other

hand, Schoff [31] quoted Keen [21] (“there can be no definition of decision support systems,

only of decision support”) as claiming that it is impossible to give a precise definition in-

cluding all the facets of the DSS. Nevertheless, according to Power (1997), the term decision

support system remains a useful and inclusive term for many types of information systems

that support decision making. He humorously adds that every time a computerized system

is not an on-line transaction processing system (OLTP), someone will be tempted to call it a

DSS.

In the absence of an all-inclusive definition, we focus on the brief history of DSS based

on Power’s point of view. Power [29] made his comments: According to Keen and Scott

Morton, the concept of decision support has evolved from two main areas of research: the

theoretical studies of organizational decision making done at the Carnegie Institute of Tech-

nology during the late 1950s and early 1960s, and the technical work on interactive computer

systems, mainly carried out at the Massachusetts Institute of Technology in the 1960s. It is

considered that the concept of DSS became an area of research of its own in the middle

of the 1970s, before gaining in intensity during the 1980s. In the middle and late 1980s,
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executive information systems (EIS), group decision support systems (GDSS), and organi-

zational decision support systems (ODSS) evolved from the single user and model-oriented

DSS. Beginning in about 1990, data warehousing and on-line analytical processing (OLAP)

began broadening the realm of DSS.

As the turn of the millennium approached, new Web-based analytical applications were in-

troduced. Chen Wenwei in China proposes an integrated DSS containing three main parts.

The first part is the integration of model-base system and database system. It is the basic

for decision support. It provides supported information for the quantitative analysis (model

calculation) of decision-making. The second part is the data warehouse and OLAP, which

extracts integrated data and information from the data warehouse. These data and informa-

tion reflect the inherent nature of a large amount of data. The third part is the integration of

expert system and data mining. Data mining explores data from the database and data ware-

house and put them into the knowledge base of the expert system to make knowledge-based

reasoning for quantitative analysis of decision aid. The decision aid system which uses the

combination of the first and third parts (expert system and data mining) is an intelligent

DSS. The decision aid system which uses the second part (data warehouse and OLAP) is the

new DSS. In OLAP, related models in the model base can be used to improve the data anal-

ysis ability of OLAP. Combination of the three parts, namely combining the three parts with

the component of “problem integration and interaction system”, forms the integrated DSS.

Many authors define the architecture of a DSS in terms of various components (Sprague

1980; Bonczek, Holsapple and Whinston, 1981). Turban(1995) mentions that the various

components of a traditional DSS and/or its users do not have to be in one location. They

can be dispersed both geographically and organizationally throughout an organization and

its environment. As mentioned in the Introduction, E-business (E-government) was born in

the environment with the trend of globally development of trade and economy, global share

of information knowledge, and global distribution of organizations. This makes it possi-

ble for the components of DSS and/or its users to spread all over the world in e-business

environment. Internet is undoubtedly the best tool for the realization of information global-

ization. As a powerful driving force, Web-based E-business makes DSS expand from LAN

to Internet. With this background, this paper proposes the distributed framework of DSS in

ebusiness environment, and makes it possible to be implemented on the J2EE platform by

using Internet-based Wed technologies.

7



CHAPTER 3

PRELIMINARIES

Document categorization may be seen as the task of determining an assignment of a value

from 0,1 to each entry of the decision matrix shown in figure 3.1.

Figure 3.1: Decision matrix

Where C = c1, ...,cm is a set of pre-defined categories, and D = d1, ...,dn is a set of docu-

ments to be categorized. A value of 1 for ai j is interpreted as a decision to file djunder ci,

while a value of 0 is interpreted as a decision not to file d j under ci.

8



3.1 Definition

3.1.1 Feature Space

In pattern recognition a feature space is an abstract space where each pattern sample is

represented as a point in n-dimensional space. Its dimension is determined by the number of

features used to describe the patterns. Similar samples are grouped together, which allows

the use of density estimation for finding patterns.

The concept is a most used one in classification techniques like k nearest neighbors or sup-

port vector machines.

Feature Space (Nearest Neighbor Analysis)

The feature space chart is an interactive graph of the feature space (or a subspace, if there

are more than 3 features). Each axis represents a feature in the model, and the location of

points in the chart show the values of these features for cases in the training and holdout

partitions.

Keys: In addition to the feature values, points in the plot convey other information. Shape in-

dicates the partition to which a point belongs, either Training or Holdout. The color/shading

of a point indicates the value of the target for that case; with distinct color values equal to the

categories of a categorical target, and shades indicating the range of values of a continuous

target. The indicated value for the training partition is the observed value; for the holdout

partition, it is the predicted value. If no target is specified, this key is not shown. Heavier

outlines indicate a case is focal. Focal cases are shown linked to their k nearest neighbors.

Controls and Interactivity: A number of controls in the chart allow one to explore the

Feature Space.

One can choose which subset of features to show in the chart and change which features are

represented on the dimensions.

“Focal cases”are simply points selected in the Feature Space chart. If one specified a focal

case variable, the points representing the focal cases will initially be selected. However,

any point can temporarily become a focal case if one selects it. The “usual”controls for
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point selection apply; clicking on a point selects that point and deselects all others; Control-

clicking on a point adds it to the set of selected points. Linked views, such as the Peers

Chart, will automatically update based upon the cases selected in the Feature Space. One

can change the number of nearest neighbors (k) to display for focal cases.

Hovering over a point in the chart displays a tooltip with the value of the case label, or case

number if case labels are not defined, and the observed and predicted target values.

A “Reset”button allows one to return the Feature Space to its original state.

3.1.2 Cross Validation Test

Cross validation divides the sample into a number of subsamples, or folds. Tree models are

then generated, excluding the data from each subsample in turn. The first tree is based on all

of the cases except those in the first sample fold; the second tree is based on all of the cases

except those in the second sample fold, and so on. For each tree, misclassification risk is

estimated by applying the tree to the subsample excluded in generating it. One can specify a

maximum of 25 sample folds. The higher the value, the fewer the number of cases excluded

for each tree model.

Cross validation produces a single, final tree model. The cross validated risk estimate for

the final tree is calculated as the average of the risks for all of the trees.

Split-Sample Validation

With split-sample validation, the model is generated using a training sample and tested on a

hold-out sample.

One can specify a training sample size, expressed as a percentage of the total sample size,

or a variable that splits the sample into training and testing samples.

If one uses a variable to define training and testing samples, cases with a value of 1 for the

variable are assigned to the training sample, and all other cases are assigned to the testing

sample. The variable cannot be the dependent variable, weight variable, influence variable,

or a forced independent variable. One can display results for both the training and testing

samples or just the testing sample. Split-sample validation should be used with caution on
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small data files (data files with a small number of cases). Small training sample sizes may

yield poor models, since there may not be enough cases in some categories to adequately

grow the tree.

Cross Validation Subcommand (kNN command)

The CROSSVALIDATION subcommand specifies settings for performing V -fold cross-

validation to determine the “best”number of neighbors.

V -fold cross validation divides the data into V folds. Then, for a fixed k, it applies nearest

neighbor analysis to make predictions on the v-th fold (using the other V − 1 folds as the

training sample) and evaluates the error. This process is successively applied to all possible

choices of v. At the end of V folds, the computed errors are averaged. The above steps are

repeated for various values of k. The value achieving the lowest average error is selected as

the optimal value for k.

If multiple values of k are tied on the lowest average error, then the smallest k among those

that are tied is selected.

Cross-validation is not used when /MODEL NEIGHBORS=FIXED or when /MODEL

FEATURES=AUTO. It is invalid to specify both the FOLDS and VARIABLE keywords

on the CROSSVALIDATION subcommand.

3.1.3 Decision Boundary

In a statistical-classification problem with two classes, a decision boundary or decision sur-

face is a hyper-surface that partitions the underlying vector space into two sets, one for each

class. The classifier will classify all the points on one side of the decision boundary as be-

longing to one class and all those on the other side as belonging to the other class. If the

decision surface is a hyper-plane, then the classification problem is linear, and the classes

are linearly separable.

Decision boundaries are not always clear cut. That is, the transition from one class in the fea-

ture space to another is not discontinuous, but gradual. This effect is common in fuzzy logic

based classification algorithms, where membership in one class or another is ambiguous.
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In general, a pattern classifier carves up (or tesselates or partitions) the feature space into

volumes called decision regions. All feature vectors in a decision region are assigned to the

same category. The decision regions are often simply connected, but they can be multiply

connected as well, consisting of two or more non-touching regions shown in figure 3.2.

Figure 3.2: Decision Region

The decision regions are separated by surfaces called the decision boundaries. These sepa-

rating surfaces represent points where there are ties between two or more categories.

For a minimum-distance classifier, the decision boundaries are the points that are equally

distant from two or more of the templates. With a Euclidean metric, the decision boundary

between Regions i and Region j is on the line or plane that is the perpendicular bisector

of the line from mi to m j. Analytically, these linear boundaries are a consequence of the

fact that the discriminant functions are linear. (With the Mahalanobis metric, the decision

boundaries are quadratic surfaces, such as ellipsoids, paraboloids or hyperboloids.)

Figure 3.3: Nearest-template decision boundaries
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How well the classifier works depends upon how closely the input patterns to be classified

resemble the templates. In the example sketched below, the correspondence is very close,

and one can anticipate excellent performance. However, things are not always this good in

practice, and one should understand the limitations of simple classifiers.

Figure 3.4: Result of Classification

3.1.4 Lazy Learning

In artificial intelligence, lazy learning is a learning method in which generalization beyond

the training data is delayed until a query is made to the system, as opposed to in eager

learning, where the system tries to generalize the training data before receiving queries. The

main advantage gained in employing a lazy learning method, such as Case based reasoning,

is that the target function will be approximated locally, such as in the k-nearest neighbor

algorithm. Because the target function is approximated locally for each query to the system,

lazy learning systems can simultaneously solve multiple problems and deal successfully

with changes in the problem domain.

The disadvantages with lazy learning include the large space requirement to store the entire

training dataset. Particularly noisy training data increases the case base unnecessarily, be-

cause no abstraction is made during the training phase. Another disadvantage is that lazy

learning methods are usually slower to evaluate, though this is coupled with a faster training

phase. Lazy classifiers are most useful for large datasets with few attributes.
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3.2 Problem Description

Document categorization relies on the existence of a an initial corpus Co = d1.....ds of docu-

ments previously categorized under the same set of categories C = c1, ...,cm with which the

categorizer must operate. This means that the corpus comes with a correct decision matrix

in figure 3.5.

Figure 3.5: Correct decision matrix

A value of 1 for cai j is interpreted as an indication from the expert to file d j under ci, while

a value of 0 for is interpreted as an indication from the expert not to file d j under ci. A

document d j is often referred to as a positive example of ci if cai j = 1, a negative example

of ci if cai j = 0. For evaluation purposes, in the first stage of classifier construction the

initial corpus is typically divided into two sets, not necessarily of equal size:

* A training set Tr = d1, ...,dg. This is the set of example documents observing the

characteristics of which the classifiers for the various categories are induced.

* A test set Te = dg+1, ...,ds. This set will be used for the purpose of testing the effec-

tiveness of the induced classifiers. Each document in Te will be fed to the classifiers,

and the classifier decisions compared with the expert decisions; a measure of classi-

fication effectiveness will be based on how often the values for the ai j’s obtained by

the classifiers match the values for the cai j’s provided by the experts.

Note that in order to give a scientific character to the experiment the documents in Te cannot

participate in any way in the inductive construction of the classifiers; if this condition were

not to be satisfied, the experimental results obtained would typically be unrealistically good.
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However, it is often the case that in order to optimize a classifier, its internal parameters

should be tuned by testing which value of the parameter yields the best effectiveness. In

order for this to happen and, at the same time, safeguard scientific standards, the set d1, ...,dg

may be further split into a “true”training set Tr = d1, ...,d f , from which the classifier is

induced, and a validation testset Va = d f +1, ...,dg, on which the repeated tests of the induced

classifier aimed at parameter optimization are performed.

Finally, one may define the generality gCo(ci) of a category ci relative to a corpus Co as the

percentage of documents that belong to ci, i.e.:

gCo(ci) = |{d j ∈Co|cai j = 1}|/|{d j ∈Co}| . . . . . . . . (1)

The training set generality gTr(ci), validation set generality gva(ci), and test set generality

gTe(ci) of a category ci may be defined in the obvious way by substituting Tr, Va, or Te,

respectively, to C0 in Equation 1. Then we developed tracing of document-driven DSS to

provide an explanation to improve the acceptance of decision makers.
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CHAPTER 4

PROCEDURE

4.1 The k-means algorithm

The K-means algorithm is a simple iterative method to partition a given dataset into a user

specified number of clusters, k. This algorithm has been discovered by several researchers

across different disciplines, most notably Lloyd (1957, 1982) [32], Forgey (1965), Friedman

and Rubin (1967), and McQueen (1967). Detailed histories of k-means along with descrip-

tions of several variations are given in [20]. Gray and Neuhoff [17] provide a nice historical

background for k-means placed in the larger context of hill-climbing algorithms.

4.1.1 Description of the algorithm

The algorithm operates on a set of d-dimensional vectors, D = xi|i = 1...N, where xi ∈ Rd

denotes the ith data point. The algorithm is initialized by picking k points in Rd a as the initial

k cluster representatives or “centroids”. Techniques for selecting these initial seeds include

sampling at random from the dataset, setting them as the solution of clustering a small subset

of the data or perturbing the global mean of the data k times. Then the algorithm iterates

between two steps till convergence:

Step 1: Data Assignment

Each data point is assigned to its closest centroid, with ties broken arbitrarily. This results

in a partitioning of the data.

Step 2: Relocation of “means”

Each cluster representative is relocated to the center (mean) of all data points assigned to

it. If the data points come with a probability measure (weights), then the relocation is to

the expectations (weighted mean) of the data partitions. The algorithm converges when the
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assignments (and hence the C j values) no longer change. The algorithm execution is visually

depicted from figure. Note that each iteration needs N× k comparisons, which determines

the time complexity of one iteration. The number of iterations required for convergence

varies and may depend on N, but as a first cut, this algorithm can be considered linear in the

dataset size. One issue to resolve is how to quantify “closest”in the assignment step. The

default measure of closeness is the Euclidean distance, in which case one can readily show

that the non-negative cost function,

∑
n
i=1

(
argmin||xi− ci||2

)
will decrease whenever there is a change in the assignment or the relocation steps, and hence

convergence is guaranteed in a finite number of iterations. The greedy-descent nature of k-

means on a non-convex cost also implies that the convergence is only to a local optimum, 1

and indeed the algorithm is typically quite sensitive to the initial “centroid”locations. The

local minima problem can be countered to some extent by running the algorithm multiple

times with different initial centroids, or by doing limited local search about the converged

solution.

Regarding computational complexity, the k-means clustering problem for observations in d

dimensions is: If k and d are fixed, the problem can be exactly solved in time O(ndk+1 logn),

where n is the number of entities to be clustered.

4.1.2 k-mean Algorithm

In this section we have described k-mean algorithm in Algorithm 1.

4.1.3 Limitations

In addition to being sensitive to initialization, the k-means algorithm suffers from several

other problems. First, observe that k-means is a limiting case of fitting data by a mixture of

k Gaussians with identical, isotropic covariance matrices (∑ = σ2I), when the soft assign-

ments of data points to mixture components are hardened to allocate each data point solely

to the most likely component. So, it will falter whenever the data is not well described by

reasonably separated spherical balls, for example, if there are non-covex shaped clusters in
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Algorithm 1 k-mean Algorithm
Input: E = e1,e2, ...,en (set of entities to be clustered)
k(number of clusters)
MaxIters (limit of iterations)

output: C = c1,c2, ...,ck (set of cluster centroids)
L = l(e)|e = 1,2, ...,n (set of cluster levels of E)

for each ci ∈C do
ci← e j ∈ E (random selection)
end

for each ei ∈ E do
l(ei)← argminDistance(ei, ,c j) j ∈ 1,2, ...,k
end

changed← f alse
iter← 0

repeat
for each ci ∈C do
U pdateCluster(ci)
end
for each ei ∈ E do
minDist← argminDistance(ei, ,c j) j ∈ 1,2, ...,k
if minDist 6= l(ei) then
l(ei)← minDist
changed← true
end
end
iter ++
untilchanged = trueanditer ≤MaxIter
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the data. This problem may be alleviated by rescaling the data to “whiten”it before cluster-

ing, or by using a different distance measure that is more appropriate for the dataset. For

example, information-theoretic clustering uses the KL-divergence to measure the distance

between two data points representing two discrete probability distributions. It has been re-

cently shown that if one measures distance by selecting any member of a very large class

of divergences called Bregman divergences during the assignment step and makes no other

changes, the essential properties of k-means, including guaranteed convergence, linear sep-

aration boundaries and scalability, are retained [3]. This result makes k-means effective for

a much larger class of datasets so long as an appropriate divergence is used.

K-means can be paired with another algorithm to describe non-convex clusters. One first

clusters the data into a large number of groups using k-means. These groups are then ag-

glomerated into larger clusters using single link hierarchical clustering, which can detect

complex shapes. This approach also makes the solution less sensitive to initialization, and

since the hierarchical method provides results at multiple resolutions, one does not need to

pre-specify k either.

The cost of the optimal solution decreases with increasing k till it hits zero when the number

of clusters equals the number of distinct data-points. This makes it more difficult to (a) di-

rectly compare solutions with different numbers of clusters and (b) to find the optimum value

of k. If the desired k is not known in advance, one will typically run k-means with different

values of k, and then use a suitable criterion to select one of the results. For example, SAS

uses the cube-clustering-criterion, while X-means adds a complexity term (which increases

with k) to the original cost function and then identifies the k which minimizes this adjusted

cost. Alternatively, one can progressively increase the number of clusters, in conjunction

with a suitable stopping criterion. Bisecting k-means [33] achieves this by first putting all

the data into a single cluster, and then recursively splitting the least compact cluster into two

using 2-means. The celebrated LBG algorithm [17] used for vector quantization doubles

the number of clusters till a suitable code-book size is obtained. Both these approaches thus

alleviate the need to know k beforehand.

The algorithm is also sensitive to the presence of outliers, since “mean”is not a robust statis-

tic. A preprocessing step to remove outliers can be helpful. Post-processing the results, for

example to eliminate small clusters, or to merge close clusters into a large cluster, is also
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desirable. Ball and Hall’s ISODATA algorithm from 1967 effectively used both pre- and

post-processing on k-means.

4.1.4 Generalizations and connections

As mentioned earlier, k-means is closely related to fitting a mixture of k isotropic Gaussians

to the data. Moreover, the generalization of the distance measure to all Bregman divergences

is related to fitting the data with a mixture of k components from the exponential family of

distributions. Another broad generalization is to view the “means”as probabilistic models

instead of points in Rd. Here, in the assignment step, each data point is assigned to the

most likely model to have generated it. In the “relocation”step, the model parameters are

updated to best fit the assigned datasets. Such model-based k-means allow one to cater to

more complex data, e.g. sequences described by Hidden Markov models. One can also

“kernelize”k-means [11]. Though boundaries between clusters are still linear in the implicit

high-dimensional space, they can become non-linear when projected back to the original

space, thus allowing kernel k-means to deal with more complex clusters. Dhillon et al.

[11] have shown a close connection between kernel k-means and spectral clustering. The

K-medoid algorithm is similar to k-means except that the “centroids”have to belong to the

data set being clustered. Fuzzy c-means is also similar, except that it computes fuzzy mem-

bership functions for each clusters rather than a hard one. Despite its drawbacks, k-means

remains the most widely used partitioned clustering algorithm in practice. The algorithm is

simple, easily understandable and reasonably scalable, and can be easily modified to deal

with streaming data. To deal with very large datasets, substantial effort has also gone into

further speeding up k-means, most notably by using kd-trees or exploiting the triangular

inequality to avoid comparing each data point with all the centroids during the assignment

step. Continual improvements and generalizations of the basic algorithm have ensured its

continued relevance and gradually increased its effectiveness as well.

4.2 k-nearest neighbor classification

One of the simplest and rather trivial classifiers is the Rote classifier, which memorizes the

entire training data and performs classification only if the attributes of the test object match
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one of the training examples exactly. An obvious drawback of this approach is that many

test records will not be classified because they do not exactly match any of the training

records. A more sophisticated approach, k-nearest neighbor (kNN) classification [14, 35],

finds a group of k objects in the training set that are closest to the test object, and bases the

assignment of a label on the predominance of a particular class in this neighborhood. There

are three key elements of this approach: a set of labeled objects, e.g., a set of stored records,

a distance or similarity metric to compute distance between objects, and the value of k, the

number of nearest neighbors. To classify an unlabeled object, the distance of this object to

the labeled objects is computed, its k-nearest neighbors are identified, and the class labels of

these nearest neighbors are then used to determine the class label of the object.

4.2.1 Description of the algorithm

Given a training set D and a test object x = (x,y), the algorithm computes the distance (or

similarity) between z and all the training objects (x,y) ∈D to determine its nearest-neighbor

list, Dz. (x is the data of a training object, while y is its class. Likewise, x is the data of the

test object and y is its class.) Once the nearest-neighbor list is obtained, the test object is

classified based on the majority class of its nearest neighbors:

Once the nearest-neighbor list is obtained, the test object is classified based on the majority

class of its nearest neighbors:

Majority Voting:

y = argmax ∑ I(v = yi)

v (xi,yi) ∈ Dz

Where v is a class label, yi is the class label for the ith nearest neighbors, and I (.) is an

indicator function that returns the value 1 if its argument is true and 0 otherwise.
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4.2.2 kNN Algorithm

Algorithm 2 kNN Algorithm
Input: D the set of training objects and test object z = (x,y)

Process:

Compute d(x,x), the distance between and every object, (x,y) ∈ D
Select, Dz ⊆ D the set of closest training objects to z.

output:

y = argmax ∑ I(v = yi)
v (xi,yi) ∈ Dz

4.2.3 Analysis of the Algorithm

There are several key issues that affect the performance of kNN. One is the choice of k. If

k is too small, then the result can be sensitive to noise points. On the other hand, if k is too

large, then the neighborhood may include too many points from other classes.

Another issue is the approach to combining the class labels. The simplest method is to take a

majority vote, but this can be a problem if the nearest neighbors vary widely in their distance

and the closer neighbors more reliably indicate the class of the object. A more sophisticated

approach, which is usually much less sensitive to the choice of k, weights each object’s vote

by its distance, where the weight factor is often taken to be the reciprocal of the squared

distance: wi = 1/d(x,xi)2.This amounts to replacing the last step of the k-NN algorithm

with the following:

Distance-Weighted Voting: y = argmax ∑wi× I(v = yi).

v (xi,yi) ∈ Dz

The choice of the distance measure is another important consideration. Although various

measures can be used to compute the distance between two points, the most desirable dis-

tance measure is one for which a smaller distance between two objects implies a greater

likelihood of having the same class. Thus, for example, if kNN is being applied to classify

documents, then it may be better to use the cosine measure rather than Euclidean distance.
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Some distance measures can also be affected by the high dimensionality of the data. In par-

ticular, it is well known that the Euclidean distance measure become less discriminating as

the number of attributes increases. Also, attributes may have to be scaled to prevent distance

measures from being dominated by one of the attributes.

For example, consider a data set where the height of a person varies from 1.5 to 1.8m, the

weight of a person varies from 90 to 300 lb, and the income of a person varies from $10,000

to $1,000,000. If a distance measure is used without scaling, the income attribute will dom-

inate the computation of distance and thus, the assignment of class labels. A number of

schemes have been developed that try to compute the weights of each individual attribute

based upon training set [18].

In addition, weights can be assigned to the training objects themselves. This can give more

weight to highly reliable training objects, while reducing the impact of unreliable objects.

The PEBLS system by Cost and Salzberg [6] is a well-known example of such an approach.

Classifying unknown objects is relatively expensive since it requires the computation of the

k-nearest neighbors of the object to be labeled. This, in general, requires computing the

distance of the unlabeled object to all the objects in the labeled set, which can be expensive

particularly for large training sets. A number of techniques have been developed for efficient

computation of k-nearest neighbor distance that make use of the structure in the data to avoid

having to compute distance to all objects in the training set. These techniques, which are

particularly applicable for low dimensional data, can help reduce the computational cost

without affecting classification accuracy.

The computational load of the kNN classification of a single test point is O (knd), where d

is the dimension of feature vectors and n is the number of training samples. O (knd) is a lot

of time, particularly if n is large. The difference to most other techniques for classification

is that with kNN training points are needed during the classification when usually they are

needed only during the training. Since training is performed only once and the classification

many times, we are more concerned about the time consumption of classification.
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4.2.4 Impact

kNN classification is an easy to understand and easy to implement classification technique.

Despite its simplicity, it can perform well in many situations. In particular, a well known re-

sult by Cover and Hart [7] shows that the error of the nearest neighbor rule is bounded above

by twice the Bayes error under certain reasonable assumptions. Also, the error of the general

kNN method asymptotically approaches that of the Bayes error and can be used to approx-

imate it. kNN is particularly well suited for multi-modal classes as well as applications in

which an object can have many class labels. For example, for the assignment of functions to

genes based on expression profiles, some researchers found that kNN outperformed SVM,

which is a much more sophisticated classification scheme [23].

4.2.5 Current and future research

Although the basic kNN algorithm and some of its variations, such as weighted kNN and as-

signing weights to objects, are relatively well known, some of the more advanced techniques

for kNN are much less known. For example, it is typically possible to eliminate many of

the stored data objects, but still retain the classification accuracy of the kNN classifier. This

is known as ‘condensing’and can greatly speed up the classification of new objects [19]. In

addition, data objects can be removed to improve classification accuracy, a process known

as ”editing” [39]. There has also been a considerable amount of work on the application of

proximity graphs (nearest neighbor graphs, minimum spanning trees, relative neighborhood

graphs, Delaunay triangulations, and Gabriel graphs) to the kNN problem. Recent papers

by Toussaint [38, 37], which emphasize a proximity graph viewpoint, provide an overview

of work addressing these three areas and indicate some remaining open problems. Other

important resources include the collection of papers by Dasarathy [8] and the book by De-

vroyeet al. [10]. Finally, a fuzzy approach to kNN can be found in the work of Bezdek

[4].
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4.3 The concept of document lineage

Document is carrier of information. It inherits from the original documents, and innovates

the current information. This process allows information to pass along. Document lineage

is generated in this process. Document lineage is a relationship among documents. This

relationship is congenital and unalterable.

Figure 4.1: Document lineage diagram

In the documents transfer process, the new document is produced by inheritance and in-

novation. As shown in Figure 4.1: document1, document4 and document5 are the original

documents, document2 is the result of updates to document1, document6 is a copy of doc-

ument1, so document2 and document6 are descendants of document1. Document7 contains

the contents of document2 and document6, document3 is a combination of four documents,

its contents are from document2, document4, document5 and document10. There is also

original part. Document9 is a combination of document5 and document8.
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4.3.1 “Parent-child”Concept:

“Parents-child”relationship between documents, the direct inheritance relationship between

thedocuments. In this relationship, the document has beeninherited is called the parent doc-

ument, the document inherits the contents of the parent document is called child document

[5]. For example in Figure 4.1, there are such relationships between document1 and docu-

ment2, between document2 and document3, between document5 and documnet7.

A document can be both “parent document”and “child document”. It depends on them to

assume the role of lineage relationship, as in Figure, document2 is document1’s childdoc-

ument, and document2 is the parent document of document3. In the documents lineage

system, all documents relationships can be described by these three relationships. So, we

can form the “lineage pattern”which describes the relationship of relevant documents set.

The significance of this map is to establish a link between separate documents. Such a link

can express the source of document, and it is a interpretability for the “trace”in explanation.

4.3.2 Route Generation

In order to explain decision advice, we need to do some work at the three levels: Trace, Jus-

tification and Strategy. The “Trace”can help decision makers to know the source of advice;

the “Justification”can prove the advice; and the “Strategy”is a strategic perspective to de-

scribe the effect of the advice. M. SinanGnl has such a view: “the explanations (especially

the traces) can increase in visibility facilitates the participants’ acceptance of the system as

being logical, and thus, acceptance of its advice as being justified and useful [15]”.

In document-driven DSS, decision makers obtain information by reading documents, and

the references between documents constitute the routes of document lineage transmission.

When the advice’s reliability needs to be audited, we can trace the origin of it and get the

routes.
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CHAPTER 5

EXPERIMENTAL RESULTS

We run the two algorithms for same data set and same number of observation.

5.1 Environment

All experimental test cases were run in a notebook with following specification:

5.1.1 Experimental setup

The experiments were performed using Intel COREi3 CPU at 2.13 GHz processor having

4GB RAM running Windows 7 operating system.

5.1.2 IDE

We used MATLAB R2011a. MATLAB (matrix laboratory) is a numerical computing en-

vironment and fourth-generation programming language. Developed by MathWorks, MAT-

LAB allows matrix manipulations, plotting of functions and data, implementation of algo-

rithms, creation of user interfaces, and interfacing with programs written in other languages,

including C, C++, Java, and Fortran. Although MATLAB is intended primarily for numer-

ical computing, an optional toolbox uses the MuPAD symbolic engine, allowing access to

symbolic computing capabilities. An additional package, Simulink, adds graphical multi-

domain simulation and Model-Based Design for dynamic and embedded systems.

5.1.3 Code Specification

The correctness of our approach is fully dependent on the code. We tried our best to imple-

ment both algorithms very carefully. We tried to make the code a compact one for having
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the exact result. Then we performed cross-validation test to measure the accuracy both of

the classifier.

5.2 Result of Classification

For each algorithm we used 150 observations (n = 150) and classified them in 9 categories

(k = 9).Then we measured the performance of each classifier in best, average and worst

case.

5.2.1 Performance of k-mean Classifier

Worst Case

Worst case for k-mean classifier (k=9) is shown in figure 5.1 and its performance is described

in Table 5.1.

Figure 5.1: worst case for k-mean classifier (k=9)
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Table 5.1: Worst case performance of k-mean algorithm
ClassLabels {3x1 cell}
GroundTruth [150x1 double]
NumberOfObservations 150
ControlClasses [2x1 double]
TargetClasses 1
ValidationCounter 1
SampleDistribution [150x1 double]
ErrorDistribution [150x1 double]
SampleDistributionByClass [3x1 double]
ErrorDistributionByClass [3x1 double]
CountingMatrix [4x3 double]
CorrectRate 0.8667
ErrorRate 0.1333
LastCorrectRate 0.8667
LastErrorRate 0.1333
InconclusiveRate 0
ClassifiedRate 1
Sensitivity 1
Specificity 1
PositivePredictiveValue 1
NegativePredictiveValue 1
PositiveLikelihood NaN
NegativeLikelihood 0
Prevalence 0.3333
DiagnosticTable [2x2 double]
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Average Case

Average case for k-mean classifier (k=9) is shown in figure 5.2 and its performance is de-

scribed in Table 5.2.

Figure 5.2: Average case for k-mean classifier (k=9)

Best Case

Best case for k-mean classifier (k=9) is shown in figure 5.3 and its performance is described

in Table 5.3.

5.2.2 Performance of KNN Classifier

Worst Case

Worst case for KNN classifier (k=9) is shown in figure 5.4 and its performance is described

in Table 5.4.
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Table 5.2: Average case performance of k-mean algorithm
ClassLabels {3x1 cell}
GroundTruth [150x1 double]
NumberOfObservations 150
ControlClasses [2x1 double]
TargetClasses 1
ValidationCounter 3
SampleDistribution [150x1 double]
ErrorDistribution [150x1 double]
SampleDistributionByClass [3x1 double]
ErrorDistributionByClass [3x1 double]
CountingMatrix [4x3 double]
CorrectRate 0.9111
ErrorRate 0.0889
LastCorrectRate 0.8667
LastErrorRate 0.1333
InconclusiveRate 0
ClassifiedRate 1
Sensitivity 1
Specificity 1
PositivePredictiveValue 1
NegativePredictiveValue 1
PositiveLikelihood NaN
NegativeLikelihood 0
Prevalence 0.3333
DiagnosticTable [2x2 double]
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Table 5.3: Best case performance of k-mean algorithm
ClassLabels {3x1 cell}
GroundTruth [150x1 double]
NumberOfObservations 150
ControlClasses [2x1 double]
TargetClasses 1
ValidationCounter 1
SampleDistribution [150x1 double]
ErrorDistribution [150x1 double]
SampleDistributionByClass [3x1 double]
ErrorDistributionByClass [3x1 double]
CountingMatrix [4x3 double]
CorrectRate 0.9333
ErrorRate 0.0667
LastCorrectRate 0.9333
LastErrorRate 0.0667
InconclusiveRate 0
ClassifiedRate 1
Sensitivity 1
Specificity 1
PositivePredictiveValue 1
NegativePredictiveValue 1
PositiveLikelihood NaN
NegativeLikelihood 0
Prevalence 0.3333
DiagnosticTable [2x2 double]
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Table 5.4: Worst case performance of kNN algorithm
ClassLabels {3x1 cell}
GroundTruth [150x1 double]
NumberOfObservations 150
ControlClasses [2x1 double]
TargetClasses 1
ValidationCounter 1
SampleDistribution [150x1 double]
ErrorDistribution [150x1 double]
SampleDistributionByClass [3x1 double]
ErrorDistributionByClass [3x1 double]
CountingMatrix [4x3 double]
CorrectRate 0.9333
ErrorRate 0.0667
LastCorrectRate 0.9333
LastErrorRate 0.0667
InconclusiveRate 0
ClassifiedRate 1
Sensitivity 1
Specificity 1
PositivePredictiveValue 1
NegativePredictiveValue 1
PositiveLikelihood NaN
NegativeLikelihood 0
Prevalence 0.3333
DiagnosticTable [2x2 double]
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Figure 5.3: Best case for k-mean classifier (k=9)

Average Case

Average case for KNN classifier (k=9) is shown in figure 5.5 and its performance is de-

scribed in Table 5.5.

Best Case

Best case for KNN classifier (k=9) is shown in figure 5.6 and its performance is described

in Table 5.6.

5.3 Developing a Path among Classified Documents

Formal expression of paths of document lineage can be describedas follows:

Path < Terminal Point, StartingPoint ≥ (catID,DocID,Action,ParentCatID,ParentDocId)

Thus we finally developed a linage patters among the classified documents which is shown

in figure 5.12

34



Table 5.5: Average case performance of kNN algorithm
ClassLabels {3x1 cell}
GroundTruth [150x1 double]
NumberOfObservations 150
ControlClasses [2x1 double]
TargetClasses 1
ValidationCounter 10
SampleDistribution [150x1 double]
ErrorDistribution [150x1 double]
SampleDistributionByClass [3x1 double]
ErrorDistributionByClass [3x1 double]
CountingMatrix [4x3 double]
CorrectRate 0.9400
ErrorRate 0.0600
LastCorrectRate 0.8667
LastErrorRate 0.1333
InconclusiveRate 0
ClassifiedRate 1
Sensitivity 1
Specificity 1
PositivePredictiveValue 1
NegativePredictiveValue 1
PositiveLikelihood NaN
NegativeLikelihood 0
Prevalence 0.3333
DiagnosticTable [2x2 double]
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Table 5.6: Best case performance of kNN algorithm
ClassLabels {3x1 cell}
GroundTruth [150x1 double]
NumberOfObservations 150
ControlClasses [2x1 double]
TargetClasses 1
ValidationCounter 1
SampleDistribution [150x1 double]
ErrorDistribution [150x1 double]
SampleDistributionByClass [3x1 double]
ErrorDistributionByClass [3x1 double]
CountingMatrix [4x3 double]
CorrectRate 0.9800
ErrorRate 0.0200
LastCorrectRate 0.9800
LastErrorRate 0.0200
InconclusiveRate 0
ClassifiedRate 1
Sensitivity 1
Specificity 1
PositivePredictiveValue 1
NegativePredictiveValue 1
PositiveLikelihood NaN
NegativeLikelihood 0
Prevalence 0.3333
DiagnosticTable [2x2 double]
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Figure 5.4: Worst case for KNN classifier (k=9)

Figure 5.5: Average case for kNN classifier (k=9)
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Figure 5.6: Best case for kNN classifier (k=9)

Figure 5.7: Path from document Q4R1 to document P0P3
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Figure 5.8: Path from document R2R5 to document P0P3

Figure 5.9: Path from document Q4S2 to document P0P3
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Figure 5.10: Path from document R2R5 to document P0P3

Figure 5.11: Path from document P0P4 to document P0P3
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Figure 5.12: Lineage Patterns in documents
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CHAPTER 6

CONCLUSION

Our thesis is finally concluded in this chapter where we emphasize on what can be done

based on this thesis. We have presented our experimental result for two document classifica-

tion algorithm.For same number of observations and clusters we performed cross-validation

test on each algorithm to generate the correction rate of the classifier and based on that result

we made a comparison. Then we developed a route through the classified observations for

providing theexplanation which may improve the acceptance of the decision-maker. Thus

we developed trace routes among documents to improve the explanation. In future we can

try to find out a way to obtain better classification.
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