The thesis titled "Seismic Performance Evaluation of Shape Memory Alloy Based Suspended Zipper Braced Frames" submitted by Major Mohammad Rezaul Karim, Roll No: 131210, Session: 2012-13 has been accepted as satisfactory in partial fulfillment of the requirement for the degree of Master of Science in Engineering (M. Sc. Engg.) on 18 May, 2017.

BOARD OF EXAMINERS 1. Dr. M. Shahria Alam, PEng Chairman Associate Professor University of British Columbia, Kelowna, Canada (Supervisor) 2. Kamrul Islam (Co-Supervisor) Assistant Professor Department of Civil Engineering, MIST, Dhaka 3. Major Md. Jahidul Islam, PhD Member Associate Professor Department of Civil Engineering, MIST, Dhaka. 4. Colonel Shah Md. Muniruzzaman, PhD Member Head of the Department Department of Civil Engineering, MIST, Dhaka. (Ex-Officio) 5 Dr. Raquib Ahsan Member Professor Department of Civil Engineering, BUET, Dhaka (External)

DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

18 May, 2017

Mohammad Rezaul Karim

ACKNOWLEDGEMENT

At the very beginning we would like to express our deepest gratitude to Almighty Allah for giving me the strength and ability to accomplish this thesis work. During the time of my conducting thesis work I received a lot of support from various corners.

First and foremost, I am highly obliged to my thesis supervisor, Dr M. Shahria Alam whose inspiration gave me a lot of support to do my thesis work. Then, my co-supervisor Kamrul Islam, who has allowed me to encroach upon his precious time right from the very beginning of this thesis work till the completion. His expert guidance, affectionate encouragement and critical suggestion provided me necessary insight into the thesis subject and paved the way for a meaningful ending of this thesis work in a short duration. Without his constant supervision, valuable advices and suggestion from time to time I would not have to be able to complete the whole thesis in a right manner.

I am also very much indebted and grateful to Lecturar Khadiza of MIST and Capt Sazzad who have helped me in doing this thesis work.

I am also grateful to the authors of the books, journals papers etc those had been aids to my thesis work as mentioned in the bibliography.

iii

ABSTRACT

The suspended zipper-braced frame (SZBF) is a modified version of inverted V braced frame in which zipper struts are added between the brace locations at the mid-span of floor beams and a hat truss is added between top floor to transfer the unbalanced vertical forces induced by brace buckling into the upper floors. Two reference steel braced frames, 3 storey (low rise) and 9 story (mid-rise) SAC model buildings, designed for the Los Angeles area are analyzed and the seismic performance of the structures with the conventional steel bracing (SZBF and chevron braced frame) are investigated and compared with the Shape Memory Alloys (SMA) SZBF. In this study, a 2-D finite element (FE) analysis of the SZBF is carried out in order to assess the seismic performance of the SZBF by exploiting the super elastic (SE) behavior of SMA. The nonlinearities of both geometric and material aspects are included in the FE models. Nonlinear static pushover analyses and incremental dynamic analyses under 20 earthquake excitations have been conducted. Results obtained from the analyses confirm the suitability of SMA braces to improve the seismic performance of SMA SZBFs to help achieve performance-based design objectives for steel buildings in high seismic zones by uniformly distributing inter-storey drift ratios over the height of the building and thus reducing the vulnerability of failure due to soft storey mechanism.

TABLE OF CONTENTS

CONTENT

PAGE NO

DECLARATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
TABLE OF CONTENTS	V
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	Х
LIST OF SYMBOLS	xi

CHAPTER 1: INTRODUCTION

1.1 General	01
1.2 Objectives	06
1.3 Methodology	06
1.4 Thesis Organization	07

CHAPTER 2: LITERATURE REVIEW

2.1 The Evolution of Suspended Zipper Braced Frame	08
2.2 Use of SMA in Braced Frame and SZBF	13

CHAPTER 3: NON LINEAR STATIC PUSHOVER ANALYSIS OF SMA AND STEEL BRACED (SZBF, CBF) FRAMES

3.1 Design Approach	14
3.2 Numerical Modeling of The Braced Frames	18
3.3 Material Modeling	18
3.3.1 Conventional Steel	18
3.3.2 SMA	20
3.4 Modeling of Frames	21
3.5 Validation of Numerical Modeling with Experimental Result	22
3.5.1 Test Frame	22
3.5.2 Loading	23
3.5.3 Numerical Simulation of Test Frame in Seismostruct	25
3.5.4 Test Output and Comparison of Graphs: Behavior of The Zipper	26
Braced Frame	
3.6 Conclusion	29

CHAPTER 4: NON LINEAR STATIC PUSHOVER ANALYSIS

4.1 Non Linear Pushover Analysis	30	
4.2 Lateral Load Profile		
4.3 Result and Discussion of Pushover Analysis	34	
4.3.1 Pushover Curve and Inter Storey Drift	34	
4.3.2 Ductility and Over Strength Factors	36	
4.3.3 Response Modification Factor (R)	38	
4.4 Conclusion	39	

CHAPTER 5: INCREMENTAL DYNAMIC ANALYSIS OF SZBF (SMA, STEEL) AND CBF (STEEL)

5.1 Incremental Dynamic Analysis	40
5.2 Eigen Value/ Modal Analysis	41
5.3 Selection of Scale Factor	42
5.4 Selection of Ground Motion Records	43
5.5 Results and Discussions of Incremental Dynamic Analysis	45
5.5.1 Dynamic Pushover Curve: Roof Drift Ratio	45
5.5.2 Overall Response: Maximum Inter storey Drift Ratio	49
5.6 Probabilistic Seismic Fragility Assessment	52
5.6.1 Analytical Fragility Function Methodology	52
5.6.2 Fragility Curve	52
5.6.3 Probabilistic Seismic Demand Model (PSDM)	54
5.6.4 Intensity Measure and Demand Parameters	55
5.7 Analysis Output: Fragility Curve	57
5.8 Conclusion	62
CHAPTER 6: CONCLUSIONS AND RECOMMENDATION	
6.1 Conclusions	63
6.2 Recommendation for Future Research	64

References

66

LIST OF TABLES

TABLE

PAGE NO

Table 3.1: Member sizes for the 3 storey zipper braced bay	16
Table 3.2 Member Sizes for the 9 Storey Zipper Braced Bay	16
Table 3.3 Member Sizes for the 3 Storey CBF	17
Table 3.4 Member Sizes for the 9 Storey CBF	18
Table 3.5 Input Parameters of Steel Hysteretic Modelsin Seismostruct Software	19
Table 3.6 Material Properties Used In the Finite Element Analyses	20
Table 3.7 Member sizes for the 1/3 scaled 3 Storey Zipper Braced Bay	23
Table 3.8 Corresponding Roof Displacement and Base Shear of Test Frame	26
Table 4.1 Seismic Overstrength Factor and Ductility of Different Frames	37
Table 4.2 Response Modification Factors	38
Table 5.1Periods and Effective Modal Masses Percentage of SZBF and CBF	41
Table 5.2 Characteristics of Near Fault Ground Motion.	44
Table 5.3 Characteristics of Far Field Ground Motion.	44
Table 5.4 Probabilistic Seismic Demand Models for Different Frame Considered	57

LIST OF FIGURES

	FIGURE	PAGE NO
Figure 1.1	Buckling of CBF Under Lateral Load	01
Figure 1.2	Integration of Zipper Column in CBF	03
Figure 1.3	Large Cross Section of Braces of Top Floor In SZBF	04
Figure 2.1	Chevron Braced Frame Configuration and its Failure Mechanism	08
Figure 2.2	Expected Behavior and Performance of Zipper Frame	09
Figure 2.3 Column	Behavior of Zipper Braced Frame System With Weak Zipper	10
Figure 2.4 Columns	Behavior of Zipper Braced Frame System with Strong Zipper	11
Figure 2.5	Suspended Zipper Column Design and Its Push-Over Curves	12
Figure 3.1	Floor Plan and Elevation of Model Buildings	15
Figure 3.2	Zipper Braced Model (a) 3 Storey Bay; (b) 9 Storey Bay	17
Figure 3.3	Menegotto-Pinto Steel Model	19
Figure 3.4 Model of SI	(a) Stress–Strain Relationship of the SMA, (b) Super Elastic MA	20
Figure 3.5	Initial Imperfection of The Braces Perpendicular to Its Length	21
Figure 3.6	Length of SMA in Bracing with Rigid Segment	22
Figure 3.7	Elevation of the 1/3 Scale Test Frame	23
Figure 3.8	Applied Displacement Histories.	24
Figure 3.9	Seismostruct Model Similar to 1/3 scale Zipper Braced Frame	25
Figure 3.10	Hysteric Response of the Zipper Braced Frames	27
Figure 3.11	HystericCurve of Second storey Right Brace	28
Figure 4.1	Pushover Curve Showing Various Target Displacements	31
Figure 4.2	3 and 9 Storey Bay to the Lateral Seismic Loading	33
Figure 4.3	PushoverCurve for 3 Storey Frames	34
Figure 4.4	PushoverCurve for 9 Storey Frames	35
Figure 4.5	Inter Storey Drift % for 3 and 9 Storey Frame	35
Figure 4.6 Response M	Idealized Bilinear Pushover Response Curve to Determine Iodification Factor	37
Figure 4.7	Response Modification Factor of 3 and 9 Storey SZBF	39
Figure 5.1	Response Spectrum for The Original Selected Ground Motion	45

Pairs and the Design Response Spectrum

46
46
48
50
51
53
58
59
60
61

LIST OF ABBREVIATIONS

ATC	-	Applied Technology Council			
CBF	-	Chevron Braced Frame			
DS	-	Damage State			
EDP	-	Engineering Demand Parameter			
FE	-	Finite Element			
FEMA	-	Federal Emergency Management Agency			
IM	-	Intensity Measure			
PGA	-	Peak Ground Acceleration			
PGV	-	Peak Ground Velocity			
PSA	-	Probabilistic Safety Analysis			
PSDM	-	Probabilistic Seismic Demand Model			
SAC	-	SAC was formed by the joint venture of SEAoC (Structural Engineers			
		Association of California), ATC (Applied Technology Council), and CUREE			
		(California Universities for Research in Earthquake Engineering)			
SE	-	Super Elastic			
SMA	-	Shape Memory Alloy			
SZBF	-	Suspended Zipper Braced Frame			

LIST OF SYMBOLS

Ε	-	Modulus of elasticity
F _u	-	Ultimate strength
F_y	-	Yield strength
Р	-	Probability of exceedance
R	-	Response modification factor
R_o	-	Over-strength factor
R_{μ}	-	Ductility factor
Sa	-	Spectral acceleration
S_s	-	Spectral acceleration for short period
S_1	-	Spectral acceleration for 1 sec period
Т	-	Natural period
V	-	Shear force
V_d	-	Design base shear
V_e	-	Maximum base shear
V_y	-	Yield base shear
μ	-	Ductility
Δ	-	Displacement
$\varDelta_{\mathcal{Y}}$	-	Yield displacement
Δ_{max}	-	Maximum displacement