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         ABSTRACT   

This thesis paper presents a novel design of a hexagonal four ring photonic crystal fiber 

(H-PCF) and its performance for different parameter such as effective mode index, 

dispersion, effective mode area and non-linearity parameter. COMSOL Multi-physics 4.3 

software is used to design and analyze the parameters of H-PCF. The designed H-PCF 

consists of four layered circular air holes and gradually decreasing refractive index from 

core to cladding. Doping materials, doping percentage and wavelength are varied to 

analyze the characteristics of the designed H-PCF. MATLAB 7.6 is used to plot the 

simulation results. The values of Dispersion, Effective mode index, Effective mode area 

and Non-linearity parameter are calculated from standard equations and plotted against the 

wavelength. Nearly flattened dispersion is found for a wide range of wavelength from 

1410 nm to 1610 nm for GeO2 doped silica at 30% doping and for BaF2doped silica at 

10% doping. An increasing effective mode index of value 1.4038 to 1.4401 is found by 

varying doping percentage of GeO2 doped silica and an increasing effective mode index of 

1.4038 to 1.4087 is found by varying doping percentage of BaF2 doped silica which is 

important for light confinement and total internal reflection. The proposed H-PCF shows 

nearly zero dispersion and don’t display flattened range of dispersion when not doped. But 

when the model is doped with GeO2 and BaF2, then it offers flattened dispersion for a 

wide range of wavelength from 1410 nm to 1610 nm. Though the effective mode area of 

the model decreases with increasing doping percentage, but it is in the acceptable range of 

fiber optic communication. Increasing non-linear parameter from 14.31 W
-1

Km
-1

 to 27.98 

W
-1

Km
-1 

can be found by varying doping percentage for GeO2 doping and from 13.5 W
-

1
Km

-1
 to 18.91 W

-1
Km

-1
 for BaF2 doping. When the loss parameters of the proposed H-

PCF are compared for both type of doping, it is found that for the same percentage of 

doping concentration, value of effective mode area is higher for BaF2 doped silica than 

GeO2 doped silica and nonlinearity parameter is higher for GeO2 doping than BaF2 doping. 

Increase of effective mode index is higher for GeO2 doping than BaF2 doping. In summary, 

it can be said that the proposed H-PCF displays good performance in terms of effective 

mode index, effective mode area, non-linear parameter, dispersion etc. with doping of 

GeO2 and BaF2, which is important for optical communication. 
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CHAPTER 1 

 INTRODUCTION 

1.1 Introduction 

A communication system transmits and receives information from one place to another, 

whether separated by a few kilometers or by transoceanic distances. Information is often 

carried over an electromagnetic carrier wave whose frequency can vary from a few 

megahertz to several hundred terahertz’s. Optical fiber can handle all these frequencies 

most efficiently being a wired means of communication among all the most frequently 

used transmission media. Broadband optical transmission with wavelength division 

multiplexing technique is effective for large capacity networks, and optical fibers are 

widely used as optical signal transmission media. 

Fiber-optic communication is a method of transmitting information from one place to 

another by sending pulses of light through an optical fiber [1]. The light forms an 

electromagnetic carrier wave that is modulated to carry information.  

Modern fiber-optic communication systems generally include an optical transmitter to 

convert an electrical signal into an optical signal to send into the optical fiber, a cable 

containing bundles of multiple optical fibers that is routed through underground conduits 

and buildings, multiple kinds of amplifiers, and an optical receiver to recover the signal as 

an electrical signal. The information transmitted is typically digital information generated 

by computers, telephone systems, and cable television companies [2]. 

Optical fiber is used by many telecommunications companies to transmit telephone 

signals, internet communication, and cable television signals [3]. Nevertheless, most of the 

data rates are wrapped below gigabit per second (Gb/s) primarily due to the lack of the 

available spectrum in the RF (radio frequency) microwave range.  

In contrast, due to the enormous bandwidth over several terahertz’s (THz) in the second 

window, the light wave systems can provide an amazing capacity of 100 Tb/s and beyond. 

In fact, the optical communication systems, or fiber-optic systems in particular, have 

become indispensable as the backbone of the modern-day information infrastructure. 

While initial deployment of optical fiber was mainly for long-haul or submarine 

transmission, light wave systems are currently in almost all metro networks. Fiber-to-the-

https://en.wikipedia.org/wiki/Optical_fiber_cable
https://en.wikipedia.org/wiki/Digital_communications
https://en.wikipedia.org/wiki/Digital_telephony
https://en.wikipedia.org/wiki/Cable_television
https://en.wikipedia.org/wiki/Optical_fiber
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premise (FTTP) and fiber-to-the-home (FTTH) are being considered seriously in most 

parts of the world right now [4]. 

Optical communication systems have been deployed worldwide since 1980 and have 

indeed revolutionized the technology behind telecommunications. Indeed, the light wave 

technology, together with microelectronics, is believed to be a major factor in the advent 

of the information age. 

1.2        Fiber Optic Communication System 

1.2.1     The General Concept     

An optical fiber communication system is similar in basic concept to any type of 

communication system. A block schematic of a general communication system is shown 

in Fig. 1.1, the function of which is to convey the signal from the information source over 

the transmission medium to the destination. 

 

 

 

 

 

 

 

                                                    Communication System 

 

 

 

Fig. 1.1:  The general communication system. [2] 

The communication system therefore consists of a transmitter or modulator linked to the 

information source, the transmission medium and a receiver or demodulator at the 

destination point. In electrical communications the information source provides an 

electrical signal, usually derived from a message signal which is not electrical (e.g. sound), 

to a transmitter comprising electrical and electronic components which converts the signal 

into a suitable form for propagation over the transmission medium. For optical fiber 
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communications the system shown in Fig. 1.1 may be considered in slightly greater detail, 

as given in Fig. 1.2. 

 

 

    

 

 

 

 

 

                                        

 

Fig. 1.2:  The optical fiber communication system [2] 

In this case the information source provides an electrical signal to a transmitter comprising 

an electrical stage which drives an optical source to give modulation of the light wave 

carrier. The optical source which provides the electrical–optical conversion may be either 

a semiconductor laser or light-emitting diode (LED). The transmission medium consists of 

an optical fiber cable and the receiver consists of an optical detector which drives a further 

electrical stage and hence provides demodulation of the optical carrier. 

The optical carrier may be modulated using either an analog or digital information signal. 

In the system shown in Fig. 1.2, analog modulation involves the variation of the light, 

emitted from the optical source in a continuous manner. With digital modulation, however, 

discrete changes in the light intensity are obtained (i.e. on–off pulses). Although often 

simpler to implement, analog modulation with an optical fiber communication system is 

less efficient, requiring a far higher signal-to-noise ratio (SNR) at the receiver than digital 

modulation. Also, the linearity needed for analog modulation is not always provided by 

semiconductor optical sources, specially at high modulation frequencies. For these 

reasons, analog optical fiber communication links are generally limited to shorter 

distances and lower bandwidth operation than digital links. 

Fig. 1.3 shows a block schematic of a typical digital optical fiber link. Initially, the input 

digital signal from the information source is suitably encoded for optical transmission. 
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Fig. 1.3:  A digital optical fiber link using a semiconductor laser source and an avalanche 

photodiode (APD) detector [2] 

The laser drive circuit directly modulates the intensity of the semiconductor laser with the 

encoded digital signal. Hence a digital optical signal is launched into the optical fiber 

cable. The avalanche photodiode (APD) detector is followed by a front-end amplifier and 

equalizer or filter to provide gain as well as linear signal processing and noise bandwidth 

reduction. Finally, the signal obtained is decoded to give the original digital information. 

 

1.2.2 Advantages of Optical Fiber Communication  

Communication using an optical carrier wave guided along a glass fiber has a number of 

extremely attractive features, several of which were apparent when the technique was 

originally conceived. Furthermore, the advances in the technology have surpassed even the 

most optimistic predictions, creating additional advantages. 

I. Enormous Potential Bandwidth: The optical carrier frequency in the range 1013 

to 1016 Hz. It yields a far greater potential transmission bandwidth than metallic 

cable systems or even millimeter wave radio systems. Indeed, by the year 2000 the 

typical bandwidth multiplied by length product for an optical fiber link 

incorporating fiber amplifiers was 5000 GHz km. Hence at this time optical fiber 

was already demonstrating a factor of 50,000 bandwidth improvement over coaxial 

cable while also providing this superior information-carrying capacity over much 

longer transmission distances [5]. 

 

II. Small Size and Weight: Optical fibers have very small diameters which are often 

no greater than the diameter of a human hair. Hence, even when such fibers are 

covered with protective coatings they are far smaller and much lighter than 
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corresponding copper cables. This is a tremendous boon towards the alleviation of 

duct congestion in cities, as well as allowing for an expansion of signal 

transmission within mobiles such as aircraft, satellites and even ships. 

 

III. Electrical Isolation: Optical fibers which are fabricated from glass, or sometimes 

a plastic polymer, are electrical insulators and therefore, unlike their metallic 

counterparts, they do not exhibit earth loop and interface problems. Furthermore, 

this property makes optical fiber transmission ideally suited for communication in 

electrically hazardous environments as the fibers create no arcing or spark hazard 

at abrasions or short circuits. 

 

IV. Immunity to Interference and Crosstalk: Optical fibers form a dielectric 

waveguide and are therefore free from electromagnetic interference (EMI), radio-

frequency interference (RFI), or switching transients giving electromagnetic pulses 

(EMPs). Hence the operation of an optical fiber communication system is 

unaffected by transmission through an electrically noisy environment and the fiber 

cable requires no shielding from EMI. The fiber cable is also not susceptible to 

lightning strikes if used overhead rather than underground.  

 

V. Signal Security: The light from optical fibers does not radiate significantly and 

therefore they provide a high degree of signal security. Unlike the situation with 

copper cables, a transmitted optical signal cannot be obtained from a fiber in a 

noninvasive manner. Therefore, in theory, any attempt to acquire a message signal 

transmitted optically may be detected. This feature is obviously attractive for 

military, banking and general data transmission applications. 

 

VI. Low Transmission Loss: The development of optical fibers over the last 20 years 

has resulted in the production of optical fiber cables which exhibit very low 

attenuation or transmission loss in comparison with the best copper conductors. 

Fibers have been fabricated with losses as low as 0.15 dB km−1 and this feature has 

become a major advantage of optical fiber communications. It facilitates the 

implementation of communication links with extremely wide optical repeater or 

amplifier spacing. Thus, reducing both system cost and complexity.  

 

VII. Ruggedness and Flexibility: Although protective coatings are essential, optical 

fibers may be manufactured with very high tensile strengths. Furthermore, cable 
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structures have been developed which have proved flexible, compact and 

extremely rugged. Taking the size and weight advantage into account, these optical 

fiber cables are generally superior in terms of storage, transportation, handling and 

installation to corresponding copper cables, while exhibiting at least comparable 

strength and durability. 

 

VIII. System Reliability and Ease of Maintenance: These features primarily stem 

from the low-loss property of optical fiber cables which reduces the requirement 

for intermediate repeaters or line amplifiers to boost the transmitted signal 

strength. Hence with fewer optical repeaters or amplifiers, system reliability is 

generally enhanced in comparison with conventional electrical conductor systems. 

Both these factors also tend to reduce maintenance time and costs. 

 

IX.      Potential Low Cost: The glass which generally provides the optical fiber 

transmission medium is made from sand – not a scarce resource. So, in comparison 

with copper conductors, optical fibers offer the potential for low-cost line 

communication. Although over recent years this potential has largely been realized 

in the costs of the optical fiber transmission medium which for bulk purchases has 

become competitive with copper wires, it has not yet been achieved in all the other 

component areas associated with optical fiber communications. 

 

1.3 Fiber Optic Technology 

1.3.1 Construction of Fiber Optics 

The transmission of light via a dielectric waveguide structure was first proposed and 

investigated at the beginning of the twentieth century. Fiber optic cables carry 

communication signals using pulses of light generated by small lasers or light-emitting 

diodes (LEDs).  

The cable consists of one or more strands of glass, each only slightly thicker than a human 

hair. The center of each strand is called the core, which provides the pathway for light to 

travel. 
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Fig. 1.4:  Various parts of optical fiber 

The core is surrounded by a layer of glass called cladding that reflects light inward to 

avoid loss of signal and allow the light to pass through bends in the cable. 

 

1.3.2 Different Types of Optical Fiber 

The two primary types of fiber optics are called single mode fiber (SMF) and multi-

mode fiber (MMF). Single mode fiber uses very thin glass strands and a laser to generate 

light while multi-mode fibers use (light emitting diodes) LEDs. 

MMF support many propagation paths or transverse modes while SMF support a single 

mode. MMFs generally have a wider core diameter and are used for short-distance 

communication links and for applications where high power must be transmitted. Single-

mode fibers are used for most communication links longer than 1,000 meters. Again, 

MMFs can be divided into step index and graded index fibers.  

In the first case the refractive index of the core is uniform throughout and undergoes an 

abrupt change at the cladding boundary. This is called a step-index fiber. In the second 

case the core refractive index is made to vary as a function of the radial distance from the 

center of the fiber. This type is a graded index fiber.  Multimode Step index fiber is 

https://en.wikipedia.org/wiki/Transverse_mode
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suitable for short distance (endoscope). Multimode graded index suitable for medium 

distance (LAN-local area network). 

 

Fig. 1.5: Comparison of multi-mode (step index and graded index) and single-mode 

optical fiber [3] 

 

1.3.3  Light Propagation Through Fiber Optic 

1.3.3.1  Total Internal Reflection  

When a light ray encounters a boundary separating two different media, part of ray is 

reflected back into the first medium and the remainder is bent (or refracted) as it enters the 

second material.  

This is shown in Fig. 1.4 where n2 < n1. It may be observed that the ray approaching the 

interface is propagating in a dielectric of refractive index n1 and is at an angle φ1 to the 

normal at the surface of the interface. If the dielectric on the other side of the interface has 

a refractive index n2 which is less than n1, then the refraction is such that the ray path in 

this lower index medium is at an angle 𝜑1 to the normal, where φ2 is greater than φ1.  

The angles of incidence φ1 and angle of refraction φ2 are related to each other and to the 

refractive indices of the dielectrics by Snell’s law of refraction.  
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Reflection law:                       Angle of incidence= Angle of reflection 

According to Snell’s law, 

                                               𝑛1 sin𝜑1 = 𝑛2 sin𝜑2                                                         (1.1a) 

It must also be noted that the light transmission illustrated in Fig. 1.6 assumes a perfect 

fiber. Any discontinuities or imperfections at the core–cladding interface would probably 

result in refraction rather than total internal reflection, with the subsequent loss of the light 

ray into the cladding. 

 

                                                                                             Normal line 

                                       n2<n1                                                                                      

                                                                                     φ2                          Refracted ray 

                                                                                                    θ2    Material boundary 

                                         n1                                  θ1             φ1                    𝜃1                   

 

                                                   Incident ray                                     Reflected ray 

 

Fig. 1.6:  Refraction and reflection of a light ray at a material boundary [3] 

Light wave travelling in a denser medium strikes a less dense medium. Depending on the 

incidence angle with respect to 𝜑𝑐 , which is determined by the ratio of the refractive 

indices, the wave may be transmitted (refracted) or reflected. It may also be observed in 

Fig. 1.7(a) that a small amount of light is reflected back into the originating dielectric 

medium (partial internal reflection). As n1 is greater than n2, the angle of refraction is 

always greater than the angle of incidence. Thus, when the angle of refraction is 90° and 

the refracted ray emerges parallel to the interface between the dielectrics, the angle of 

incidence must be less than 90°. This is the limiting case of refraction and the angle of 

incidence is now known as the critical angle 𝜑𝑐 , as shown in Fig. 1.7(b). 

                                 sinφc = 
n2

n1
   (Snell’s Law)                                                       (1.1b) 
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Fig. 1.7:  Light rays incident on a high to low refractive index interface (e.g. glass–air): 

 (a) refraction; (b) the limiting case of refraction showing the critical ray at an angle φc ; 

(c) total internal reflection where φ  >  φc [2]                              

At angles of incidence greater than the critical angle the light is reflected back into the 

originating dielectric medium (total internal reflection) with high efficiency (around 

99.9%). Hence, it may be observed in Fig. 1.7(c) that total internal reflection occurs at the 

interface between two dielectrics of differing refractive indices when light is incident on 

the dielectric of lower index from the dielectric of higher index, and the angle of incidence 

of the ray exceeds the critical value. This is the mechanism by which light at a sufficiently 

shallow angle (less than 90° − φc) may be considered to propagate down an optical fiber 

with low loss. 

1.3.3.2      Acceptance Angle    

Since only rays with a sufficiently shallow grazing angle (i.e. with an angle to the normal 

greater than φc) at the core–cladding interface are transmitted by total internal reflection, it 

is clear that not all rays entering the fiber core will continue to be propagated down its 

length. The geometry concerned with launching a light ray into an optical fiber is shown in 

Fig. 1.8, which illustrates a meridional ray A at the critical angle 𝜑𝑐 within the fiber at the 

core–cladding interface. 
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Fig. 1.8:  The acceptance angle θa when launching light into an optical fiber [2] 

 

It may be observed that this ray enters the fiber core at an angle θa  to the fiber axis and is 

refracted at the air–core interface before transmission to the core–cladding interface at the 

critical angle.  

Hence, any rays which are incident into the fiber core at an angle greater than  θa  will be 

transmitted to the core–cladding interface at an angle less than  φ𝑐 , and will not be totally 

internally reflected. This situation is also illustrated in Fig. 1.8, where the incident ray B at 

an angle greater than θa  is refracted into the cladding and eventually lost by radiation. 

Thus, for rays to be transmitted by total internal reflection within the fiber core they must 

be incident on the fiber core within an acceptance cone defined by the conical half angle 

θa . Hence θa   is the maximum angle to the axis at which light may enter the fiber in order 

to be propagated, and is often referred to as the acceptance angle for the fiber. 

 

1.3.3.3     Numerical Aperture 

Numerical aperture (NA) is a relative measurement of how much light a fiber can gather. 

Fig. 1.9 shows a light ray incident on the fiber core at an angle θ1 to the fiber axis which is 

less than the acceptance angle for the fiber θa.  

NA is expressed as a result of Snell’s law. 

                              NA = (n1
2 − n2

2) 
1

2 = n0sin θa                                                      (1.2a) 
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Fig. 1.9: The ray path for a meridional ray launched into an optical fiber in air at an input 

angle less than the acceptance angle for the fiber [2] 

 

The ray enters the fiber from a medium (air) of refractive index n0, and the fiber core has a 

refractive index n1, which is slightly greater than the cladding refractive index n2. The NA 

may also be given in terms of the relative refractive index difference Δ between the core 

and the cladding which is defined as: 

                                                       NA = n1(2∆)
1

2                                                            (1.2b)   

                            

1.3.4     Skew Rays 

Skew rays are not confined to a single plane, but instead tend to follow a helical type path 

along the fiber. These rays are more difficult to track as they travel along the fiber. 

 

Fig. 1.10:  The helical path taken by a skew ray in an optical fiber: (a) skew ray path down 

the fiber; (b) cross-sectional view of the fiber [2] 
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It is not easy to visualize the skew ray paths in two dimensions but it may be observed 

from Fig. 1.10(b) that the helical path traced through the fiber gives a change in direction 

of 2γ at each reflection, where γ is the angle between the projection of the ray in two 

dimensions and the radius of the fiber core at the point of reflection. 

When the light input to the fiber is non-uniform, skew rays will therefore tend to have a 

smoothing effect on the distribution of the light as it is transmitted giving a more uniform 

output. The amount of smoothing is dependent on the number of reflections encountered 

by the skew rays. 

1.4.  Optical Transmission Windows 

Optical fibers are replacing copper wires to become an important transmission medium. 

Optical fibers offer over 1,000 times as much bandwidth as a copper wire and can support 

transmission at gigabits per second.  

 

 

Fig. 1.11:  Transmission windows of optical fiber communication system [3] 

From Fig. 1.11 and table 1.1, infrared light with wavelengths of 850 nm, 1,310 nm and 

1,550 nm is mostly used. Therefore, the most common devices used as the light source in 

optical transmitters are the Light Emitting Diode (LED) and the Laser Diode (LD). They 

operate in the infrared radiation (750 nm to 1mm) of the electromagnetic spectrum so that 

their light output is usually invisible to the human eye. 
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 Windows Range Operating Wavelength 

First Window 800 nm - 900 nm 850 nm 

Second Window 1,260 nm - 1,360 nm 1.310 nm 

Third Window 1,500 nm – 1,600 nm 1,550 nm 

Table 1.1: Optical transmission window 

 

1.5.        Photonic Crystal Fiber (PCF) 

1.5.1.     Structure of PCF 

Photonic Crystal Fibers (PCFs) are a special class of optical fibers with a significant 

dielectric layout, which incorporates unique optical properties [6]. They are also known as 

holey fibers, hole-assisted fibers or microstructure fibers. It has a central core in which the 

light is guided, embedded in an outer cladding of slightly lower refractive index.  PCFs are 

a new class of optical fibers. Combining properties of optical fibers and photonic crystals 

they possess a series of unique properties impossible to achieve in classical fibers. 

 

 

Fig. 1.12:  Microscopic view of a photonic crystal fiber (PCF) [6] 

PCFs are constructed using one of two basic design types, containing either a solid or 

hollow core. 

• Solid core PCF: Solid core PCFs generally have higher refractive index for the core 

compared to the cladding. It has more degrees of freedom in the fiber design namely, 

the hole diameter, distance between the center of two adjacent holes, hole location and 
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refractive index of solid medium which ultimately result in various novel properties of 

the fiber. Because of the presence of holes in the cladding, the index contrast between 

core and cladding increases which is unimaginable in conventional fiber. 

 

• Hollow core PCF: Hollow core fibers guide light in a hollow core that is surrounded 

by a micro-structured cladding. Unique features of hollow-core fibers include small 

nonlinearities, low light loss, and the option to fill air cores with gases and liquids. 

 

 

    (a)                                                                                      (b) 

Fig. 1.13:  Solid-core (a) and hollow-core (b) fiber [7] 

 

The design of PCFs is very flexible. There are several parameters to manipulate: lattice 

pitch, air hole shape and diameter, refractive index of the glass, and type of lattice. All the 

propagation characteristics such as effective mode index, confinement loss, chromatic 

dispersion, mode field diameter is measured by varying the structural parameters (like-

hole diameter, lattice pitch, doping etc.) by researchers around the globe [7]. 

 

1.5.3.     History of PCF 

Optical fibers were discovered in the 1970s and are now the backbone of 

telecommunication systems due to the large amount of information they can carry. 

Specially designed optical fibers are also used for a variety of other applications, including 

sensors, fiber lasers, medicine, illumination and much more. A short overview of PCF 

development is presented in the Table 1.2 [8]. 
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1978 Idea of the Bragg fiber 

1992 Idea of the photonic crystal fiber with air 

1996 Fabrication of a single-mode fiber with photonic coating 

1997 Endlessly single mode PCF 

1999 PCF with photonic band-gap and air core 

2000 Highly birefringent PCF 

2000 Supercontinuum generation with PCF 

2001 Fabrication of a Bragg fiber 

2001 PCF laser with double cladding 

2002 PCF with ultra-flattened dispersion 

2003 Bragg fiber with silica and air core 

Table 1.2:  Overview of photonic crystal fibers development. 

 

1.5.2. Different Types of PCF 

Although the principles of guidance and the characteristics of index-guided PCFs are 

similar to those of conventional fiber, there is greater index contrast since the cladding 

contains air holes with a refractive index 1 in comparison with the normal silica cladding 

index of 1.457 which is close to the germanium-doped core index of 1.462. A fundamental 

physical difference, however, between index-guided PCFs and conventional fibers arises 

from the manner in which the guided mode interacts with the cladding region [2]. 

 

• Index-guided microstructures: A fundamental physical difference, however, 

between index-guided PCFs and conventional fibers arises from the manner in which 

the guided mode interacts with the cladding region. Whereas in a conventional fiber 

this interaction is largely first order and independent of wavelength, the large index 

contrast combined with the small structure dimensions cause the effective cladding 

index to be a strong function of wavelength.  

 

For short wavelengths the effective cladding index is only slightly lower than the core 

index and hence they remain tightly confined to the core. At longer wavelengths, 

however, the mode samples more of the cladding and the effective index contrast is 

larger. This wavelength dependence results in a large number of unusual optical 

properties which can be tailored. 



17 

 

 

Fig. 1.14:  Two index-guided photonic crystal fiber structures. The dark areas are air holes 

while the white areas are silica [2] 

 

• Photonic band-gap fibers: Photonic band-gap (PBG) fibers are a class of micro-

structured fiber in which a periodic arrangement of air holes is required to ensure 

guidance. This periodic arrangement of cladding air holes provides for the formation 

of a photonic band-gap in the transverse plane of the fiber. 

 

 

(a) (b)         

Fig. 1.15:  Photonic band-gap (PBG) fiber structures in which the dark areas are air (lower 

refractive index) and the lighter area is the higher refractive index: (a) honeycomb PBG 

fiber; (b) air-guiding PBG fiber [2] 

 

Two important PBG fiber structures are displayed in Fig. 1.15. The honeycomb fiber 

design shown in Fig. 1.15(a) was the first PBG fiber. A triangular array of air holes of 

sufficient size as displayed in Fig. 1.15(b). In this case a large hollow core has been 

defined by removing the silica around seven air holes in the center of the structure [9]. 
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1.5.    Study of Previous References 

In the recent time PCF has drawn attention of many researchers for research purpose. For 

the advantage of flexibility in design PCF has become popular in optical fiber 

communication system. 

The paper [4], by Abraham et.al an overview of PON (passive optical network) standards 

is provided, along with a discussion of video delivery over a PON network.  

In the journal [5], Gambling mainly focused on the evolution of optical fiber. It gives us 

the idea how during the second half of the 20th Century there were several technological 

revolutions. 

In paper [6], an all-silica optical fiber was made by embedding a central core in a two-

dimensional photonic crystal with a micrometer-spaced hexagonal array of air holes. In 

this paper by Birks et.al an effective-index model confirmed that such a fiber can be single 

mode for any wavelength. 

In paper [7], Richard Ramsay explained different characteristics PCF and benefits of them. 

Advantages in efficiency, beam quality, scalability were also explained in the article. 

In journal [8], R. Buczynski discussed about the artificial crystal-like microstructure 

results in a number of unusual properties. In this, different properties possible to obtain in 

photonic crystal fibers are reviewed. Fabrication and modeling methods are also discussed. 

The proposed fiber compensates from E to L band (1.31-1.64 μm) and around this 

wavelength bands dispersion coefficient have been achieved at range of -150.9 to - 2043.4 

ps/(nm.km) with nonlinear coefficient of 89.76 to 52.99 W- 1km-1 by Siddika et.al. At the 

wavelength of 1.55 μm, negative dispersion, nonlinear coefficient and Confinement loss 

are investigated as -1016.6 ps/(nm.km ), 65.14 W-1km-1 and 0.2352 dB/m respectively.[9] 

 

According to simulation, a five-ring dispersion compensating hybrid cladding photonic 

crystal fiber (DC-HyPCF) is designed that simultaneously offers birefringence of order 

3.79 × 10-2, nonlinear coefficient of 40.1 W-1 km-1 at 1550 nm wavelength by hasan et al. 

[10]. 

 

Sajjad et.al proposed PCF that shows promising dispersion characteristics (0.0001787 

ps/km-nm) with very low effective area (3.03μm2) and high non-linear parameter (67.23 
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W-1km-1) at 1.55μm, making it suitable candidate for chromatic dispersion controller and 

nonlinear optical application. [11] 

 

It is shown from the paper’s [12] numerical results by Saitoh et.al that it is possible to 

design a four ring PCF with flattened dispersion of 0 ± 0.5 ps/(km·nm) from a wavelength 

of 1.19 μm to 1.69 μm and a five-ring PCF with flattened dispersion of 0± 0.4 ps/(km·nm) 

from a wavelength 1.23 μm to 1.72 μm. 

 

In [13] by Samiul et.al the designed fiber’s average dispersion of about -138 ps/(nm-km) 

with an absolute dispersion variation of 12 ps/(nm. km). Moreover, to check the dispersion 

accuracy, sensitivity of the fiber dispersion properties to a ±1–5% variation in the 

optimum parameters is studied for practical conditions. 

 

In paper [14] by Sumaiya et.al according to simulation results, a five-ringed modified 

hexagonal photonic crystal fiber (MH-PCF) having germanium (Ge) doped silica core can 

be designed with a low confinement loss at 1550 nm of the order 1.026×10-14 dB/km with 

simultaneously nearly zero ultra-flattened chromatic dispersion of 0 ± 0.35 ps/nm/km in a 

wavelength range of 1.30 to 1.65 μm as well as large effective area in a wide range of 

wavelengths. 

The proposed design is suitable for the application of polarization maintaining residual 

dispersion compensation (RDC) as it offers high negative flattened average dispersion of – 

(478±8) ps.nm-1.km-1 within the wavelength of 1.4 to 1.7 μm (300 nm band) by Russel 

et.al in [15].  

 

The proposed (dd-SPCF) defected core spiral photonic crystal fiber by Mondal et.al in 

[16] shows promising dispersion characteristics (-0.000169 ps/km-nm) with very low 

effective area (2.65162 μm2) and high nonlinear 76.44 W-1km-1 parameter at operating 

wavelength 1.55 μm, making it a suitable candidate for chromatic dispersion controller 

and nonlinear optical applications. 

 

In [17] by Asiful et.al results show that the fiber exhibits an average dispersion of −227 

ps/nm-km with a flattened dispersion profile. It is also demonstrated that the fiber shows a 

high birefringence of 0.0221 at the wavelength 1550 nm. In the paper an elliptical air hole 
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is introduced as a defect in the core region and this gives an additional flexibility to tailor 

the dispersion property. 

 

In paper [18] by Samiul et.al the designed fiber exhibits flattened negative dispersion over 

the S + C + L + U wavelength bands and an average dispersion of −465.5 ps∕(nm.km) in 

the wavelength range 1460-1675 nm with an absolute dispersion variation of 10.5 

ps∕(nm.km). In addition, the proposed PCF shows a high birefringence of 2.68 × 10−2 at the 

operating wavelength 1550 nm. Moreover, the variation of two air holes in the first ring up 

to 5% ensures an average dispersion of −491.5 ps∕(nm.km) with a dispersion variation of 

13 ps∕(nm.km), and birefringence reaches up to 3 × 10−2.  

 

The proposed structure is obtained by Silva et.al in [19] by introducing a small Ge-doped 

core at the center of a conventional photonic crystal fiber. Numerical results show that the 

designed photonic crystal fiber exhibits flattened negative dispersion over E+S+C+L+U 

wavelength bands with an average dispersion of -212 ps.km -1nm -1. 

 

In [20] by Bakar et.al the proposed design is numerically investigated for residual 

dispersion compensation in optical transmission link. The optimized structure shows a 

flattened and high average dispersion of -457.4 ps/(nm.km) in the wavelength range of 

1360 nm to 1690 nm. The sensitivity of the fiber dispersion properties to a ±2% variation 

in the optimum parameters is studied for practical conditions.  

In the paper [21] Wang et.al proposed the flat normal dispersion in the wavelength range 

of 1540–2600 nm, where the values of the dispersion slope are between 0.0058 and 0.03 

ps/(nm.km). Furthermore, the numerical results show that the flat-top supercontinuum 

spectrum ranging from 1000 to 2600 nm can be generated by launching pump pulses at the 

wavelength of 1550 nm in the heavily Ge doped fiber with a four-layer refractive index 

profile. 

 

In [22] the presented result by Lucki et.al comprises a numerical model of a photonic 

crystal fiber in a submicron lattice, specific for its negative dispersion coefficient achieved 

for broad spectrum of telecommunication wavelengths, i.e. 1300 – 1700 nm. The air holes 

doped with fluoride materials enhance negative dispersion coefficient to - 438 ps.nm-1. 

km-1. 
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Saeed et.al proposed a design in [23] that has relatively low dispersion with negligible 

variation has become feasible in the wavelength range of 1.1 to 1.8 μm. According to the 

new structure of PCF presented in this study, the dispersion slope is 6.8×10-4 ps/(km.nm) 

and the confinement loss reaches below 10-6 dB/km in this range, while at the same time 

an effective area of more than 50 μm2 has been attained.  

 

1.6   Objectives of The Thesis 

The objectives of the thesis are set as under: 

(1) To study structural properties of PCF to analyze and propose a suitable model. 

(2) To compensate the dispersion by varying doping parameters of the core. 

(3) To study other characteristics of the designed H-PCF over a broadband range. 

 

1.7   Organization of The Thesis 

Chapter 1 deals with the introduction of the thesis. This chapter generalizes optical fiber 

communication system, history, benefits and types of PCF etc. 

Chapter 2 deals with the losses in PCF and light guiding mechanism through PCF. 

Chapter 3 describes the designed PCF model by using doping parameters and analysis of 

the H-PCF. 

Chapter 4 covers the description of the plots found from the results of the thesis work and 

describes the detail analysis of the results/plots. It also gives a summary of comparison of 

results. 

Chapter 5 includes comparison with some previous works, gives some idea of the future 

works and conclusion of the thesis.  
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CHAPTER 2 

CHARACTERISTICS OF PHOTONIC CRYSTAL FIBER 

2.1 Introduction 

PCFs have been under intensive study due to their unique and useful optical properties. 

PCFs are also referred as microstructure optical fibers. PCFs fall into two basic categories. 

The first one, an index guiding PCF is usually formed by a central solid defect region 

surrounded by multiple air holes in a regular triangular lattice and confines light by total 

internal reflection like standard fibers. In this case the average refractive index of the 

cladding is reduced because of the air holes (low refractive index). The second one uses a 

perfect periodic structure exhibiting a photonic band-gap (PBG) effect at the operating 

wavelength to guide light in a low index core region which is also called PBG fiber 

(PBGF). A comprehensive review of guidance mechanism, optical properties and the 

factors which affect the performance of optical fibers are also presented in this chapter. 

 

2.2 Loss Properties of PCF 

Optical fibers are used to transfer light over distances ranging from meters to thousands of 

kilometers. Over such spaces, even small imperfections can lead to substantial effects. 

Conventional silica fibers have attained such an amazing degree of perfection that their 

losses are about 0.2dB/km at 1.55 μm wavelength are limited by a mixture of intrinsic 

material absorption and scattering from microscopic density fluctuations. On the other 

hand, at longer wavelengths such as the 10.6 μm large-power LASERS used for various 

industrial and medical applications, silica and other common fiber materials are not 

transparent at all. Interestingly, not all losses are bad. As they have seen, most of the 

proposed hollow-fiber designs have been multi-mode. They support multiple guided 

modes that propagate at different speeds. Unchecked this results in modal dispersion. 

Since it is impossible to avoid exciting multiple modes, the differing velocities cause 

pulses to spread and information transmission to be scrambled. However, this problem is 

reduced in a hollow core fiber by differential attenuation. Some modes have much lower 

losses than others and thus transmission in everything but the lowest-loss mode will be 

filtered out after propagation over a long distance.  

 



23 

 

2.2.1  Attenuation 

The attenuation A(λ) at wavelength λ of a fiber between two cross-sections separated by 

distance L is defined, as: 

                                               A(λ) = 10log
P1(λ)

P2(λ)
 (dB)                                                 (2.1) 

Where, 

P1(λ) : optical power traversing the cross-section 1, and 

P2(λ) : optical power traversing the cross-section 2 at the wavelength λ. 

 

          Fig. 2.1:  Effect of attenuation in transmission window [3] 

For a uniform fiber, it is possible to define attenuation per unit length or an attenuation 

coefficient which is independent of the length of the fiber: 

αdB =
A(λ)

L
  dB/km                                                       (2.2) 

 

2.2.2  Confinement Loss 

The losses in PCFs occur for a number of reasons, such as intrinsic material absorption 

loss, structural imperfection loss, Rayleigh scattering loss, confinement loss, and so on. 

Fabrication related losses can be reduced by carefully optimizing the fabrication process. 

Confinement loss is an additional form of loss that occurs in single-material fibers. PCFs 
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are usually made from pure silica and so the guided modes are inherently leaky because 

the core index is the same as the index of the outer cladding without air holes. This 

confinement loss can be reduced exponentially by increasing the number of rings of air 

holes that surround the solid core, and is determined by the geometry of the structure.  

It is important to know how many numbers of rings of air holes are required to reduce the 

confinement loss under the Rayleigh scattering limit for practical fabrication process. The 

confinement loss of the fundamental mode has been computed from the imaginary part of 

the complex effective index, 𝑛𝑒𝑓𝑓  using [10], 

                                                   LC= 8.686ko Im [neff]                                                   (2.3) 

 

2.2.3 Birefringence 

Optical property depends on polarization and propagation direction of light. Optically 

anisotropic, where anisotropic is the definite direction that passes definite light, materials 

are said to be birefringent. Birefringence is a responsible of phenomenon of double 

reflection whereby a ray of light when incident upon a birefringent material is split by 

polarization into two rays taking slightly different paths. High birefringence is used in 

fiber optic sensors. For high birefringence, design core should be asymmetrical and 

cladding can be elliptical instead of circular.  

The difference in refractive indexes along the x-axis and the y-axis, ƞx and ƞy respectively 

is called birefringence, B.  

This formula implies that ƞx> ƞy; in other word, y is the fast axis, x the slow axis. Here 

“x” and “y” for these two axes have been chosen quite arbitrarily. Usually the terms fast 

and slow are used to denote the appropriate axis.  

In conventional single mode fibers without birefringence design, B is small and changes 

randomly along the fiber because of variations in the core shape and the anisotropic stress 

acting on the core [10]. 

B= | Re(ƞxeff)- Re(ƞyeff) |                                               (2.4) 

 



25 

 

2.2.4  Dispersion 

Dispersion is the broadening or spreading of optical signal while it propagates inside the 

fiber. The phenomenon of spreading of optical pulse as it travels along the fiber and limits 

the information capacity of the fiber is known as dispersion. Dispersion of the transmitted 

optical signal causes distortion for both digital and analog transmission along optical 

fibers. 

 

Fig. 2.2: Effect of dispersion in optical pulses [2] 

 

There are mainly two types of dispersion in optical fiber. These types are:  

i)  Chromatic dispersion  

ii)  Intermodal dispersion   

 

2.2.4.1     Chromatic Dispersion: 

Chromatic dispersion is caused by delay differences among the group velocities of the 

different wavelengths composing the source spectrum. The consequence of the chromatic 

dispersion is a broadening of the transmitted impulses. 

 

Fig. 2.3:  Effect of chromatic dispersion on spectral width [2] 
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The chromatic dispersion is essentially due to two contributions: material dispersion and 

waveguide dispersion. The material dispersion occurs because the refractive index of silica 

(and hence the group velocities) changes with the optical frequency (wavelength) [12]. 

Dmat(λ) = −
λ

ϲ
 |
dneff

2

dλ2
|                                                  (2.5) 

The waveguide depends on the dispersive properties of the waveguide itself (e.g. the core 

radius and the index difference). In a single mode fiber, chromatic dispersion is sum of the 

material and waveguide dispersion. 

 

𝐷(𝜆) = 𝐷𝑚𝑎𝑡(𝜆) + 𝐷𝑤𝑔(𝜆)                                             (2.6) 

An example of the interplay between these two contributions in the total dispersion is 

given in Fig. 2.4. 

 

Fig. 2.4:  Effect of material and waveguide dispersion on total chromatic dispersion [3] 

 

2.2.4.2      Intermodal Dispersion 

Intermodal dispersion results from different propagation characteristic of higher order 

transverse modes in waveguides, such as multimode fibers. This effect can severely limit 

the possible data rate of a system for optical fiber communication based on multimode 

fibers. But single mode fiber does not show intermodal dispersion. 
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σ𝑖𝑛𝑡𝑒𝑟= (L𝑛1
2∆)/ (2√3 c𝑛2)                                                   (2.7) 

      Here, L = Fiber length 

               𝑛1= Core refractive index. 

               𝑛2 = Cladding refractive index. 

               c = Light velocity. 

 

2.2.5  Nonlinear Effects 

Usually light waves or photons transmitted through a fiber have little interaction with each 

other, and are not changed by their passage through the fiber (except for absorption and 

scattering).  

There are exceptions, however, arising from the interactions between light waves and the 

material transmitting them, which can affect optical signals. These processes are normally 

referred to as nonlinear effects or phenomena because their strength typically depends on 

the square (or some higher power) of the optical intensity.  

                                                                      γ =
2πn2

λAeff
                                                                      (2.8) 

where, 

 𝛾= Nonlinear parameter 

𝑛2= Nonlinear refractive index 

𝜆=Wavelength 

𝐴𝑒𝑓𝑓=Effective area. 

Here, nonlinear refractive index is calculated from, 𝑛2 = 2.507 + 0.505∆                            (2.9) 

and Δ = (n1
2- n2

2)/(2n1
2). Where Δ is the relative refractive index difference, n2 is the 

refractive index of pure silica n1 is the value after doping GeO2 with SiO2. 

Hence nonlinear effects are weak at low powers but they can become much stronger at 

high optical intensities. This situation can result either when the power is increased or 

when it is concentrated in a small area such as the core of a single-mode optical fiber. 

There are two broad categories of nonlinear effects that can be separated based on their 

characteristics: namely, scattering and Kerr effects. 
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Kerr effects 

 

 

                                                          Scattering effects 

 

 

 

Fig. 2.5:  Block schematic showing the fiber nonlinear effects [2] 

 

2.3  Electromagnetic Wave Guiding Mechanism 

Since a PCF is a structure that usually is formed by a center core surrounding by a periodic 

structure (cladding), basically we can think in two possible guiding mechanism: index-

guiding or bandgap-guiding. 

In index-guiding PCFs, similar to conventional fibers, light is guided in a higher index 

core by modified total internal reflection from a low effective index cladding. In bandgap 

PCFs, light is confined in a low-index core by reflection from a photonic crystal cladding. 

Because of their novel guiding mechanism and variety in design, PCFs have a number of 

novel properties and significant applications. For index-guiding PCFs, the properties 

include endlessly single mode, large mode area, high numerical aperture, high 

birefringence, high nonlinear coefficient and dispersion management. Various bandgap 

PCFs and many significant applications for them have been achieved, such as low-loss air-

core bandgap PCFs, all-solid bandgap PCFs, a variety of PCF devices and Bragg PCFs for 

CO2 laser transmission. Most PCFs guide light by only one of the two different guiding 

mechanisms, although hybrid-guiding (combination of index-guiding and bandgap-

guiding) has been utilized in photonic crystal slabs for many years. 

Recently a hybrid PCF has been discovered which guides light by both index-guiding and 

bandgap-guiding simultaneously. This hybrid PCF was composed of air holes and Ge-

doped silica rods disposed around an undoped silica core; the air holes were arranged in a 

hexagonal pattern as in an index-guiding PCF, while the high index rods replaced a single 

row of air holes along one of the PCF axes. However, the hybrid PCF is a quite new issue; 

a kind of hybrid PCF and some basic analysis has been proposed. And to be precise, it was 
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not a systematic investigation that offers insight into the nature of the hybrid PCF and 

many significant properties of hybrid PCFs have not been investigated yet. 

 

2.3.1  Normalized Frequency of PCF 

The V parameter (normalized frequency) is frequently used in the design of conventional 

SIFs and is given by 

𝑉 =
2𝜋𝑎

𝜆
√𝑛𝑐𝑜2 − 𝑛𝑐𝑙2                                                  (2.10) 

that must be less than 2.405 for the fiber to be single mode, where 𝜆 is the operating 

wavelength, a is the core radius, 𝑛𝑐𝑜  is the core index, and 𝑛𝑐𝑙  is the cladding index. 

Recently, it has been reported that the fundamental properties of index-guiding PCFs such 

as cutoff wavelength, mode field diameter (MFD), splice loss, and so on, can be easily 

estimated without the need for heavy numerical computations by appropriately defining 

the V parameter. By analogy with step index fibers, the effective V parameter 𝑉𝑒𝑓𝑓 for 

PCFs can be defined as, 

𝑉𝑒𝑓𝑓 =
2𝜋

𝜆
𝐴𝑒𝑓𝑓√𝑛𝑐𝑜

2 − 𝑛𝐹𝑆𝑀
2                                           (2.11) 

Where, 𝐴𝑒𝑓𝑓  is the effective mode area. 

 

2.3.2  Effective Mode Area                               

The effective mode area 𝐴𝑒𝑓𝑓, is related to the effective area of the fiber core area which is 

computed using transverse electric or magnetic field vector of the whole cross-sectional 

area of the fiber. The effective area of the of the fiber core 𝐴𝑒𝑓𝑓  is defined as 

Aeff =
(∬|Et|

2 dxdy)2

∬|Et|
4 dxdy

                                                (2.12) 

Or,                                          Aeff =
(∬|Ht|

2 dxdy)2

∬|Ht|
4 dxdy

                                                   (2.13) 

Where, 𝐸𝑡  and 𝐻𝑡  is the transverse electric field vector and magnetic field vector 

respectively and the integration is done through the whole cross-sectional area of the fiber. 
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2.3.3  Effective Refractive Index 

In homogenous transparent media, the refractive index n can be used to quantify the 

increase in the wave number (phase change per unit length) caused by the medium: the 

wave number is n times higher than it would be in vacuum. The effective refractive index 

𝑛𝑒𝑓𝑓  has the analogous meaning for light propagation in a waveguide. 

𝛽 = 𝑛𝑒𝑓𝑓
2𝜋

𝜆
                                                           (2.14) 

The effective refractive index depends not only on the wavelength but also (for multimode 

waveguide) on the mode in which the light propagates. For this reason, it is also called 

effective mode index. 

Again, effective refractive index is a number that quantify the phase delay per unit length 

in a waveguide, relative to the phase delay in vacuum. The rate of change in the 

fundamental 𝐿𝑃01  mode propagating along a straight fiber is determined by the phase 

propagation constant β. 

It is directly related to the wavelength of 𝐿𝑃01 mode 𝜆01 by the factor of 2𝜋. Hence: 

𝛽𝜆01 = 2𝜋                                                          (2.15) 

An effective refractive index for single mode fiber sometimes referred to as a phase index 

or normalized phase change coefficient, 𝑛𝑒𝑓𝑓. It is defined by the ration of the propagation 

constant of the fundamental mode to that of the vacuum wave number, k. 

𝑛𝑒𝑓𝑓 =
𝛽

𝑘
                                                            (2.16) 

Hence the wavelength of the fundamental mode 𝜆01  is smaller than the vacuum 

wavelength λ by the factor 1/𝑛𝑒𝑓𝑓. 

𝜆01 =
𝜆

𝑛𝑒𝑓𝑓
                                                          (2.17) 

 

2.4  Theory of Electromagnetic (EM) Light Propagation Through PCF  

The basic starting point in understanding the optical properties of photonic crystals is that 

Maxwell’s equations. An electromagnetic wave can be expressed in terms of an electric 

field vector �⃗⃗�  and a magnetic field vector 𝐵⃗⃗⃗⃗ . When incident on a material the terms �⃗⃗⃗� , the 
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magnetic flux density, 𝐷⃗⃗⃗⃗  the electric displacement vector,  𝐽  the current density and 𝜌 the 

charge density are also defined. The Maxwell’s equations in the differential form may be 

expressed in the international system units as: 

∇ ∗ 𝐸 ⃗⃗  ⃗(�⃗� , 𝑡) = -
𝛿  

𝛿𝑡
𝐵 ⃗⃗⃗⃗  (𝑟 ⃗⃗  , 𝑡)                                             (2.18a) 

∇ ∗ 𝐻 ⃗⃗⃗⃗ (�⃗� , 𝑡) =
𝛿  

𝛿𝑡
𝐷 ⃗⃗⃗⃗  (𝑟 ⃗⃗  , 𝑡) + 𝐽 

𝑓𝑟𝑒𝑒
→                                        (2.18b) 

                                             ∇ ∗ 𝐵 ⃗⃗  ⃗(�⃗� , 𝑡) = 0                                                     (2.18c)                                                   

∇ ∗ 𝐷 ⃗⃗  ⃗(�⃗� , 𝑡) = 𝜌𝑓𝑟𝑒𝑒                                                  (2.18d) 

Considering a number of assumptions valid for our particular case the previous equations 

can be simplified. First, for a medium that is free of free charges and free currents, ρfree 

and Jfree are set to zero. Next, if the field strengths are assumed to be small enough, the 

relations �⃗⃗�  to �⃗⃗�  and  𝐵⃗⃗⃗⃗  to H⃗⃗  can be considered as linear. Finally, for isotropic loss-less 

materials the dielectric permittivity, ε(r ⃗⃗ ,ω) is scalar and real where r  is the spatial vector 

and ω  is the angular frequency of light. Then, the constitutive equations of the material 

are given by: 

                                           D⃗⃗  (r , t) = ε(r ) E⃗⃗ (r , t)                                                (2.19a) 

                                             B ⃗⃗  ⃗(r , t) = μ0H⃗⃗
 (r , t)                                                (2.19b) 

Where μ0 is the magnetic permeability of vacuum. If harmonic time dependence of the 

electromagnetic fields is assumed, the fields can be written as: 

E⃗⃗ (r , t)= E⃗⃗ (r )eiωt                                                 (2.20a) 

                                            H⃗⃗ (r , t)= H⃗⃗ (r )eiωt                                               (2.20b) 

By the substitution of equations (2.17) into equations (2.18) the following system is 

obtained: 

                                              ∇ ∗ �⃗� (�⃗� )=-i 𝜔𝜀𝜇0�⃗⃗� (�⃗� )                                        (2.21a) 

                                                ∇ ∗ �⃗⃗� (�⃗� ) =i𝜔𝜀 𝑟 ⃗⃗  ⃗�⃗� (�⃗� )                                        (2.21b)    

                                                     ∇. �⃗⃗� (�⃗� ) = 0                                                  (2.21c)              
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                                               ∇. (𝜀(𝑟 ) �⃗⃗� (�⃗� ) = 0                                            (2.21d) 

Equation (2.19a) and equation (2.19b) can be rearranged into a single vectoral expression 

satisfied by the magnetic field H⃗⃗ (r ) 

                                          ∇ ∗ 1/ε(r ⃗⃗ ) (∇ ∗ H⃗⃗ (r )) = ω2μ0 H⃗⃗
 (r )                               (2.22) 

This general expression represents an eigen value problem that together with the 

divergence equation given the response of an optical field in a dielectric medium whose 

dielectric constant distribution is given by ε(r ). If the spatial dependence of the dielectric 

constant of any medium is known, the solution to equation (2.22) will provide the 

solutions to the optical modes. However, the complex geometry of photonic crystals 

makes the solution of this equation non-trivial and outside of the simplest cases, requires a 

fair amount of computational work to provide answers. The left side of the equation (2.19) 

can be formulated as an operator (Θ) acting on H⃗⃗ (r ) So that it takes explicitly the form of 

an eigenvalue problem 

                                               ΘH⃗⃗ (r ) = ω2μ0 H⃗⃗
 (r )                                            (2.22a) 

              Θ ≡  ∇ ∗ (
1

ε(r⃗ )
∇ ∗)                            (2.22b) 

Similarly, from equation (2.21), a master equation for �⃗⃗�  could also be formulated. 

However, it is more convenient to express the problem in terms of H⃗⃗ (r ). This is because 

the operator Θ is Hermitian which simplifies the computational problem. After obtaining 

the modes H⃗⃗ (r ) for a given frequency, the following relation can be used to obtain the 

electric field distribution, 

                                      E⃗⃗  ⃗(r ) = (-i/ ωε(r ⃗⃗ ) )∇ ∗ H⃗⃗ (r )                                          (2.23) 

In optical fibers, the translational invariance of the refractive index profile along the z-

directional leads to the following form of solutions for equation (2.20) 

                                         H⃗⃗ (x, y, z) =H⃗⃗ (x, y)e−iβz                                            (2.23) 

Where β is the propagation constant along z (the fiber axis). The harmonic mode H⃗⃗  (x,y) is 

the eigen vector associated to the eigen value  β .In the case of a wave propagation in a 

homogeneous medium (ε(r ⃗⃗ ) = ε) equation (2.20) reduces to the Helmholtz equation, 



33 

 

which can be solved in a closed form. In the same manner, if the geometry of the system is 

simple enough to apply analytical boundary conditions at the interfaces, the 

electromagnetic problem can also have an analytical solution. This is the case of 

conventional step-index fibers. However, in the case of photonic crystal fibers the eigen 

value problem is more complicated due to the fiber’s complex geometry and analytical 

solutions are impossible to obtain. Powerful numerical methods are used to obtain the 

eigenvectors and Eigen values of the electromagnetic problem. Nevertheless, when 

analyzing infinite structures, the periodic nature of a photonic crystal allows the 

simplification of the electromagnetic problem to a small region of the photonic crystal. 

Photonic crystals can be described in terms of a periodic array of points in space called a 

lattice and a unit cell which is represented identically at every point of the lattice. The unit 

cell is defined as the smallest area, which by mere translation can fully represent the 

structure. Every point of the lattice can be defined in terms of the lattice vectors (μ1⃗⃗ ⃗⃗ μ⃗⃗ 2μ3⃗⃗⃗⃗ ), 

which are the smallest vectors that can connect one lattice point with another. All crystals 

have an associated lattice in Fourier space called reciprocal lattice which consists of the 

set of all the allowed terms in the Fourier expansion of the periodic structure. The lattice is 

defined in terms of the primitive reciprocal lattice vectors (g1 ⃗⃗⃗⃗  ⃗g2⃗⃗⃗⃗ g3⃗⃗⃗⃗ ). 

To examine the way a photonic crystal affects the propagation of light passing through it, 

the dielectric constant of the structure must be expressed in terms of the lattice vector �⃗⃗� . 

The periodic dielectric function of a photonic crystal satisfies 

                                            ε(r ⃗⃗ ) = ε(r ⃗⃗ +   R⃗⃗ )                                                    (2.24) 

According to Bloch’s theorem the solution of the magnetic field can be expressed as 

Bloch’s states consisting of a plane wave modulated by a periodic function with the same 

periodicity a photonic crystal. 

                                           Hk ⃗⃗⃗⃗⃗⃗ (r)⃗⃗  ⃗ = Uk ⃗⃗ ⃗⃗  ⃗(r)⃗⃗  ⃗e
−ik⃗ r                                                    (2.25) 

Where �⃗⃗�  is the wave vector, �⃗� denotes the position vector and Uk ⃗⃗ ⃗⃗  ⃗ ( r)⃗⃗  ⃗   has the same 

periodicity as the lattice, i.e. Uk ⃗⃗ ⃗⃗  ⃗(r)⃗⃗  ⃗ = Uk ⃗⃗ ⃗⃗  ⃗(r ⃗⃗ +R)⃗⃗ ⃗⃗  .Therefore,knowing the values of the 

magnetic field Hk ⃗⃗⃗⃗⃗⃗  in a unit cell, the magnetic field in all the structure can be inferred from 

equation (2.22).In other words, the electromagnetic problem in an infinite photonic crystal 

is reduced to finding the values of the magnetic field in a small area. In the same way, in 

the reciprocal lattice, a Blotch state for a wave vector k⃗⃗  is equal to the Bloch state k⃗⃗ + G⃗⃗  
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where G⃗⃗  is any vector of the reciprocal lattice. This gives rise to a periodicity of the 

dispersion curve in the reciprocal space (or k⃗⃗  space), expressed as ω(k⃗ )=ω(k ⃗⃗ + G⃗⃗ ) . 

Consequently, the dispersion information of the modes is contained in a region of the 

reciprocal space called the Brillouin zone and only wave vectors �⃗⃗�  lying inside the 

Brillouin zone identify an independent mode. Therefore, the dispersion curves of photonic 

crystals are normally presented as plots of frequency versus wave vectors in the Brillouin 

zone. 

 

2.5 Conclusion 

In this chapter the loss properties of PCF are described in details. The light guiding 

mechanism is explained with appropriate equations. Mostly the Maxwell’s equations help 

to understand light pulse behavior inside the fiber core.   
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CHAPTER 3 

ANALYSIS OF THE PCF SYSTEM MODEL 

3.1  Introduction 

In recent days many research works have been done over PCF. By optimizing various 

parameters such as pitch (), air holes diameter (d), varying core and cladding materials, 

varying structure (hexagonal, decagonal etc.) many PCF’s model have been proposed. 

Those models show flattened, zero or negative dispersion, large or small effective area, 

low confinement loss, high or low nonlinearity contributing in various fields. The 

proposed hexagonal model is designed using COMSOL Multiphysics 4.3. Optimized 

model has been found by varying air holes diameter of the core and cladding. The model 

has been finalized based on the electric field distribution which exactly passes through the 

core. PML (Perfectly Matched Layer) has been added to bind the electric field in the 

region. In model wizard, Radio Frequency (RF) has been chosen. The proposed two-

dimensional model has been studied in Electromagnetic Wave (EMW) frequency domain 

physics interface. This field is found in Radio Frequency. For analyzing the mode field of 

the proposed model Mode Analysis has been added as the study type. The mode field of 

the model has been taken in various wavelengths which is used in studying various 

parameters such as effective mode index, dispersion, chromatic dispersion, effective area, 

nonlinearity parameter etc. These parameters have been investigated and discussed 

thoroughly. 

3.2  System Model 

3.2.1  System Diagram 

 

Fig. 3.1: System model of the proposed Hexagonal shaped PCF. 
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Fig. 3.2:  Enlarged view of H-PCF with optimized structural parameters 

 

 

3.2.2  Description of The System Model 

The proposed Hexagonal PCF (H-PCF) has four rings and two types of air holes. The 

diameters for 1st and 2nd air holes rings (near the core) are same. The first and second layer 

rings diameter is denoted as d1 and respectively radius is denoted as r1 and r2. The 

diameters for 3rd and 4th air holes rings are same. d2 is the diameter of the 3rd and 4th layer 

air holes. Again, the radius for the 3rd and 4th layer air holes respectively denoted as r3 and 

r4. An elliptical shape air hole is considered as the core of the proposed model. Elliptical 

core has semi major axis, semi minor axis which is respectively shown as a and b. The air 

holes are arranged in regular hexagonal shape. 

Distance between adjacent air holes on an axis is called pitch and is assigned as . Pitch is 

adjusted so that light pass through the core properly and the design shows low chromatic 

dispersion. =1.55 µm is the pitch of our design which is found after adjusting all the 

diameters of the air holes of core and cladding. Considering , the diameter for the 1st and 

2nd layer air holes is d1=0.5×, and the radius is r=0.3875 µm, where r1=r2=r. Again, the 

diameter for the 3rd and 4th layer air holes is d2=1× and the radius is r3=r4=0.5×. In 

Design, different shape air hole is experimented as the core. As the elliptical shape core 

gives better result it is finalized. The Elliptical core’s semi major axis and semi minor axis 

are respectively a=2×r, b=r where r=0.3875 µm, is the radius of the 1st and 2nd layer air 

holes of the model.  

Silicon di-oxide or Silica (SiO2) is the material chosen for the cladding of the H-PCF. The 

air holes which are arranged in hexagonal shape are made of air. A circular shaped PML is 
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added at the outer region of the region which confines the electromagnetic wave in the 

desired region so that no light can escape from the fiber. PML material is same as the 

cladding material which is SiO2. PML layer is varied and finally adjusted so that light is 

confined within the core.  

SiO2 is used as the core material when it is not doped. The Elliptical core is doped with 

two types of material. In the first approach the core is doped with Germanium Oxide 

(GeO2) and its different parameters is observed to obtain low dispersion, a better effective 

area. Secondly the H-PCF’s elliptical core is doped with Barium Fluoride (BaF2). The 

obtained results of the two approaches are compared and the best one is suggested. 

The model is modified and designed in COMSOL using the previously discussed 

parameters. The parameter r, r1, r2, r3 is used as the global parameter in COMSOL. 

Varying wavelength in a wide range, the stability of the light confinement of the model is 

studied. For the proposed design the wavelength is varied from 1.41 µm to 1.61 µm.  

The refractive index for the core and cladding material is calculated using Sellmeier 

equation and Sellmeier constant. Sellmeier constant Bs1, Bs2, Bs3, Cs1, Cs2, Cs3 are used 

to calculate the refractive index of SiO2 which is the cladding material and core material 

when the core is undoped. The refractive index of GeO2 is calculated using Bg1, Bg2, 

Bg3, Cg1, Cg2, Cg3. Sellmeier constants Ba1, Ba2, Ba3, Ca1, Ca2, Ca3 are used for the 

calculation of refractive index of BaF2. The modified refractive index of GeO2 doped SiO2 

core is calculated using Sellmeier equation. Also, Sellmeier equation is used to have the 

modified refractive index of BaF2 doped SiO2 core. 

Different parameters which are used to design the proposed H-PCF model are shown 

below in tabular from: 

Name Description Expression Unit Value 

L Wavelength 1.51 𝜇m 1.5100E-6 m 

F Frequency c_const/l Hz 1.9986E14 Hz 

P Pitch 1.55 𝜇m 1.5500E-6 m 

r1 Radius of 1st cell (0.5*)/2 𝜇m 3.8750E-7 m 

r2 Radius of 2nd cell (0.5*)/2 𝜇m 3.8750E-7 m 

r3 Radius of 3rd cell (1*)/2 𝜇m 7.7500E-7 m 

r4 Radius of 4th cell (1*)/2 𝜇m 7.7500E-7 m 
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X Doping percentage 0.00  0.0000 

Bs1 Sellmeier constant for SiO2 0.69616630  0.69617 

Bs2 Sellmeier constant for SiO2 0.40794260  0.40794 

Bs3 Sellmeier constant for SiO2 0.89747940  0.89748 

Cs1 Sellmeier constant for SiO2 0.06840430 𝜇m 6.8404E-8m 

Cs2 Sellmeier constant for SiO2 0.11624140 𝜇m 1.1624E-7m 

Cs3 Sellmeier constant for SiO2 9.896161 𝜇m 9.8961E-6m 

Bg1 Sellmeier constant for GeO2 0.80686642  0.80687 

Bg2 Sellmeier constant for GeO2 0.71815848  0.71816 

Bg3 Sellmeier constant for GeO2 0.85416831  0.85417 

Cg1 Sellmeier constant for GeO2 0.068972606 𝜇m 6.8973E-8m 

Cg2 Sellmeier constant for GeO2 0.15396605 𝜇m 1.5397E-7m 

Cg3 Sellmeier constant for GeO2 11.841931 𝜇m 11.842E-6m 

Ba1 Sellmeier constant for BaF2 0.64335620  0.64336 

Ba2 Sellmeier constant for BaF2 0.5067620  0.50676 

Ba3 Sellmeier constant for BaF2 3.82610  3.8261 

Ca1 Sellmeier constant for BaF2 0.0577890  5.7789E-8m 

Ca2 Sellmeier constant for BaF2 0.109680  1.0968E-7m 

Ca3 Sellmeier constant for BaF2 46.3864  4.6386E-5m 

Table 3.1: Various parameters of the system model. 

 

3.2.3    Electric Field Distribution Without Doping 

Electric field distribution is calculated using derived Eigen value problem found from 

Maxwell’s Equation. Electric field distribution of PCF changes with the variation of core 

and cladding, air hole diameters, doping and other related parameters. Different structure 

of PCF shows different Electric mode field distribution. Depending on the core shape and 

structure (e.g. Hexagonal, decagonal, octagonal etc.) various types of mode field are found 

which are proposed in many research papers. 

COMSOL Multiphysics gives a numerical technique to analyze the electric filed 

distribution of PCF which is almost similar to practical situation. It applies Finite Element 

Method (FEM) to analyze and simulate PCF’s model to get electric field distribution. 

FEM represents any geometry through small elements. COMSOL provides responsive 
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meshing environment. It separates whole PCF model into numerous small elements to 

analyze the model precisely. Various size, type and shape meshing element are used. Also, 

user defined meshing can be used to simulate the designed model. COMSOL also provides 

different types of solver. In our model Eigen value solver 1 is used.  

We know that PCF has highest magnetic field density so that light exactly passes through 

core region. The proposed model is designed and the parameters are varied in such a way 

that varying wavelength in a broadened range, we get desired electric mode field in all 

wavelengths. 

For undoped H-PCF model electric field is noted from 1.41 to 1.61 µm wavelength. 

Several observations are taken keeping the designed parameters constant. Data for pitch, 

Λ=1.55 µm, radius for 1st and 2nd layer air holes is r1=r2=0.3875 µm and diameter 

d1=0.5×, radius for 3rd and 4th layer air holes r3=r4=0.5× and diameter d2=1×, 

Elliptical core’s semi major axis and semi minor axis are respectively a=2×r, b=r is taken. 

Best possible result of electric mode field is noted for given wavelengths when it is not 

doped. The following picture shows 2-dimensional and 3-dimensional view of electric 

mode field of undoped (0% doping) H-PCF model at 1.42 µm wavelength. 

 

Fig. 3.3: (a) Electric field distribution without doping (b) 3D Electric field distribution 

without doping for pitch, Λ = 1.55μm. 
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3.2.4      Electric Field Distribution with Doping 

3.2.4.1   Electric Field Distribution of GeO2 Doped SiO2 

The proposed H-PCF model’s elliptical core is doped with GeO2. The observations for 

various doping concentrations are considered from wavelength 1.41 µm to 1.61 µm.  

Varying the doping concentrations electric mode field is observed and the desired mode is 

studied. The proposed design is simulated with 10%, 30%, 40%, 50%, 60% doping 

concentrations. Their effect on the propagation of light through H-PCF is studied to 

minimize the losses. Sellmeier equation and coefficient is also used to calculate the 

modified refractive index. 

All the designed parameter such as pitch, diameter of air holes of 1st, 2nd, 3rd, 4th are kept 

unchanged. Only doping concentration of the core is varied. 

Data for X=10% doping concentration, pitch =1.55 µm, radius for 1st and 2nd layer air 

holes are r1=r2=0.3875 µm and diameter is d1=0.5×, radius for 3rd and 4th layer air holes 

are r3=r4=0.5× and diameter d2=1×, Elliptical core’s semi major axis and semi minor 

axis are respectively a=2×r, b=r parameters are same as before doping. For 10% doping 

concentration at 1.55 µm wavelength 2-Dimensional and 3-Dimension electric mode field 

is given below. 

 

Fig. 3.4: (a) Electric field distribution of GeO2 doped SiO2 (b) 3D Electric field 

distribution of GeO2 doped SiO2 for pitch, Λ = 1.55 μm at 10% doping concentration. 



41 

 

 

Fig. 3.5: (a) Electric field distribution of GeO2 doped SiO2 (b) 3D Electric field 

distribution of GeO2 doped SiO2 for pitch, Λ =1.55μm at 30% doping concentration. 

Again, data for X=30% doping concentration, pitch =1.55 µm, radius for 1st and 2nd layer 

air holes are r1=r2=0.3875 µm and diameter d1=0.5×, radius for 3rd and 4th layer air 

holes r3=r4=0.5× and diameter d2=1×, Elliptical core’s semi major axis and semi 

minor axis are respectively a=2×r, b=r parameters are same as before doping. For 30% 

doping concentration at 1.55 µm wavelength 2-Dimensional and 3-Dimension electric 

mode field is shown below. 

 

Fig. 3.6: (a) Electric field distribution of GeO2 doped SiO2 (b) 3D Electric field 

distribution of GeO2 doped SiO2 for pitch, Λ =1.55 μm at 40% doping concentration. 
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Similarly, data for X=40% doping concentration, pitch =1.55 µm, radius for 1st and 2nd 

layer air holes are r1=r2=0.3875 µm and diameter d1=0.5×, radius for 3rd and 4th layer 

air holes r3=r4=0.5× and diameter d2=1×, Elliptical core’s semi major axis and semi 

minor axis are respectively a=2×r, b=r parameters are same as before doping. For 40% 

doping concentration at 1.55 µm wavelength the proposed model is simulated.  

 

Fig. 3.7: (a) Electric field distribution of GeO2 doped SiO2 (b) 3D Electric field 

distribution of GeO2 doped SiO2 for pitch, Λ =1.55 μm at 50% doping concentration. 

Furthermore, data for X=50% doping concentration, pitch =1.55 µm, radius for 1st and 

2nd layer air holes are r1=r2=0.3875 µm and diameter d1=0.5×, radius for 3rd and 4th 

layer air holes r3=r4=0.5× and diameter d2=1×, Elliptical core’s semi major axis and 

semi minor axis are respectively a=2×r, b=r parameters are same as before doping. For 

50% doping concentration at 1.55 µm wavelength the proposed model is simulated. The 

observed 2-Dimensional and 3-Dimension electric mode field is presented below. 

Also, data for X=60% doping concentration, pitch =1.55 µm, radius for 1st and 2nd layer 

air holes are r1=r2=0.3875 µm and diameter d1=0.5×, radius for 3rd and 4th layer air 

holes r3=r4=0.5× and diameter d2=1×, Elliptical core’s semi major axis and semi 

minor axis are respectively a=2×r, b=r parameters are same as before doping. For 60% 

doping concentration at 1.55 µm wavelength the proposed model is simulated. The 

observed 2-Dimensional and 3-Dimension electric mode field is given below. 
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Fig. 3.8: (a) Electric field distribution of GeO2 doped SiO2 (b) 3D Electric field 

distribution of GeO2 doped SiO2 for pitch, Λ =1.55μm at 60% doping concentration. 

 

3.2.4.2    Electric Field Distribution of BaF2 Doped SiO2 

Again, for further investigation propose H-PCF is doped with BaF2 (Barium fluoride). 

Doping concentration of core is varied respectively to 10%, 30%, 40%, 50%, 60%. 

Obtained result of BaF2-SiO2 is examined thoroughly to notice the effect of BaF2 doping 

on HPCF’s core. The cladding material is same as before doping which is SiO2.  

The modified refractive index again is found using Sellmeier equation. The result of 

doping of GeO2-SiO2 is compared with doping of BaF2 -SiO2. The electric field 

distribution for different doping concentration is noticed and compared for analysis. 

Data for X=10% doping concentration, pitch =1.55 µm, radius for 1st and 2nd layer air 

holes are r1=r2=0.3875 µm and diameter d1=0.5×, radius for 3rd and 4th layer air holes 

r3=r4=0.5× and diameter d2=1×, Elliptical core’s semi major axis and semi minor axis 

are respectively a=2×r, b=r parameters are same as before doping. For 10% doping 

concentration at 1.55 µm wavelength the proposed model is simulated. The observed two 

dimensional and three dimension electric mode field is shown below. 
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Fig. 3.9: (a) Electric field distribution of BaF2 doped SiO2 (b) 3D Electric field distribution 

of BaF2 doped SiO2 for pitch, Λ =1.55μm at 10% doping concentration. 

In addition, data for X=30% doping concentration, pitch =1.55 µm, radius for 1st and 2nd 

layer air holes are r1=r2=0.3875 µm and diameter d1=0.5×, radius for 3rd and 4th layer 

air holes r3=r4=0.5× and diameter d2=1×, Elliptical core’s semi major axis and semi 

minor axis are respectively a=2×r, b=r parameters are same as before doping. For 30% 

doping concentration at 1.55 µm wavelength 2-Dimensional and 3-Dimension electric 

mode field is presented below. 

 

Fig. 3.10: (a) Electric field distribution of BaF2 doped SiO2 (b) 3D Electric field 

distribution of BaF2 doped SiO2 for pitch, Λ =1.55μm at 30% doping concentration. 
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Also, data for X=40% doping concentration, pitch =1.55 µm, radius for 1st and 2nd layer 

air holes are r1=r2=0.3875 µm and diameter d1=0.5×, radius for 3rd and 4th layer air 

holes r3=r4=0.5× and diameter d2=1×, Elliptical core’s semi major axis and semi 

minor axis are respectively a=2×r, b=r parameters are same as before doping. 

 For 40% doping concentration at 1.55 µm wavelength 2-Dimensional and 3-Dimension 

electric mode field is presented below. 

 

Fig. 3.11: (a) Electric field distribution of BaF2 doped SiO2 (b) 3D Electric field 

distribution of BaF2 doped SiO2 for pitch, Λ =1.55μm at 40% doping concentration. 

Additionally, data for X=50% doping concentration, pitch =1.55 µm, radius for 1st and 

2nd layer air holes are r1=r2=0.3875 µm and diameter d1=0.5×, radius for 3rd and 4th 

layer air holes r3=r4=0.5× and diameter d2=1×, Elliptical core’s semi major axis and 

semi minor axis are respectively a=2×r, b=r parameters are same as before doping.  

For 50% doping concentration at 1.55 µm wavelength 2-Dimensional and 3-Dimension 

electric mode field is as following. 
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Fig. 3.12: (a) Electric field distribution of BaF2 doped SiO2 (b) 3D Electric field 

distribution of BaF2 doped SiO2 for pitch, Λ =1.55μm at 50% doping concentration. 

Including data for X=60% doping concentration, pitch =1.55 µm, radius for 1st and 2nd 

layer air holes are r1=r2=0.3875 µm and diameter d1=0.5×, radius for 3rd and 4th layer 

air holes r3=r4=0.5× and diameter d2=1×, Elliptical core’s semi major axis and semi 

minor axis are respectively a=2×r, b=r parameters are same as before doping. For 60% 

doping concentration at 1.55 µm wavelength 2-Dimensional and 3-Dimension electric 

mode field is given below. 

 

Fig. 3.13: (a) Electric field distribution of BaF2 doped SiO2 (b) 3D Electric field 

distribution of BaF2 doped SiO2 for pitch, Λ =1.55μm at 60% doping concentration. 
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3.2.5 Analysis or Effect of Changing Doping Concentrations  

It is known that, in the best ray passing model, the light is strongly confined in the central 

core region, i.e. the central core region has the highest magnetic field density for a specific 

model. In order to find the best possible outcome, the resultant effective mode index and 

doping concentration have changed for various times and find which has most of the light 

passing through the central region and thus find the desired value of effective mode index 

for any wavelength. Doping material and concentration have also effect on electric field 

distribution. As the doping increases the light gets stronger in the central region.  

 

Fig. 3.14: Surface electric field distribution at a wavelength 1.55 μm (a) for 10% doping 

concentration (b) for 60% GeO2 doping concentration. 

Comparative figures of the proposed design of GeO2 doped SiO2 for pitch, Λ =1.55 μm  at 

1.55 μm wavelength are shown in above Fig. 3.14. From 60% doping to 10% doping the 

ray get closer to the core region. It varies with the doping concentration. 

 

 

Fig. 3.15: Surface electric field distribution at a wavelength 1.55 μm (a) for 10% doping 

concentration (b) for 60% BaF2 doping concentration. 
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The electric field distribution doesn’t remain same for the variation of doping elements. 

The variation for BaF2 is much more negligible then GeO2. But still it can be seen in the 

comparative figure of   BaF2 doped SiO2 for pitch, Λ =1.55 µm at 1.55 μm which is shown 

Fig. 3.15. 

 

3.2.5 Conclusion 

Pure Silica core makes the wave propagation characteristics fixed, for a particular set of 

parameters, whereas the design can modify the electric field and hence the optical wave 

propagation characteristics by changing the doping concentration and material. Among the 

variants studied, the main focus was to achieve a range of flattened dispersion and 

modified non-linearity which elaborately discussed in the next chapter.  
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         CHAPTER 4 

           RESULT AND ANALYSIS 

4.1  Introduction 

The proposed H-PCF is simulated in COMSOL Multiphysics 4.3 by varying different 

parameters of the fiber. The single core hexagonal fiber’s core is doped with two different 

materials (GeO2 and BaF2). Results of different parameters are noted in a broad range of 

wavelength by varying doping percentage. All other design parameters (air hole diameters, 

pitch etc.) are kept constant. The simulated results are plotted using MATLAB 7.6. 

Important MATLAB codes are attached in Appendix 1. The necessary data tables of 

different parameters, relevant plots and their analysis are described in this chapter.  

 

4.2  Analysis of H-PCF Model Without Doping 

4.2.1 Analysis of Effective Mode Index Without Doping  

Simulating the H-PCF model, the effective mode index (ηeff) of H-PCF is found. When 

fiber core is not doped, the core and cladding material is SiO2. The real part of effective 

mode index (ηeff) is taken into account. Equation (2.16) is applied for calculating the 

effective mode index of H-PCF. For without doping at pitch, =1.55 µm required data sets 

are received for respective wavelength to formulate the plots. 

Fig. 4.1:  Plot of Effective mode index as a function of wavelength for without doping at 

pitch, Λ =1.55 µm. 
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Effective mode index and respective wavelength is plotted in Fig. 4.1. From Fig. 4.1 it is 

seen that, effective mode index decreases as wavelength increases. At 1.55 µm wavelength 

effective mode index is 1.395679. 

 

4.2.2  Analysis of Effective Mode Area Without Doping 

Effective mode area of the designed PCF model is calculated using equation (2.12). 

Values which are taken from COMSOL simulation, is used to plot the mode area against 

wavelength. 

Fig. 4.2 shows effective mode area (Aeff) against wavelength at pitch, Λ = 1.55 µm for 

without doping or 0% doping. From the Fig. 4.2 it is observed that effective area increases 

linearly with increase in wavelength. Simulation data of (emw.normE)^2 

and(emw.normE)^4 are taken from COMSOL. From plot it is also noticed that the 

proposed model has an effective area of 5.0717 µm2 for without doping at 1.55 µm 

wavelength. 

Fig. 4.2: Plot of Effective mode area as a function of wavelength for without doping at 

pitch, Λ = 1.55 µm. 
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1.371 µm wavelength, dispersion is 0.1449 ps/(nm.km). Then dispersion stars rising. From 

1.426 µm to 1.449 µm, dispersion is almost flattened. Fluctuation is seen at several 

wavelengths from 1.45 µm to 1.59 µm. Then dispersion becomes negative. At 1.426 µm, 

1.449 µm and 1.591 µm wavelengths dispersion are respectively 0.9436 ps/(nm.km), 

0.9667 ps/(nm.km) and -0.05364 ps/(nm.km). Furthermore, at 1.61 µm dispersion is -1.57 

ps/(nm.km).  

 

Fig. 4.3: Plot of Dispersion as a function of wavelength for without doping at pitch, Λ = 

1.55 µm. 

 

4.3 Analysis of H-PCF Model with Doping 

4.3.1  Analysis of Effective Mode Index with GeO2 Doping 

The effective mode index of GeO2-SiO2 of H-PCF is found similarly simulating the 

proposed model in COMSOL. Equation (2.16) is used for the calculation of mode index. 
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the model. From COMSOL the results of effective mode index at 10% doping 

concentration of GeO2-SiO2 is noted. 
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10% doping. Effective mode index at 1.55 μm wavelength is 1.395679 for 0% doping. So, 

it is noticed that effective mode index increases after GeO2 doping. 

Doping concentration of GeO2-SiO2 is gradually increased to study the effect of doping on 

the proposed H-PCF structure. 30%, 40%, 50% and 60% doping concentrations of GeO2-

SiO2 are also taken into consideration. 

Fig. 4.4: Plot of Effective mode index as a function of wavelength for 10% doping of 

GeO2-SiO2 at pitch, Λ = 1.55 µm  

Fig. 4.5: Plot of Effective mode index as a function of wavelength for 30% doping of 

GeO2-SiO2 at pitch, Λ = 1.55 µm  
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In Fig. 4.5 effective mode index is plotted as function of wavelength at 30% doping 

concentration using data from COMSOL for pitch, Λ = 1.55 µm. At 1.55 µm wavelength 

effective mode index is 1.411287 for 30% doping. For 10% doping effective mode index 

is 1.40057. So, effective mode index increases with increasing of doping percentage. 

 

Fig. 4.6: Plot of Effective mode index as a function of wavelength for pitch, Λ =1.55 μm 

at 40% doping concentration of GeO2-SiO2 

 

Fig. 4.7:  Plot of Effective mode index as a function of wavelength for pitch, Λ =1.55 μm 

at 50% doping concentration of GeO2-SiO2 
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30%) concentrations. The effective mode index’s curve shows almost linear pattern and 

increases with decreasing of wavelengths. At 1.55 µm effective mode index is 1.417073 

for 40% doping. 

The Fig. 4.7 shows effective mode index for pitch, Λ = 1.55 µm at 50% doping 

concentration of GeO2 doped silica. Effective mode index is maximum at 1.41 μm 

wavelength. Then it starts decreasing. At 1.55 µm wavelength effective mode index is 

1.423125 for 50% doping. Fluctuation is seen at 1.43 µm and 1.59 µm wavelengths. 

In Fig. 4.8 effective mode index for 60% doing of GeO2-SiO2 at pitch Λ = 1.55 μm is 

shown. It shows same behavior which is mode index decreases with increasing of 

wavelength as it is for 10%, 30%, 40% and 50% doping concentrations.  

 

Fig. 4.8:  Plot of Effective mode index as a function of wavelength for pitch, Λ =1.55 μm 

at 60% doping concentration of GeO2-SiO2. 

Fig. 4.9 shows combine plot of effective mode index for 10%, 30%, 40%, 50% and 60% 

doping concentrations of GeO2 doped silica. Minimum value of effective index is found 

for 10% doping concentration. Then, with increasing doping effective mode index 

increases and maximum value of effective mode index is found for 60% doping. At 1.55 

μm effective mode index are 1.400574, 1.411287, 1.417073, 1.423125, 1.429428 for 

respectively 10%, 30%, 40%, 50% and 60% doping concentrations. Little fluctuation is 

seen for 60% doping from 1.57 μm to 1.61 μm. At 1.55 μm wavelength effective mode 

index is 1.395679 for 0% doping. Comparing the results, it can be said that after doping 

with GeO2 effective mode index increases. Again, at 1.47 μm wavelength effective mode 
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index are 1.400346, 1.404212, 1.416577, 1.422623, 1.428959, 1.435568 respectively for 

0%, 10%, 30%, 40%, 50% and 60% doping concentrations of GeO2-SiO2. 

Fig. 4.9: Plot of Effective mode index as a function of wavelength for pitch, Λ =1.55 μm 

at 10%, 30%, 40%, 50% and 60% doping concentrations of GeO2-SiO2. 

 

4.3.2    Analysis of Effective Mode Area with GeO2-SiO2 Doping 

Effective mode area for GeO2-SiO2 is calculated using equation (2.12). Effective mode 

area for 10%, 30%, 40%, 50% and 60% doping are calculated and the result is compared 

with each other to analyze the effect of doping on mode area of our proposed H-PCF 

model. The effective mode area is plotted against wavelength using the simulation data 

from COMSOL and MATLAB code attached in Appendix 1. 

Fig. 4.10 shows that effective mode area increases with increasing of wavelength at 10% 

doping concentration. At 1.55 μm effective mode area is 5.0717 μm2 and 4.6292 μm2 for 

respectively 0% and 10% doping concentration of GeO2. So, effective mode area 

decreases with increasing doping concentration of GeO2. 

Fig. 4.11 shows that effective mode area for 30% doping concentration of GeO2 doped 

Silica. At 1.55 μm wavelength effective mode area is 4.6292 μm2 and 3.9357 μm2 for 

respectively 10% and 30% doping of GeO2. Again, effective mode area decreases with 

increasing of doping concentration. Effective mode area increases with increasing 
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wavelength but after 1.55 μm wavelength effective mode area suddenly starts decreasing. 

After 1.57 μm wavelength it starts increasing. 

Fig. 4.10:  Plot of Effective mode area as a function of wavelength for pitch, Λ =1.55 μm, 

at 10% doping concentration of GeO2-SiO2. 

Fig. 4.11: Plot of Effective mode area as a function of wavelength for 30% doping 

concentration of GeO2-SiO2 at pitch, Λ =1.55 μm. 

Fig. 4.12 shows that effective mode area at 40% doping concentration of GeO2 doped 

Silica. From 1.41 μm to 1.43 μm effective mode area decreases. After 1.43 μm effective 

mode area starts increasing. There is little fluctuation at 1.45 μm wavelength.  
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Also, in Fig. 4.12 at 1.55 μm wavelength effective mode area for 40% doping 

concentration is 3.6598 μm2. 

Fig. 4.12: Plot of Effective mode area as a function of wavelength for 40% doping 

concentration of GeO2 doped SiO2 at pitch, Λ =1.55 μm.  

In Fig. 4.13 effective mode area is plotted against wavelength for 50% doping 

concentration of GeO2 doped SiO2. Effective area increases with wavelength but after 1.59 

μm wavelength, effective area starts decreasing. The change is not much significant.  

Fig. 4.13: Plot of Effective mode area as a function of wavelength for pitch, Λ =1.55 μm, 

at 50% doping concentration of GeO2 doped SiO2. 
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Again, in Fig. 4.13 at 1.55 μm wavelength effective mode area is 3.4193 μm2 for 50% 

doping. 

 In Fig. 4.14 effective area is plotted against wavelength for 60% doping concentration of 

GeO2 doped SiO2 for pitch 1.55 μm. The curve plotted in MATLAB using simulation data 

from COMSOL.  

At 1.55 μm wavelength effective mode area is 3.20813 μm2. The plot is almost linear. 

 

Fig. 4.14: Plot of Effective mode area as a function of wavelength for pitch, Λ =1.55 μm, 

at 60% doping concentration of GeO2 doped SiO2. 

The Fig. 4.15 shows effective mode area against wavelength for all doping concentrations 

such as 10%, 30%, 40%, 50% and 60%. From the plot it is seen that with increasing 

wavelength effective mode area increases but with increasing of doping it decreases.  

Maximum value of effective area is found for 10% doping concentration. Minimum value 

of effective area is for 60% doping concentration.  

Again, at 1.55 μm wavelength effective area are respectively 4.6292 μm2, 3.9357 μm2, 

3.6598 μm2, 3.4193 μm2, 3.2081 μm2 for 10%, 30%, 40%, 50% and 60% doping 

concentrations. At 1.57 μm wavelength effective mode area is 4.7027 µm2, 3.9161 µm2, 

3.7231 µm2, 3.4801 µm2, 3.2667 µm2 for respectively 10% ,30%, 40%, 50% and 60% 

doping concentrations. 

1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6
2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

Wavelength(m)

E
ff

e
c
ti
v
e
 M

o
d
e
 A

re
a
 A

e
ff

 (
  

m
2
)

 

 

60% doping



59 

 

Fig. 4.15: Plot of Effective mode area as a function of wavelength for pitch, Λ =1.55 μm, 

at 10%, 30%, 40%, 50% and 60% doping concentrations of GeO2 doped SiO2 

 

4.3.3 Analysis of Dispersion with GeO2 Doped Silica Doping 

Dispersion of proposed GeO2 doped silica hexagonal single core fiber is calculated. Again 

10%, 30%, 40%, 50% and 60% doping concentrations of GeO2 are considered. From 

COMSOL real value of effective mode index is noted by simulating the model for various 

concentrations. Using these real values of effective mode index in MATLAB, dispersion is 

calculated. Finite element method is used in calculating dispersion. 

In Fig. 4.16 dispersion for 10% doping concentration of GeO2 doped silica is shown. 

Dispersion is calculated using equation (2.5). For 10% doping from the plot it is noticed 

that there is a flattened range from 1.401 µm to 1.452 µm. In this range dispersion varies 

from 1.156 ps/(nm.km) to 1.396 ps/(nm.km). Small variation of dispersion is seen from 

1.452 to 1.49 µm wavelength. Then there is a sharp fall and the dispersion falls up to -

20.17 ps/(nm.km) which is at 1.511 µm wavelength. After 1.511 µm wavelength there is 

sharp rise up to 44.37 ps/(nm.km) for 1.53 µm wavelength. Then dispersion curve starts 

falling and falls up to -21.7 ps/(nm.km). -21.7 ps/(nm.km) dispersion is noted at 1.55 µm 

wavelength. After -21.7 ps/(nm.km) dispersion curve starts rising. Again, a flattened range 

is seen from 1.57 µm to 1.61µm wavelength and in this range dispersion varies from -

3.553 ×10-15 to -0.1755 ps/(nm.km). The Proposed H-PCF has dispersion of 0.05659 
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ps/(nm.km) at 1.463 µm wavelength for 10% doping concentration, which is nearly zero. 

At 1.500 µm, it shows dispersion of -9.573 ps/(nm.km) which is negative dispersion. 

Fig. 4.16: Plot of Dispersion as a function of wavelength for 10% doping concentration of 

GeO2-SiO2 at pitch, Λ = 1.55 µm. 

Fig. 4.17: Plot of Dispersion as a function of wavelength for 30% doping concentration of 

GeO2-SiO2 at pitch, Λ = 1.55 µm  

Fig. 4.17 shows dispersion for 30% doping concentration of GeO2 doped silica. From the 

plot it is seen that from 1.371 µm to 1.533 µm wavelength dispersion curve is almost 

flattened. In this range dispersion varies from 0.457 ps/(nm.km) to -12.21 ps/(nm.km). 
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Then small variation is seen and dispersion curve becomes negative. After -201 

ps/(nm.km) at 1.55 µm wavelength the dispersion curve starts rising and rises up to 200.2 

ps/(nm.km). After that it starts falling and falls up to -1017 ps/(nm.km) at 1.61 µm 

wavelength. 

Fig. 4.18: Plot of Dispersion as a function of wavelength for 40% doping concentration of 

GeO2-SiO2 at pitch, Λ = 1.55 µm  

Fig. 4.18 shows dispersion for 40% doping concentration of GeO2 doped silica. Dispersion 

curve starts at 1.37 µm wavelength. In this wavelength dispersion is -278.8 ps/(nm.km). 

After this wavelength dispersion curve rises up to 2981 ps/(nm.km) which is at 1.397 µm 

wavelength. After 2981 ps/(nm.km) it starts falling and falls up to -352.8 ps/(nm.km) at 

1.45 µm wavelength. Again, the curve starts rising and goes towards zero dispersion. 

There is small flattened range starting from 1.469 µm to 1.494 µm wavelength and in this 

range dispersion varies from -2.603 to -6.884 ps/(nm.km). Fluctuation of dispersion can be 

found from 1.494 µm to 1.566 µm wavelength. Again, from 1.566 µm to 1.61 µm 

dispersion curve is almost flattened and dispersion varies from -7.938 ps/(nm.km) to -

0.5767 ps/(nm.km). 

Fig. 4.19 shows dispersion curve for 50% doping of GeO2. From plot it is found that 

dispersion curve starts at 1.37 µm wavelength having dispersion of -420.2 ps/(nm.km). 

Then it rises up to dispersion of 4717 ps/(nm.km) at 1.396 µm wavelength. After 4717 

ps/(nm.km) the curve falls up to -554.7 ps/(nm.km) which is at 1.451 µm wavelength. A 

flattened range can be seen from 1.469 µm to 1.572 µm wavelength and in this range the 

dispersion varies from -4.051 ps/(nm.km) to -10. 31 ps/(nm.km). Then the curve starts 
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falling and falls up to value of -1172 ps/(nm.km) at 1.61 µm wavelength. After -1172 

ps/(nm.km) it again starts rising. At 1.549 µm wavelength almost zero dispersion is found 

which is -0.003697 ps/(nm.km). 

 

Fig. 4.19: Plot of Dispersion as a function of wavelength for 50% doping concentration of 

GeO2-SiO2 at pitch, Λ = 1.55 µm 

Fig. 4.20: Plot of Dispersion against wavelength for GeO2-SiO2 60% doping concentration 

at pitch, Λ = 1.55 µm  

In Fig. 4.20 dispersion versus wavelength curve is shown for 60% doping concentration of 

GeO2 doped Silica H-PCF. From curve it is seen that the proposed GeO2 doped Silica H-

PCF has flattened range from 1.37 µm to 1.551 µm wavelength. In this range dispersion 
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varies from 5.857 ps/(nm.km) to -27.80 ps/(nm.km). The curve falls up to -3608 

ps/(nm.km) which is at 1.57 µm wavelength. Then it stats rising and rises up to value of 

2.543×104 ps/(nm.km) for 1.61 µm wavelength.  

Fig. 4.21 shows combine dispersion against wavelength curve for 10%, 30%, 40%, 50% 

and 60% doping concentrations of GeO2 doped silica. From plot it is seen that for 40% and 

50% doping there is variation of dispersion from 1.371 to 1.467 µm wavelength. From 

1.467 to 1.533 µm dispersion remains near zero and flattened for all doping concentration. 

In this range dispersion varies from -0.3721 ps/(nm.km) to 40.36 ps/(nm.km). After 1.533 

µm wavelength dispersion becomes negative for 60% doping. Again, for 60% doping 

there is sharp rise up to 1.732×104 ps/(nm.km) which is at 1.613 µm wavelength. 10% 

dispersion curve is continuously flattened. For 10% and 30% doping dispersion, curve is 

almost flattened and remains near zero for total wavelength. After 1.61µm dispersion 

curve for 30% doping becomes negative. At 1.55 µm wavelength dispersion is -

21.7ps/(nm.km), -201 ps/(nm.km), -71.82 ps/(nm.km), -1.11×10-16 ps/(nm.km) and -1.033 

ps/(nm.km) respectively for 10%, 30%, 40%, 50% and 60% doping concentrations. 

Fig. 4.21: Plot of Dispersion against wavelength for GeO2-SiO2 10%, 30%, 40%, 50% and 

60% doping concentrations at pitch, Λ = 1.55 µm 

4.3.4 Analysis of Nonlinearity Parameter with GeO2 Doped Silica Doping 

Nonlinearity parameter is also studied for Our Proposed H-PCF for all doping 

concentrations 10%, 30%, 40%, 50% and 60%. Nonlinearity parameter is calculated using 
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effective mode area. All data for effective area calculation is taken from COMSOL. 

Nonlinearity parameter is calculated using equation (2.80). 

Fig. 4.22: Plot of Nonlinearity parameter against wavelength for GeO2-SiO2 10% doping 

concentration at pitch, Λ = 1.55 µm  

In Fig. 4.22 nonlinearity parameter for 10% doping concentration of GeO2 doped silica is 

shown. At 1.47 µm, 1.51 µm, 1.53 µm wavelength nonlinearity parameter are respectively 

17.4748 W-1Km-1, 16.5038 W-1Km-1, 16.0378 W-1Km-1. So, nonlinearity parameter 

decreases with increasing wavelength. At 1.55 µm wavelength nonlinearity parameter is 

15.5869 W-1Km-1. 

In Fig. 4.23 nonlinearity parameter against wavelength is presented for 30% doping 

concentration of GeO2 doped silica. For 1.47 µm, 1.51 µm, 1.53 µm wavelength 

nonlinearity parameter are respectively 20.6492 W-1Km-1, 19.4526 W-1Km-1, 18.8838 W-

1Km-1. 

Again from Fig. 4.23 at 1.47 µm wavelength nonlinearity parameter for 10% and 30% 

doping are respectively 17.4748 W-1Km-1 and 20.6492 W-1Km-1. Comparing the results of 

10% and 30% doping it can be said that with increasing doping percentage nonlinearity 

parameter increases. At 1.55 µm wavelength nonlinearity parameter is 18.3334 W-1Km-1. 
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Fig. 4.23: Plot of Nonlinearity parameter against wavelength for GeO2-SiO2 30% doping 

concentration at pitch, Λ = 1.55 µm  

In Fig. 4.24 nonlinearity parameter against wavelength is presented for 40% doping 

concentration. From curve it is seen that nonlinearity parameter is almost constant from 

1.41 to 1.43 µm wavelength. Then the curve starts falling and falls up to 1.61 µm.  At 1.47 

µm, 1.49 µm, 1.51 µm, 1.53 µm wavelength nonlinearity parameter are respectively 

22.1344 W-1Km-1, 21.4674 W-1Km-1, 20.8243 W-1Km-1, and 20.2038 W-1 Km-1. For 

10%, 30%, 40% doping nonlinearity parameter are respectively 15.5869 W-1Km-1, 

18.3334 W-1Km-1 and 19.6048 W-1Km-1 at 1.55 µm. Again, comparing the results it can be 

said that with increasing wavelength nonlinearity parameter decreases but with increasing 

doping it increases. 

Fig. 4.24: Plot of Nonlinearity parameter against wavelength for GeO2-SiO2 40% doping 

concentration at pitch, Λ = 1.55 µm 
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Fig. 4.25: Plot of Nonlinearity parameter against wavelength for 50% doping 

concentration of GeO2-SiO2 at pitch, Λ = 1.55 µm  

In Fig. 4.25 nonlinearity parameter against wavelength for 50% doping concentration of 

GeO2-SiO2 doping is presented. From plot it is noticed that the curve is almost linear from 

1.41 µm to 1.59 µm wavelength. After 1.59 µm wavelength suddenly the nonlinearity 

curve starts rising.  

At 1.47 µm, 1.49 µm, 1.51 µm, 1.53 µm wavelength nonlinearity parameters are 

respectively 23.7484 W-1Km-1, 23.0170 W-1Km-1, 22.3134 W-1Km-1 and 21.6360 W-1Km-

1. At 1.55 µm wavelength nonlinearity parameter for 40% and 50% doping are 

respectively 19.6048 W-1Km-1 and 20.9833 W-1Km-1. So, 50% doping shows more 

nonlinearity than 40% doping. 

The Fig. 4.26 shows nonlinearity against wavelength for 60% doping concentration. From 

figure it is seen that for 60% doping concentration nonlinearity curve is linear. At 1.55 µm 

wavelength nonlinearity parameter is 22.3650 W-1Km-1.  

Again, 25.3719 W-1Km-1, 24.5745 W-1Km-1, 23.8087 W-1Km-1, 23.0727 W-1Km-1 

nonlinearity parameters are found respectively for 1.47 µm, 1.49 µm, 1.51 µm, 1.53 µm 

wavelength. 
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Fig. 4.26: Plot of Nonlinearity parameter against wavelength for 60% doping 

concentration of GeO2-SiO2 doping at pitch, Λ = 1.55 µm  

In Fig. 4.27 nonlinearty parameter against wavelength is presented for all doping 

concentrations such as 10%, 30%, 40%, 50% and 60%  of GeO2-SiO2 H-PCF. From Fig. it 

is noticed that with inceasing wavelength nonlinearity parameter decreases. Minimum 

value for nonlinearity parameter is found for 10% doping concentration. Maximum value 

is seen at 60% doping.  

Again, in Fig. 4.27 At 1.55 µm wavelength for 10%, 30%, 40%, 50% and 60% doping 

concentrations, nonlinearity parameter values are respectively 15.5869 W-1Km-1, 18.3334 

W-1Km-1, 19.6048 W-1Km-1, 20.9833 W-1Km-1, 22.3650 W-1Km-1.  

Comparing the results, it is found that with increasing doping nonlinearity parameter 

increases. 10% and 60% curve are totally linear but 30%, 40%, 50% curve is not fully 

linear. It shows fluctuation in one or two wavelengths.  
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Fig. 4.27: Plot of Nonlinearity parameter against wavelength for GeO2-SiO2 10%, 30%, 

40%, 50% and 60% doping concentration at pitch, Λ = 1.55 µm  

 

4.4 Analysis of H-PCF Model with Doping for Ba𝐅𝟐 

4.4.1 Analysis of Effective Mode Index for Ba𝐅𝟐-SiO2 Doping 

The effective mode index of BaF2-doped SiO2 (BaF2-SiO2) is similarly found simulating 

the proposed model with COMSOL4.3. Equation (2.16) can be efficiently used for the 

calculation of mode index. Different doping concentrations for BaF2-SiO2 model are taken 

into consideration. In this case 10%, 30%, 40%, 50% and 60% doping concentrations are 

used to analyze the behavior of the model.  

In Fig.4.28 effective mode index(ηeff) is plotted as a function of wavelength at pitch, Λ = 

1.55 μm for 10% doping concentration BaF2-SiO2. At 1.47 μm, 1.51 μm effective mode 

index are respectively 1.4015 and 1.3992. The plot is linear and with increasing 

wavelength effective mode index decreases. At 1.55 μm wavelength effective mode index 

is 1.396931 for 10% doping concentration of BaF2-SiO2. For 0% doping concentration 

effective mode index is 1.395679. So, effective mode index increases in very small 

amount after doping with BaF2. For GeO2 10% doping effective mode index is 1.400574 

at 1.55 μm wavelength. Comparing the results, it can be said that after doping with GeO2 

increase of effective mode index is more than BaF2 doping. 
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Fig. 4.28: Plot of Effective mode index as a function of wavelength for pitch, Λ = 1.55 

µm, with 10% doping of BaF2-SiO2 

Fig. 4.29 shows effective mode index against wavelength for 30% doping concentration of 

BaF2 doped silica. At 1.47 µm and 1.51 µm wavelength effective mode index are 

respectively 1.403255 and 1.400948.  

Fig. 4.29: Plot of Effective mode index as a function of wavelength for pitch, Λ =1.55 μm 

with 30% doping concentration of BaF2-SiO2 
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At 1.55 µm wavelength effective mode index are 1.395679, 1.398635 and 1.411287 which 

are respectively for 0% doping, 30% doping of BaF2 and 30% doping of GeO2. After 

doping with BaF2 effective mode index increases but the increase is not significant as it is 

for GeO2 doping.  

Again at 1.55 µm wavelength effective mode index is 1.396931 and 1.398635 for 

respectively 10% and 30% doping of BaF2. So, with increasing doping of BaF2 effective 

mode index decreases. 

Fig. 4.30: Plot of Effective mode index as a function of wavelength for pitch, Λ =1.55 μm 

at 40% doping concentration of BaF2-SiO2. 

Fig. 4.30 shows effective mode index against wavelength for 40% doping concentration of 

BaF2-SiO2. At 1.55 μm wavelength effective mode index is 1.399318 for 40% doping of 

BaF2.  

For GeO2 effective mode index is 1.417073 at 1.55 μm wavelength for 40% doping. 

Effective mode index for GeO2 40% doping is greater than BaF2 40% doping. 

Fig 4.31 shows effective mode index against wavelength for 50% doping concentration of 

BaF2-SiO2. Value of effective mode index is 1.399975 at 1.55 µm wavelength. For 50% 

doping of GeO2 effective mode index is 1.423125 at 1.55 μm wavelength. 
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Fig. 4.31: Plot of Effective mode index as a function of wavelength for pitch, Λ =1.55 μm 

at 50% doping concentration of BaF2-SiO2 

In Fig. 4.32 effective mode index for 60% doing of BaF2-SiO2 at pitch Λ = 1.55 μm is 

shown. The following Fig. shows the same behavior which is decreasing mode index with 

increasing of wavelength as it is for 10%, 30%, 40%, 50% doping concentrations. At 

wavelength 1.55 µm value of effective mode index is 1.429428 and 1.400606 respectively 

for 60% doping concentration of GeO2 and BaF2. 

Fig. 4.32: Plot of Effective mode index as a function of wavelength for pitch, Λ =1.55 μm 

at 60% doping concentration of BaF2-SiO2 
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Fig. 4.33 shows combine plot of effective mode index for all doping percentage of BaF2 

which are taken to considerations. Maximum value of effective mode index is found for 

60% doping. Minimum value is found at 10% doping. At 1.55 μm wavelength effective 

mode index is 1.396931, 1.398635, 1.399318, 1.399975, 1.400606 respectively for 10%, 

30%, 40%, 50% and 60% doping of BaF2. Again, at 1.55 μm wavelength effective mode 

index is 1.400574, 1.411287, 1.417073, 1.423125, 1.429428 respectively for 10%, 30%, 

40%, 50% and 60% doping of GeO2. So, effective mode index increases with increasing 

doping concentration. Also, it can be noticed that effective mode index for GeO2 doping is 

greater than BaF2 in all doping concentrations. Values of effective mode index are 

1.395679, 1.400606, 1.429428 respectively for 0% doping, 60% doping of BaF2 and 60% 

doping of GeO2. After doping with BaF2 and GeO2 the value of effective mode index 

definitely increases which can be easily realized comparing the results. 

Fig. 4.33: Plot of Effective mode index as a function of wavelength for pitch, Λ =1.55 μm 

at 10%, 30%, 40%, 50% and 60% doping concentrations of BaF2-SiO2 

 

4.4.2    Analysis of Effective Mode Area for BaF2-SiO2 Doping 

Effective mode area for doping percentage 10% 30% 40% 50% and 60% are taken into 

consideration for BaF2-SiO2. 
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Fig. 4.34: Plot of Effective mode area as a function of wavelength for pitch, Λ =1.55 μm 

at 10% doping concentration of BaF2-SiO2. 

Fig. 4.34 shows effective mode area against wavelength for 10% doping concentration of 

BaF2-SiO2. Effective mode area is 4.6640 µm2, 4.7307 µm2 and 4.7994 µm2 respectively 

at 1.47 µm, 1.49 µm and 1.51 µm wavelength for 10% BaF2 doping. So, with increasing 

wavelength effective mode area increases. At 1.55 µm wavelength effective mode area is 

5.0717µm2, 4.9429µm2 respectively for 0% doping and 10% doping of BaF2. After doping 

effective mode area decreases. At 1.55 µm wavelength effective mode area is 4.6292 µm2 

for 10% doping of GeO2.  Effective mode area for GeO2 doping is less than BaF2 doping. 

Fig. 4.35: Plot of Effective mode area as a function of wavelength for pitch, Λ =1.55 μm 

at 30% doping concentration of BaF2-SiO2 
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Fig. 4.35 shows effective mode area against wavelength for 30% doping concentration of 

BaF2-SiO2. The plot is almost linear.  

Again, from Fig 4.35 it is seen that at 1.55 μm wavelength effective mode area is 4.7795 

µm2 for 30% doping of BaF2. Again for 30% GeO2 doping effective mode area is 3.9357 

µm2. For same doping percentage BaF2 doping has more effective area than GeO2. 

 

Fig. 4.36: Plot of Effective mode area as a function of wavelength for pitch, Λ =1.55 μm 

at 40% doping concentration of BaF2-SiO2 

In Fig. 4.36 effective mode area for 40% doping concentration of BaF2 is shown. At 1.47 

µm, 1.51 µm, 1.53 µm effective mode area are respectively 4.4675 µm2, 4.5312 µm2 and 

4.5966 µm2.  

Again, from Fig. 4.36 it is seen that at 1.55 µm wavelength effective area is 4.7329 µm2. 

For GeO2 40% doping effective mode area is 3.6598 µm2 at 1.55 µm wavelength.  

Fig. 4.37 shows effective mode area against wavelength for 50% doping concentration of 

BaF2-SiO2. At 1.55 μm wavelength effective mode area is 4.6779 µm2 for 50% BaF2 

doping. For GeO2 at the same wavelength and same doping percentage effective mode area 

is 3.4193 µm2. 
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Fig. 4.37: Plot of Effective mode area as a function of wavelength for pitch, Λ =1.55 μm 

at 50% doping concentration of BaF2-SiO2. 

Fig. 4.38: Plot of Effective mode area as a function of wavelength for pitch, Λ =1.55 μm 

at 60% doping concentration of BaF2-SiO2 

Fig 4.38 also shows the same characteristics like others. It shows effective mode area 

against wavelength for 60% doping concentration of BaF2. At 1.55 μm wavelength 

effective mode area is 4.6266 µm2 for 60% doping of BaF2. 
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Fig. 4.39 shows combine plot of effective mode area for all doping percentage. Value of 

Effective mode area is 4.94293 μm2, 4.77952 μm2, 4.73297 μm2, 4.67794 μm2 and 

4.62666 μm2 at 1.55 μm wavelength for respectively 10%, 30%, 40%, 50% and 60% 

doping concentrations of BaF2. So, effective mode area decreases with increasing doping 

concentration. Maximum value of effective area is found for 10% doping and minimum 

value is found for 60% doping. All doping percentage curve shows same characteristic 

that is with increasing wavelength effective mode area increases. Again, for GeO2 

effective mode area at 1.55 μm wavelength is 4.6292 μm2, 3.9357 μm2, 3.6598 μm2, 

3.4193 μm2, 3.2081 μm2 respectively for 10%, 30%, 40%, 50% and 60% doping 

concentrations. So, BaF2 doping provides more effective area than GeO2 doping. 

Fig. 4.39: Plot of Effective mode area as a function of wavelength for pitch, Λ =1.55 μm, 

at 10%, 30%, 40%, 50%, 60% doping concentrations of BaF2-doped SiO2. 

 

4.4.3   Analysis of Dispersion for BaF2-SiO2 Doping 

Dispersion is an important parameter for studying losses of PCF. Dispersion is also 

studied for BaF2 doped SiO2 doping. 10%, 30%, 40%, 50% and 60% doping 

concentrations are taken into consideration in calculating dispersion.  
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Fig. 4.40: Plot of Dispersion against wavelength for BaF2-SiO2 10% doping concentration 

at pitch, Λ = 1.55 µm.  

Fig. 4.40 shows dispersion of Barium fluoride doped silica for 10% doping concentration. 

From curve it is seen that with increasing wavelength dispersion decreases. The dispersion 

curve starts at 1.37 µm wavelength. At 1.37 µm wavelength dispersion is 6.139×104 

ps/(nm.km). Then the dispersion curve falls down. In the curve, fluctuation of dispersion is 

seen from 1.434 µm to 1.505 µm wavelength. Highest negative dispersion is seen at 1.45 

µm wavelength which is -1672 ps/(nm.km). From 1.505 to 1.62 µm wavelength dispersion 

curve is almost flattened. In this range dispersion varies from -88.55 ps/(nm.km) to 5.672 

ps/(nm.km). At 1.55 µm wavelength dispersion is 1.033 ps/(nm.km). For GeO2 10% 

doping at 1.55 µm wavelength dispersion is -21.7 ps/(nm.km). So, GeO2 doping gives 

more negative dispersion than BaF2 doping at 1.55 µm wavelength.  

Fig. 4.41 shows dispersion against wavelength for 30% doping concentration of BaF2 

doped SiO2. In the curve small flattened dispersion range from 1.41 µm to 1.45µm and in 

this range dispersion varies from 0.968 ps/(nm.km) to 0.9667 ps/(nm.km). From curve it is 

seen that dispersion fluctuates at several wavelengths starting from 1.453 µm to 1.531 µm. 

Again, a flattened range is seen from 1.531 µm wavelength to 1.619 µm wavelength. In 

this range dispersion varies from 0.51 ps/(nm.km) to 0.5397 ps/(nm.km). It’s maximum 

positive dispersion is 1.47 ps/(nm-km) at 1.47 µm wavelength. Minimum dispersion is 

0.4967 ps/(nm-km) which is at 1.49 µm wavelength.  
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Also for 1.453 µm and 1.531 µm wavelength dispersion are respectively 1.0 ps/(nm-km) 

and 0.51 ps/(nm-km). At 1.55 µm wavelength dispersion is 0.5167 ps/(nm.km) for BaF2 

30% doping. For GeO2 30% doping dispersion is -201 ps/(nm.km) at 1.55µm wavelength. 

Again, GeO2 doping gives more negative dispersion than BaF2 doping which is also seen 

for 10% doping. 

Fig. 4.41: Plot of Dispersion against wavelength for BaF2-SiO2 30% doping concentration 

at pitch, Λ = 1.55 µm  

Fig. 4.42 shows dispersion against wavelength curve for 40% doping of BaF2-SiO2. 

Dispersion fluctuates from 1.45 µm wavelength to 1.573 µm wavelength then it decreases 

and becomes negative. It has flattened range from 1.4 to 1.449 µm and from 1.528 µm to 

1.551 µm wavelength. As we can see the range is very small. It also has maximum 

positive dispersion 1.47 ps/(nm-km) at 1.47 µm wavelength. At 1.612 µm wavelength it 

shows minimum dispersion which is -2.316 ps/(nm-km). 

 For 1.4 µm, 1.449µm, 1.528 µm and 1.551µm wavelength dispersion are respectively 

0.9872 ps/(nm-km), 0.9652 ps/(nm-km), 0.5239 ps/(nm-km) and 0.5211ps/(nm-km). After 

1.584 µm wavelength dispersion curve becomes negative. At this wavelength dispersion is 

0.4958 ps/(nm.km).  

At 1.55 µm wavelength dispersion is 0.5167 ps/(nm.km). For GeO2 40% doping 

dispersion at 1.55µm wavelength is -71.82 ps/(nm.km).  
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Fig. 4.42: Plot of Dispersion against wavelength for BaF2-SiO2 40% doping concentration 

at pitch, Λ = 1.55 µm. 

Fig. 4.43 shows dispersion against wavelength for BaF2 doped SiO2 at 50% doping 

concentration. It is noticed that dispersion increases with wavelength and become stable at 

1.55 µm wavelength. It has flattened range from 1.467 µm to 1.492 µm wavelength and 

from 1.549 µm and 1.612 µm wavelength.  

Fig. 4.43: Plot of Dispersion against wavelength for BaF2-SiO2 50% doping concentration 

at pitch, Λ = 1.55 µm.  

In Fig. 4.43 maximum positive dispersion is at 1.45 µm wavelength which is 1.45 ps/(nm-

km). Also, maximum negative dispersion is -5.857 ps/(nm-km) which is at 1.37 µm 

1.4 1.45 1.5 1.55 1.6
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

wavelength [um]

D
is

p
e
rs

io
n
 [

p
s
/(

k
m

-n
m

)]

 

 

40% doping

1.4 1.45 1.5 1.55 1.6
-6

-5

-4

-3

-2

-1

0

1

2

wavelength [um]

D
is

p
e
rs

io
n
 [

p
s
/(

k
m

-n
m

)]

 

 

50%doping



80 

 

wavelength. Again at 1.467 µm, 1.492 µm, 1.549 µm, 1.612 µm dispersion are 

respectively 0.9932 ps/(nm-km), 0.9796 ps/(nm-km), 0.5203 ps/(nm-km), 0.5373 ps/(nm-

km). At 1.55 µm wavelength dispersion is -1.11×10-16 ps/(nm.km) and 0.5167 ps/(nm.km) 

for respectively 50% doping of GeO2 and 50% doping of BaF2. 

Fig. 4.44: Plot of Dispersion against wavelength for 60% doping concentration of BaF2-

SiO2 doping at pitch, Λ = 1.55 µm  

Fig. 4.44 shows dispersion against wavelength curve for 60% doping concentration of 

BaF2-SiO2. 60% dispersion curve starts at 1.37 µm wavelength. At this wavelength 

dispersion is 16.59 ps/(nm.km). Then the curve falls down up to 1.45 µm wavelength It 

has flattened range from 1.45 µm to 1.569 µm wavelength.  

Also in Fig. 4.44, at 1.569 µm wavelength dispersion is 0.09688 ps/(nm-km) which is 

almost zero. Minimum dispersion is -49.86 ps/(nm-km) which is at 1.612 µm wavelength. 

At 1.45 µm and 1.569 µm wavelength dispersion is respectively 0.4833 ps/(nm-km), 

0.06988 ps/(nm-km). At 1.55µm wavelength for BaF2 60% doping dispersion is 1.033 

ps/(nm.km). For GeO2 60% doping at 1.55 µm wavelength dispersion is -1.033 

ps/(nm.km). 

Fig. 4.45 shows dispersion against wavelength curve for all doping concentrations of 

BaF2-SiO2. For 30%, 40%, 50%, 60% doping value of dispersion is very close to each 

other. This is the reason the four curves are very close to each other and the curves almost 

overlap. It has maximum dispersion of 6.139×104 ps/(nm-km) at 10% doping which is at 
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1.37 µm wavelength.  Dispersion of -1672 ps/(nm-km) is seen for 10% doping at 1.45 µm 

wavelength. 

Fig. 4.45: Plot of Dispersion against wavelength for 10%, 30%, 40%, 50% and 60% 

doping concentrations of BaF2-SiO2 at pitch, Λ = 1.55 µm.  

 

4.4.4  Analysis of Nonlinearity Parameter with BaF2 Doped Silica Doping 

Nonlinearity is another important parameter for measuring losses of photonic crystal fiber. 

10%, 30%, 40%, 50% and 60% doping percentage have taken to consideration for our 

proposed H-PCF. Nonlinearity parameter is calculated using equation (2.8). Using 

effective mode area non-linear coefficient is calculated. All data for effective area 

calculation is taken from COMSOL. 

Fig. 4.46 shows nonlinearity parameter against wavelength curve for 10% doping of BaF2-

SiO2. At 1.49 µm, 1.51 µm and 1.53 µm nonlinearity parameter are respectively 15.9556 

W-1Km-1, 15.5189 W-1Km-1and 15.0936 W-1Km-1. So, Nonlinearity parameter decreases 

with wavelength. At 1.55 µm wavelength nonlinearity parameter is 14.6797 W-1Km-1 for 

10% doping of BaF2. For 10% doping of GeO2 nonlinearity parameter is 15.5869 W-1 Km-

1 at 1.55 µm. 
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Fig. 4.46: Plot of Nonlinearity parameter as a function of wavelength for pitch, Λ =1.55 

μm at 10% doping concentration of BaF2-SiO2 

Fig. 4.47: Plot of Nonlinearity parameter as a function of wavelength for pitch, Λ =1.55 

μm at 30% doping concentration of BaF2-SiO2 

Fig. 4.47 shows nonlinearity parameter against wavelength curve for 30% doping 

concentration of BaF2-SiO2. At 1.47 µm, 1.49 µm and 1.51 µm nonlinearity parameter are 

respectively 16.9571 W-1Km-1, 16.4950 W-1Km-1 and 16.0452 W-1Km-1. From the result it 

is seen that nonlinearity parameter decreases with increasing wavelength.  
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At 1.55 µm nonlinearity parameter is 14.6797 W-1Km-1 and 15.1860 W-1Km-1 respectively 

for 10% and 30% doping of BaF2. So, nonlinearity parameter increases with increasing 

doping percentage.  

For 30% doping percentage of GeO2 nonlinearity parameter is 18.333 W-1Km-1 at 1.55 µm 

wavelength. Comparing the result, it is seen that GeO2 30% doping shows more 

nonlinearity than 30% doping of BaF2. 

 

Fig. 4.48: Plot of Nonlinearity parameter as a function of wavelength for pitch, Λ =1.55 

μm at 40% doping concentration of BaF2-SiO2 

In Fig. 4.48 shows the Nonlinearity parameter is shown for 40% doping concentration of 

BaF2. At 1.47 μm, 1.49 μm and 1.51 μm wavelength nonlinearity parameter are 

respectively 17.1256 W-1Km-1, 16.6583 W-1Km-1 and 16.2037 W-1Km-1.  

Also in Fig. 4.48, at 1.55 μm wavelength nonlinearity parameter is 15.3309 W-1Km-1 and 

19.6048 W-1Km-1 respectively for 40% doping of BaF2 and GeO2. Again, GeO2 shows 

more nonlinearity than BaF2. 
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Fig. 4.49: Plot of Nonlinearity parameter against wavelength for pitch, Λ =1.55 μm at 

50% doping concentration of BaF2-SiO2 

Fig 4.49 shows nonlinearity parameter against wavelength for 50% doping of BaF2. At 

1.55 μm wavelength nonlinearity parameter are respectively 15.5125 W-1Km-1 and 

20.9833 W-1Km-1 respectively for 50% doping of BaF2 and GeO2. 

Fig. 4.50: Plot of Nonlinearity parameter against wavelength for pitch, Λ =1.55 μm at 

60% doping concentration of BaF2-SiO2 

For 60% doping concentration the value of nonlinearity parameter is 22.3650 W-1Km-1 and 

15.5955 W-1Km-1 respectively for GeO2 and BaF2 60% doping at 1.55 μm wavelength 
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which is shown in Fig. 4.50. So, more nonlinearity is seen for GeO2 60% doping than 

BaF2 60% doping. 

Fig. 4.51: Plot of Nonlinearity parameter against wavelength for 10%, 30%, 40%, 50% 

and 60% doping concentrations of BaF2-SiO2 doping at pitch, Λ = 1.55 µm  

Fig. 4.51 shows combine plot of nonlinearity parameter for all doping percentage we have 

taken into consideration. Nonlinearity parameter is 14.679, 15.186, 15.330, 15.366, 15.595 

W-1Km-1 at 1.55 μm wavelength for doping percentage 10%, 30%, 40%, 50% and 60% 

respectively. With increasing doping percentage nonlinearity parameter increases. 

Minimum nonlinearity is seen at 10% doping whereas maximum nonlinearity is found at 

60% doping. At 1.55 μm wavelength for GeO2 10%, 30%, 40%, 50% and 60% doping 

nonlinearity parameter are respectively 15.58699 W-1Km-1, 18.3334 W-1Km-1, 19.6048 W-

1Km-1, 20.9833 W-1Km-1 and 22.3650 W-1Km-1. Comparing the results, it can be said that 

for all doping concentrations GeO2 doping shows more nonlinearity than BaF2 doping. 

 

4.5  Comparison Between Without GeO2-SiO2 and BaF2-SiO2 Doping 

The proposed H-PCF is separately doped with GeO2 and BaF2. The comparison of two 

doping materials and its effect on H-PCF’s different parameters such as dispersion, 

nonlinearity parameter, effective mode area, effective mode index is discussed briefly.  

From the previous discussion it is found that dispersion is not flattened at the time of 0% 

doping. When the proposed model is doped dispersion is flattened in various wavelengths. 
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That’s why doped H-PCF is proposed. It is also noticed that GeO2-SiO2 doping gives 

almost flattened dispersion in a range of wavelength starting from 1.467 µm to 1.533 µm 

and high negative dispersion of -1017 ps/(nm.km) at 1.61 µm wavelength for 30% doping 

concentration. At 1.55µm wavelength dispersion is -21.7ps/(nm.km), -201 ps/(nm.km), -

71.82 ps/(nm.km), -1.11×10-16 ps/(nm.km) and -1.033 ps/(nm.km) respectively for 10%, 

30%, 40%, 50% and 60% doping concentration of GeO2. After comparing 10%, 30%, 

40%, 50%, 60% doping concentrations of GeO2-SiO2, it is observed that 30% doping 

concentration gives better result.  

Again, the proposed design is doped with Barium fluoride which is a new approach. At 

1.55 µm wavelength for BaF2 10%, 30%, 40%, 50% and 60% dispersion are found 

respectively 1.033 ps/(nm.km), 0.5167 ps/(nm.km), 0.5167 ps/(nm.km), 0.5167 

ps/(nm.km) and 1.033 ps/(nm.km). Though dispersion does not decrease in a large amount 

with increasing doping percentage but for 10% doping of BaF2 high negative dispersion of 

-1672 ps/(nm.km) is seen at 1.45 µm wavelength. That’s why 10% doping concentration 

of BaF2 is considered more suitable in all doping concentrations (e.g. 10%, 30%, 40%, 

50%, 60%) of BaF2-SiO2. 

 

4.5.1 Comparison of Effective Mode Index Between Without Doping, GeO2-SiO2 

Doping and BaF2-SiO2 Doping 

Effective mode index for without doping, 30% GeO2-SiO2 and 10% BaF2-SiO2 are taken 

into consideration as these percentages gives better result. 

From Fig. 4.52 it is observed that effective mode index of GeO2-SiO2 doping is greater 

than BaF2-SiO2 doping. Both the curves show same nature. Both curves start decreasing 

with increasing of wavelength. GeO2 doping curve has highest effective mode index 1.42 

then it starts falling. Values of effective mode index are 1.3956, 1.3969, 1.4112 at 1.55 µm 

wavelength for without doping, 10% BaF2 and 30% GeO2 doping respectively. 

 After doping with both the materials effective mode index increases. There is significant 

change for GeO2 30% doping than BaF2 10% doping. Fig. 4.52 shows effective mode 

index vs wavelength for GeO2 doped silica, BaF2 doped silica and without doping. 
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Fig. 4.52: Plot of Effective Mode Index against wavelength for 0% doing, 30% doping of 

GeO2-SiO2 and 10% doping of BaF2-SiO2 at pitch, Λ = 1.55 µm. 

 

4.5.2 Comparison of Effective Mode Area Between Without Doping, GeO2-SiO2 and 

BaF2-SiO2 Doping 

Effective mode area of GeO2-SiO2 30% doping, BaF2-SiO2 10% doping and 0% doping is 

compared and discussed below: 

Fig. 4.53: Plot of Effective mode area vs wavelength for 0% doing, 30% doping of GeO2-

SiO2 and 10% doping of BaF2-SiO2 at pitch, Λ = 1.55 µm 
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Fig. 4.53 shows effective mode area versus wavelength for 0% doping, 30% doping of 

GeO2-SiO2 and 10% doping of BaF2-SiO2. From curve it is seen that effective area 

decreases after doping. All curve shows same characteristic. With increasing wavelength 

effective area increases. Though after doping of H-PCF model effective area decreases, 

doping is suggested to minimize dispersion. Values of effective mode area are 5.0717 

µm2, 3.9357 µm2, 4.9429 µm2 at 1.55 µm wavelength for without doping, 10% BaF2, 30% 

GeO2 respectively. BaF2-SiO2 doping provides large effective mode area than GeO2-SiO2 

doping. 

 

4.5.3  Comparison of Dispersion Between Without, GeO2-SiO2 doping and BaF2-

SiO2 doping 

To compare between undoped, GeO2-SiO2 and BaF2-SiO2 model, dispersion is considered 

as the most important parameter. For GeO2 30% doping and for BaF2 10% doping 

dispersion is found more flattened and negative. Dispersion is considered as the most 

important parameter and all other parameters such as effective mode index, effective mode 

area, nonlinearity parameter is also compared on the basis of dispersion. At the time of 

without doping nonlinearity parameter can’t be calculated. So, nonlinearity parameter for 

without doping is not included. 

Fig. 4.54: Plot of Dispersion vs wavelength for 0% doing, 30% doping of GeO2-SiO2 and 

10% doping of BaF2-SiO2 at pitch, Λ = 1.55 µm. 
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Fig. 4.54 shows dispersion against wavelength curve for 0% doing, 30% GeO2-SiO2 and 

10% BaF2-SiO2 at pitch, Λ = 1.55 µm. From Fig. it is seen that 10% BaF2-SiO2 dispersion 

curve has high positive dispersion of 6.139×104 ps/(nm.km) at 1.37 µm wavelength. 

Positive dispersion is so high that for zero percentage doping and 30% GeO2-SiO2 plot 

seems almost flat. So, for more convenience illustrated curve of flattened region is shown 

separately. 

From Fig. 4.55 it is seen that when the proposed model is not doped, it shows more 

dispersion. GeO2-SiO2 curve is almost zero and BaF2-SiO2 curve shows little dispersion. 

From Fig. 4.54 it is also noticed that 10% doping of BaF2-SiO2 has highest negative 

dispersion -1672 ps/(nm-km) at 1.45 µm wavelength. Flattened range is seen from 1.505 

to 1.62 µm wavelength. At 1.575 µm wavelength almost zero dispersion of 0.02133 

ps/(nm.km) is seen.  

Again, 30% doping concentration of GeO2-SiO2 shows highest negative dispersion -1017 

ps/(nm-km) which is at 1.61 µm wavelength. GeO2-SiO2 doping gives more flattened 

dispersion in a range of wavelengths starting from 1.371 µm to 1.533 µm wavelength and 

almost zero dispersion of 0.06035 ps/(nm.km) at 1.507 µm wavelength. 

Fig. 4.55: Dispersion vs wavelength more illustrated curve for 0% doing, 30% doping of 

GeO2-SiO2 and 10% doping of BaF2-SiO2 at pitch, Λ = 1.55 µm. 
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4.5.4 Comparison of Nonlinearity Parameter Between GeO2-SiO2 and BaF2-SiO2 

Doping 

Nonlinearity parameter for GeO2-SiO2 and BaF2-SiO2 doping is studied separately. 

Comparison between nonlinearity for 30% doping of GeO2-SiO2 and 30% doping of BaF2-

SiO2 is discussed briefly. 

Fig. 4.56 shows nonlinearity parameter against wavelength curve for 30% doping of 

GeO2-SiO2 and 10% doping of BaF2-SiO2. It is noticed that with increasing wavelength 

nonlinearity parameter decreases but with increasing doping it decreases. From Fig. 4.56 it 

is again noticed that 10% doping of BaF2-SiO2 shows less nonlinearity then 30% doping 

of GeO2-SiO2. Again, 30% GeO2-SiO2 doping curve is not fully smooth. Value of 

nonlinearity parameter are 14.6797 and 18.3334 W-1Km-1 at 1.55 µm wavelength for 10% 

BaF2, 30% GeO2 respectively. 

Fig. 4.56: Plot of Nonlinearity parameter vs wavelength for 30% doping of GeO2-SiO2 and 

10% doping of BaF2-SiO2 at pitch, Λ = 1.55 µm. 

 

4.6 Conclusion 

In this chapter effective mode index, effective mode area, dispersion and nonlinear 

parameters are analyzed for the proposed H-PCF model for without doping, with GeO2-

SiO2 doping and with BaF2-SiO2 doping. Comparison between without doping, GeO2 

doping and BaF2 doping are also discussed.  
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CHAPTER 5 

CONCLUSION AND FUTURE WORKS 

5.1 Introduction 

In this final chapter, we summarize the out-come of our intended research work to fulfill 

the desired objectives. Here, we also try to provide suggestions for future work. 

 

5.2 Conclusion  

The objectives of this thesis were to study structural properties of PCF to analyze and 

propose a suitable model, to compensate the dispersion by varying doping parameters of 

the core and to study other characteristics of the designed H-PCF over a broadband range. 

In light of these objectives, losses and characteristics of the proposed model are analyzed. 

From the simulation results and the plots, it can be assumed that the objectives are 

fulfilled.  

30% doping of GeO2 gives highest negative dispersion of -1017 ps/(nm.km) at 1.61 µm. A 

flattened range is seen from 1.371 µm to 1.533 µm wavelength and almost zero dispersion 

of 0.0635 ps/(nm.km) at 1.507 µm wavelength. 

10% doping of BaF2 gives highest negative dispersion of -1672 ps/(nm.km) at 1.45 µm 

wavelength. From 1.505 to 1.62 µm wavelength dispersion curve is almost flattened. In 

this range dispersion varies from -88.55 ps/(nm.km) to 5.672 ps/(nm.km). BaF2 doping in 

H-PCF is certainly a new approach. 

Both 10% BaF2 doping and 30% GeO2 doping shows high nonlinearity and suitable 

effective mode area. 

Validating the obtained results with published works it is seen that 10% BaF2 doping 

shows higher effective area than paper [9], slightly larger effective area than paper [11], 

high negative dispersion than paper [19, 20] providing flattened range from 1.505 to 1.62 

µm wavelength. 

When the model is undoped it gives better effective area than paper [13]. At 1.51 µm 

wavelength for 0% doping, 0.00 ps/(nm.km) dispersion is found. Comparing with [15], the 
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proposed model at 30% doping gives more flattened and zero dispersion and moderate 

nonlinearity than [9, 11]. 

So, it can be deducted from the above discussion that our proposed H-PCF for BaF2 doped 

SiO2 gives large effective area and zero flattened dispersion for broad range with suitable 

mode index and non-linear coefficient. 

The proposed model shows very low dispersion for 0% doping or without doping but it 

doesn’t provide any flattened range which is needed in most optical applications. That’s 

why doping of H-PCF is suggested. After doping with GeO2 and BaF2 nearly zero 

flattened and high negative dispersion is found. Proposed model can be used to control 

chromatic dispersion and nonlinear optical applications. It is also seen from our proposed 

model that effective area decreases as doping percentage increases. This problem may be 

solved by increasing number of air hole rings of PCF. Dispersion is not constant for all 

doping percentage. So, experimenting other doping materials this problem may be solved.  

 

5.3 Future Works  

PCF has much application in fiber optic communications, fiber lasers, non-linear devices, 

high power transmission, highly sensitive gas sensors, and other areas. In this thesis paper, 

an insight of the characteristics of fiber is given which is desirable for fiber optic 

communication. More works on the related topic can be done in future by applying 

following guidelines: 

(i) Shape of the rings of air holes may be varied for each ring to confine the light 

beam further. 

(ii) Shape of the PCF may be changed to Octagonal, Decagonal and other Hybrid 

structure to minimize all other losses. 

(iii) Study of multi-core fiber can be taken to increase bandwidth and data rates of the 

transmission.  
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APPENDIX 1 

MATLAB CODES 

Sample code for measuring Effective Mode Index 

clc; 

clearall; 

closeall; 

 

% wavelength 

lam10=[1.41 

       1.43 

       1.45 

       1.47 

       1.49 

       1.51 

       1.53 

       1.55 

       1.57 

       1.59 

       1.61]; 

 

% effective mode index for GeO2 10% doping 

Eta10=[1.403829 

       1.40267 

       1.401509 

       1.400346 

       1.399182 

       1.398015 

       1.396848 

       1.395679 

       1.39451 

       1.39334 

       1.39217]; 

 

plot(lam10,Eta10,'g'); 

xlabel('Wavelength( \mum)'); 

ylabel('Effective Mode Index(\etaeff)');  

 

 

Sample code for measuring Effective Mode Area 

 
 

clc; 

clearall; 

closeall; 

 

% wavelength 

lam10=[1.41  
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       1.43 

       1.45 

       1.47 

       1.49 

       1.51 

       1.53 

       1.55 

       1.57 

       1.59 

       1.61]; 

 

% effective mode area for GeO2 10% doping 

 

aeff=[4.165404163 

        4.226602377 

        4.289388432 

        4.353820136 

        4.419958145 

        4.487866678 

        4.557594627 

        4.629210203 

        4.702765213 

        4.778312107 

        4.855902628]; 

plot(lam10,aeff,'r'); 

xlabel('Wavelength(\mum)'); 

ylabel('Effective Mode Area Aeff(\mum^2)'); 

 

 

Sample code for measuring Dispersion Coefficient  

 
 

%GeO2 doped SiO2H-PCF with doping concentration, X=0% 

Eta10=[1.403829 

       1.40267 

       1.401509 

       1.400346 

       1.399182 

       1.398015 

       1.396848 

       1.395679 

       1.39451 

       1.39334 

       1.39217]; 

%GeO2 doped SiO2 H-PCF with doping concentration, X=10% 

 Eta11=[1.409038 

        1.407835 

        1.406629 

        1.40542 

        1.404212 

        1.403001 

        1.401831 
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        1.400574 

        1.399359 

        1.398144 

        1.396928]; 

%GeO2 doped SiO2 H-PCF with doping concentration, X=50%  

  Eta12=[1.433343 

         1.433035 

         1.430419 

         1.428959 

         1.427499 

         1.42604 

         1.424582 

         1.423125 

         1.421668 

         1.420214 

         1.419866]; 

%GeO2 doped SiO2 H-PCF with doping concentration, X=60%    

  Eta13=[1.440196 

         1.438651 

         1.437108 

         1.435568 

         1.43403 

         1.432494 

         1.43096 

         1.429428 

         1.427898 

         1.433262 

         1.424845]; 

%GeO2 doped SiO2 H-PCF with doping concentration, X=40% 

   Eta14=[1.426783 

          1.426127 

          1.42401 

          1.422623 

          1.421236 

          1.419848 

          1.4186 

          1.417073 

          1.415685 

          1.414298 

          1.412912]; 

%GeO2 doped SiO2 H-PCF with doping concentration,X=30%     

   Eta15=[1.420534 

          1.419216 

          1.417897 

          1.416577 

          1.415256 

          1.413933 

          1.41261 

          1.411287 

          1.410353 

          1.409027 

          1.407701];    
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ita=Eta10'; 

lamb=1.41:.02:1.61; 

del=0.1; 

%dd1(1)=(ita(1)-2*ita(end)+ita(end-1))/(del)^2; 

fori=2:length(ita)-1 

  dd1(i)=(ita(i-1)-2*ita(i)+ita(i+1))/(del)^2; 

end 

 

 dd1=dd1*10^12; 

lambda=lamb(2:end-1); 

dd=dd1(2:end); 

 

for a=1:length(lambda) 

dd(a)= -dd(a)*(lambda(a)/(3e8)); 

end 

 lambda1=(1.37:.001:1.65); 

 

ddd=interp1(lambda,dd,lambda1,'cubic'); 

plot(lambda1,ddd,'c'); 

xlabel('wavelength [um]'); 

ylabel('Dispersion [ps/(km-nm)]'); 

gridon 

holdon 

 

Sample code for measuring Nonlinear Coefficient  

 
 

clc; 

clearall; 

closeall; 

% wavelength 

lam30=[1.41 

       1.43 

       1.45 

       1.47 

       1.49 

       1.51 

       1.53 

       1.55 

       1.57 

       1.59 

       1.61]; 

 

%nonlinearity for 10% GeO2 doping 

  y2=[22.60858853     

      18.50433387 

      17.9819799 

      17.47483436 

      16.98229814 

      16.50380153 

      16.03886977 
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      15.58699106 

      15.1477433 

      14.72072666 

      14.30556586]; 

 

plot(lam30,y2,'r'); 

xlabel('Wavelength(\mum)'); 

ylabel('Nonlinearity Parameter(W^-1 km^-1)'); 
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