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ABSTRACT 

 

This thesis paper presents detail analysis of a hexagonal, octagonal, decagonal and hybrid 

shaped photonic crystal fiber (PCF) with an aim to compare their performance over various 

parameters of communication. Deliberate study on the constructional design of the PCF 

models is carried out to find the optical signal guidance mechanisms through it. The 

COMSOL Multi-Physics 4.4 Simulation Software is used to perform the modal analysis of 

the designed PCFs. Three conventional PCFs such as H-PCF, O-PCF and D-PCF are 

constructed with four layered circular air hole rings. The hybrid structure (Hy-PCF) is also 

made of four air hole rings but consists of elliptical and square air holes along with the 

circular ones. Pure silica material is used as core-cladding materials. All the properties are 

analyzed for 0.80-2.00μm wavelengths range. The dispersion profile of the H-PCF is found 

quite varying whereas the O-PCF and D-PCF have shown zero to negative dispersion with 

little variation. At 1.55 μm wavelengths, the calculated dispersion for H-PCF, O-PCF and 

D-PCF are −2.80 ps/nm-km, −8.61 ps/nm-km and−11 ps/nm-km respectively. The Hy-PCF 

has exhibited more negative dispersion with almost linearly decreasing characteristics 

against wavelengths. The value is −81.08 ps/nm-km for 1.55 μm wavelengths. A very 

negligible confinement loss is obtained for H-PCF, O-PCF and D-PCF for a large 

wavelengths range. At 1.55 μm wavelengths the H-PCF, O-PCF, D-PCF and Hy-PCF have 

provided 25.42 μm2, 19.83 μm2, 15.7 μm2 and 5.15 μm2effective mode areas respectively. 

For the three conventional structures of similar parameters the values of nonlinear 

coefficient are found close to each other (3.43W-1km-1, 2.865W-1km-1 and 2.493 W-1km-1 

respectively at 1.55 μm) but the Hy-PCF has shown 19.03W-1km-1. Moreover the 

conventional PCFs have provided negligible birefringence of the order of 10-6 only, but the 

Hy-PCF has provided large birefringence (4.34×10−3 at 1.55 μm wavelengths).  

Considering the overall system performance, it can be said that, this findings of this thesis 

on PCF structures will help to fabricate better kind of optical transmission media of more 

data rates. Loss parameter analysis of all structures studied will suggest their application in 

specific areas of optical communication. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

Telecommunication is the technology of transferring or receiving signals and messages 

over long distances using electronic equipment. This is a broad term that includes a wide 

range of information transmitting technologies such as telephones (wired and wireless), 

microwave communications, fiber optics, satellites, radio and television broadcasting. 

Sophisticated techniques have been developed for the modification of the 

telecommunication system to meet up with the demand of ever increasing consumer all 

around the world. Among the most frequently used telecommunication system, the fiber 

optic based communication system is notable. Optical fiber is used by many 

telecommunication companies to transmit telephone signals, internet communication and 

cable television signals. The use of the fiber-optic based technology is increasing day by 

day.   

Fiber optic communication is a method of transmitting information from one place to 

another by sending pulses of light through an optical fiber. The light forms an 

electromagnetic carrier wave that is modulated to carry information. Fiber is preferred over 

other means of communication media when high bandwidth, long distance or immunity to 

electromagnetic interference is required. Fiber optic data transmission systems send 

information over fiber by converting electrical signals into light. The electromagnetic 

spectrum is composed of visible and near infrared light like that transmitted fiber. 

An optical fiber is a flexible, transparent fiber made by drawing glass (silica) or plastic to a 

diameter slightly thicker than that of a human hair. Optical fibers are used most often as a 

means to transmit light between the two ends of the fiber and find wide usage in fiber optic-

communication, where they permit transmission over longer distance and at higher 

bandwidths (data rates) than wire cables.    
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Fiber optic technology has developed tremendously over last few years and today it is 

found in many places such as in telecommunication system, military application, medical 

equipment etc. Fibers are used instead of metal wires because signals travel along them 

with negligible loss. Fibers are also used for illumination and imaging and are often 

wrapped in bundles so that they may be used to carry light into, or images out of confined 

spaces, as in a case of electro-medical equipment. 

1.2 Basic Communication System 

Communication system is a collection of individual communications, networks, 

transmission systems, relay stations, and data terminal equipment. A block schematic of a 

general communication system is shown in Fig. 1.1. The function of which is to convey the 

signal from the information source over the transmission medium to the destination. 

 

 

 

Fig. 1.1: The general communication system [1]. 

The communication system therefore consists of a transmitter or modulator linked to the 

information source, the transmission medium, and a receiver or demodulator at the 

destination point. In electrical communications the information source provides an 

electrical signal, usually derived from a message signal which is not electrical (e.g. sound). 

The transmitter comprising of electrical and electronic components converts the signal into 

a suitable form for propagation over the transmission medium. This is often achieved by 

modulating a carrier, which, as mentioned previously, may be an electromagnetic wave. 

The transmission medium can consist of a pair of wires, a coaxial cable or a radio link 

through free space down which the signal is transmitted to the receiver, where it is 

transformed into the original electrical information signal (demodulated) before being 

passed to the destination. In any transmission medium the signal is attenuated, or suffers 

loss, and is subject to degradations due to contamination by random signals and noise, as 

well as possible distortions imposed by mechanisms within the medium itself. In any 

Information 

source 

Transmitter 

(Modulator) 

Transmission 

Medium 
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(Demodulator) 
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communication system there is a maximum permitted distance between the transmitter and 

the receiver beyond which the system effectively ceases to give intelligible communication. 

For long haul applications these factors necessitate the installation of repeaters or line 

amplifiers at intervals, both to remove signal distortion and to increase signal level before 

transmission is continued down the link. 

1.3 Optical Fiber Communication System 

1.3.1 Structure of Optical Fiber 

The optical fiber considered in the preceding sections with a core of constant refractive 

index n1, cladding of a slightly lower refractive index n2 is known as step index fiber. This 

is because the refractive index profile for this type of fiber makes a step change at the core-

cladding interface. The refractive index profile may be defined as: 

                           n(r) = n1,   r ˂a (core)                                (1.1) 

           = n2,  r≥a (cladding)                    (1.2) 

However, for lower bandwidth applications multimode fibers have several advantages over 

single-mode fibers. These are: 

(a) The use of spatially incoherent optical sources (e.g. most light-emitting diodes) which 

cannot be efficiently coupled to single-mode fibers, (b) larger numerical apertures, as well 

as core diameters, facilitating easier coupling to optical sources, (c) lower tolerance 

requirements on fiber connectors. 

Multimode step index fibers allow the propagation of a finite number of guided modes 

along the channel. The number of guided modes is dependent upon the physical parameters 

(i.e. relative refractive index difference, core radius) of the fiber and the wavelengths of the 

transmitted light. Graded index fibers do not have a constant refractive index in the core but 

a decreasing code index n2 with radial distance from a maximum value of n1 at the axis to a 

constant value n2 beyond the core radius a in the cladding. This index variation may be 

represented as:  
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     n(r) = n1(1-2∆(r/a)α)1/2              r <a (core)                         (1.3) 

                                                n1(1-2∆)1/2 = n2      r≥a (cladding)           (1.4) 

Using the concepts of geometric optics, the gradual decrease in refractive index from the 

center of the core creates much refractive of the rays as they are effectively incident on a 

large number of high to low index interfaces. With an ever increasing angle of incidence, 

until the conditions for total internal reflection are met, and the ray travels back towards the 

core axis, again being continuously refracted.     

1.3.1.1     Basic Structure  

An optical fiber is a thin cylinder of dielectric material able to transport light. The beam 

launched into the fiber is propagated by total internal reflection. A simple thin cylinder of 

glass acts as an optical fiber, however it is extreme fragile and breaks easily by applying a 

small bend. A way to reduce this fragility is to coat the rod with a smooth material like 

acrylic, silicon or polyimide. The fiber is now much more robust and flexible. However, the 

light cannot anymore transmit inside the fiber since these protective layers have similar or 

higher refraction index than the rod and therefore no more internal reflection occurs! To 

solve this problem, the rod (it will become the core of the fiber) is surrounded by a layer of 

glass (called cladding) with a small refraction index to permit total internal reflection. The 

refraction index difference between the core and the clad defines the angle (numerical 

aperture) at which the light can enter into the fiber. The core diameter ranges from few 

microns up to few millimeters. The length may reach kilometers as in the case of 

telecommunications applications. Optical fibers may be classified according to the 

following ways: 

(i)  Single-mode Fiber 

In fiber-optic communication, a single-mode optical fiber (SMF) is an optical fiber 

designed to carry light only directly down the fiber - the transverse mode. Modes are the 

possible solutions of the Helmholtz equation for waves, which is obtained by combining 

Maxwell's equations and the boundary conditions. These modes define the way the wave 

travels through space, i.e. how the wave is distributed in space. Waves can have the same 
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mode but have different frequencies. This is the case in single-mode fibers, where we can 

have waves with different frequencies, but of the same mode, which means that they are 

distributed in space in the same way, and that gives us a single ray of light. Although the 

ray travels parallel to the length of the fiber, it is often called transverse mode since its 

electromagnetic oscillations occur perpendicular (transverse) to the length of the fiber. 

(ii)  Multimode Fiber 

In a multimode fiber, the core diameter is much bigger than the wavelength of the 

transmitted light. A number of modes can be simultaneously transmitted. Fiber modes are 

related to the possible ways the light travels inside the fiber. The primary mode travels 

parallel to the axis of the fiber and therefore takes the minimum time to reach the end of the 

fiber. When the incoming beam enters with an angle respect to the fiber axis, the light will 

follow a longer path and therefore will take longer to reach the end. The number of modes 

that can be transmitted along the fiber increases with the core diameter. Multimode fibers 

may be divided in step and graded index.  

(iii)  Step-Index Fiber 

Step index fibers are the most used fibers in fields other than telecommunications. The 

refraction index of the core is constant in these and the light travels in straight paths. They 

are relatively cheap and they have the widest range of core diameters: basically from 50 μm 

up to 2mm. The material may be plastic, liquid or glass. Plastic fibers are not wide used 

nowadays; their optical transmission is poor and the core relatively big (0.5 to 2 mm). The 

most efficient fibers are made in acrylic and they are mainly used for short length 

telecommunication networks. In spite of their limited performances, new developments in 

plastic fibers might open applications in the field of high speed home networks (Gigabit/s). 

New polymers are being proposed with attenuations approaching the silica fibers. 

(iv)  Graded-Index Fiber 

In fiber optics graded index is an optical fiber whose core has a refractive index that 

decreases with increasing radial distance from the optical axis of the fiber. Because parts of 

the core closer to the fiber axis have a higher refractive index than the parts near the 
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cladding, light rays follow sinusoidal paths down the fiber. The most common refractive 

index profile for a graded-index fiber is very nearly parabolic. The parabolic profile results 

in continual refocusing of the rays in the core, and minimizes modal dispersion. 

 

Fig. 1.2: The different types of optical fiber. 

(v) Multi-core Fiber 

Multi-Core Fiber (MCF) is a revolutionary new approach to engineer a fiber for high 

capacity applications. MCF prototypes in both single-mode (SM) and multi-mode (MM) 

with a multiple of cores ranging from 4 to 8 have been produced. Application of MCF 

includes in metro optical networks, wireless base stations, data center connectivity, next-

generation optical amplifiers, down-hole sensing in oil exploration applications, pipeline 

monitoring, backplane and inter-chip communications. 

1.3.1.2    Concept of Basic Optical Fiber Communication 

An optical fiber communication system is similar in basic concept to any type of 

communication system. The simplest type of fiber-optic communication system is a fiber-

optic link providing a point to point connection with a single data channel. For optical fiber 

communications the system is shown in Fig 1.3. 
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Fig 1.3: The optical fiber communication system [1]. 

In this case the information source provides an electrical signal to a transmitter comprising 

an electrical stage which drives an optical source to give modulation of the light wave 

carrier.  The optical source which provides the electrical–optical conversion may be either a 

semiconductor laser or light-emitting diode (LED). The transmission medium consists of an 

optical fiber cable and the receiver consists of an optical detector which drives a further 

electrical stage and hence provides demodulation of the optical carrier. Photodiodes and, in 

some instances, phototransistors and photoconductors are utilized for the detection of the 

optical signal and the optical–electrical conversion. There is a requirement for electrical 

interfacing at either end of the optical link and at present the signal processing is usually 

performed electrically. The optical carrier may be modulated using either an analog or 

digital information signal. In the system shown in Fig 1.2 analog modulation involves the 

variation of the light emitted from the optical source in a continuous manner. With digital 

modulation, however, discrete changes in the light intensity are obtained (i.e. on–off 

pulses). Although often simpler to implement, analog modulation with an optical fiber 

communication system is less efficient, requiring a far higher signal-to-noise ratio at the 

receiver than digital modulation. The linearity needed for analog modulation is not always 

provided by semiconductor optical sources, specially at high modulation frequencies. For 

these reasons, analog optical fiber communication links are generally limited to shorter 

distances and lower bandwidth operation than digital links. 
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1.3.2   Ray Optics Theory 

The refractive index of a medium is defined as the ratio of the velocity of light in a vacuum 

to the velocity of light in the medium. A ray of light travels more slowly in an optically 

dense medium than in one that is less dense, and the refractive index gives a measure of this 

effect.   

When a ray is incident on the interface between two dielectrics of differing refractive 

indices (e.g. glass–air), refraction occurs, as illustrated in Fig 1.4. It may be observed that 

the ray approaching the interface is propagating in a dielectric of refractive index n1 and is 

at an angle Φ1 to the normal at the surface of the interface. If the dielectric on the other side 

of the interface has a refractive index n2 which is less than n1, then the refraction is such 

that the ray path in this lower index medium is at an angle Φ2 to the normal, where Φ2 is 

greater than Φ1. The angles of incidence Φ1 and refraction Φ2 are related to each other and 

to the refractive indices of the dielectrics by Snell’s law of refraction [1], which states that: 

n1sinΦ1= n2sinΦ2             (1.5) 

 

Fig. 1.4:  Incident light rays and refracted light rays [1] 

It may also be observed in Fig. 1.3 that a small amount of light is reflected back into the 

originating dielectric medium (partial internal reflection). As n1 is greater than n2, the angle 

of refraction is always greater than the angle of incidence. Thus when the angle of 
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refraction is 90° and the refracted ray emerges parallel to the interface between the 

dielectrics, the angle of incidence must be less than 90°. This is the limiting case of 

refraction and the angle of incidence is now known as the critical angle Φc, as shown in Fig. 

1.5. 

 

Fig. 1.5: The limited case of refraction and critical ray [1]. 

The value of the critical angle is given by: 

                            sinΦc = n2/n1              (1.6) 

At angles of incidence greater than the critical angle the light is reflected back into the 

originating dielectric medium (total internal reflection) with high efficiency (around 

99.9%). It may be observed in Fig. 1.6. 

 

Fig. 1.6: Total internal reflection [1]. 
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1.3.3 Geometry of Optical Fiber 

In its simplest form an optical fiber consists of a cylindrical core of silica glass surrounded 

a cladding whose refractive index is lower than that of the core. Because of an abrupt index 

change at the core–cladding interface, such fibers are called step-index-fiber. In a different 

type of fiber, known as graded-index-fiber, the refractive index decreases gradually inside 

the core. Fig. 1.7 shows schematically the index profile and the cross section for the two 

kinds of fibers. 

 

Fig. 1.7:  Cross-section and refractive-index profile of step-index and graded-index fiber [2] 

 A step-index profile is a refractive index profile characterized by a uniform refractive 

index within the core and a sharp decrease in refractive index at the core-cladding interface 

so that the cladding is of a lower refractive index. Fig. 1.8 shows the light confinement 

through total internal reflection in step index fibers. 
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Fig. 1.8: Light propagation in step-index fiber [2]. 

The refractive index of the core in graded-index fibers is not constant but decreases 

gradually from its maximum value n1 at the core center to its minimum value n2 at core–

cladding interface. Most graded-index fibers are designed to have a nearly decrease and are 

analyzed by using following equations 

 

where a is the core radius. Light propagation in graded-index fiber is shown in Fig. 1.9. 

 

Fig. 1.9: Light propagation in graded-index fiber [2]. 
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1.3.4     Benefits of Optical Fiber Communication System 

It is useful to consider the merits and special features offered by optical fiber 

communications over more conventional electrical communications. In this context we will 

discuss about the benefits of optical fiber communication system  

(i) Enormous Bandwidth: The optical carrier frequency in the range 1013 to 1016 Hz yields 

a far greater potential transmission bandwidth than metallic cable systems (i.e. coaxial 

cable bandwidth typically around 20 MHz over distances up to a maximum of 10 km) or 

even millimeter wave radio systems (i.e. systems currently operating with modulation 

bandwidths of 700 MHz over a few hundreds of meters).  

(ii) Small Size and Weight: Optical fibers have very small diameters which are often no 

greater than the diameter of a human hair. Hence, even when such fibers are covered with 

protective coatings they are far smaller and much lighter than corresponding copper cables. 

(iii) Electrical Isolation: Optical fibers which are fabricated from glass, or sometimes a 

plastic polymer, are electrical insulators and therefore, unlike their metallic counterparts, 

they do not exhibit earth loop and interface problems. Furthermore, this property makes 

optical fiber transmission ideally suited for communication in electrically hazardous 

environments as the fibers create no arcing or spark hazard at abrasions or short circuits. 

(iv) Immunity to Interference and Crosstalk: Optical fibers form a dielectric waveguide 

and are therefore free from electromagnetic interference (EMI), radio-frequency 

interference (RFI), or switching transients giving electromagnetic pulses (EMPs). Hence 

the operation of an optical fiber communication system is unaffected by transmission 

through an electrically noisy environment and the fiber cable requires no shielding from 

EMI. The fiber cable is also not susceptible to lightning strikes if used overhead rather than 

underground. Moreover, it is fairly easy to ensure that there is no optical interference 

between fibers and hence, unlike communication using electrical conductors, crosstalk is 

negligible, even when many fibers are cabled together. 

(v) Signal Security: The light from optical fibers does not radiate significantly and 

therefore they provide a high degree of signal security. Unlike the situation with copper 



 

cables, a transmitted optical signal cannot be obtained from a fiber in a noninvasive manner 

(i.e. without drawing optical power from the fiber). Therefore, in theory, any attempt to 

acquire a message signal transmitted optically may be detected. This featur

attractive for military, banking and general data transmission (i.e. computer network) 

applications. 

1.3.5 Optical Transmission W

One of the principle characteristics of an optical fiber is its attenuation as a function of 

wavelength, as shown in Fig
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1.10: Transmission windows of optical fiber [3]. 
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1.4 Photonic Crystal Fiber (PCF) 

1.4.1 Basic Concept of PCF 

A new optical fiber structure was demonstrated in early 1990s which was known as 

Photonic Crystal Fiber (PCF). The difference between this new structure and that of a 

conventional fiber is that the cladding and in some cases, the core regions  of a PCF 

contains air holes, which run along the entire length of the  fiber whereas the material 

properties of the core and cladding define the light transmission characteristic of 

conventional fibers. The structural arrangement in a PCF creates an internal microstructure, 

which offers extra dimensions in controlling the optical properties of light, such as the 

dispersion nonlinearity and birefringence effects in optical fiber. Two types of PCFs come 

in two basic varieties. One is solid core and another one is hollow core. 

1.4.1.1     Solid Core PCF 

Like conventional fibers, solid-core PCF’s guide light by Total Internal Reflection (TIR) at 

the boundary between a low index cladding and a high index core. In most all-solid fibers 

the required index difference is created by doping either the core or the cladding glass. In a 

PCF the same is achieved by incorporating holes into the cladding, causing the weighted 

average refractive index “seen” by the mode to be lower than that of the core. By altering 

the arrangement of holes or the shape of the core, optical properties such as mode shape, 

non-linearity, dispersion, and birefringence can be varied over a range, often well 

exceeding what is possible with conventional fiber technology. As the distribution of light 

between air and glass changes with wavelength, so does the average index. This can be 

exploited to create fibers with very large amounts of dispersion of both signs or, indeed, of 

very low dispersion by using the wavelength dependence of the effective index to 

compensate for material and waveguide dispersion. Similarly, it is easy to incorporate more 

than one core into the photonic crystal cladding, allowing one to form arrays of coupled or 

independent waveguide. In solid core PCFs, as in all TIR fibers, the vast majority of light 

propagates in the glass. Construction of a solid core PCF is given in Fig. 1.11. 



 

1.4.1.2     Hollow Core Fibers

Hollow core fibers guide light in a hollow core that is surrounded by a micro
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Fig. 1.11: Solid core PCF 

ibers 

Hollow core fibers guide light in a hollow core that is surrounded by a micro

cladding. Photonic band gaps can form in materials that have a periodically structured 

refractive index; in PCFs this is achieved by using a periodic arrangement of air holes in 

silica. These fibers are sold based on the overall optical specifications and not the physical 

structure. A construction of hollow core fiber is shown in Fig. 1.12. 

 

Fig. 1.12: Hollow core fiber 

The original motivation for developing PCFs was the creation of a new kind of dielectric 

waveguide that guides light by means of a two-dimensional (2-D) PBG. In 1991, the idea 

known “stop bands” in periodic structures could be extended to prevent

propagation in all directions was leading to attempts worldwide to fabricate three

dimensional PBG materials. At that time, the received wisdom was that the refractive

difference needed to create a PBG in two dimensions was large of order 2.2:1. It was not 

widely recognized that the refractive-index difference requirements for PBG formation in 

Hollow core fibers guide light in a hollow core that is surrounded by a micro-structured 

periodically structured 

refractive index; in PCFs this is achieved by using a periodic arrangement of air holes in 

silica. These fibers are sold based on the overall optical specifications and not the physical 
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dimensional PBG materials. At that time, the received wisdom was that the refractive-index 

of order 2.2:1. It was not 

index difference requirements for PBG formation in 
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two dimensions are greatly relaxed if, as in a fiber, propagation is predominantly along the 

third axis. 

PCFs were made to trap light in a hollow core by means of a 2-D “photonic crystal” of 

microscopic air capillaries running along the entire length of a glass fiber. Appropriately 

designed, this array would support a PBG for incidence from air, preventing the escape of 

light from a hollow core into the photonic-crystal cladding and avoiding the need for TIR.A 

question sometimes asked is whether these developments were really “new” or whether 

some aspects could be traced to previous work. While it is clear that no previous attempt 

had been made to produce photonic-crystal lattices of air holes in fiber form, or to create 

PBGs, there had been previous work on microstructure fibers. For example, in the 1970s, 

“single-component” fibers were investigated in which a central glass strand was held in 

place by two thin webs of glass. In the 1980s, fiber polarizer’s were developed at 

Southampton by drawing fibers with hollow side-channels (~30µm in diameter) for 

introducing metal wires. In 1993, with funding from the Defence Research Agency in 

Malvern, U.K., work began in earnest, the initial idea being to adapt techniques widely 

used for the fabrication of multichannel image intensifier plates. These are made by 

stacking individual cylindrical elements into a 2-D close-packed array, the end result after 

drawing being a honeycomb of ∼ 10 µ m diameter waveguide “pixels,” each surrounded by 

black glass to reduce crosstalk. They also considered adapting techniques developed at the 

Naval Research Laboratory, Washington, DC, where cores from soluble glass, surrounded 

by insoluble glass, are arranged in a close-packed lattice and drawn down to microscopic 

dimensions. The soluble glass can then be dissolved out, leaving an array of tiny hollow 

channels in plates as thick as 200µm.At this time, the parallel task of solving Maxwell’s 

equations numerically was making good progress, culminating in a 1995 paper that showed 

that PBGs did indeed exist in 2-D silica–air structures for “conical” incidence from 

vacuum—this being an essential prerequisite for hollow-core guidance. The first successful 

silica–air PCF structure was made in late 1995 by stacking 217 silica capillaries (eight 

layers outside the central capillary), specially machined with hexagonal outer cross sections 

and a circular inner cross section. The diameter-to-pitch ratio d/Λ of the holes in the final 

stack was ∼ 0.2,which theory showed was too small for PBG guidance in a hollow core, so 

we decided to make a PCF with a solid central core surrounded by 216 air channels. This 
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led to the discovery of ESM PCF, which, if it guides at all, only supports the fundamental 

guided mode. The success of these initial experiments led rapidly to a whole series of new 

types of PCF—large mode area, dispersion controlled hollow-core, birefringent, and multi-

core. These initial breakthroughs led quickly to applications, perhaps the most celebrated 

being the report in 2000 of SC generation from unamplified second laser pulses in a PCF 

with a core small enough to give zero dispersion at 800 nm wavelength. 

1.4.3 Types of PCF 

Photonic crystal fiber can be classified as mainly two types. Index-guided PCF and 

Photonic Band gap PCF. 

1.4.3.1     Index Guided PCF 

Although the principles of guidance and the characteristics of index-guided PCFs are 

similar to those of conventional fiber, there is greater index contrast since the cladding 

contains air holes with a refractive index of 1 in comparison with the normal silica cladding 

index of 1.457 which is close to the germanium-doped core index of 1.462. A fundamental 

physical difference, however, between index-guided PCFs and conventional fibers arises 

from the manner in which the guided mode interacts with the cladding region. Whereas in a 

conventional fiber this interaction is largely first order and independent of wavelength, the 

large index contrast combined with the small structure dimensions cause the effective 

cladding index to be a strong function of wavelength. For short wavelengths the effective 

cladding index is only slightly lower than the core index and hence they remain tightly 

confined to the core. At longer wavelengths, however, the mode samples more of the 

cladding and the effective index contrast is larger. This wavelength dependence results in a 

large number of unusual optical properties which can be tailored. For example, the high 

index contrast enables the PCF core to be reduced from around 8µm in conventional fiber 

to less than 1 µm, which increases the intensity of the light in the core and enhances the 

nonlinear effects. Two common index-guided PCF designs are shown diagrammatically in 

Fig. 1.13. 
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Fig. 1.13:  Two index-guided photonic crystal fiber structures [1]. 

1.4.3.2     Photonic Band Gap fibers 

Photonic band gap (PBG) fibers are a class of micro structured fiber in which a periodic 

arrangement of air holes is required to ensure guidance. This periodic arrangement of 

cladding air holes provides for the formation of a photonic band gap in the transverse plane 

of the fiber. As a PBG fiber exhibits a two-dimensional band gap, then wavelengths within 

this band gap cannot propagate perpendicular to the fiber axis (i.e. in the cladding) and they 

can therefore be confined to propagate within a region in which the refractive index is 

lower than the surrounding material. Hence utilizing the photonic band gap effect light can, 

for example, be guided within a low-index, air-filled core region creating fiber properties 

quite different from those obtained without the band gap. Although, as with index-guided 

PCFs, PBG fibers can also guide light in regions with higher refractive index, it is the lower 

index region guidance feature which is of particular interest. In addition, a further 

distinctive feature is that while index-guiding fibers usually have a guided mode at all 

wavelengths, PBG fibers only guide in certain wavelength bands, and furthermore it is 

possible to have wavelengths at which higher order modes are guided while the 

fundamental mode is not. Two important PBG fiber structures are displayed in Fig. 1.14. 

 

Fig. 1.14: Photonic band gap (PBG) fiber (a) Honeycomb PBG (b) air-guiding PBG [1] 
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1.4.4   Application of PCF  

PCFs have been used to realize various optical components and devices including long 

period gratings, multimode interference power splitters, tunable coupled cavity fiber lasers, 

fiber amplifiers, multichannel add/drop filters, wavelength converters and wavelength de-

multiplexers. As with conventional optical fibers, however, a crucial issue with PCFs has 

been the reduction in overall transmission losses which were initially several hundred 

decibels per kilometer even with the most straightforward designs. Since light can be 

guided in PCFs by embedding a region of solid glass within an array of air holes, this 

approach has several important applications, and an excellent introduction is available in a 

recent review. Index-guiding PCFs offer a wealth of new opportunities, both to those 

interested in fundamental fiber optics and to those looking to extend its applications. These 

opportunities stem from just a few special properties of the photonic crystal cladding, 

which are caused by the large refractive index contrast and the 2D nature of the 

microstructure. These affect the dispersion, the smallest attainable core size, and the 

number of guided modes, the numerical aperture and the birefringence. For example, group 

velocity dispersion can be radically affected by pure waveguide dispersion in fibers with 

small cores and large air holes in the cladding. It can also be more subtly engineered, using 

the dispersion of the photonic crystal material itself, so as to cancel the combined effects of 

the bulk silica dispersion and the waveguide dispersion over a broad wavelength range. 

Such dispersion engineering enables the generation of a single- mode broadband optical 

super continuum, which is a spectacular light source that is already being used for 

frequency metrology and optical coherence tomography 22. Other properties of the fibers 

can be engineered: one can create structures with enormous birefringence or that support 

only a single mode that is independent of the wavelength. Such structures are leading to 

novel sensors high-power fiber lasers and to developments in other research fields 

1.5  An Overview of Previous Researches on PCF 

Researchers and engineers in several laboratories around the world are working on ways to 

revolutionize fiber-optic design and performance. To be competitive with existing 

telecommunication technology, new fibers would have to perform at least as well as 

conventional fibers overall and deliver significantly improved performance in some 
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respects. In the recent years, PCFs have attracted much interest among the researchers as 

they rely on the unusual properties of photonic crystals to deliver previously unimaginable 

performance from an optical fiber waveguide. Thus superiority of PCFs in several respects 

are being demonstrated, which is leading to new applications. Some of their works are 

reviewed below: 

In paper [4] “A new circular photonic crystal fiber for effective dispersion 

compensation over E to L wavelength bands”, M. M. Haque, M. S. Rahman, M. Samiul 

Habib, M. Selim Habib and S. M. A. Razzak presented a new circular photonic crystal fiber 

(C-PCF) for effective dispersion compensation covering E to L wavelength bands ranging 

from 1360-1625 nm. The use of only five air-hole rings and silica as the material has made 

the structure quite simple for fabrication process. From their numerical simulation, it is 

found that the designed C-PCF simultaneously shows a large negative dispersion of about 

−248.65 to −1069 ps/(nm.km) and a relative dispersion slope (RDS) exactly equal to that of 

a single mode fiber (SMF) at 1.55 μm wavelength. The residual dispersion after 

compensating 40 km long SMF is within ±62 ps/nm-km which ensured its application in 

high speed WDM system. Besides, dispersion slope, slope compensation ratio, effective 

area and confinement loss of the proposed C-PCF are also evaluated and discussed in the 

paper.  

In paper [5] “Chromatic dispersion control in photonic crystal fibers: application to 

ultra-flattened dispersion”, K. Saitoh and M. Koshiba reported a new controlling 

technique of chromatic dispersion in PCF in order to control the dispersion and the 

dispersion slope of index-guiding PCFs. Using this technique they have shown designed 

PCF with both ultra-low dispersion and ultra-flattened dispersion in a wide wavelength 

range. It is shown from numerical results that it is possible to design a four ring PCF with 

flattened dispersion of 0 ± 0.5 ps/ km-nm from a wavelength of 1.19 μm to 1.69 μm and a 

five-ring PCF with flattened dispersion of 0 ± 0.4 ps/km-nm from a wavelength 1.23 μm to 

1.72 μm setting the hole-to-hole spacing as 2.6 μm and the air-hole diameter 0.0624 μm 

respectively 

In paper [6] “Dispersion analysis of a Hybrid Photonic Crystal Fiber” Dinesh Kumar 

Prajapati and Ramesh Bharti proposed a new PCF structure which is suitable for optical 
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telecommunications. They also compared and analyzed the design of Hybrid PCF with 

circular air hole and elliptical air holes for the total dispersion property of both the 

configuration. By varying the size of the air holes they have obtained flattened dispersion 

for the wavelength range 1.1 μm to 1.5 μm range. For the entire configurations analyzed the 

mean cladding refractive index was lower than the core index. It is observed that all the 

structures proposed in this paper have shown the most negative (zero order) dispersion in 

between the wavelength range of 1.0 μm to 1.5 μm. But HPCF structure with Elliptical Air 

holes having the more flattened dispersion characteristics compare than other two structures 

(circular air holes). 

In paper [7] “Numerical investigation and optimization of a photonic crystal fiber for 

simultaneous dispersion compensation over S + C + L wavelength bands” by K. 

Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, an optimized PCF design 

was proposed which can eliminate the residual dispersion from the transmission link after 

dispersion compensation and can also provide a simultaneous dispersion compensation for 

the signal channels from S to L band. A dispersion of −98.3 ps/km-nm can be realized with 

a variance of +/−0.55 ps/km-nm from 1480 nm to 1630 nm with a dispersion slope of 0.005 

ps/nm-km at 1550 nm. Here, the design comprises of 11 air-hole rings with silica as a 

background material. The air holes diameter for the 1st ring d1= 0.637μm,for 2nd ring 

d2=0.215 µm and for 3rd to 11th ring d3=0.592 µm and pitch, Ʌ=1.05 µm were taken for the 

optimized design. It was found thata +/− 2% change in the fiber parameters may lead to a 

+/− 8% shift of the dispersion from its nominal value. 

A  paper  titled [8], “Large negative dispersion ultra flattened hybrid photonic crystal 

fiber for residual dispersion compensation over 750 nm bandwidth”, by  Shobug at el, 

a hybrid photonic crystal fiber consisting of hexagonal and octagonal rings is presented for 

the compensation of residual dispersion in the range of 1260-2000 nm. Hexagonal structure 

is used to control the dispersion characteristics and octagonal structure is used to control the 

confinement loss characteristics.The designed PCF shows ultra-flattened average negative 

dispersion of ‒110.21ps/nm-km with an absolute dispersion variation of 1.49 ps/nm-km. 

The geometry of the design has 7 air hole rings with all the air hole rings are taken circular. 

The effective area of the fiber at 1550 nm is 4.2 μm2. The confinement loss is found to be 
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high and this value is 0.01dB/m at 1550 nm. Confinement loss in Hy PCF is much lower 

than normal hexagonal structured PCF due to more air-holes in the cladding region for 

same ring. 

In paper [9] “Design of Highly Birefringent and Low Confinement Loss Photonic 

Crystal Fiber by Introducing Asymmetric Defect Structures” the authors Lukman V 

and Jeena Maria Cherian proposed two highly birefringent PCF with ultra-low confinement 

loss by introducing four ring solid core hexagonal structure which having both elliptical 

and circular air holes and introducing large air hole diameters near the core region for 

making the asymmetry.). An endlessly single mode, high birefringent (05.152x10-3) and a 

low confinement loss (7.85x10-5 dB/km) is found at the excitation wavelength of λ=1550 

nm with only four rings of air holes in the fiber cladding.  

In paper [10] “Double-cladding rectangular-lattice birefringence photonic crystal fiber 

with elliptical air holes”  Wan Zhang, Shu-guang Li, Guo-Wen An, Zhen-Kai Fan and Ya-

Jie Bao proposed a novel design of PCF with the characteristics of high birefringence and 

zero dispersion. The structure is composed of the rectangular lattice with double-cladding 

and there is an elliptical air hole in the core of the PCF having the same size with the holes 

of inner ring. Their obtained birefringence value is 2.19×10-3 at 1.31μm and 2.99×10-3 at 

1.55 μm wavelengths respectively which suggests that this fiber will play a very important 

role in the fields of polarization maintaining transmission system and zero dispersion 

devices. 

In paper [11] “Ultra-flattened dispersion hexagonal photonic crystal fibre with low 

confinement loss and large effective area” Saeed Olyaee and Fahimeh Taghipour 

discussed about a PCF which has some features including low- and ultra-flattened 

dispersion and low confinement loss as well as a large effective area in a wide range of 

wavelengths. The dispersion value is less than 2.5 ps/nm-km with small variations of about 

0.8 ps/(nm km) in the wavelength range from 1.1 to 1.7 μm. The confinement loss obtained 

is less than 10-6 dB/km in that applicable wavelength range, whereas the effective area is 

around 61.2 mm2 at 1.55 μm wavelength. The optimal structural parameters are designed to 

achieve minimum confinement loss, dispersion and dispersion variation to utilize in 

broadband optical transmission applications. 
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In paper [12] “Theoretical design of a large effective mode area microstructure optical 

fiber" S.M.A. Abdur Razzak And Yoshinori Namihira presented a  microstructure optical 

fiber with large effective mode area, low confinement loss, and dispersion-flat property 

which may be promising for next generation optical data transmission applications. A 

hexagonal eight ring silica-air microstructure is used with two air-hole dimensions and a 

common pitch to obtain a very high effective area of the order 122 to 252 μm2. The design 

was relatively simpler than the existing designs till that time having large mode area, 

dispersion-flat response, and low confinement loss in a wide wavelength range.  

In paper [13] “A new design of photonic crystal fiber with ultra-flattened dispersion to 

simultaneously minimize the dispersion and confinement loss”, by Saeed Olyaee and 

Fahimeh Taghipour, a novel design for dispersion flattened PCF (DF-PCF) is proposed. 

The dispersion slope is 6.8×10-4 ps/km.nm2 and the confinement loss reaches below 10-6 

dB/km in the wavelength range of 1100 nm to 1800 nm, while at the same time an effective 

area of more than 50 μm2 has been attained. This PCF comprises 6 air hole rings, embedded 

in pure silica with a refractive index of 1.45. This paper shows that lower values of 

dispersion and confinement loss can be acquired by reducing the diameters of the holes in 

the inner rings and increasing the size of the holes in the outer rings. 

In reference [14] "Highly Nonlinear and Birefringent Spiral Photonic Crystal 

Fiber",spiral photonic crystal fiber with elliptical air holes was designed for achieving high 

birefringence, large nonlinearity and negative dispersion. The proposed structure has 

birefringence of the order 10-2, nonlinearity of 26739.42W-1 m-1, and dispersion of 

−1136.69 at 0.85 �m. Due to high birefringence and negative dispersion, the proposed 

structure can be used for polarization control and dispersion compensation, respectively. So 

it can be used for nonlinear applicationslike four-wave mixing, supercontinuum 

generation,and second harmonic generation. 

In another paper [15] of Saeed Olyaee and Fahimeh Taghipour named as “Design of new 

square-lattice photonic crystal fibers for optical communication applications” they 

proposed two new square-lattice PCFs having  identical structures with five air-hole rings 

of different air-hole diameter. Both the fibers exhibit properties of ultra-flattened nearly 

zero dispersion with slope of about 7 × 10-3 ps/(nm.km) and low confinement loss in 
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wavelength range of 1.2 to 1.7 μm which highly favors their application as transmission 

medium in optical communications.  

1.6 Objectives of the Thesis 

The objectives of this thesis paper are set as under: 

(a) To design different structure of PCF to minimize dispersion and other losses. 

(b) To carry out the comparative study of the designed structures of PCF for varying 

parameters of PCF communication. 

(c) To study the loss parameters of designed models and investigate the non-linear 

coefficient in order to explain nonlinearity of the proposed structures. 

(d) To find the sensitivity analysis of the modified structure. 

1.7 Organization of the Thesis Book  

Chapter 1 deals with the introduction of the thesis. This chapter explains the basic concept 

of communication system, generalized optical fiber communication system, benefits of 

optical fiber, and basic idea of Photonic Crystal Fiber (PCF).It also contains introductory 

discussions on PCF history and summary of previous studies on PCF. 

Chapter 2 focuses on the theories regarding PCF. A broad discussion about light guiding 

mechanism through PCF is presented. The various losses of PCF, most importantly 

dispersion, confinement loss, effective mode area, nonlinearity and birefringence are 

discussed here. The related equations to analyze the properties of the parameters are 

described to attain the objectives. 

Chapter 3 addresses the structural description of the PCF models designed and proposed 

for this thesis. The electric field intensity profiles found from COMSOL Multi-Physics 4.4 

Simulation Software and by using Finite Element Method (FEM) are presented to analysis 

electric field distribution and visualize the light confinement of the PCFs. 
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Chapter 4 presents the results and discussion on graphical presentation of the numerical 

results obtained from the study and analysis of the propagation properties of the proposed 

PCF models. The descriptions of the plots found by varying structural parameter are shown 

for the tolerance analysis of a specific model.  

Chapter 5 draws a conclusion of this work. It provides a complete summary of our thesis 

and highlights the scopes for future works. 
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CHAPTER 2 

TRANSMISSION PROPERTIES OF PHOTONIC CRYSTAL FIBER 

 

2.1 Introduction 

Photonic crystal fiber (PCF) is a new class of micro-structured optical fiber and it has been 

very popular in the field of fiber optic communication because of its confinement 

characteristics which is not possible in conventional optical fiber. According to their 

mechanism for confinement PCFs possess two modes of operation—index guiding and 

photonic band gap fibers In index guiding PCF’s, where light is confined in a higher 

refractive index region, the light is guided by total internal reflection between the solid core 

and cladding region. Instead, when the core has a refractive index lower than that of the 

cladding region, as in hollow-core fibers, it is necessary the presence of the photonic band 

gap (PBG). The presence of air-holes in the cladding gives rise to strong wavelength 

dependence of the cladding index, which is primarily responsible for PCFs magnificent 

characteristics. Unlike conventional optical fibers where the doping is necessary to have 

wave guidance, the light can be guided into PCFs by the presence of holey cladding without 

doping the core region. One of the first special characteristics to be reported for the PCF is 

its potential to be endlessly single-mode (ESM) referring to the absence of higher-order 

modes regardless of the optical wavelength. A PCF which is ESM can in principle be 

scaled to an arbitrary dimension to remain single-mode. But since the numerical aperture 

(NA) decreases with increasing mode size, the scaling of the PCF is in general limited by 

macrobending loss and micro-deformation loss due to the decreasing mode spacing 

between the guided mode and leaky cladding-modes. 

However the current discussion gives an outline of several transmission characteristics and 

light guidance mechanisms of PCFs in the field of optical communication. 

2.2 Light Transmission in PCF 

Propagation of light in a fiber structure is best characterized by remembering that when 

light with free-space propagation constant k encounters an interface between two materials 
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with refractive indices n1and n2, the component of the wave vector parallel to the interface 

remains unchanged during the interaction. This rule is most widely known (Fig. 2.1a) 

through the law of reflection (that the angle of incidence is equal to the angle of reflection, 

so that the quantity nk sinθ is preserved in reflection) and the law of refraction (that n1sinθ 

= n2sinθ2, so that nk sinθ is preserved in transmission as well). To form a guided mode in 

the core, one needs to introduce light into the core with a value of β that cannot propagate 

in the cladding. The largest value of β that can exist in an infinite homogeneous medium 

with refractive index n is β = nk, with all smaller values of b allowed. The modal index nm 

is derived from β since nm = β/k. As with any material, a 2D photonic crystal fiber has a 

maximum β value that can propagate, at a particular frequency, this corresponds to the 

‘fundamental’ mode of an infinite slab of the material, and this value of β defines the 

‘effective refractive index’ of the material . Consequently a solid-core PCF will guide light 

through a form of total internal reflection (TIR): nonetheless, in many respects they 

represent a radical departure from conventional fiber optics. However, far more radical 

fiber designs result from the fact that the range of modal indices supported by photonic 

crystals have gaps in them. (Fig. 2.1c).  

 

Fig. 2.1: (a) Reflection and refraction (b) Light propagation through fiber optic (c) Allowed 

values (blue) of modal index. 
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Fibers with hollow cores cannot be made using conventional optic fibers. This is because 

guidance by TIR requires a lower-index cladding material surrounding the core, and there 

are no suitable low-loss materials with a lower refractive index than air at optical 

frequencies. 

2.3  Theory of Electromagnetic Light Propagation through PCF 

The basic starting point in understanding the optical properties of photonic crystals is that 

Maxwell's equations. An electromagnetic wave can be expressed in terms of an electric 

field vector E and a magnetic field vector B. When incident on a material the terms H the 

magnetic flux density, D the electric displacement vector, J the current density and ρ the 

charge density are also defined. The Maxwell's equations in the differential form may be 

expressed in the international system units as:  

                                          ∇ ∗ �(�, t) = −�(�, t )                                                                   (2.1a) 

         ∇ ∗ �(�, �) =
�

��
�(�, �) + �����                                    (2.1b) 

                                               ∇ ∗ �(�, t) = 0                                                                        (2.1c) 

                                               ∇ ∗ �(�, t) = ρ
����

                                                                  (2.1d) 

Considering a number of assumptions valid for our particular case the previous equations 

can be simplified. First, for a medium that is free of free charges and free currents, ρfree and 

Jfree are set to zero. Next, if the field strengths are assumed to be small enough, the relations 

���⃗  to ��⃗  and ��⃗  to ���⃗  can be considered as linear. Finally, for isotropic loss-less materials the 

dielectric permittivity, Ɛ(�⃗,w) is scalar and real, where �⃗is the spectral vector and Ɛ is the 

angular frequency of light. Then, the constitutive equations of the material are given by: 

   �(�, t) = ε(�)�(�, t)                              (2.2a) 

   �(�, t) = μ
�

�(�, t)                                                         (2.2b) 

Where µ0 is the magnetic pemeability of vacuum. If harmonic time dependence of the 

electromagnetic fields is assumed, the fields can be written as: 



29 
 

   �(�, t) = �(�)e�ω�                                                          (2.3a) 

   �(�, t) = �(�)e�ω�            (2.3b) 

 So by using these following equation can be obtained 

   ∇ ∗ �(�) = −iωεμ
�

�(�)          (2.4a) 

   ∇ ∗ �(�) = iωεrE(r)                        (2.4b) 

   ∇. �(�) = 0                        (2.4c) 

   ∇. ε(�)�(�) = 0                                     (2.4d) 

Equation 2.2a and equation 2.2b can be rearranged into a single vectorial expression 

satisfied by the magnetic field ���⃗ (�⃗)  

   ∇ ∗
�

�(�)�∇∗�(�)�
= �����(�)                                      (2.5) 

This general expression represents an eigen value problem. If the spatial dependence of the 

dielectric medium whose dielectric constant of any medium is known, the solution to 

equation 2.5 will provide the solutions to the optical modes. However, the complex 

geometry of photonic crystals makes the solution of this equation non-trivial, and outside of 

the simplest cases, requires a fair amount of computational work to provide answers. The 

left side of the equation 2.2 can be formulated as an operator (Θ) acting on ���⃗ (�⃗) so that it 

takes explicitly the form of an eigen value problem. 

                                   Θ�(�) = �����(�)                                      (2.6a) 

   Θ = ∇ ∗ (∇ ∗
�

�(�)
)                                       (2.6b) 

Similarly to equation 2.4, a master equation for ��⃗  could also be formulated. However, it is 

more convenient to express the problem in terms of ���⃗ (�⃗). This is because the operator Θ is 

Hermitian which simplifies the computational problem. After obtaining the modes ���⃗ (�⃗) for 
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a given frequency, the following relation can be used to obtain the electric field 

distribution,  

   �(��⃗ )=(-j/ωƐ(��⃗ ))∇*����⃗ (��⃗ )                                                      (2.7) 

In optical fibers, the translational invariance of the refractive index profile along the z-

directional leads to the following form of solutions. 

   �(�, �, �)=�(�, �)������⃗ �⃗                                      (2.8) 

When β is the propagation constant along z (the fiber axis). The harmonic mode ���⃗ (x,y) is 

the eigen vector associated to the eigen value β. In the case of a wave propagation in a 

homogeneous medium (Ɛ(�⃗) = Ɛ) equation [2.3] reduces to the Helmholtz equation, which 

can be solved in a closed form. In the same manner, if the geometry of the system is simple 

enough to apply analytical solution. This is the case of conventional step-index fibers. 

However, in the case of photonic crystal fibers the eigen value problem is more 

complicated due to the fibers complex geometry and analytical solutions are impossible to 

obtain. Powerful numerical methods are used to obtain the eigenvectors and Eigen values of 

the electromagnetic problem. Nevertheless, when analyzing infinite structures, the periodic 

nature of a photonic crystal allows the simplification of the electromagnetic problem to a 

small region of the photonic crystal.  

Photonic crystals can be described in terms of a periodic array of points in space called a 

lattice, and a unit cell which is represented ideally at every point of the lattice. The unit cell 

is defined as the smallest area, which by mere translation can fully represent the structure. 

Every point of the lattice can be defined in terms of the lattice vectors (µ
�

����⃗ µ
�

����⃗ µ
�

����⃗ ), which are 

the smallest vectors that can connect one lattice point with another. All crystals have an 

associated lattice in Fourier space called reciprocal lattice which consists of the set of all 

the allowed terms in the Fourier expansion of the periodic structure. The lattice is defined 

in terms of the primitive reciprocal lattice vectors (������⃗ ������⃗ ������⃗ ).  
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To examine the way a photonic crystal affects the propagation of light passing through it, 

the dielectric constant of the structure must be expressed in terms of the lattice vector��⃗ . 

The periodic dielectric function of a photonic crystal satisfies 

  Ɛ(��⃗ ) = Ɛ(��⃗ +���⃗ )                                (2.9) 

According to Bloch’s theorem the solution of the magnetic field can be expressed as 

Bloch’s states consisting of a plane wave modulated by a periodic function with the same 

periodicity a photonic crystal.  

                                         �� = ��
�����⃗ (�⃗)�����⃗ �⃗                                      (2.10) 

Where ��⃗  is the wave vector, �⃗  denotes the position vector and ��
����⃗ ( �⃗ ) has the same 

periodicity as the lattice, i.e. ��
����⃗ (�⃗) = ��

����⃗ (�⃗ + ��⃗ ). Therefore knowing the values of the 

magnetic field ��
�����⃗  in a unit cell, the magnetic field in all the structure can be inferred from 

equation 2.10. In other words, the electromagnetic problem in an infinite photonic crystal is 

reduced to finding the values of the magnetic field in a small area. In the same way, in the 

reciprocal lattice, a Blotch state for a wave vector  ��⃗  is equal to the Bloch state  ��⃗ +�⃗ where  

�⃗ is any vector of the reciprocal lattice. This gives rise to a periodicity of the dispersion 

curve in the reciprocal space (or  ��⃗  space), expressed as ω(��⃗ )= ω(��⃗ + �⃗). Consequently, 

the dispersion information of the modes is contained in a region of the reciprocal space 

called the Brillouin zone and only wave vectors ��⃗  lying inside the Brillouin zone identify 

an independent mode. Therefore the dispersion curves of photonic crystals are normally 

presented as plots of frequency versus wave vectors in the Brillouin zone. 

2.4 Attenuation and Distortion in Optical Fiber 

The attenuation or transmission loss of optical fibers has proved to be one of the most 

important factors in bringing about their wide acceptance in telecommunications. Since 

fibers are used to transport light over distances ranging from meters to thousands of 

kilometers, over such distances, even small imperfections can lead to substantial effects. 

Signal attenuation largely determines the maximum repeater-less separation between a 
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transmitter and a receiver. Since repeaters are expensive to fabricate, install, and maintain, 

the degree of attenuation in a fiber has a large influence on system cost. Of equal 

importance is the signal distortion. The distortion mechanisms in a fiber cause optical 

signal pulses to broaden as the travel along a fiber. If these pulses travel sufficiently far, 

they eventually overlap with neighboring pulses, thereby creating errors in the receiver 

output. The signal distortion mechanisms thus limit the information-carrying capacity of a 

fiber.  

Fiber losses depend on the wavelength of transmitted light.  The losses are considerably 

higher for shorter wavelengths and exceed 5 dB/km in the visible region, making it 

unsuitable for long-haul transmission. Several factors contribute to overall losses; their 

relative contributions are also shown in Fig. 2.2. However the common losses that affect 

the signal transmission are such as absorption, Rayleigh scattering, confinement loss, bend 

loss, dispersion and variations in the fiber structure along the length. 

 

Fig. 2.2: Loss spectrum of single mode fiber produced in 1979 [1]. 

Fig. 2.2 depicts the loss spectrum α(λ) of a single-mode fiber made in 1979 with 9.4 μm 

core diameter,  = 1.9×10-3,and 1.1 μm cutoff wavelength [1]. The fiber exhibited a loss of 

only about 0.2 dB/km in the wavelength region near 1.55 μm, the lowest value first realized 

in 1979.  
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2.4.1 Absorption Loss  

Absorption is caused by three different mechanisms: Absorption by atomic defects in glass 

compositions, extrinsic absorption by impurity atoms in glass material and intrinsic 

absorption by the basic constituent atoms of the fiber material. 

Material absorption is a loss mechanism related to the material composition and the 

fabrication process for the fiber, which results in the dissipation of some of the transmitted 

optical power as heat in the waveguide. The absorption of the light may be intrinsic (caused 

by the interaction with one or more of the major components of the glass) or extrinsic 

(caused by impurities within the glass). An absolutely pure silicate glass has little intrinsic 

absorption due to its basic material structure in the near-infrared region. However, it does 

have two major intrinsic absorption mechanisms at optical wavelengths which leave a low 

intrinsic absorption window over the 0.8 to 1.7 μm wavelength range, as illustrated in Fig. 

2.3, which shows a possible optical attenuation against wavelength characteristic for 

absolutely pure glass. 

 

Fig. 2.3: Attenuation spectra for intrinsic loss mechanism [1]. 
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The extrinsic absorption is basically caused by impurities in fiber materials. A major 

extrinsic loss mechanism is caused by absorption due to water (as the hydroxyl or OH ion) 

dissolved in the glass. These hydroxyl groups are bonded into the glass structure and have 

fundamental stretching vibrations. 

2.4.2 Rayleigh Scattering 

Rayleigh scattering is a fundamental loss mechanism arising from local microscopic 

fluctuations in density. Silica molecules move randomly in the molten state and freeze in 

place during fiber fabrication. Density fluctuations lead to random fluctuations of the 

refractive index on a scale smaller than the optical wavelength λ. Light scattering in such a 

medium is known as Rayleigh scattering. The scattering cross section varies as λ-4. As a 

result, the intrinsic loss of silica fibers from Rayleigh scattering can be written as, 

                                                       αR = C/ λ4           (2.11) 

where the constant C is in the range 0.7–0.9 (dB/km)-μm4, depending on the constituents of 

the fiber core. These values of C correspond to αR= 0.12–0.16 dB/km at λ=1.55μm, 

indicating that fiber loss in Fig. 2.2 is dominated by Rayleigh scattering near this 

wavelength. 

Losses in hollow-core fibers are limited by the same mechanisms that limit loss in 

conventional fibers: absorption, Rayleigh scattering, confinement loss, bend loss and 

variations in the fiber structure along the length. However, these losses might be reduced 

below the levels found in conventional fibers because the majority of the light travels in the 

hollow core, in which scattering and absorption could be very low.  

2.4.3 Confinement Loss 

The presence of finite air holes in the core region causes leakage of optical mode from 

inner core region to outer air holes is unavoidable which results in confinement losses. The 

confinement loss of the fundamental mode is calculated from the imaginary part of the 

complex effective index neff, [12] using 
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                                           �� = 8.686 ∗ ����������                                                               (2.12) 

Where Lc is the confinement loss, K0 is the free space wave number and Im[ηeff ] is the 

imaginary part of the effective refractive index.  

The confinement loss in a photonic crystal fiber for single mode depends on the number of 

air holes in the structure greatly. The more the air holes, the more the loss reduces. This 

means that it is important to design such aspects of the PCF structure as air-holes diameter 

and hole-to-hole spacing, or pitch, in order to realize low-loss PCFs. In particular, the ratio 

between the air-hole diameter and the pitch must be designed to be large enough to confine 

light into the core. On the other hand, a large value of the ratio makes the PCF multi-mode. 

However, by properly designing the structure, the confinement loss of single mode PCFs 

can be reduced to a negligible level. 

2.4.4 Bend Loss 

Bends in the fiber constitute another source of scattering loss. Normally, a guided ray hits 

the core cladding interface at an angle greater than the critical angle to experience total 

internal reflection. However, the angle decreases near a bend and may become smaller than 

the critical angle for tight bends. The ray would then escape out of the fiber. In the mode 

description, a part of the mode energy is scattered into the cladding layer. The bending loss 

is proportional to exp (−R/Rc), where R is the radius of curvature of the fiber bend and Rc 

= a/(n21−n22 ). For single-mode fibers, Rc = 0.2–0.4 μm typically, and the bending loss is 

negligible (<0.01 dB/km) for bend radius R >5 mm. Since most macroscopic bends exceed 

R = 5 mm, macrobending losses are negligible in practice. A major source of fiber loss, 

particularly in cable form, is related to the random axial distortions that invariably occur 

during cabling when the fiber is pressed against a surface that is not perfectly smooth. Such 

losses are referred to as microbending losses. Microbends cause an increase in the fiber loss 

for both multimode and single-mode fibers and can result in an excessively large loss (~ 

100 dB/km) if precautions are not taken to minimize them. For single-mode fibers, 

microbending losses can be minimized by choosing the V parameter as close to the cutoff 
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value of 2.405 as possible so that mode energy is confined primarily to the core. In practice, 

the fiber is designed to have V in the range 2.0 –2.4 at the operating wavelength. 

 

Fig. 2.4:  Radiation loss at a fiber bend. 

The part of the mode in the cladding outside the dashed arrowed line may be required to 

travel faster than the velocity of light in order to maintain a plane wave front. Since it 

cannot do this, the energy contained in this part of the mode is radiated away. 

2.4.5 Dispersion 

Dispersion of the transmitted optical signal causes distortion for both digital and analog 

transmission along optical fibers. When considering the major implementation of optical 

fiber transmission which involves some form of digital modulation, then dispersion 

mechanisms within the fiber cause broadening of the transmitted light pulses as they travel 

along the channel. The phenomenon is illustrated in Fig. 2.5, where it may be observed that 

each pulse broadens and overlaps with its neighbors, eventually becoming indistinguishable 

at the receiver input. The effect is known as inter-symbol interference (ISI). Thus an 

increasing number of errors may be encountered on the digital optical channel as the ISI 

becomes more pronounced. The error rate is also a function of the signal attenuation on the 

link and the subsequent signal-to-noise ratio (SNR) at the receiver. However, signal 

dispersion alone limits the maximum possible bandwidth attainable with a particular optical 

fiber to the point where individual symbols can no longer be distinguished. 

Cladding 

Core 
Radiation 
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Fig. 2.5:  (a) Light input of fiber (b) Light output at distance L1 (c) Light output at  distance 

L2>L1 

Dispersion occurs in all types of fibers and is a result of finite spectral line width of optical 

source. The dispersion occurs within single mode is intramodal dispersion or chromatic 

dispersion and within multimode is intramodal dispersion. 

2.4.5.1     Intramodal Dispersion 

Chromatic dispersion is the variation in group velocity with a variation in wavelength. This 

variation in velocity results in broadening of pulses when traveling through the fiber, which 

overlap and result in increased bit error rate. Increase in bit error rate affects the signal 

quality. In high speed transmission, chromatic dispersion is a major limiting factor. It is a 

result of group velocity being a function of wavelength λ. The two main causes of 

intramodal dispersion are material dispersion and waveguide dispersion. The chromatic 

dispersion in PCF is given by 

                                   �(�) = −(
�

�
) [���������� ���⁄ ]                                                        (2.13) 
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Where � is the velocity of light and � is the operating wavelength.  

Pulse broadening due to material dispersion results from the different group velocities of 

the various spectral components launched into the fiber from the optical source. It occurs 

when the phase velocity of a plane wave propagating in the dielectric medium varies 

nonlinearly with wavelength, and a material is said to exhibit material dispersion when the 

second differential of the refractive index with respect to wavelength is not zero (i.e. 

d2n/dλ2 ≠ 0). The pulse spread due to material dispersion may be obtained by considering 

the group delay Tg in the optical fiber which is the reciprocal of the group velocity vg. 

The waveguiding of the fiber may also create chromatic dispersion. This results from the 

variation in group velocity with wavelength for a particular mode.  Multimode fibers, 

where the majority of modes propagate far from cutoff, are almost free of waveguide 

dispersion and it is generally negligible compared with material dispersion. 

2.4.5.2 Intermodal Dispersion 

The intermodal dispersion (sometimes referred to simply as modal or mode dispersion) 

results from the propagation delay differences between modes within a multimode fiber. As 

the different modes which constitute a pulse in a multimode fiber travel along the channel 

at different group velocities, the pulse width at the output is dependent upon the 

transmission times of the slowest and fastest modes. Among the fiber types the multimode 

step index fibers exhibit a large amount of intermodal dispersion which gives the greatest 

pulse broadening. The overall pulse broadening in multimode graded index fibers is far less 

than that obtained in multimode step index fibers (typically by a factor of 100). Thus 

graded index fibers used with a multimode source give a tremendous bandwidth advantage 

over multimode step index fibers.  

Under purely single-mode operation there is no intermodal dispersion and therefore pulse 

broadening is solely due to the intramodal dispersion mechanisms. In theory, this is the case 

with single-mode step index fibers where only a single mode is allowed to propagate. 

Hence they exhibit the least pulse broadening and have the greatest possible bandwidths, 

but in general are only usefully operated with single-mode sources. 
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2.5 Effective Mode Area  

Effective area in a PCF is the area where light is confined in a fiber. In PCFs, the effective 

area includes the core region and a small fraction of areas in the cladding region. �eff 

depends on various fiber parameters like the core radius and the core cladding index 

difference. The effective area increases with the increase in diameter of air holes in the 

cladding region in a PCF. The area is calculated by [11], 

                                 ����(�) =
�∫ ∫ (|�(�, �)|�)����

�

��

�

��
�

�

�∫ ∫ (|�(�, �)|�)����
�

��

�

��
�

                                               (2.14) 

where E is the electric field distribution derived by solving an Eigen value problem drawn 

from Maxwell’s equations. Furthermore, in PCF nonlinearities come into action, when the 

effective mode area of propagation of light is very small. Nonlinearity depends on the 

nonlinear refractive index of the material. The larger the effective mode area is, the smaller 

the nonlinearity value is. 

2.6 Birefringence  

 A single-mode fiber is not truly single mode because it can support two degenerate modes 

that are polarized in two orthogonal directions. Under ideal conditions, a mode excited with 

its polarization in the x direction would not couple to the mode with the orthogonal y-

polarization state. In real fibers, small departures from cylindrical symmetry because of 

random variations in core shape and stress-induced anisotropy result in a mixing of the two 

polarization states by breaking the mode degeneracy. Mathematically, the mode 

propagation constant becomes slightly different for the modes polarized in the x and y 

directions. This property is referred to as modal birefringence. The strength of modal 

birefringence is defined as [14] , 

     βm = ny – nx          (2.15)  

If an input pulse excites the two polarization components, the two components travel along 

the fiber at different speeds because of their different group velocities. The pulse becomes 

broader at the output end because group velocities change randomly in response to random 
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changes in fiber birefringence. This phenomenon, referred to as polarization-mode 

dispersion (PMD). 

2.7 Nonlinear Coefficient  

The nonlinear coefficient (γ) in a PCF can be calculated by [14], 

                                                    � =  
����

�����
                                                                            (2.16) 

Where n2 is nonlinear refractive index, the value of which is 2.66×10-20 W/m. Enhanced 

nonlinearity can be achieved by the use of different materials and different structures of 

PCF. In photonic crystal fiber nonlinearities come into action, when the effective mode area 

of propagation of light is very small. Nonlinearity depends on the nonlinear refractive index 

of the material. The larger the effective mode area is, the smaller the nonlinearity value is. 

Certain materials like soft-glass and chalcogenide exhibit large value of nonlinearity. 

2.8 Conclusion 

Fiber losses are considerably higher for shorter wavelengths. The bandwidth of the fiber is 

limited by signal dispersion within the fiber, which determines the number of bits of 

information transmitted in a given period of time. The attenuation or transmission loss of 

optical fibers has proved to be the most important factors in bringing about their wide 

acceptance in telecommunication. A number of mechanisms are responsible for the signal 

attenuation within optical fibers. These mechanisms are influenced by material 

composition, preparation and waveguide structure. Confinement losses can be eliminated 

by forming a sufficiently thick cladding. 
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CHAPTER 3 

ANALYSIS OF THE PCF SYSTEM MODELS 

 

3.1 Introduction 

Till now, several designs for PCFs’ have been proposed to achieve a very low chromatic 

dispersion and low confinement loss. Various designs such as different core geometries and 

multiple air-hole diameters in different rings have been studied to achieve these 

characteristics over a wide wavelength range. However, by suitably choosing physical 

parameters like diameter of the air holes, shape of holes, number of holes in the area 

surrounding the core, spacing between adjacent air holes PCFs could be designed with 

desired properties. In this analysis, a hexagonal, octagonal and decagonal shaped PCF with 

identical design parameters are considered. A new index guiding hybrid photonic crystal 

fiber (Hy-PCF) is also designed. COMSOL Muti-Physics 4.4 has been used as the 

modeling and simulation tool where the optical mode analysis is done by the 

electromagnetic module.  

3.2 System Model 

3.2.1 System Diagram 

The geometrical model of the designed hexagonal, octagonal, decagonal and hybrid PCF is 

shown in Fig. 3.1, Fig. 3.2, Fig. 3.3 and Fig. 3.4 respectively.  

 

Fig. 3.1: System model of the H-PCF 
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Fig. 3.2: System model of the O-PCF 

 

Fig. 3.3: System model of the D-PCF 

 

Fig. 3.4: System model of the Hy-PCF 
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3.2.2 Description of the System Model 

The fiber material is pure silicon dioxide (SiO2) in the core and cladding regions. The same 

material is chosen for the Perfectly Matched Layer (PML). But due to the present of air 

holes, the refractive index of cladding becomes lower than the core. This is very important 

in solid-core PCFs to get better dispersion characteristics. The choice of larger air holes in 

the outer rings helps to achieve low confinement loss. In cladding, the air holes are 

distributed in four rings. The distance between any two adjacent air-hole rings is called 

pitch (Λ). 

The pitch for hexagonal, octagonal and decagonal structure is chosen as 2.5 μm. The 

diameter of air holes in most outer ring (4th ring) is chosen as d4 = 0.60*Λ μm. In 3rd, 2nd 

and 1st ring around the core, the diameters are 0.30*Λ, 0.198*Λ and 0.15*Λ respectively. 

The total number of air holes in 1st, 2nd, 3rd, 4th ring is 6, 12, 18 and 24 respectively in 

hexagonal structure (H-PCF). In octagonal (O-PCF) and decagonal structure (D-PCF) these 

are 8, 16, 24, 32 and 10, 20, 30, 40 respectively. 

The geometry of the Hy-PCF also consists of four air-hole rings. Among them the first one 

around the core is square shaped and comprised of four square shaped and four elliptical 

shaped air holes. The arm of a square hole is d = 0.72*Λ μm and the major axis and minor 

axis of each elliptical hole is of a = 1.08*Λ μm and b = 0.54*Λ μm respectively. The next 

two air-hole rings are hexagonal and in the most outer ring air-holes are distributed in 

octagonal shaped arrangement. Only circular air holes are used in these three rings. The 

diameter of air holes in second ring is d2 = 0.36*Λ μm and in third and fourth ring is d3 = 

d4 = 0.72*Λ μm. Λ is chosen as 0.80 μm in this case. The total numbers of air holes in 1st, 

2nd, 3rd, 4th rings are 8, 18, 24 and 40 respectively. 

Solid core makes the wave propagation characteristics fixed, for a particular set of 

parameters, whereas we can modify the electric field and hence the optical wave 

propagation characteristics by changing different parameters at different times. 
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3.2.3 Electric Field Distribution 

Electric field distribution, E is derived by solving an Eigen value problem drawn from 

Maxwell's equation. It is known that, in the best ray passing model, the light is strongly 

confined in the central core region, i.e. the central core region has the highest magnetic 

field density for a specific model. In order to find the best possible outcome the resultant 

effective mode index has changed for a given wavelength and find which has most of the 

light passing through the central region and thus find the desired value of effective mode 

index for any wavelength. The COMSOL Multi-physics software provides a numerical 

technique to simulate the electric field using the finite element method (FEM). The electric 

field intensity and distribution can be visualized using the FEM calculation with practical 

dimensions and material properties of the electro-spinning setup. 

 

(a)       (b) 

 

(c)                                                                            (d) 

Fig. 3.5: Electric field distribution of (a) H-PCF, (b) O-PCF, (c) D-PCF and (d) Hy-PCF. 
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In Fig. 3.5 the Electric Field Distribution of different PCF structures are shown for 1.55 μm 

wavelengths. It is seen from the figure that the PCFs have strongly confined electric field in 

the core. The D-PCF has provided the finest light confinement and consequently the 

confinement loss achieved by it is the least. The loss behavior is discussed in the next 

chapter. 

In Fig. 3.6 the 3-D electric field distribution or power intensity profiles of the PCFs are 

shown for 1.55 μm wavelengths. It is found that the peak value of the intensity lies at the 

center of the core. It also means that the PCFs have confined the electric field strongly to 

the core. As observed from the plot information, among four PCFs the power flow is 

highest in decagonal PCF and lowest in the hybrid PCF. 

 

(a)        (b) 

 

(c)                                                                            (d) 

Fig. 3.6: 3-D electric field distribution of (a) H-PCF, (b) O-PCF, (c) D-PCF and (d) Hy-
PCF at 1.55 μm 
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3.3 Conclusion 

The detail description of the PCF models has provided the clear idea about the designed 

PCF structures and their geometrical properties. From the mode profiles of the PCFs, it is 

observed that the peak value of intensity lies at the centre of the core, which proves that the 

PCFs can confine the electric field strongly. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Introduction 

COMSOL Multi-physics 4.4 simulation software is chosen as simulation tool and its full 

vector finite element method (FEM) is used for the modal analysis of the designed PCFs. 

The optical pulse propagating properties, such as dispersion, confinement loss, effective 

mode area, birefringence and nonlinear parameter are investigated using their respective 

formulas described in chapter 2. The effects of changing the shapes of PCF are analyzed to 

suggest a suitable PCF structure. A Hy-PCF shape is also analyzed to compare its 

characteristics with other designed models. The results are plotted graphically using 

MATLAB. In this chapter, the necessary data tables for sets of different parameters and 

plots are discussed and matched with their relevant theories described in chapter 2.  

4.2 Analysis of Effective Mode Index Against Wavelengths 

The values of effective mode index (ηeff) for the designed structures are determined from 

COMSOL. The plot of real part of effective mode index against wavelength for the three 

conventional structures is shown in Fig. 4.1.  

 

Fig. 4.1: Effective mode index against wavelength plot for three conventional structures 
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It is seen from the figure that with the effective mode index shows linear relationship with 

wavelengths for all the described structures. The analysis is made for 0.80 μm to 2.00 μm 

wavelengths. At lower wavelengths the difference among the value for different structures 

is less than those for higher wavelengths. The H-PCF is showing the highest effective mode 

index whereas the D-PCF is providing the lowest value. The O-PCF is midst of them. At 

1.31μm wavelengths, real value of refractive index of H-PCF, O-PCF and D-PCF is 

1.439154, 1.437992 and 1.436965 respectively. Further at 1.55 μm, the values become 

1.437447, 1.436029 and 1.434719 respectively. Therefore it is seen that the effective mode 

index is decreasing with the increase of wavelengths. 

In Fig. 4.2 the plot of effective mode index for the hybrid structure (Hy-PCF) is shown 

along with the decagonal structure (D-PCF). The D-PCF has the lowest mode index value 

among the three conventional PCF structures. But it is seen from Fig. 4.2 that the effective 

mode index value of Hy-PCF is much lower than that for the D-PCF. Its relationship with 

wavelengths for the Hy-PCF is linear too. But effective mode index decreases more rapidly 

with increase in wavelengths for Hy-PCF than D-PCF. 

 

Fig. 4.2: Comparison of the real part of effective mode index curves between hybrid and 

decagonal structure against wavelength  
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4.3 Analysis of Dispersion Against Wavelengths 

Dispersion is calculated from the real part of effective mode index by using equation (2.13). 

In Fig. 4.3 the dispersion characteristics of hexagonal structure is shown. It is seen from the 

figure that from 0.80 μm to 1.20 μm wavelengths dispersion is linearly decreasing with 

increase in wavelengths. In between 1.20 -1.80 μm wavelengths range the dispersion profile 

is varying in nature. Afterwards the curve is linearly increasing with wavelengths. The 

lowest −9.333 ps/nm-km dispersion is obtained at 1.40 μm. In 1.60-1.80 μm range 

dispersion curve has remained almost flattened with average −5 ps/nm-km value. At 0.85 

μm, 1.31 μm and 1.55 μm the values are 6.69 ps/nm-km, −0.5421 ps/nm-km and −2.80 

ps/nm-km respectively. 

 

Fig. 4.3: Dispersion against wavelengths plot for the hexagonal PCF 

In Fig. 4.4 the dispersion characteristics of octagonal structure is shown against 

wavelengths. It is seen that in 0.80-1.60 μm wavelength range the dispersion curve is 

almost linearly decreasing with increasing wavelengths. In 1.60-1.80 μm range dispersion 

curve is flattened just like in H-PCF. After that the value is linearly decreasing again. 

Dispersion is positive with 8.059 ps/km-nm value at 0.85 μm. At 1.31 μm only −5.40 

ps/nm-km dispersion is seen. Dispersion has become more negative in third optical window 

where it is −8.61 ps/nm-km for 1.55 μm wavelengths. 
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Fig. 4.4: Dispersion against wavelength plot for the octagonal PCF 

The dispersion profile of decagonal structure is shown in Fig. 4.5.  

 

Fig. 4.5: Dispersion against wavelength plot for the decagonal structure. 

It is seen from the figure that this structure is providing more positive dispersion at 0.85 μm 

wavelengths than the previous cases. But the value is not more than 15 ps/km-nm as per the 

observation. The curve is almost linearly decreasing with increasing wavelengths till 1.50 

μm. But in the most desired optical window (1.50-1.60 μm) dispersion curve is flattened. 
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At 1.55 μm wavelengths −11 ps/nm-km dispersion is obtained. The value has decreased a 

little after that but became flattened again over 1.70 μm with average −12.6 ps/nm-km 

value. Overall the dispersion curve has varied in between +/−15 ps/km-nm range. A 

comparison among these three dispersion characteristics is seen in Fig. 4.6 below. It 

clarifies that the dispersion profile of H-PCF is quite varying whereas the O-PCF and D-

PCF has shown almost linear characteristics. Over 1.80 μm dispersion is increasing in H-

PCF but decreasing in others. The dispersion values are little more in D-PCF but below 

+/−15 ps/nm-km in three popular optical fiber transmission windows. In spite of having 

varying dispersion profile the H-PCF can be used in zero-dispersion applications for 1.31 

μm wavelengths region due to its negligible dispersion value (−0.5421 ps/nm-km). 

Fig. 4.6: Comparison of dispersion characteristics among three conventional structures 

The dispersion vs. wavelengths curve for the hybrid PCF is shown Fig. 4.7 below along 

with the dispersion curve of D-PCF. It is seen that introduction of hybrid structure has 

provided more negative dispersion than that for the conventional structures. This curve is 

also linearly decreasing with increasing wavelengths like those for the O-PCF and D-PCF. 

Though it has provided large positive dispersion in wavelengths of first optical transmission 

window, the results are quite satisfactory for second and the most desired third optical 

window. At 1.31 μm the value is almost −40 ps/nm-km. The value has reached to −81.08 

ps/nm-km at 1.55μm. So it can be stated that the hybrid structure is more suitable for 
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dispersion compensation technique where the conventional structures are suitable for 

obtaining near to zero dispersion value. 

 

Fig. 4.7: Dispersion against wavelength plot for the Hy-PCF along with the D-PCF 

4.4 Analysis of Confinement Loss Against Wavelengths 

The confinement loss is obtained from equation (2.12) where the imaginary part of 

effective mode index is used. In Table 4.1 the confinement loss values of hexagonal, 

octagonal, decagonal and hybrid PCF structures are shown with an aim to compare their 

loss behavior.  

Table 4.1: Confinement loss of H-PCF, O-PCF, D-PCF and Hy-PCF 

Wavelengths (λ) 

(μm) 

Confinement Loss (dB/m) for Different Structures 

Hexagonal Octagonal Decagonal Hybrid 

1.50 0.417×10-6 0.228×10-8 0 0.023×10-4 

1.60 0.645×10-6 0.519×10-8 0 0.066×10-4 

1.70 0.985×10-6 1.124×10-8 2.207×10-9 0.170×10-4 

1.80 1.486×10-6 2.320×10-8 3.442×10-9 0.391×10-4 

1.90 1.606×10-6 4.580×10-8 5.269×10-9 0.820×10-4 

2.00 1.983×10-6 8.671×10-8 7.927×10-9 1.586×10-4 
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The confinement loss of D-PCF is the lowest among all the described structures and this 

value is in the order of 10-9. In case of D-PCF, before 1.70 μm the imaginary value of 

effective refractive index is so small that it cannot be determined due to software limitation. 

Consequently the confinement loss before 1.70 μm could not be calculated. Thus it is seen 

that the loss is in so negligible amount for D-PCF. The confinement loss of O-PCF is in the 

order of 10-8, which can be neglected too. H-PCF has shown confinement loss behavior 

with 10-6 order, but the hybrid PCF is providing the highest loss value with order of 10-4. 

This value is not negligible but can be considered reviewing the other benefits of this 

structure like high negative dispersion.  

In Fig. 4.8 the confinement loss characteristics of H-PCF plotted against wavelengths is 

shown.  

 

Fig. 4.8: Confinement loss characteristics of proposed H-PCF 

It is seen from the figure that upto 1.20 μm wavelengths the variation in confinement loss 

against wavelengths is negligible. Afterwards the values are increasing more rapidly with 

increase in wavelengths. At 1.55 μm only 0.55×10-6dB/m loss is obtained whereas at 850 

μm it is almost zero. The confinement loss behavior of O-PCF and D-PCF is shown in Fig. 

4.9 and Fig. 4.10 respectively. 
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Fig. 4.9: Confinement loss characteristics of O-PCF 

 

Fig. 4.10: Confinement loss characteristics of D-PCF  

From the figures it is seen that the designed structures have exhibited a negligible 

confinement loss in a long wavelength range. Nearly zero confinement loss is achieved for 

O-PCF and D-PCF for the most interested region of optical fiber communication, i.e. 1.50 

µm to 1.80 µm. The loss pattern of O-PCF is exponential whereas loss pattern of D-PCF is 

almost linearly increasing with wavelengths. The confinement loss characteristics of the 

hybrid structure against wavelengths are shown in Fig. 4.11  
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Fig 4.11: Analysis of confinement loss against wavelength for hybrid structure 

It is seen from the figure that more loss is obtained from hybrid structure compared to the 

conventional PCFs. The loss is exponentially increasing with wavelengths. Though the loss 

value is larger than the conventional structures, the performance of other properties is better 

in Hy-PCF. Thus this structure can be suitable for the application of those properties 

ignoring its confinement loss. 

4.5 Analysis of Effective Mode Area Against Wavelengths 

For the calculation of effective mode area (Aeff), the corresponding terms of equation (2.14) 

is evaluated from derived values subsection of COMSOL. The values are plotted against 

wavelengths in Fig. 4.12 for the four designed structures. From the figure it is seen that the 

effective mode areas are linearly increasing with wavelengths. The hexagonal structure is 

exhibiting highest Aeff among all the four structures. The values of Aeff for octagonal and 

decagonal structure are close to that for the hexagonal. At 1.55 μm wavelengths the H-PCF, 

O-PCF and D-PCF have provided 25.42 μm2, 19.83 μm2 and 15.7 μm2 effective mode areas 

respectively, whereas at 1.31 μm they are 35.31 μm2, 29.4 μm2, 25 μm2 respectively. In case 

of the hybrid structure Aeff is much small with maximum 8.503 μm2 only. The large 

effective area helps to reduce the effect of non-linear impairments on different PCF 

structures. 
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Fig. 4.12: Analysis of effective mode area against wavelength for different structures. 

4.6 Analysis of Non Linear Coefficient Against Wavelengths 

The nonlinear coefficients (γ) of the respective structures are calculated from equation 

(2.16). From the equation it is seen that the nonlinearity depends on the effective mode area 

and nonlinear refractive index of the material. Since in this case the value of nonlinear 

refractive index is kept fixed, the value of γ is depending on only the effective mode area. 

The relationship between effective mode area and nonlinear coefficient is inversely 

proportional. Consequently for higher values of effective mode area small nonlinearity is 

obtained and vice versa.  

In Fig. 4.13 the values of nonlinear coefficient are plotted against wavelengths for the three 

conventional PCF structures. From the plots, it is seen that in case of three conventional 

structures of similar parameters the values of nonlinear coefficient are close to each other. 

At 0.85 μm wavelengths the value of γ for D-PCF, O-PCF and H-PCF are around 7.38W-

1km-1, 9.32W-1km-1 and 11.79W-1km-1 respectively. This tells that for 0.85 μm the variation 

of γ among the conventional structures is only about +/−2W-1km-1. At 1.31 μm the values 

decreases to 4.98W-1km-1, 4.092W-1km-1 and 3.39W-1km-1 for the respective structures. 

Then at 1.55 μm the variation becomes only about +/−0.4W-1km-1. The corresponding 
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values of γ are 3.43W-1km-1, 2.865W-1km-1 and 2.493 W-1km-1 respectively for this 

wavelength. 

 

Fig. 4.13: Analysis of nonlinearity against wavelength for three conventional structures. 

The plot of nonlinear coefficients of Hy-PCF against wavelengths is shown in Fig. 4.14 

along with the plot for D-PCF.  

 

Fig. 4.14: Analysis of nonlinearity against wavelength for hybrid structure. 
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Since the effective mode area for hybrid structure very small, γ for Hy-PCF is to be more. 

Moreover γ decreases exponentially with increase in wavelengths. In the Fig. a comparison 

between the plot of Hy-PCF and D-PCF is seen, from which it is clear that the largest value 

of nonlinearity is found for this structure. At 0.85 μm the value of γ is 67.54 W-1km-1 which 

is much more compared to that found for the D-PCF. This value is 6 times larger than that 

of the commercial high nonlinear PCF, and consequently it will have an important 

application in the nonlinear four-wave mixing (FWM) effect.At 1.55 μm the difference 

between the values for two structures decreases. At this wavelength, γ for Hy-PCF becomes 

19.03W-1km-1 only. 

4.7 Analysis of Birefringence Against Wavelengths 

The values of birefringence are plotted against wavelengths in Fig. 4.15 for the three 

conventional structures. The values are calculated using equation (2.15). It increases 

monotonically with increased in wavelengths. In conventional PCFs birefringence is in the 

order of 10−6 only. But the value is little higher for H-PCF compared to the other two. At 

0.85 μm birefringence of O-PCF is 0.5×10−6 only where birefringence of H-PCF is 4×10−6 

at that wavelength. At 1.31 μm birefringence of both O-PCF and D-PCF is 2×10−6. But the 

H-PCF has provided 6×10−6 birefringence value.  

 

Fig. 4.15: Analysis of birefringence against wavelength for three conventional structures. 
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From the figure it is also seen that the curves of H-PCF and O-PCF is showing almost 

linearly increasing pattern whereas the curve of D-PCF is quite flattened in shape. 

The birefringence vs. wavelengths plot of Hy-PCF is shown in Fig. 4.16. It is seen that the 

hybrid structure has provided high birefringence value of the order of 10-3. Introducing 

asymmetry in the structure and use of elliptical air hole has increased its birefringence. 

Also a linearly increasing birefringence curve is seen from the figure. At 1.55 μm 

4.34×10−3 birefringence is obtained by Hy-PCF where only 7×10−6 was obtained by H-PCF. 

Normally birefringence is not a desired property in PCFs, but high birefringence is 

necessary for polarization maintaining applications. Obviously the Hy-PCF is suitable for 

this. 

 

Fig. 4.16: Analysis of birefringence against wavelength for hybrid structure 

4.8 Effects of Change in Pitch on Hy-PCF 

To ensure feasibility of the design, variations in pitch should not affect the transmission 

properties much. That’s why the tolerance analysis is performed for the Hy-PCF in this 

thesis. 
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4.8.1 Effects on Dispersion 

The dispersion characteristics of Hy-PCF under optimum parameters is described in 

Section 4.2, where it is seen that it provides large negative dispersion compared to the 

conventional PCF structures.  

 

Fig. 4.17: Variation of dispersion characteristics of Hy-PCF under pitch change. 

The most appreciable result was found for the third optical window where at 1.55 μm 

−81.08 ps/km-nm dispersion is obtained. Also the dispersion curve becomes almost 

flattened afterwards, which is much desired. In Fig. 4.17, for +/− 0.05 μm (6.25%) change 

in pitch, variation on the dispersion profile is shown. It is seen from the Fig. that when pitch 

is increased dispersion has increased and when pitch is decreased, dispersion has decreased. 

But no abrupt change is seen among the curves.  

At 0.85 μm 54.5 ps/km-nm dispersion was found for the optimum pitch (0.80 μm) whereas 

59 ps/km-nm is found for Λ= 0.85 μm and 48 ps/km-nm is found for Λ= 0.75 μm. 

Therefore only about +/− 4 ps/km-nm change has appeared for 0.05 μm change in pitch. 

For 1.31 μm +/− 20 ps/km-nm change from the optimum value is found with −23.34 ps/km-

nm dispersion value for Λ= 0.85 μm, −63.4 ps/km-nm dispersion value for Λ= 0.75 μm. 

But at the most desired wavelength of 1.55 μm, change decreases to −15 ps/km-nm. At this 

wavelength −65.26 ps/km-nm dispersion is found for Λ= 0.85 μm and −95.96 ps/km-nm 
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dispersion is found for Λ= 0.75 μm. Indeed, these dispersion variations are acceptable for 

long haul optical communication.  

4.8.2 Effects on Confinement Loss 

In Fig. 4.18 change in confinement loss characteristics due to 0.05 μm increase or decrease 

in pitch is observed. 

 

Fig. 4.18: Variation of confinement loss curve of Hy-PCF under pitch change 

 It is seen from the figure that confinement loss is very sensitive to pitch. The variation 

increases for large wavelengths. The loss increases with decrease in pitch and decreases 

with increase in pitch. But the confinement loss value is so small that the variation can be 

ignored for the wavelengths of first and second optical transmission windows. At 1.55 μm 

7.27×10−6  dB/m confinement loss was found for optimum pitch. It has changed to 

2.96×10−6  only for Λ= 0.85 μm but has become 1.75×10−5  dB/m  for Λ= 0.75 μm. 

Therefore the confinement loss value is sufficient to be neglected for change in pitch. 

4.8.3 Effects on Effective Mode Area 

Effective mode area hardly depends on pitch-change in large wavelengths. For the Hy-PCF 

the change of effective mode area is found very small for 6.25% increase or decrease in 

pitch. In Fig. 4.19 the effects on effective mode area for pitch-change is shown. It is seen 
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that at 0.85 μm wavelengths Aeff is 2.75 μm2 for optimum pitch. It has become 3 μm2 for 

Λ= 0.85 μm and 2.53 μm2 for Λ= 0.75 μm. So the change is only +/− 0.25 μm2 which can 

be ignored. With increase in wavelengths this variation becomes more negligible. At 1.55 

μm, the values obtained for Λ= 0.85 μm, 0.80 μm and 0.75 μm is 5.53 μm2, 5.43 μm2 and 

5.3 μm2 respectively. 

 

Fig. 4.19: Variation of effective mode area of Hy-PCF under pitch change 

4.8.4 Effects on Nonlinearity 

Behavior of nonlinear coefficient (γ) on changing pitch value 6.25% is shown in Fig. 4.20. 

γ is inversely proportional with Aeff when value of nonlinear coefficient is constant. 

Therefore comparing Fig. 4.20 with Fig. 4.19 it is seen as well.Unlike Aeff, γ increases with 

decrease in pitch and vice versa. The variation is comparatively more at smaller 

wavelengths. At 0.85 μm only +/−5 W-1km-1change is found. At that wavelength, 73 W-

1km-1 γ is obtained for Λ= 0.75 μm, 67.62 W-1km-1 γ is obtained for Λ= 0.80 μm (optimum 

pitch) and 62.06 W-1km-1 γ is obtained for Λ= 0.85 μm. The difference becomes only 

+/−1.3W-1km-1 for 1.31 μm wavelengths. After 1.50 μm, no change in γ has appeared for 

pitch variation. This implies that the highly appreciable result is found for the most desired 

wavelengths region of optical communication field. Moreover the value is less than 20W-

1km-1 which is acceptable for being similar to that of the commercial high nonlinear PCF. 
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Fig. 4.20: Variation of effective mode area of Hy-PCF under pitch change 

4.8.5 Effects on Birefringence 

The impact of 6.25% pitch-change on birefringence of the Hy-PCF is shown in Fig. 4.21.  

 

Fig. 4.21: Variation of birefringence of Hy-PCF under pitch change 

It is seen that birefringence increases with decrease in pitch value. Only about 9.2% 

changes in birefringence is found for 0.05 μm increase or decrease in pitch. Variation is 
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more in large wavelengths. At 1.55 μm 4.34×10−3 birefringence is obtained for optimum 

pitch, whereas 4.8×10−3 birefringence is found for Λ = 0.75μm. For Λ = 0.85μm the value 

decreases to 3.95×10−3. Therefore these changes are not so large to be counted as a 

violation of tolerance limit. 

4.9 Conclusion 

The overall analysis of the comparison shows that each structure has respective advantages 

and drawbacks over each other. The best structure can be chosen based on the required 

applications. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORKS 

 

5.1 Introduction 

In this final chapter, we have summarized the out-come of our intended research work to 

fulfill the desired objectives. Here, we have also tried to provide suggestions for future 

work. 

5.2 Conclusion 

In this thesis, a comparison among different PCF structures is carried out to analyze their 

performance over various transmission properties. The numerical analysis along with 

design description of each model is provided. The finite element method (FEM) has been 

applied to carry out the modal solution of the PCFs. COMSOL Multi-physics 4.4 

Simulation Software has been employed as modeling tool. 

The analysis shows that the effective mode index, dispersion, confinement loss, effective 

mode area, nonlinear coefficients and birefringence property of PCF depends largely on the 

geometrical shape of the structure. In this work a hexagonal, an octagonal, and a decagonal 

PCF model are designed with same number of air hole rings, air hole diameter, pitch, core-

cladding materials and their properties are compared. Also a hybrid PCF structure is 

designed with same number of air hole rings and compared with those models. The 

hexagonal, octagonal and decagonal shaped PCFs have shown near to zero dispersion 

properties along with very negligible confinement loss, large effective mode area and 

negligible birefringence whereas the Hy-PCF has provided more negative dispersion with 

low loss, small effective mode area and high birefringence. 

It is found that the effective mode index (ηeff) decreases with the increase in wavelength 

which is in good agreement with the published research papers [4], [10], [13] and [14]. For 

the change in geometrical shape this nature remains unchanged but different values are 

obtained. The lowest value of ηeff is obtained for Hy-PCF. Next higher value is shown by 
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D-PCF and finally H-PCF has shown the highest mode index value. ηeff decreases more 

rapidly with increase in wavelengths for Hy-PCF than the conventional structures. 

The dispersion curves of O-PCF, D-PCF and Hy-PCF have decreased almost linearly with 

increasing wavelengths but the curve of H-PCF has shown variations. At 1.55 μm 

wavelengths, the calculated dispersion for H-PCF, O-PCF, D-PCF and Hy-PCF are −2.80 

ps/nm-km, −8.61 ps/nm-km, −11 ps/nm-km and −81.08 ps/nm-km respectively. These 

values are better than the relevant values found in [9-12].The introduction of hybrid 

structure has provided more negative dispersion than that for the conventional structures. 

Thus it can be said that the hybrid structure is more suitable for dispersion compensation 

technique where the conventional structures are suitable for obtaining near to zero 

dispersion value. 

The analysis of confinement loss has shown that the D-PCF can give confinement loss in 

the order of 10-9 only which is the lowest among all the described structures. Further the 

confinement loss of O-PCF is in the order of 10-8 and H-PCF is in the order of 10-6.The 

maximum loss values given by the D-PCF and O-PCF are 7.927×10-9dB/m and 8.671×10-8 

dB/m respectively. These values are much lower than the previous designs suggested in [4-

6], [8], [12], [13] and [15]. Further the maximum confinement loss found from the analysis 

of H-PCF is 1.983×10-6 dB/m only and is better than loss of [13]. The hybrid PCF has 

given the highest loss value with order of 10-4(maximum 1.586×10-4 dB/m) but this value 

can be ignored reviewing its other benefits. 

At 1.55μm wavelengths the H-PCF, O-PCF and D-PCF have provided 25.42 μm2, 19.83 

μm2 and 15.7 μm2 effective mode areas respectively, whereas in case of the hybrid structure 

the value is much small with maximum 8.503 μm2 only. The large effective area helps to 

reduce the effect of non-linear impairments on different PCF structures. Consequently the 

value of nonlinear coefficient is very small in H-PCF, O-PCF and D-PCF compared to the 

large value of Hy-PCF. Moreover for three conventional structures of similar parameters 

the values of nonlinear coefficient are found close to each other (3.43W-1km-1, 2.865W-

1km-1 and 2.493 W-1km-1 respectively at 1.55 μm).At 0.85 μm the value of γ for Hy-PCF is 

found 6 times larger (67.54 W-1km-1) than that of the commercial high nonlinear PCF 

which can be useful for the application in the nonlinear four-wave mixing (FWM) effect. 
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In conventional PCF structures the birefringence is found very negligible with order of 10−6 

only. But the value is higher for Hy-PCF where asymmetry is introduced in the structure. 

At 1.55 μm 4.34×10−3 birefringence is obtained by Hy-PCF where only 7×10−6 is obtained 

by H-PCF. The high birefringence has made the Hy-PCF suitable for polarization 

maintaining applications.  

To ensure the design flexibility of the modified design (Hybrid) the tolerance analysis is 

performed for the Hy-PCF by varying its pitch. It has been observed that no abrupt change 

is seen in the results. 

5.2 Suggestions for Future Works 

 In this work the comparison of different structures has been performed for chromatic 

dispersion, confinement loss, effective mode area, nonlinear coefficient and 

birefringence. Further study can be carried out considering dispersion due to 

polarization effect, leakage loss, bend loss, splice loss, effective V-parameter, 

numerical aperture etc. 

 Instead of using pure silica, doped material for the core and cladding can be used to 

study the performance of the designed structures. 

 Further study can be carried out to compare the properties of designed PCF with 

conventional single mode optical fiber. 
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APPENDIX 1 

MATLAB CODES 

Sample code for measuring Effective Mode Index 

clc; 
clear all; 
close all; 
 
lamda=(0.80:0.1:2.00) 
 
hexa=[1.442575 
      1.441914 
      1.441234 
      1.440543 
      1.439848 
      1.439154 
      1.438459 
      1.437784   
      1.437111   
      1.436447    
      1.435792  
      1.435146 
      1.434499]; 
 
octa=[1.442017 
      1.441233 
      1.440428 
      1.439614 
      1.4388 
      1.437992 
      1.437196 
      1.436414 
      1.435648 
      1.434899 
      1.434166 
      1.433448 
      1.432746]; 
 
deca=[1.44158 
      1.440686 
      1.439763 
      1.438828 
      1.437892 
      1.436965 
      1.436052 
      1.435158 
      1.434286 
      1.433435 
      1.432606 
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       1.431798 
       1.43101]; 
 
plot(lamda,hex,'g->',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]) 
 
Hold on 
plot(lamda,octa,'b-p',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]) 
 
Hold on 
plot(lamda,deca,'r-o',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]) 
legend('Hexagonal Structure','OctagonalStructure','Decagonal Structure') 
grid on 
xlabel ('Wavelengths (\mum)'); 
ylabel ('Effective Mode Index'); 
 

Sample code for measuring Dispersion Coefficient 

clc; 
clear all; 
close all; 
%HEXAGONAL STRUCTURE 
Eta102=[1.442575 
      1.441914 
      1.441234 
      1.440543 
      1.439848 
      1.439154 
      1.438459 
      1.437784   
      1.437111   
      1.436447    
      1.435792  
      1.435146 
      1.434499]; 
      ita2=Eta102'; 
lamb2=0.8:.1:2.00; 
del2=.1; 
for j=2:length(ita2)-1 
dd12(j)=(ita2(j-1)-2*ita2(j)+ita2(j+1))/(del2)^2; 
end 
 dd12=dd12*10^12; 
 lambda2=lamb2(2:end-1); 
 dd2=dd12(2:end); 
 
for b=1:length(lambda2) 
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dd2(b)= -dd2(b)*(lambda2(b)/(3e8)); 
end 
 lambda12=(0.8:.005:2.00); 
 
 ddd2=interp1(lambda2,dd2,lambda12,'cubic'); 
 
plot(lambda12(1:20:end),ddd2(1:20:end),'g->',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]); 
hold on 
 
%OCTAGONAL STRUCTURE 
Eta101=[1.442017 
      1.441233 
      1.440428 
      1.439614 
      1.4388 
      1.437992 
      1.437196 
      1.436414 
      1.435648 
      1.434899 
      1.434166 
      1.433448 
      1.432746]; 
      ita1=Eta101'; 
lamb1=0.8:.1:2.00; 
 del1=.1; 
fori=2:length(ita1)-1 
  dd1(i)=(ita1(i-1)-2*ita1(i)+ita1(i+1))/(del1)^2; 
end 
 
 dd1=dd1*10^12; 
lambda=lamb1(2:end-1); 
dd=dd1(2:end); 
 
for a=1:length(lambda) 
dd(a)= -dd(a)*(lambda(a)/(3e8)); 
end 
lambda1=(0.8:.005:2.00); 
 
ddd=interp1(lambda,dd,lambda1,'cubic'); 
plot(lambda1(1:20:end),ddd(1:20:end),'b-p',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]) 
hold on 
 
%DECAGONAL STRUCTURE 
Eta103=[1.44158 
      1.440686 
      1.439763 
      1.438828 
      1.437892 
      1.436965 
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      1.436052 
      1.435158 
      1.434286 
      1.433435 
      1.432606 
      1.431798 
      1.43101]; 
 
      ita3=Eta103'; 
lamb3=0.8:.1:2.00; 
 del3=.1; 
for k=2:length(ita3)-1 
dd13(k)=(ita3(k-1)-2*ita3(k)+ita3(k+1))/(del3)^2; 
end 
 
 dd13=dd13*10^12; 
 lambda3=lamb3(2:end-1); 
 dd3=dd13(2:end); 
 
for c=1:length(lambda3) 
          dd3(c)= -dd3(c)*(lambda3(c)/(3e8)); 
end 
 lambda13=(0.8:.005:2.00); 
 
 ddd3=interp1(lambda3,dd3,lambda13,'cubic'); 
plot(lambda13(1:20:end),ddd3(1:20:end),'r-o',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]); 
 
grid on 
legend('Hexagonal Structure','Octagonal Structure','Decagonal Structure') 
xlabel('Wavelengths (\mum)'); 
ylabel('Dispersion (ps/nm-km)'); 

 

Sample Code for measuring Confinement Loss 

clc; 
clear all; 
close all; 
lamda=(1.5:0.1:2.00)*10^(-6); 
lamda1=(1.5:0.1:2.00); 
%HEXA 
neffh=[-3.688491  -5.670307  -8.610844 -12.91568 -13.88942 -
17.07242]*10^(-8); 
l=length(lamda); 
lossh=1:l; 
fori=1:1:l 
lossh(i)=((40*pi)/(log((10)*lamda(i))))*neffh(i); 
end 
plot(lamda1,lossh,'g->',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]) 
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hold on 
grid on 
%OCTA 
neffo=[-0.201837 -0.4561907 -0.9819906 -2.016951 -3.962363 -
7.465439]*10^(-9); 
l=length(lamda); 
losso=1:l; 
fori=1:1:l 
losso(i)=((40*pi)/(log((10)*lamda(i))))*neffo(i); 
end 
plot(lamda1,losso,'b-p',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]) 
hold on 
grid on 
%DECA 
neffd=[0 0 -1.928986 -2.992117 -4.557781 -6.825277]*10^(-10); 
l=length(lamda); 
lossd=1:l; 
fori=1:1:l 
lossd(i)=((40*pi)/(log((10)*lamda(i))))*neffd(i) 
end 
plot(lamda1,lossd,'r-o',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]) 
hold on 
grid on 
legend('Hexagonal Structure','Octagonal Structure','Decagonal Structure') 
xlabel ('Wavelengths (\mum)'); 
ylabel ('Confinement Loss (dB/m)'); 
 

Sample Code for measuring Effective Area 

clc;  
clear all; 
close all; 
lamda=(0.80:0.1:2.00); 
 
%Hexagonal 
Y1= [2.84E-07 
2.46E-07 
2.20E-07 
2.02E-07 
1.88E-07 
1.78E-07 
1.70E-07 
1.65E-07 
1.60E-07 
1.57E-07 
1.54E-07 
1.51E-07 
1.47E-07]; 
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Y2= [0.003289 
0.002303 
0.001711 
0.001333 
0.00108 
9.04E-04 
7.74E-04 
6.81E-04 
6.07E-04 
5.49E-04 
5.03E-04 
4.64E-04 
4.18E-04]; 
hex=((Y1.^2)./Y2).*10^12; 
 
plot(lamda,hex,'g->',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]) 
holdon 
 
%Octagonal 
Y1= [1.63E-07 
1.43E-07 
1.29E-07 
1.19E-07 
1.13E-07 
1.08E-07 
1.06E-07 
1.05E-07 
1.04E-07 
1.05E-07 
1.05E-07 
1.07E-07 
1.08E-07]; 
 
Y2= [0.001414 
9.89E-04 
7.34E-04 
5.74E-04 
4.70E-04 
4.00E-04 
3.52E-04 
3.18E-04 
2.93E-04 
2.76E-04 
2.63E-04 
2.53E-04 
2.46E-04]; 
 
octa=((Y1.^2)./Y2).*10^12; 
plot(lamda,octa,'b-p',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]) 
hold on 
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%Decagonal 
Y1= [2.96E-07 
2.51E-07 
2.20E-07 
1.98E-07 
1.83E-07 
1.72E-07 
1.64E-07 
1.58E-07 
1.54E-07 
1.52E-07 
1.50E-07 
1.49E-07 
1.48E-07]; 
 
Y2= [0.005831 
0.003843 
0.002692 
0.001986 
0.001532 
0.001228 
0.001018 
8.69E-04 
7.59E-04 
6.78E-04 
6.15E-04 
5.66E-04 
5.27E-04]; 
deca=((Y1.^2)./Y2).*10^12 
 
plot(lamda,deca,'r-o',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]) 
hold on 
grid on 
 
%Hybrid 
Y1= [8.07E-08 
6.71E-08 
5.72E-08 
4.99E-08 
4.43E-08 
4.00E-08 
3.64E-08 
3.35E-08 
3.10E-08 
2.89E-08 
2.70E-08 
2.53E-08 
2.38E-08]; 
 
Y2= [0.002456 
0.001578 
0.001061 
7.39E-04 
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5.30E-04 
3.88E-04 
2.90E-04 
2.20E-04 
1.69E-04 
1.32E-04 
1.04E-04 
8.29E-05 
6.67E-05]; 
hybrid=((Y1.^2)./Y2).*10^12 
plot(lamda,hybrid,'m-s',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]) 
grid on 
 legend('Hexagonal Structure','Octagonal Structure','Decagonal 
Structure','Hybrid Structure') 
xlabel ('Wavelengths (\mum)'); 
ylabel ('Effective area ( \mum^2)'); 
 

Sample Code for measuring  Birefringence 

clc; 
clear all; 
close all; 
lamda=(0.80:0.1:2.00) 
 
hex=[4 4 5 6 6 6 7 7 7 8 8 8 9]*10^(-6); 
octa=[1 0 1 1 2 2 3 3 4 5 6 6 8]*10^(-6); 
deca=[1 2 1 1 1 2 2 2 2 2 2 3 2]*10^(-6); 
 
plot(lamda,hex,'g->',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]) 
holdon 
plot(lamda,octa,'b-p',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]) 
holdon 
plot(lamda,deca,'r-o',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]) 
 
grid on 
legend('Hexagonal Structure','Octagonal Structure','Decagonal Structure') 
xlabel ('Wavelengths (\mum)'); 
ylabel ('Birefringence'); 
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Sample Code for measuring Nonlinearity 

clc;  
clear all;  
close all; 
 
hAeff=[24.5230 
   26.2770 
   28.2876 
   30.6107 
   32.7259 
   35.0487 
   37.3385 
   39.9780 
   42.1746 
   44.8980 
   47.1491 
   49.1401 
   51.6962];  
oAeff=[18.7900 
   20.6764 
   22.6717 
   24.6707 
   27.1681 
   29.1600 
   31.9205 
   34.6698 
   36.9147 
   39.9457 
   41.9202 
   45.2530 
   47.4146]; 
dAeff=[15.0259 
   16.3937 
   17.9792 
   19.7402 
   21.8597 
   24.0912 
   26.4204 
   28.7273 
   31.2464 
   34.0767 
   36.5854 
   39.2244 
   41.5636]; 
 
L= (0.80:0.1:2.00)*10^-6;  
w= (0.80:0.1:2.00); 
 
%hexagonal 
for i=1: length(L) 
n2=2.507*10^-8; 
Yh(i)= (2*pi*n2)/(L(i)*hAeff(i))*10^3; 
end 
plot(w,Yh, 'g->',... 
'LineWidth',2,... 
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'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]); 
hold on 
grid on 
 
%octagonal 
for i=1: length(L) 
n2=2.507*10^-8; 
Yo(i)= (2*pi*n2)/(L(i)*oAeff(i))*10^3; 
end 
plot(w,Yo, 'b-p',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]); 
hold on 
grid on 
 
%decagonal 
for i=1: length(L) 
n2=2.507*10^-8; 
Yd(i)= (2*pi*n2)/(L(i)*dAeff(i))*10^3; 
end 
plot(w,Yd, 'r-o',... 
'LineWidth',2,... 
'MarkerSize',10,... 
'MarkerEdgeColor',[0.5,0.5,0.5]); 
hold on 
grid on 
legend('Hexagonal Structure','Octagonal Structure','Decagonal Structure') 
xlabel('Wavelengths (\mum)'); 
ylabel('Nonlinearity (W ^-1km^-1)'); 
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