PERFORMANCE ANALYSIS OF BIO DIESEL BLENDS EXTRACTED FROM NEWLY DEVELOPED BIODIESEL PROCESSOR

ADIB BIN RASHID (MSc Engg., MIST)

A THESIS SUBMITTED FOR THE DEGREEE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY (MIST)

September 2019

CERTIFICATE OF APPROVAL

The thesis titled "PERFORMANCE ANALYSIS OF BIO DIESEL BLENDS EXTRACTED FROM NEWLY DEVELOPED BIODIESEL PROCESSOR" submitted by Adib Bin Rashid Roll No-1014180006, Session: October 2014 the Mechanical Engineering Department of Military institute of Science and Technology has been accepted as satisfactory for partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering on 19 September, 2019.

BOARD OF EXAMINERS

1.	Maj Md. Faisal Kader, PhD Associate Professor, Department of Mechanical Engineering, MIST, Dhaka-1216, Bangladesh	Chairman (Supervisor)
2.	Col Md. Humayun Kabir Bhuiyan, psc Head, Department of Mechanical Engineering, MIST, Dhaka-1216, Bangladesh	Member (Ex-Officio)
3.	Professor Dr. Dipak Kanti Das Department of Mechanical Engineering, MIST, Dhaka-1216, Bangladesh	Member
4.	Professor Dr. Md. Mahbubul Alam Department of Mechanical Engineering, MIST, Dhaka-1216, Bangladesh	Member
5.	Professor Dr. Md. Ehsan Department of Mechanical Engineering, BUET, Dhaka-1000, Bangladesh	Member (External)

CERTIFICATE OF RESEARCH

This is to certify that the work presented in this thesis was carried out by the author under the supervision of Maj Md. Faisal Kader, Associate Professor, Department of Mechanical Engineering, Military Institute of Science & Technology, Dhaka.

Maj Md. Faisal Kader, PhD

Adib Bin Rashid

CANDIDATE'S DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis.

The thesis (fully or partially) has not been submitted for any degree or diploma in any university or institute previously.

Adib Bin Rashid 19 September, 2019

ACKNOWLEDGEMENT

The author would like to express his sincerest gratitude and deepest reverence to his thesis supervisor **Maj Md. Faisal kader**, **PhD**, Associate professor, Department of Mechanical Engineering, MIST for his continuous guidance, constructive criticism, encouragement and careful supervision throughout this research work without which this thesis would not have been possible.

The Author would like to thank his parents and wife for their unfailing support and encouragement. Special thanks to M.A. Matin, Manager, Service and Maintenance, Sterling Multi technologies Ltd, Uttara Dhaka for providing the author tremendous support and encouragement throughout the research work. The Author would like to thank the department of mechanical engineering, MIST for providing with the financial support and the lab assistances for their co-operation. The author would also like to express his sincere appreciation to all who have helped in one way or the other to get this research work done.

DEDICATION

This thesis is dedicated to my beloved parents and wife who have always been a source of inspiration, encouragement and stamina to undertake my higher studies and to face the eventualities of life with zeal, enthusiasm and fear of Allah.

ABSTRACT

Under the ever looming threat of energy crisis production and use of biodiesel promises a relievable and environment friendly solution. In this light, design and construction of an automated biodiesel plant can crank up and simplify the production process. Extraction of biodiesel from vegetable oil is time consuming and requires human involvement to perform and keep track of chemical titration, stirring and washing the product for each batch of production. A well designed system can significantly eliminate human interaction and expedite the whole process. For meeting our energy demand, Bangladesh is mostly dependent on natural gas and import of fossil fuels from foreign countries. This dependency leaves our economy vulnerable and susceptible to international market shocks and supply upset. The concept of using biodiesel is still in its infancy in Bangladesh though she grows many different kinds of crops suitable for biofuel production. Construction of an inexpensive automated biodiesel plant can help produce biodiesel in large scale and make a breakthrough in our economy as no such effort has been undertaken so far. It is a novel endeavor that seeks to make biodiesel production cheaper, easier and popularize in our country. To achieve the desired aim this paper focuses on implementation of the construction of a cheap, compact and automatic system that will exhaustively reduce human interactions as well as the processing time and increase the biodiesel yield. For this reason an automated biodiesel processor was designed and built utilizing a programmable logic controller (PLC) in conjunction with pumps, solenoid valves, level sensors, temperature sensors, etc. Upon the completion of a full cycle the automatic biodiesel production plant delivers certified biodiesel product to the end users and the leftover byproducts are collected for further recycling. Different batches of biodiesel were produced and a comparative study of the physical properties such as the density, kinematic viscosity, flash point, calorific value etc. were measured and result found satisfactory. The performance characteristics such as Brake Power (BP), Specific fuel consumption (SFC), mass of fuel consumed (mf), Brake Thermal Efficiency (BTE), exhaust gas emissions etc. of the diesel engine by these fuel samples were determined and the results were thoroughly studied.

TABLES OF CONTENTS

	Page
Title	i
Certificate of Approval	ii
Certificate of Research	iii
Candidate's Declaration	iv
Acknowledgement	V
Dedication	vi
Abstract	vii
Tables of Contents	viii- xii
List of Figures	xiii-xvi
Lists of Tables	xviii
List of Nomenclature	xviii-xix
CHAPTER-1 INTRODUCTION	01-18
1.1 General	01
1.2 Energy Scenario in Bangladesh	02
1.3 What is Biodiesel?	04
1.3.1 Historical development of biodiesel	05
1.4 Chemical principles of Transesterification	06
1.4.1 Transesterification reaction	06
1.4.2 Competitive reactions	07
1.4.3 Alcohols commonly used in biodiesel production	08
1.4.4 Catalysts commonly used in biodiesel production	09
1.5 Advantages of Biodiesel	10
1.5.1 Environmental Benefits	10
1.5.2 Socio-Economic Benefits	11
1.5.3 Practical and Technical Advantages	11
1.6 Disadvantages of Biodiesel	11
1.7 World's Biodiesel Production	12
1.8 International Biodiesel Regulation	15

1.8.1 American standards	15
1.8.2 European standards	16
1.9 Research Objectives	17
1.10 Thesis Organization	17

CHAPTER-2 LITERATURE REVIEW 19-28

2.1	Prospects of Biodiesel in Bangladesh	19
2.2	Potentiality of Biodiesel Feedstock in Bangladesh	21
	2.2.1 Status of Vegetable Oils in Bangladesh	21
	2.2.2 Potentiality of non-edible Oils in Bangladesh	23
2.3	Automated Biodiesel Plant	24
2.4	Factors Affecting Biodiesel Production	26
	2.4.1 Effect of molar ratio of alcohol	26
	2.4.2 Effect of water and FFA contents	27
	2.4.3 Reaction time	27
	2.4.4 Reaction temperature	27
	2.4.5 Catalyst concentration	28
	2.4.6 Agitation speed	28

CHAPTER-3 AUTOMATED BIO DIESEL PLANT 29-46

3.1 General	29
3.2 The Process Design	30
3.2.1 Filtration of Waste cooking Oil	32
3.2.2 Reactor	34
3.2.3 Separation, Washing and drying unit	35
3.2.4 FFA-separation and removal of glycerol	35
3.2.5 Washing and drying	35
3.2.6 Storage Tank for Vegetable oil and Methoxide	36
3.2.7 Storage Tank for Diesel and Biodiesel	37
3.2.8 Blending Unit	37
3.2.9 Methanol Recovery unit	37
3.4 Different System	38

3.4.1 Mixer (Motor-powered Shaft with Mixing Vanes)	39
3.4.2 Heating Elements	39
3.4.3 Piping and hoses	39
3.4.4 Transport of fluids (Pump)	40
3.4.5 Solenoid Valves	41
3.4.6 Automation and control system of the biodiesel plant	41
3.4.6.1 Programmable logic controller	43
3.4.6.2 PLC Hardware	43
3.4.6.3 HMI (Human-Machine Interface)	45
3.5 Programmable Logic Controller Programming	45
CHAPTER - 4 EXPERIMENTAL SETUP AND PROCEDURE	47-59
4.1General	47
4.2 Determination of Fuel Properties	
4.2.1 Density	47
4.2.2 Viscosity	47
4.2.3 Carbon residue	48
4.2.4 Heating value	48
4.2.5 Flash point	49
4.3 Engines Performance Test Procedure	50
4.3.1 Test bed with dynamometer	50
4.3.1.1 Test bed	50
4.3.1.2 The hydraulic dynamometer	51
4.3.1.3 Instrument frame	51
4.3.1.4 Instrument modules	52
4.4 Four-Stroke Diesel Engine	52
4.5 Governing Equations	53
4.6 Engine Emission Testing Methodology	

CHAPTER – 5 RESULTS AND DISCUSSION

5.1 General	60
5.2 Performance Analysis of the Automated Plant	60
5.2.1 Effect of Mixing Time on the yield of biodiesel production at the Reactor	60
5.2.2 Effect of stirring velocity on the yield of biodiesel production at the Reactor	61
5.2.3 Effect of separation time on the yield of biodiesel production at the reactor	62
5.2.4 Efficiency of methanol recovery unit	63
5.3 Fuel property Analysis	64
5.3.1 Comparison of fuel properties of biodiesel blends	64
5.3.1.1 Density	64
5.3.1.2 Viscosity	65
5.3.1.3 Heating Value and Flash Point	66
5.4 Engine Performance Analysis	67
5.4.1 Engine Speed vs. BSFC for different blends originated from same	67
bio fuels	
5.4.2 Engine Speed vs. BHP for different blends originated from same	68
bio fuels	
5.4.3 Engine Speed vs. Brake Thermal Efficiency (BTE) for different	70
blends originated from same bio fuels	
5.4.4 Engine Speed vs. Exhaust Gas Temperature (EGT) for different	71
blends originated from same bio fuels	
5.5 Emission Analysis	72
5.5.1 Carbon Monoxide (CO) Emission at Different Speed Conditions	73
5.5.2 Carbon Dioxide (CO ₂) Emission at Different Speed Conditions	74
5.5.3 Oxygen (O ₂) Emission at Different Speed Conditions	75
5.5.4 Hydrocarbon (HC) Emission at Different Speed Conditions	76
5.5.5 Oxides of Nitrogen (NO _X) Emission at Different Speed Conditions	78
5.5.6 Oxides of sulfur (SO _X) Emission at Different Speed Conditions	79
5.6 Cost Analysis	80

60-81

CHAPTER - 6 CONCLUSIONS AND RECOMMENDATIONS	82-83
6.1 Conclusion	82
6.2 Recommendations	83

REFERENCES

84-90

APPENDIX - A	Biodiesel Standards	A-1
APPENDIX - B	Features and specifications of PLC and HMI	B-1
APPENDIX - C	Technical Details of Test Bed, Engine and	C-1
	Dynamometer	
APPENDIX - D	Experimental Data and Results	D-1

LIST OF FIGURES

		Page
Figure 1.1:	Illustration of the process from growing the crops to production and the use of biodiesel	05
Figure 1.2:	Transesterification reaction	07
Figure 1.3:	Soap formation reaction	07
Figure 1.4:	Hydrolysis reaction	08
Figure 1.5:	World biodiesel productions in recent years	13
Figure 3.1:	Process flow diagram of overall Biodiesel Production Process	30
Figure 3.2:	Schematic diagram of the portable-biodiesel-processing-unit	31
Figure 3.3:	Illustration of the portable-biodiesel-processing-unit	32
Figure 3.4:	Process flow diagram of filtration of waste cooking oil	33
Figure 3.5:	Schematic diagram of a Reactor	34
Figure 3.6:	Schematic diagram of Separation, Washing and Drying Unit	36
Figure 3.7:	Schematic diagram of Methanol Recapture Unit	38
Figure 3.8:	Heater	39
Figure 3.9:	Polyurethane Lined Clear PVC Hose with Steel Spiral (a) and its schematic (b)	40
Figure 3.10:	750 GPH Pump	40
Figure 3.11:	Solenoid valves	41
Figure 3.12:	Electrical controll panel, (a) Out side view, (b) Inside view	42
Figure 3.13:	Programmable logic controller	43
Figure 3.14:	PLC Hardware	44
Figure 3.15:	HMI (Model MT6070iH)	45
Figure 4.1:	Viscosity tester	47
Figure 4.2:	Carbon residue tester	48
Figure 4.3:	Bomb Calorimeter	49
Figure 4.4:	Flash point tester	50
Figure 4.5:	The single cylinder CI engine with water brake dynamometer and data acquisition system	51
Figure 4.6:	MAHA- MGT 5 with integrated MDO 2 LON diesel engine emission analyzer	58
Figure 5.1:	Effect of mixing time on biodiesel conversion rate for Soybean Oil	60
Figure 5.2:	Effect of mixing time on biodiesel conversion rate for Waste Soybean Oil	60

Figure 5.3:	Effect of mixing time on biodiesel conversion rate for Palm Oil	61
Figure 5.4:	Effect of mixing time on biodiesel conversion rate for Mustard Oil	61
Figure 5.5:	Effect of stirring velocity on biodiesel production from Soybean Oil	61
Figure 5.6:	Effect of stirring velocity on biodiesel production from Waste Soybean Oil	61
Figure 5.7:	Effect of stirring velocity on biodiesel production from Palm Oil	62
Figure 5.8:	Effect of stirring velocity on biodiesel production from Mustard Oil	62
Figure 5.9:	Effect of separation time on yield of biodiesel	62
Figure 5.10:	Temperature vs. density curve for diesel and biodiesel blends made from Soybean oil	64
Figure 5.11:	Temperature vs. density curve for diesel and biodiesel made blends made from Waste Soybean oil	64
Figure 5.12:	Temperature vs. density curve for diesel and biodiesel blends made from Palm oil	65
Figure 5.13:	Temperature vs. density curve for different biodiesel blends made from Mustard oil	65
Figure 5.14:	Temp vs. Kinematic viscosity curve for diesel and biodiesel blends made by Soybean oil	65
Figure 5.15:	Temp vs. Kinematic viscosity curve for diesel and biodiesel blends made by Waste Soybean oil	65
Figure 5.16:	Temp vs. Kinematic viscosity curve for diesel and biodiesel blends made by palm oil	66
Figure 5.17:	Temp vs. Kinematic viscosity curve for diesel and biodiesel blends made by Mustard oil	66
Figure 5.18:	Comparison of Engine Speed vs. bsfc curve for diesel and biodiesel blends made from Soybean oil	68
Figure 5.19:	Comparison of Engine Speed vs. bsfc curve for diesel and biodiesel blends made from Waste Soybean oil	68
Figure 5.20:	-	68
Figure 5.21:	Comparison of Engine Speed vs. bsfc curve for diesel and biodiesel blends made from Mustard oil	68
Figure 5.22:		69
Figure 5.23:	Comparison of Engine Speed vs. BHP curve for diesel and biodiesel blends made from Waste Soybean oil	69

xiv

Figure 5.24:	Comparison of Engine Speed vs. BHP curve for diesel and biodiesel blends made from Palm oil	69
Figure 5.25:	Comparison of Engine Speed vs. BHP curve for diesel and biodiesel blends made from Mustard oil	69
Figure 5.26:	Comparison of Engine Speed vs. Thermal Efficiency curve for diesel and biodiesel blends made from Soybean oil	70
Figure 5.27:	Comparison of Engine Speed vs. Thermal Efficiency curve for diesel and biodiesel blends made from Waste Soybean oil	70
Figure 5.28:		70
Figure 5.29:	Comparison of Engine Speed vs. Thermal Efficiency curve for diesel and biodiesel blends made from Mustard oil	70
Figure 5.30:	Comparison of Engine Speed vs. Exhaust gas Temp curve for diesel and biodiesel blends made from Soybean oil	71
Figure 5.31:	Comparison of Engine Speed vs. Exhaust gas Temp curve for diesel and biodiesel blends made from Waste Soybean oil	71
Figure 5.32:	Comparison of Engine Speed vs. Exhaust gas Temp curve for diesel and biodiesel blends made from Palm oil	72
Figure 5.33:	Comparison of Engine Speed vs. Exhaust gas Temp curve for diesel and biodiesel blends made from Mustard oil	72
0	Variation of Engine speed with Carbon-monoxide for different Biodiesel blends made from Soybean	73
-	Variation of Engine speed with Carbon-monoxide for different Biodiesel blends made from Waste Soybean Oil	73
Figure 5.36:	blends of Palm Biodiesel	74
	Variation of Engine speed with Carbon-monoxide for different blends made from Mustard	74
0	Variation of Carbon-dioxide with speed for different blends of Soybean Biodiesel	75
Figure 5.39:	Variation of Carbon-dioxide with speed for different blends of Waste Soybean Oil Biodiesel	75
Figure 5.40:	Variation of Carbon-dioxide with speed for different blends of Palm Biodiesel	75
Figure 5.41:	Variation of Carbon-dioxide with speed for different blends of Mustard Biodiesel	75
Figure 5.42:	Variation of Oxygen with speed for different blends of Soybean Biodiesel	76
Figure 5.43:	Variation of Oxygen with speed for different blends of Soybean Biodiesel	76
Figure 5.44:	Variation of Oxygen with Engine speed for different blends of Palm Biodiesel	76
Figure 5.45:	Variation of Oxygen with Engine speed for different blends of Mustard Biodiesel	76

Figure 5.46:	Variation of Hydrocarbon with Engine speed for different	77
	blends of Soybean Oil Biodiesel	
Figure 5.47:	Variation of Hydrocarbon with Engine speed for different	77
	blends of Waste Soybean Oil Biodiesel	
Figure 5.48:	Variation of Hydrocarbon with Engine speed for different	77
	blends of Palm Oil Biodiesel	
Figure 5.49:	Variation of Hydrocarbon with Engine speed for different	77
	blends of Mustard Oil Biodiesel	
Figure 5.50:	Variation of NO _X with Engine speed for different blends of	78
	Soybean Oil Biodiesel	
Figure 5.51:	Variation of NO _X with Engine speed for different blends of	78
0	Waste Soybean Oil Biodiesel	
Figure 5.52:	Variation of NO _X with Engine speed for different blends of	79
-	Palm Oil Biodiesel	
Figure 5.53:	Variation of NO _X with Engine speed for different blends of	79
	Mustard Oil Biodiesel	
Figure 5.54:	Variation of SO _X with Engine speed for different blends of	79
	Soybean Oil Biodiesel	
Figure 5.55:	Variation of SO _X with Engine speed for different blends of	79
	Waste Soybean Oil Biodiesel	
Figure 5.56:	Variation of SO _X with Engine speed for different blends of	80
~	Palm Oil Biodiesel	
Figure 5.57:	Variation of SO _X with Engine speed for different blends of	80
~	Mustard Oil Biodiesel	

LIST OF TABLES

		Page
Table 1.1:	Imported quantity of pol products during 2009-2017	03
Table 1.2:	Imported quantity of crude oil during 2009-2017	03
Table 1.3:	World biodiesel production data by raw materials, in Million Ton.	14
Table 2.1:	Fuel properties of Biodiesel from different feedstock	20
Table 2.2:	Fuel properties of mixed feedstock oil Biodiesel	21
Table 2.3:	Area and Production of Oil seeds in Bangladesh 2013-14 to 2015-16.	22
Table 2.4:	Potential places for non-edible oil seeds production	23
Table 2.5:	Potentiality calculation for biodiesel production in Bangladesh	23
Table 3.1:	Summary of the sections in the portable-biodiesel- processing-unit	31
Table 3.2:	Characteristics of designed heat exchanger	38
Table 3.3:	Summary of the subsystems in the portable unit	38
Table 5.1:	Amount of methanol recovered	63
Table 5.2:	Comparison of heating value and flash point of different fuels	67
Table 5.3:	Cost Analysis of Various Biodiesel	81

LIST OF NOMENCLATURE

A/F	Ratio Air Fuel Ratio
ASTM	American Society for Testing Materials
API	American Petroleum Institute
В	Waste Soybean Oil
BHP	Brake Horse Power
BSFC	Brake Specific Fuel Consumption
BTE	Brake Thermal Efficiency
BMEP	Brake Mean Effective Pressure
BARC	Bangladesh Agriculture Research Council
BARI	Bangladesh Agriculture Research Institute
BP	Brake Power
CI Engine	Compression Ignition Engine
СО	Carbon mono oxide
CO ₂	Carbon dioxide
Dbt	Dry bulb Temperature
D 100	Pure Diesel Fuel
FAME	Fatty acid methyl ester
FFA	Free fatty acid
FC	Fuel Consumption
GHG	Greenhouse gas
HC	Hydro Carbon
IC	Internal Combustion
LHV	Lower Heating Value of Fuels, MJ/Kg
М	Mustard Oil
mbd	millions barrels per day
MT	Metric Ton
MOD	Mustard Oil Diesel
MW	Megawatts
NOx	Nitrogen Oxides
Р	Palm Oil
PM	Particulate Material

POD	Palm Oil Diesel
POL	Port of Loading
RPM	Revolution Per Minute
SAE	Society of Automotive Engineers
SIT	Self-Ignition Temperature
SUS	Saybolt Universal Second
S	Soybean Oil
SVO	Straight Vegetable Oils
SOD	Soybean Oil Diesel
SO_2	Sulpher dioxide
Т	Temperature, ° C
% vol.	Percentage of Volume
η_b	Brake Thermal efficiency, %
WVO	Waste vegetable oil
WCO	Waste cooking oil