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ABSTRACT 
 

Three different models a metal strip, a slot-based waveguide, and a hybrid plasmonic 

waveguide with a metal cap have been examined. Comparative analysis of some waveguide 

characteristics such as propagation length, effective modal area, and Figure of Merit (FOM) 

was made by varying waveguide dimensions using graphene and regular SiO2, incorporating 

the silver as a metal. This research reveals that the lower the waveguide dimension is, the 

better the outcome for all the models, while conventional SiO2 is replaced by graphene, 

which leads this work towards designing nano-scale devices. Firstly, while investigating 

metal strip waveguides, it was discovered that, regardless of a slight improvement in 

propagation length and mode area, the figure of merit (FOM) was fundamentally improved 

(approximately 50%) compared to traditional SiO2 subsequent to utilizing graphene with a 

smaller gap among strip and the metal substrate. Furthermore, the highest propagation length 

was 8.5 μm, which is about 75% higher than that of SiO2. Then secondly, the slot-based 

waveguide was examined. The largest propagation length was found as 224 μm using SiO2 

when the height of silver was 50 nm, silicon layer between metal (ds) was 70 nm with a 

metal width of 40 nm, though the highest figure of merit was limited to 4951 by setting ds 

at 60nm. The results were better using SiO2 rather than graphene, which was quite the 

opposite of the direction of this research. Thus, the third model, a hybrid plasmonic 

waveguide with a graphene layer and metal cap on top, was introduced, which demonstrates 

an elevated propagation length 1814 µm with tight confinement of around 250 nm2. The key 

parameter, the figure of merit, is found in the range of 106 when we keep graphene layer 5 

nm, utilized in the middle of metal and silicon, which is not only superior to that of the SiO2 

layer but also the highest values of FOM found in previous models. In this manner, among 

three models, a hybrid plasmonic waveguide with a metal cap shows a better outcome 

regarding propagation length, modal area, and Figure of merit.    
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

With the advancement of modern science, the flow of light has been manipulated in various 

ways for using in wide variety of applications in the field of science and technology. 

Several natural phenomena, from the skill of scale of cell division to birth of giant stars, 

could be visualized through different interactions between light, dielectric lenses, and 

metallic mirrors. At present, the utilization of light is not just confined within imaging. 

Instead, it has created enormous possibilities. 

 

1.2 Plasmonics and Hybrid Waveguides 

Light confinement is such a field of research these days enabling light to be used in 

macroscale application. The use of light in telecommunication offers extremely higher 

bandwidth and lower wastage of power with significantly improved latency compared to 

wired or electronic connection [18]. Using the similar concept, photonic could be used in a 

smaller scale such as interconnecting chips or nanodevices, which will ensure low power 

dissipation and higher ability of computation. Lowering the scale of optical components to 

nanoscale electronic components would depend on how efficiently the photonics would be 

integrated with electronics [19]. The absorption of the maximum portion of incident light by 

a solar panel may be ensured by introducing an efficient technique of absorption of solar light 

by the material, and hence, the conversion rate of photovoltaic energy could be increased. 

This, eventually, will lower the cost of materials, raise the efficiency and even, will create 

more availability of materials, including conventional and unconventional.  Also, enhanced 

efficiency refers to concentrating more light, which will increase the accuracy in the field of 
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various types of sensor applications[20-22]. Additionally, interactions that are non-linear will 

be more precise and robust [23]. 

 

Higher confinement of light will result in increased photonic mode concentration thus if an 

emitter placed in such a strong and highly dense optical field will radiate more than it will do 

in the free space [24].  This is crucial in the field of applications of light-emitting diode 

(LED), lasers, and quantum information field where emitters have to be appropriately 

integrated with the photonic circuits [25]. 

 

The wavelength of light has made the existing techniques of concentrating light to the 

smallest scale, such as using lenses or mirrors, limited. The reason behind this limitation is 

the diffraction around the edge of the aperture of those optical devices. In this case, there is 

a minimum distance between constructive and destructive interference after diffraction 

despite having a large aperture. The Fourier transform shows that  the order of the size of the 

one-dimensional plane Δx to which a plane light can be focused can be shown as [16] 

          ∆𝑥𝑥 ≈ 2𝜋𝜋
𝛥𝛥𝑘𝑘𝑥𝑥

=  𝜆𝜆0
2

                                                                 (1.1) 

Here, the maximum possible spread of the wavevector component kx along the x-direction is 

expressed as Δk= 4π/λ0, whereas λ0 denotes the wavelength in vacuum. Alternatively, the 

separation between two objects is administered by the length of this scale, and the objects are 

clearly identifiable from each other under a microscope.  

 

Light-matter interactions on a metal surface can be a decent way to of light confinement 

beyond the capacity of typical lenses or dielectric structures. Surface plasmon polariton can 

be referred to as evanescent electromagnetic waves, which is bolstered by the metal-dielectric 

interface. The coherent oscillation of the free charges, at the metal surface, assists in strongly 

couples with the interface. This is how the optical energy can propagate through some small 
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dimensions. Recently, the field of plasmonics is extensively researched due to the ability of 

strong light confinement and applicability in the advancing field of nanotechnology [19-27]. 

 

Realization of subwavelength based optical chips/devices are one step closer due to tightly 

confined plasmon polaritons modes supported by designed structures like waveguides. In 

addition, this waveguiding scheme based on metal and plasmonic concept can be potential 

scope for carrying both electronic and optical signals through the same metal structure. This 

means the combined plasmonic and electronic nature of the device would ensure enhanced 

data capacity and flawless optical signal transmission at the nanoscale.  Although propagation 

loss is unavoidable in plasmonic waveguide because of interaction between mode and the 

metal, this propagation loss is traded off with localization of the optical mode. For example, 

the SPP distance can be reduced by using the strong interaction between the electromagnetic 

field and the metal. This is also supported by the smaller size of the mode and tighter 

confinement. Hybrid waveguides are being a good candidate to address the existing challenge 

and being studied by researchers.  

 

It is common that hybrid waveguides are made up of a metal surface and a spacer of low 

refractive index with a medium of high refractive index in between. In this type of structure, 

both plasmonic and photonic features assist in guiding the electromagnetic energy, which is 

confined between the materials of high and low refractive index. This dual characteristic 

(plasmonic and photonic) offers diversified modal characteristics in terms of strong 

confinement and larger value of propagation length, which can simply be adjusted by 

changing the dimension of the gap and refractive index of the material. 

 

1.3 Literature Review 

The plasmonic waveguides have enormous applications in the modern era of waveguiding.  
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Surface plasmon polaritons (SPPs) are electromagnetic waves that propagate along the edge 

of the metal and dielectric interface. There are two kinds of surface plasmons depicted as 

surface plasmon polaritons and localized surface plasmons. The explanation for picking and 

examining the surface plasmon polaritons for nanophotonic circuits is its extraordinary 

engendering attributes and a high degree of confinement, which can be expressed by classical 

physics [1]-[2]. Though there is diffraction, SPP gives long-range propagation along the 

metal surface, which enables the fabrication of equipment at the terahertz regime in the sub-

wavelength level [3]. There are lots of recommendations and experimental trial of SPP 

waveguides, for example, Spoof SPP structure, thin metal films, chemically synthesized 

metal nanowires (NWs), and sharp metal wedge structures to guide SPPs for potential 

nanophotonic devices, e.g, nano-lasers, couplers, switches, modulators, and biosensors [4]-

[8]. A high degree of confinement in the plasmonic waveguide costs high loss due to the use 

of metal. So, despite having very low propagation loss, the optical performance is also very 

low because of the large mode area due to the weak modal confinement in the plasmonic 

waveguides with a single dielectric.  

 

The main challenges while designing plasmonic waveguides are high-frequency operation 

and nanometer range fabrication. Thus, to provide better propagation along with sub-

wavelength confinement, hybrid waveguides are proposed [9]. These types place a lower 

index insulator layer in the nanometer level between the metal and dielectric material, which 

is the reason behind the reduced ohmic loss [10]. While designing plasmonic waveguide with 

enhanced transmission property, a series of investigations have been performed with different 

hybrid models to achieve a higher level of confinement with elevated propagation 

characteristics [11]-[13]. Initially, a dielectric-metal-dielectric sandwich structure is used 

with a small layer of lower index semiconductor material, to reduce the energy loss in 

plasmon modes. While designing plasmonic integrated circuits, these types of waveguides 
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use the coupling between the SPP and the conventional dielectric mode for nano-scale 

applications [11]. Later in another study, it was found that two nanorods of dielectrics 

separated by a metal slab having a small layer of low indexed dielectric in between, provides 

lower diffraction and tight confinement as well as higher propagation length. This design was 

not promising enough because of the complicated design process and weak confinement. 

However, the structures are used as nanolasers and optical signal processing devices [12]. 

Then a simpler rectangular hybrid model is proposed with a dielectric (Si) rib and a metal 

cap (Ag) on SiO2 substrate, which is relatively easy to fabricate. In between Ag and Si there 

is a lower indexed dielectric layer of SiO2 [13]. The ohomic loss is lower due to the 

discontinued layers of two dissimilar dielectric materials- silica and silicon with different 

refractive indexes, which provide enhanced confinement. The field of the guided hybrid 

mode is confined more in the low index dielectric gap region [14].  

Here in this work, at first, a strip and slot based waveguides have been considered to compare 

performance between SiO2 and graphene followed by a hybrid waveguide with metal cap and 

graphene. In every case, the propagation length, effective modal area, and finally, Figure of 

Merit (FOM) have been used as the factors for comparison. In the case of metal strip 

waveguide, better results were found after using graphene instead of SiO2. The results for 

slot based hybrid waveguide was just the opposite after using graphene rather than SiO2. In 

the case of the hybrid waveguide with metal cap and graphene, graphene is used in replace 

of SiO2 layer in between Ag and Si. As a semi-metal, graphene can direct the electron in 

plasma wavelength, results in a reduction of ohomic loss introduced by the metal. Graphene 

also leads to lower optical losses and tight confinement due to some change in the Fermi 

level, which enhance the tunability of absorption for electromagnetic energy [15]-[16]. It is 

highly suitable for fabrication in the nanometer range, and the dispersion effect is very 

negligible caused by scattering and other losses in this region if the waveguide length is 

minimal [17].  
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1.4 Objectives of the Work 

The objectives of the proposed research are: 

 

a. To study Surface Plasmon polariton concept 

b. To develop new device models using SPP applications.  

c. To implement the new technique and evaluate its performance for the specific models of 

SPP waveguides. 

d. To determine the highest Figure of merit of the specific models of SPP waveguide and 

compare the relative performance among them.  

 

The possible outcomes of the research will be understanding the approach towards the development 

of photonic devices and achieve better parameters in the applications of these devices. Successful 

completion of the proposed research would significantly contribute to the development of a photonic 

application such as SPP Nano laser, photonic switch, and optical modulators. 

 

1.5 Organization of the Thesis 

The whole design has been done by using COMSOL MultiphysicsTM simulation software, 

where experimental data clearly represents the superiority of the design. The whole work has 

been organized as,  

1) analysis of previous design of strip, metal strip, and hybrid plasmonic waveguides with a 

metal cap with SiO2,  

2) repetition of step 1, with Graphene in place of SiO2,  

3) visualization and comparison between the power distribution/confinement for all three 

types of waveguides and  

4) repetition of all the previous steps while using graphene.   
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This thesis paper is organized as follows,  

• Chapter 1 discusses some introductory topics, including plasmonics, waveguides, 

literature review, and a brief overview and structures of the work 

•  Chapter 2 discusses some theoretical backgrounds on surface plasmon polaritons. It 

also discusses applications of Maxwell’s and Helmholtz equations, electromagnetic 

waveguides and their modes, plasmonic and hybrid waveguides, and materials.  

• Chapter 3 discusses the analysis techniques such as COMSOL and finite element 

analysis, PDEs and boundary conditions, meshing, different SPP modes, and 

methodologies of the works at the end.   

• Chapter 4 shows the results and discusses them based on the approaches and designs 

that have been considered in work.   

• Chapter 5 concludes the works with a summary and future recommendations 
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Chapter 2 

THEORETICAL BACKGROUND 

 

2.1 Introduction 

In this chapter, the necessary theoretical background has been discussed to provide 

fundamental knowledge on the characteristic of surface plasmon polaritons. At the very 

beginning, Maxwell’s equation has been discussed in various forms, which are considered as 

the basic equation in the field of electromagnetism followed by boundary conditions. In this 

chapter, how metal behaves in the electromagnetic domain is discussed with the help of the 

Drude model.  Waveguides are referred to as the device to guide electromagnetic waves in a 

confined and guided manner. A number of modes are used while guiding the wave, and this 

chapter explains different aspects of modes. Additionally, while considering waveguides, the 

selection of material is an issue, and this part of the thesis work includes a brief discussion 

on that. Finally, SPPs waveguiding has been discussed in detail. This includes important 

characteristics and features of a dielectric-loaded waveguide and hybrid waveguides.  

 

2.2 Maxwell’s Equations 

Electromagnetic phenomena that are macroscopic can be explained through Maxwell’s four 

partial equations [15]. The equations can be written both in differential form and integral 

form. Maxwell’s equations are stated below: 

 

Table 2.1 Maxwell's electromagnetic wave equation 

Integral Form Differential Form 

ˆ
S

D n dS q⋅ =∫∫


 
extD ρ∇ ⋅ =


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Integral Form Differential Form 

∫∫ =⋅
S

dSnB 0ˆ


 0=⋅∇ B


 

∫ ∫∫ ⋅
∂
∂

−=⋅
C S

dSnB
t

dCtE ˆˆ


 
t
BE

∂
∂

−=×∇



 

ˆ ˆ
C S

H tdC I H n dS
t

∂
⋅ = + ⋅

∂∫ ∫∫
 
  

ext
DH J
t

∂
∇× = +

∂


 

 

 
The four macroscopic fields are further linked via the polarization 𝑃𝑃�⃗  and magnetization 𝑀𝑀��⃗  

by                        

     𝐷𝐷��⃗ = 𝜀𝜀0𝐸𝐸�⃗ + 𝑃𝑃�⃗                                                              (2.1)                

                           𝐻𝐻��⃗ = 𝐵𝐵�⃗

𝜇𝜇0
− 𝑀𝑀��⃗                                                                (2.2)                      

where 0ε  and 0µ  are the electric permittivity and magnetic permeability of vacuum, 

respectively. Here magnetic response, 𝑀𝑀��⃗ , can be ignored  since only nonmagnetic media has 

been considered. But 𝑃𝑃�⃗  represents the dipole moment withing the material which is created 

by It describes the electric dipole moment per unit volume inside the material, caused by the 

placement of the dipoles at the microscopic level according to the applied electric field. The 

relation between this and internal charge density 𝜌𝜌 can be written as 

 

                    𝛻𝛻.𝑃𝑃�⃗ = −𝜌𝜌              (2.3) 

Charge conservation 

 can be expressed as 𝛻𝛻. 𝐽𝐽 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, which requires the following relationship between internal 

charge and current densities. 

     𝐽𝐽 = 𝜕𝜕𝑃𝑃�⃗

𝜕𝜕𝜕𝜕
             (2.4)

 

Now as                               𝛻𝛻.𝐷𝐷��⃗ = 𝜀𝜀0𝛻𝛻.𝐸𝐸�⃗ + 𝛻𝛻.𝑃𝑃�⃗ = 𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒 and  𝛻𝛻.𝑃𝑃�⃗ = −𝜌𝜌,                   (2.5a,b) 
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                                              𝛻𝛻.𝐸𝐸�⃗ = 𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒+𝜌𝜌
𝜀𝜀0

= 𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡
𝜀𝜀0

                                                (2.5c) 

For linear, isotropic and nonmagnetic media 

                                                              𝐷𝐷��⃗ = 𝜀𝜀0𝜀𝜀𝐸𝐸�⃗                                                              (2.6) 

      𝐵𝐵�⃗ = 𝜇𝜇0𝜇𝜇𝐻𝐻��⃗             (2.7)
 

where ε is called the dielectric constant or relative permittivity and 1µ = is the relative 

permeability of the nonmagnetic medium. 

 

2.3 Boundary Conditions 

At an interface between two media, as shown in fig 2.1, the certain boundary condition is to 

be satisfied.  

 

Fig. 2.1 :  Fields and surface charge at an interface between two media [1]          

 

The boundary conditions are: 

    𝑛𝑛�. (𝐷𝐷2����⃗ − 𝐷𝐷1����⃗ ) = 𝜌𝜌𝑠𝑠, or 𝐷𝐷2𝑛𝑛 − 𝐷𝐷1𝑛𝑛 = 𝜌𝜌𝑠𝑠       (2.8a) 

     𝑛𝑛� .𝐵𝐵2����⃗ = 𝑛𝑛� .𝐵𝐵1����⃗          (2.8b) 

     (𝐸𝐸2����⃗ − 𝐸𝐸1����⃗ ) × 𝑛𝑛� = 𝑀𝑀𝑠𝑠�����⃗           (2.8c) 

    𝑛𝑛� × (𝐻𝐻2����⃗ − 𝐻𝐻1����⃗ ) = 𝐽𝐽𝑠𝑠��⃗           (2.8d) 
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Here sρ  is the surface charge density, 𝑀𝑀𝑠𝑠�����⃗  is the magnetic surface current density and 𝐽𝐽𝑠𝑠��⃗  is an 

electric surface current density on the interface. 

When no charge or surface current densities exist, the above equations reduce to 

    𝑛𝑛�.𝐷𝐷2����⃗ = 𝑛𝑛�.𝐷𝐷1����⃗            (2.9a) 

    𝑛𝑛�.𝐵𝐵2����⃗ = 𝑛𝑛�.𝐵𝐵1����⃗            (2.9b) 

    𝑛𝑛� × 𝐸𝐸2����⃗ = 𝑛𝑛� × 𝐸𝐸1����⃗           (2.9c) 

    𝑛𝑛� × 𝐻𝐻2����⃗ = 𝑛𝑛� × 𝐻𝐻1����⃗           (2.9d) 

The above equations indicate the continuity of normal components of 𝐷𝐷��⃗  and  𝐵𝐵�⃗  and tangential 

components of 𝐸𝐸�⃗ and 𝐻𝐻��⃗  across the boundary.  

 

2.4 The Helmholtz Wave Equation 

In the absence of external charge and current densities, the curl equations can be combined 

to yield [28]:
   

𝛻𝛻 × 𝛻𝛻 × 𝐸𝐸�⃗ = −𝜇𝜇0
𝜕𝜕2𝐷𝐷��⃗

𝜕𝜕𝑡𝑡2
                           (2.10) 

We are assuming that those external stimuli 𝛻𝛻.𝐷𝐷��⃗ =  0 is absent, and involving the identities 

𝛻𝛻 × 𝛻𝛻 × 𝐸𝐸�⃗ = 𝛻𝛻(𝛻𝛻.𝐸𝐸�⃗ ) − 𝛻𝛻2𝐸𝐸�⃗  and 𝛻𝛻(𝜀𝜀𝐸𝐸�⃗ ) ≡ 𝐸𝐸�⃗ .𝛻𝛻𝜀𝜀 + 𝜀𝜀𝛻𝛻.𝐸𝐸�⃗  (2.10) can be rewritten as  

 
𝛻𝛻(−1

𝜀𝜀
𝐸𝐸�⃗ .𝛻𝛻𝜀𝜀) − 𝛻𝛻2𝐸𝐸�⃗ = −𝜇𝜇0𝜀𝜀0𝜀𝜀

𝜕𝜕2𝐸𝐸�⃗

𝜕𝜕𝑡𝑡2
        (2.11) 

For a negligible variation of the dielectric profile over distances on the order of one optical 

wavelength, (2.9) simplifies to the central equation of electromagnetic wave theory, 

     
𝛻𝛻2𝐸𝐸�⃗ − 𝜀𝜀

𝑐𝑐2
𝜕𝜕2𝐸𝐸�⃗

𝜕𝜕𝑡𝑡2
= 0                           (2.12)                                 
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The equation is to be solved separately in regions of constant ε , and the obtained solutions 

have to be matched using appropriate boundary conditions. 

For harmonic time dependence,  

                                                            ( , t) ( ) ei tE r E r ω=
   

                                               (2.13a) 

Inserted into (2.10), this yields 

         𝛻𝛻
2𝐸𝐸�⃗ + 𝑘𝑘02𝜀𝜀𝐸𝐸�⃗ = 0       (2.13b) 

where,  0k
c
ω

=  and 2 2 2 2
0 x y zk k k kε = + +  

0k
c
ω

= is the wave vector of the propagating wave in vacuum for 𝐸𝐸�⃗ . xk , yk , zk  are the 

respective wave vector along x, y, and z-axis. Equation (2.11) is known as the Helmholtz 

equation. An identical equation for H


 be derived in the same manner: 

     𝛻𝛻2𝐻𝐻��⃗ + 𝑘𝑘02𝜀𝜀𝐻𝐻��⃗ = 0                  (2.13c) 

 

2.5 Electromagnetic Behavior of Metal According to the Drude Model 

In the classical Drude model, metal is assumed to contain a large number of free electrons. 

Once a background of positive ion core is set against these electrons, they resemble the gas 

of electrons. The movement of these electrons, however, is decelerated by a peripheral 

electric field, causing the cores hit by electrons. The Drude model neglects all interactions 

during collisions. The behavior of these electrons can be modeled with Lorentz harmonic 

oscillator model. 
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Fig. 2.2 Interaction of electromagnetic waves with electron bound to the nucleus[1]. 

 

An individual electron’s motion is governed by the following equation of motion 

𝑚𝑚𝑎⃗𝑎𝑒𝑒 = 𝐹⃗𝐹𝐸𝐸, 𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐹⃗𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐹⃗𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

for applied electric field LE


: 

                                                   −𝑒𝑒𝐸𝐸�⃗ 𝐿𝐿 = 𝑚𝑚𝜕𝜕2𝑟𝑟
𝜕𝜕𝑡𝑡2

+ 𝑚𝑚𝑚𝑚 𝛿𝛿𝑟𝑟
𝛿𝛿𝛿𝛿

+ 𝐶𝐶𝑟𝑟                                       (2.14) 

where, m  is the mass of an electron,  C is related to hypothetical spring between an electron 

and positively charged ion and γ  is related to the damping of the oscillation 

 

According to the Drude model, an electron is not bound to any particular nucleus, so C=0 

and the above equation becomes 

                                                         −𝑒𝑒𝐸𝐸�⃗ 𝐿𝐿 = 𝑚𝑚𝜕𝜕2𝑟𝑟
𝜕𝜕𝑡𝑡2

+ 𝑚𝑚𝑚𝑚 𝛿𝛿𝑟𝑟
𝛿𝛿𝛿𝛿

                                         (2.15a) 

 Using 𝑣⃗𝑣 = 𝛿𝛿𝑟𝑟
𝛿𝛿𝛿𝛿

,                                   −𝑒𝑒𝐸𝐸�⃗ 𝐿𝐿 = 𝑚𝑚𝛿𝛿𝑣𝑣�⃗
𝛿𝛿𝛿𝛿

+ 𝑚𝑚𝑚𝑚𝑣⃗𝑣 

           −𝑒𝑒𝐸𝐸�⃗ 𝐿𝐿 = 𝑚𝑚𝛿𝛿𝑣𝑣�⃗
𝛿𝛿𝛿𝛿

+ 𝑚𝑚
𝜏𝜏
𝑣⃗𝑣       (2.15b) 

here 1τ
γ

= is the relaxation time ( 1410 s−≈ ) 

The current density is defined as  𝐽𝐽 = −𝑁𝑁𝑁𝑁𝑣⃗𝑣 
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Substituting in the equation (2.15a) 

−𝑒𝑒𝐸𝐸�⃗ 𝐿𝐿 = −
𝑚𝑚
𝑁𝑁𝑁𝑁

𝛿𝛿𝐽𝐽
𝛿𝛿𝛿𝛿
−

𝑚𝑚
𝜏𝜏𝜏𝜏𝜏𝜏

𝐽𝐽 

Rearranging we get   𝛿𝛿𝐽𝐽
𝛿𝛿𝛿𝛿

+ 1
𝜏𝜏
𝐽𝐽 = 𝑁𝑁𝑒𝑒2

𝑚𝑚
𝐸𝐸𝐿𝐿����⃗        (2.15c) 

Assuming sinusoidal variation of an electric field 𝐸𝐸𝐿𝐿����⃗ = 𝐸𝐸0����⃗ 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑖𝑖 𝜔𝜔 𝑡𝑡) and current 

density 𝐽𝐽 = 𝐽𝐽0���⃗ 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑖𝑖 𝜔𝜔 𝑡𝑡)the equation becomes 

𝛿𝛿(𝐽𝐽0���⃗ 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑖𝑖 𝜔𝜔 𝑡𝑡))
𝛿𝛿𝛿𝛿

+
1
𝜏𝜏
𝐽𝐽0���⃗ 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑖𝑖 𝜔𝜔 𝑡𝑡) =

𝑁𝑁𝑒𝑒2

𝑚𝑚
𝐸𝐸0����⃗ 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑖𝑖 𝜔𝜔 𝑡𝑡)

 

     (−𝑖𝑖𝑖𝑖 + 1
𝜏𝜏
)𝐽𝐽0���⃗ = (𝑁𝑁𝑒𝑒

2

𝑚𝑚
)𝐸𝐸�⃗ 0

 

    (−𝑖𝑖𝑖𝑖 + 1
𝜏𝜏
)𝐽𝐽 = (𝑁𝑁𝑒𝑒

2

𝑚𝑚
)𝐸𝐸�⃗  

For static field,   ω=0 and 

𝐽𝐽 = (𝑁𝑁𝑒𝑒
2𝜏𝜏

𝑚𝑚
)𝐸𝐸�⃗ = 𝜎𝜎𝐸𝐸�⃗

                                          
 

where 
2Ne

m
τσ = is called static conductivity 

For the general case of the oscillating field 

𝐽𝐽 = ( 𝜎𝜎
1−𝑖𝑖𝑖𝑖𝑖𝑖

)𝐸𝐸�⃗ = 𝜎𝜎𝜔𝜔𝐸𝐸�⃗
                                              

(2.16) 

 

where ωσ  = ( )
1 i

σ
ωτ−

 is known as dynamic conductivity. This is purely a real number if the 

frequency is kept very low ( 1ωτ << ). In this case, the electric field is fully followed by the 

electrons. However, the movement of the electron starts to lag, and dynamic conductivity 

becomes complex once the frequency starts to increase.  For a very high frequency, 1ωτ >>  
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the dynamic conductivity of electron is purely imaginary, and the electron oscillation is 90 

degrees out of phase with the applied electric field. 

For metal, Maxwell wave equation (2.13b) gives assuming 𝑃𝑃�⃗ = 0 and 𝐽𝐽 ≠ 0 

                                                   𝛻𝛻2𝐸𝐸�⃗ + (𝜔𝜔2𝜇𝜇𝜀𝜀0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎𝜔𝜔)𝐸𝐸�⃗ = 0                                  (2.17) 

This equation is satisfied by the electric fields of the forms 𝐸𝐸�⃗ = 𝐸𝐸𝑝𝑝����⃗ 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑖𝑖(𝑘𝑘�⃗ . 𝑟𝑟)) with an 

implicit exp( i t)ω−  variation where 

                                                          𝑘𝑘2 = 𝜔𝜔2𝜇𝜇𝜀𝜀0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎𝜔𝜔         .                                 (2.18) 

As metal permeability is very close to the permeability of free space. So,  

                                                               𝑐𝑐2 = 1
𝜇𝜇0𝜀𝜀0 

                                                          (2.19) 

where c is the velocity of the light wave in the vacuum. 

Then we get from Equation 2.18                                                                                                                                                                                                                                                                                                 

                                                            𝑘𝑘2 = 𝜔𝜔2

𝑐𝑐2
+ 𝑖𝑖𝑖𝑖𝜇𝜇0𝜎𝜎𝜔𝜔                                              (2.20) 

Again the refractive index of a medium is 
2

2 2
2

cn k
ω

=  

So,     
2 2

2
02 2( )cn i

c ω
ω ωµ σ

ω
= +   

           
2

2 01 icn ωµ σ
ω

= +                                                         

                  

2 2
0 0

2 2
2 0 0

2
1 1 1 1

(1 ) (1 ) ( ) i

c c
ic cin i ii i i

µ σ µ σ
µ σ µ στ τ τ

ωω ωτ τ ω ωτ ω ω ω
τ τ

= + = + = − = −
− − + +

          (2.21) 

 The plasma frequency is defined as          
2

0
p

c µ σω
τ

=                                                  (2.22) 
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putting value of σ  

                                                          
2 2 22 2

2 0 0

0
p

c Ne cNe Ne
m m m

µ µτω
τ ε

= = =                      (2.23) 

The refractive index of the medium can be expressed as  

                                                     

2
2

2
1

i

pn
ω

ωω
τ

= −
+

                                                         

(2.24)

                                                                                  

 

Now dielectric constant of a material  

𝜀𝜀(𝜔𝜔) = 𝑛𝑛2 = 1 −
𝜔𝜔𝑝𝑝2

𝜔𝜔2 + 𝑖𝑖 𝜔𝜔𝜏𝜏
= 1 −

𝜔𝜔𝑝𝑝2 �𝜔𝜔2 − 𝑖𝑖 𝜔𝜔𝜏𝜏 �

�𝜔𝜔2 + 𝑖𝑖 𝜔𝜔𝜏𝜏 � �𝜔𝜔
2 − 𝑖𝑖 𝜔𝜔𝜏𝜏 �

 

                            𝜀𝜀(𝜔𝜔) = 1 −
𝜔𝜔𝑝𝑝

2(𝜔𝜔2−𝑖𝑖𝜔𝜔𝜏𝜏 )

𝜔𝜔4+𝜔𝜔
2

𝜏𝜏2

= (1 − 𝜔𝜔𝑝𝑝
2

𝜔𝜔2+ 1
𝜏𝜏2

) + 𝑖𝑖(
𝜔𝜔𝑝𝑝2

𝜏𝜏
𝜔𝜔3+𝜔𝜔

𝜏𝜏2
)                          (2.24b) 

 

So, the real part of dielectric constant 

           

2

2
2

1 1
p

r

ω
ε

ω
τ

= −
+

                                        

   

(2.24a) 

and imaginary part of dielectric constant 

2

3
2

p

i

ω
τε ωω

τ

=
+

                                             

    (2.24c)

  

This equation was derived, assuming no inter-band transition. Typically pω  is on the order 

of 1510  and 1
τ

 is on the order of 1210 . Metal behavior for different frequency regimes can be 

predicted based on this equation. 
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High-frequency regime ( 1ω
τ

>>  ): 

                                                 
2

21 p
r

ω
ε

ω
= −        and    

2

3
p

i

ω
ε

ω τ
=                                   (2.24d) 

So dielectric function is mostly real with negligible imaginary part and damping. In this 

region, metal acts as a dielectric material rather than a metal. For pω ω<  real part of 

dielectric function is negative and for pω ω>  real part of dielectric function is positive  

 

                                       

 

 

Fig 2.3 The variation of real part of dielectric constant in high-frequency regime. 
 
 

In reality, metal behavior in this regime is completely altered by inter-band transition leading 

to an increase in  iε  

Low-frequency regime ( 1ω
τ

<<  ):       2 21r pε ω τ= −  and 
2

p
i

ω τ
ε

ω
=  

So, the real part of the dielectric constant is negative, and the imaginary part of the dielectric 

constant has a very high positive value. In the case of metals, those are nobles such as Au, 

Ag, Cu, a highly polarized environment is created due to the close proximity of the filled d 

band to the Fermi surface. Hence, in the region of pω ω> , the above model is needed to be 

extended for those metals.  

                                                          
2

2
( )

i

pω
ε ω ε ωω

τ

∞= −
+

                                             (2.25) 
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In general, although ε∞ can change according to wavelength and normally is termed as 

Lorentz oscillator [16], this value is assumed as constant for some ranges within the spectrum. 

Additionally, a plasmonic particle can alter the value of   1γ
τ

= . The classical theory states 

that the overall rate of damping  γ is made up of scatterings between electrons and phonons, 

and grain-boundary or lattice defects scattering. Plasmonic particle’s size affects the rate of 

boundary scattering, and assuming the size of a spherical particle as R, the rate of relaxation 

can be expressed as:  

                                                   FA
R

νγ γ ∞= +                                                               (2.26) 

where R is the relaxation constant of the bulk material Fν  is the Fermi velocity; the process 

of scattering has an impact on the value of A, and is typically on the order of unity [17]. For 

simplicity, below, we assume that γ γ ∞= .  Table 2.2 shows the Drude model parameter of 

common metals. Here ω∞  is the frequency of onset for interband transitions. Drude 

parameters tabulated are not valid beyond this frequency. The validity of the Drude model 

for silver (it is used as metal in this thesis) is shown in Fig. 2.4. 

 

Table 2.2 Drude model parameter of common metals 

 ε∞  15(10 Hz)pω  121 (10 Hz)γ
τ

=  
14(10 Hz)ω∞  

Silver [18]  3.7  2.2  4.83  9.42  

Gold [18]  6.9  2.15  1.69  5.55  

Copper [18]  6.7  2.1  1.69  5.07  
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                           (a)  real part                                                         (b) imaginary part 

 
Fig. 2.4 The real and imaginary part of ( )ε ω  for silver determined by Johnson 

and Christy[34] (red asterisk ) and Drude model (solid blue line). 

 

2.6 Electromagnetic Wave Propagation 

Understanding the propagation of SPP mode required extensive knowledge in the 

propagation of electromagnetic (EM) waves. All EM phenomena are governed by Maxwell’s 

equations [1]. The symmetry and duality of Maxwell’s equations are evident in a source-free 

region. These equations can be validated in the regions that contain charges and currents; 

however, the existence of electric charges and without the magnetic ones make Maxwell’s 

equations asymmetric[30]. This symmetry can be restored if magnetic monopoles are 

allowed mathematically. The source-free Maxwell’s equations for the case that Jm = Je = 0 

and ρm = ρe = 0 and are valid when there are no freely moving charges. From these Maxwell’s 

equations stated in table 2.1, we can derive wave equations of the form [28]: 

∇2𝐸𝐸 − 𝜇𝜇𝜇𝜇 𝜕𝜕
2𝐸𝐸
𝜕𝜕𝑡𝑡2

= −(∇𝜖𝜖̃.∇)𝐸𝐸 − (𝐸𝐸.∇)∇𝜖𝜖̃ − ∇(𝜖𝜖̃ + 𝜇𝜇�) × (∇ × 𝐸𝐸)         (2.27a) 

∇2𝐵𝐵 − 𝜇𝜇𝜇𝜇 𝜕𝜕
2𝐵𝐵
𝜕𝜕𝑡𝑡2

= −(∇𝜇𝜇�.∇)𝐵𝐵 − (𝐵𝐵.∇)∇𝜇𝜇� − ∇(𝜇𝜇� + 𝜖𝜖̃) × (∇ × 𝐵𝐵)        (2.27b) 
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for spatially dependent permittivity and permeability here, 

                                                          𝜖𝜖̃ = ln 𝜖𝜖  ,     𝜇𝜇� = ln 𝜇𝜇                                            (2.28) 

and E and B are the incident electric and magnetic fields.            

For spatially invariant permittivity and permeability eq. 2.27 reduce to:  

                                                                 ∇2𝐸𝐸 − 𝜇𝜇𝜇𝜇 𝜕𝜕
2𝐸𝐸
𝜕𝜕𝑡𝑡2

= 0                                           (2.28) 

                                                                 ∇2𝐵𝐵 − 𝜇𝜇𝜇𝜇 𝜕𝜕
2𝐵𝐵
𝜕𝜕𝑡𝑡2

= 0                                           (2.29) 

These equations are second-order partial differential equations and can be solved for the EM 

fields. Again, considering time-harmonic dependence for the electromagnetic (EM field), 

then, 𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑖𝑖𝑖𝑖  

where i is the imaginary unit, and ω is the angular frequency. In this case, Maxwell’s 

equations can be express in cartesian co-ordinates as follows [1]:  

𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝑖𝑖𝑖𝑖𝜇𝜇0𝐻𝐻𝑥𝑥                 (2.30) 

𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝑖𝑖𝑖𝑖𝜇𝜇0𝐻𝐻𝑦𝑦                (2.31) 

𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝑖𝑖𝑖𝑖𝜇𝜇0𝐻𝐻𝑧𝑧                 (2.32) 

𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

= −𝑖𝑖𝑖𝑖𝜀𝜀0𝜀𝜀𝐸𝐸𝑥𝑥              (2.33) 

𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

= −𝑖𝑖𝑖𝑖𝜀𝜀0𝜀𝜀𝐸𝐸𝑦𝑦             (2.34) 

𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

= −𝑖𝑖𝑖𝑖𝜀𝜀0𝜀𝜀𝐸𝐸𝑧𝑧              (2.35) 

 

2.7 Electromagnetic Waveguides  

The propagation, control, and confinement of electromagnetic energy are accomplished by 

waveguides [27]. Waveguides are based on different electric and magnetic materials with 
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negative and positive EM susceptibilities. The applications of these structures, such as in 

radars and optical fibers, provide motivation for further advances in this field. Waveguides 

can be made of different structures, such as rectangular, slab, and cylindrical geometries. 

Among different structures of waveguides, rectangular, slab, and cylindrical are widely used 

and based on the type’s materials and geometry. Waveguides can be characterized [27]. 

 

Waveguide modes 

The waveguide modes refer to the cross-section of energy distribution in the waveguide core. 

In fact, modes are eigenvectors of eigenvalue equations. Solutions of Maxwell’s equations, 

along with satisfying the boundary conditions, yield a transcendental dispersion equation. 

For a given frequency, the transcendental dispersion equation may yield a finite number of 

roots for the propagation coefficient. These discrete roots represent the eigenvalues of the 

modes. Eigenvectors corresponding to these eigenvalues that respect the boundary conditions 

are modes. For a given frequency, there may be a case where no real root of the propagation 

coefficient exists. In that case, a guided mode simply does not exist for that situation. The 

mode’s behavior in a waveguide depends on parameters including waveguide materials, 

geometry, and the frequency of the EM wave. 

A single and flat interface between a metal and a dielectric is referred to as the simplest form 

of SPP in terms of geometry. Specifically, assuming that the SPPs wave propagates along the 

x-direction with a wavevector β, then 𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑖𝑖𝑖𝑖, and that the structure is purely 2-dimensional 

that is there is no spatial variation along the y-direction, then 𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 and so simplified form 

as follows [1]:  

                                                                𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

= −𝑖𝑖𝑖𝑖𝜇𝜇0𝐻𝐻𝑥𝑥                                             (2.36a) 

                                                           𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝑖𝑖𝑖𝑖𝐸𝐸𝑧𝑧 = 𝑖𝑖𝑖𝑖𝜇𝜇0𝐻𝐻𝑦𝑦                                        (2.36b) 

                                                               𝑖𝑖𝑖𝑖𝐸𝐸𝑦𝑦 = 𝑖𝑖𝑖𝑖𝜇𝜇0𝐻𝐻𝑧𝑧                                              (2.36c) 
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                                                                𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝑖𝑖𝑖𝑖𝜀𝜀0𝜀𝜀𝐸𝐸𝑥𝑥                                               (2.36d) 

                                                          𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝑖𝑖𝑖𝑖𝐻𝐻𝑧𝑧 = −𝑖𝑖𝑖𝑖𝜀𝜀0𝜀𝜀𝐸𝐸𝑦𝑦                                     (2.36e) 

                                                             𝑖𝑖𝑖𝑖𝐻𝐻𝑦𝑦 = −𝑖𝑖𝑖𝑖𝜀𝜀0𝜀𝜀𝐸𝐸𝑧𝑧                                            (2.36f) 

 

The above equations can be clearly divided into two sets: 1) Transverse magnetic (TM) mode 

and 2) Transverse Electric (TE) mode. For the earlier case, the electric field components 

along x and z axis and magnetic field component only along the y-axis are non-zero, whereas 

it is vice-versa for the latter case.  

 

Fig 2.6. Schematic view of SPPs propagating along a single metal-dielectric interface in 

two dimensions [29]. 

For TM mode, the equations reduce to the followings:  

                                                            𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝑖𝑖𝑖𝑖𝐸𝐸𝑧𝑧 = 𝑖𝑖𝑖𝑖𝜇𝜇0𝐻𝐻𝑦𝑦                                        (2.37a) 

                                                              𝐸𝐸𝑥𝑥 = − 𝑖𝑖
𝜔𝜔𝜀𝜀0𝜀𝜀

𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

                                               (2.37b) 

                                                             𝐸𝐸𝑧𝑧 = − 𝛽𝛽
𝜔𝜔𝜀𝜀0𝜀𝜀

𝐻𝐻𝑦𝑦                                                 (2.37c) 

The field components can be easily found from the solutions and expressed as [30]:  

For z < 0,  

                                                           𝐻𝐻𝑦𝑦(𝑧𝑧) = 𝐴𝐴1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑘𝑘1𝑧𝑧                                           (2.37d)  

                                                         𝐸𝐸𝑥𝑥(𝑧𝑧) = − 𝑖𝑖𝐴𝐴1𝑘𝑘1
𝜔𝜔𝜀𝜀0𝜀𝜀1

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑘𝑘1𝑧𝑧                                     (2.37e)  
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                                                         𝐸𝐸𝑧𝑧(𝑧𝑧) = − 𝐴𝐴1𝛽𝛽
𝜔𝜔𝜀𝜀0𝜀𝜀1

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑘𝑘1𝑧𝑧                                      (2.37f)  

For z > 0,  

                                                       𝐻𝐻𝑦𝑦(𝑧𝑧) = 𝐴𝐴2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑘𝑘2𝑧𝑧                                             (2.38) 

                                                     𝐸𝐸𝑥𝑥(𝑧𝑧) = − 𝑖𝑖𝐴𝐴2𝑘𝑘2
𝜔𝜔𝜀𝜀0𝜀𝜀2

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑘𝑘2𝑧𝑧                                        (2.39) 

                                                      𝐸𝐸𝑧𝑧(𝑧𝑧) = − 𝐴𝐴2𝛽𝛽
𝜔𝜔𝜀𝜀0𝜀𝜀2

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑘𝑘2𝑧𝑧                                        (2.40) 

where 𝑘𝑘𝑖𝑖2 = 𝛽𝛽2 − 𝑘𝑘02𝜀𝜀𝑖𝑖 (i=1,2) and The continuity of Hy and Ex at the boundary condition z 

= 0 and that leads to, 𝐴𝐴1 = 𝐴𝐴2 and 𝑘𝑘1𝜀𝜀2 = −𝑘𝑘2𝜀𝜀1. As the field of SPPs is confined at the 

interface of metal and dielectrics, and evanescently propagates along z-axis, therefore, the 

condition Re [K1] > 0 and Re [K2] > 0 demands that Re [ε1] < 0 if ε2 > 0. According to [31], 

the condition stated before is satisfied for both the cases of infrared and visible light, it can 

be concluded that SPPs can exist for the TM polarization.  

The dispersion relation of SPPs at a single metal-dielectric interface per equation 2.36 :  

                                                  𝛽𝛽 = 𝑘𝑘0�
𝜀𝜀1𝜀𝜀2
𝜀𝜀1+𝜀𝜀2

                                                     (2.41) 

Here, 𝑘𝑘0 = 𝜔𝜔/𝑐𝑐 is the free space wavevector, and c is the speed of light in vacuum.  

For the case of TE mode, the equations 2.37 reduce to:  

                                                        𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝑖𝑖𝑖𝑖𝐻𝐻𝑧𝑧 = −𝑖𝑖𝑖𝑖𝜀𝜀0𝜀𝜀𝐸𝐸𝑦𝑦                                       (2.42a) 

                                                              𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

= −𝑖𝑖𝑖𝑖𝜇𝜇0𝐻𝐻𝑥𝑥                                               (2.42b) 

                                                            𝑖𝑖𝑖𝑖𝑖𝑖𝑦𝑦 = 𝑖𝑖𝑖𝑖𝜇𝜇0𝐻𝐻𝑧𝑧                                                 (2.42c) 

And the field components can be written as [29]:  

For z <0,  

𝐸𝐸𝑦𝑦(𝑧𝑧) = 𝐴𝐴3𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑘𝑘1𝑧𝑧                                              (2.43a) 

 𝐻𝐻𝑥𝑥(𝑧𝑧) = 𝑖𝑖𝐴𝐴3𝑘𝑘1
𝜔𝜔𝜇𝜇0

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑘𝑘1𝑧𝑧                                            (2.43b) 

                                            𝐻𝐻𝑧𝑧(𝑧𝑧) = 𝐴𝐴3𝛽𝛽
𝜔𝜔𝜇𝜇0

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑘𝑘1𝑧𝑧                                             (2.43c) 
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For z > 0,  

                                                      𝐸𝐸𝑦𝑦(𝑧𝑧) = 𝐴𝐴4𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑘𝑘2𝑧𝑧                                              (2.44a) 

                                                    𝐻𝐻𝑥𝑥(𝑧𝑧) = − 𝑖𝑖𝐴𝐴4𝑘𝑘2
𝜔𝜔𝜇𝜇0

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑘𝑘2𝑧𝑧                                        (2.44b) 

                                                     𝐻𝐻𝑧𝑧(𝑧𝑧) = 𝐴𝐴4𝛽𝛽
𝜔𝜔𝜇𝜇0

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑘𝑘2𝑧𝑧                                             (2.44c) 

The continuity of Ey and Hx at the boundary condition z = 0 and that leads to 𝐴𝐴3 = 𝐴𝐴4 and 

𝑘𝑘1 = 𝑘𝑘2 

Here it can be seen from equation 2.15 that it does not satisfy the condition of Re [K1] > 0 

and Re [K2] > 0 as derived from the previous section. Hence, it can be concluded that SPPs 

cannot exist for the TE polarization. 

 

2.8 Materials 

Different materials are employed in the construction of waveguides, and SPPs can propagate 

along with the interfaces of a large set of materials. The materials can have positive, negative 

near-zero and zero permittivity and permeability. Metamaterials, metals, and dielectrics are 

examples of materials employed in waveguide structures and interfaces. This section covers 

the materials description and the calculation methods of permittivity and permeability 

 

2.8.1 Electromagnetic material 

The presence of both electric and magnetic monopoles in electromagnetic materials shas 

expanded the range of parameters, and their permeability and permittivity can be categorized 

as negative, positive, and non-zero. A magnetic monopole is considered a crucial mathematic 

tool and theoretically valid despite the fact that it does not exist [28]. Primitivity and 

permeability, those are frequency-dependent, are characterized through different models in 

the literature.  Nonetheless, the entire range of refractive index, starting from double-positive 

to double negative values, should be represented through all models to demonstrate all 
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features of any electromagnetic materials. The Drude-Lorentz model [1] is such a model that 

involves the response of material after an electromagnetic field was incident, and it was found 

efficient in defining the susceptibilities of electromagnetic materials. Electric permittivity is 

the result of a material polarizing in response to an external electric field and thereby 

generating an internal electric field. The permittivity expression of an LHI material can be 

classically derived by solving the equation of motion of each electron of the form [29]. 

                          ∑𝐹𝐹 = 𝑚𝑚𝑒𝑒𝑎𝑎 = 𝑚𝑚𝑒𝑒 �
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

+ Γ𝑒𝑒
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜔𝜔0𝑒𝑒
2 𝑥𝑥� = −𝑞𝑞𝑒𝑒𝐸𝐸(𝑥𝑥, 𝑡𝑡)                       (2.45) 

in the material, for an electron of charge -e under the action of the electric field E. Here x is 

the displacement of the electron under the effect of E, ω0e is the electric resonance frequency 

corresponding to the electron binding energy, Г is a phenomenological damping constant (Гe 

refers to electric damping constant), and me is the mass of the electron refers to electric 

damping constant. Employing the solution to Eq. (2.27) along with [29]:  

                                                 𝑝𝑝 = 𝜖𝜖0𝜒𝜒𝑒𝑒𝐸𝐸 = −𝑒𝑒𝑒𝑒,𝜒𝜒𝑒𝑒 = 𝜖𝜖
𝜖𝜖0
− 1                                     (2.46) 

the expression for the polarization is, 

                                       𝑝𝑝 = 𝑒𝑒2

𝑚𝑚𝑒𝑒
(𝜔𝜔0

2 − 𝜔𝜔2 − 𝑖𝑖𝑖𝑖Γ𝑒𝑒)𝐸𝐸                                          (2.47) 

 

Polarization of materials is the sum of all individual dipoles, and for the materials with a 

single atom type, every electron has the same binding energy. Therefore, the permittivity of 

the material with Ne electrons per unit volume has the form, 

 

                                                    𝜖𝜖(𝜔𝜔)
𝜖𝜖0

= 1 + 𝐹𝐹𝑒𝑒𝜔𝜔𝑒𝑒
2

𝜔𝜔0𝑒𝑒
2 −𝜔𝜔2+𝑖𝑖Γ𝑒𝑒𝜔𝜔

                                               (2.48) 

where Fe is electric oscillation strength, and all Fe, ω0e, and Гe describe charge-Ion dipole 

oscillation. In Eq. (2.31), εo is the permittivity of free space, and ω is the operating frequency. 

The permittivity of an EM material, which is frequency-dependent, can be expressed in the 

form of  Drude-Lorentz through (2.31) [29].  ω  denotes the angular frequency of the incident  
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EM field. In this equation, ωe is the electric plasma frequency. 

 

                                                      𝜔𝜔𝑝𝑝 ≝ �𝑁𝑁𝑒𝑒𝑞𝑞𝑒𝑒2

𝑚𝑚𝑒𝑒𝜖𝜖0
≝ 𝜔𝜔𝑒𝑒                                                     (2.49) 

where Ne is the number density of electrons, qe and me are electron charge and mass and εo 

is vacuum permittivity. Both ωe and ωp are used in literature for the plasma frequency. The 

complex refractive index of the lossy EM material is [29]  

 

                                                          𝑛𝑛 ≝ �
𝜖𝜖𝜖𝜖
𝜖𝜖0𝜇𝜇0

= 𝑛𝑛𝑟𝑟 + 𝑖𝑖𝑛𝑛𝑖𝑖                                           (2.50) 

 

As square roots have two possible solutions, one positive and one negative, the appropriate 

case should be chosen. For passive materials considered in this thesis, the sign that 

corresponds to ni > 0 should be chosen to ensure that the material does not have gain. This 

choice leads to nr < 0 at frequencies that have both έ < 0, ή < 0. The behavior of a material 

which is consists of both electric and magnetic monopoles can be realized through another 

material on a large scale since the earlier material usually does not exist in nature. For 

example, materials that show both magnetic and electric characteristics are used to 

understand the existence of` magnetic monopoles.  

 
2.8.2 Metals 

Metals are considered to be a significant case of dispersive LHI materials. In this part, the 

electric metal’s form and hypermagnetic metal are introduced. The electric metal is referred 

as the metal with both positive and negative permeability within the range of frequency of 

interest. The term “hypermagnetic metal”  is simply referred to as the magnetic analogy of 

an electric metal. Despite the fact these types of materials do not exist, they bring the concepts 

of metamaterials. Since in SPPs, the propagation remains parallel to the interface, only TM 

mode is supported by any electric metal. In the same manner, due to the propagation of the 
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magnetic field being parallel, only TE mode supported for hypermagnetic materials. The 

above characteristics are important for SPP. However, be it electric or hypermagnetic, the 

aim of this paper is to characterize SPP in full fledge in the case of any material.  

 

The combination of electric metals and hypermagnetic metal can generate an effective 

material with both electric and magnetic charges. Such a material can have double-positive, 

double-negative, ‘-negative and μ-negative refractive-indices as the incident EM field cause 

the oscillations of both electric and magnetic plasmas. This behavior of these materials based 

on the combination of electric metals and hypermagnetic metal can be in accordance with the 

behavior of metamaterials. 

 

2.9 SPPs Waveguiding 

Having described the basics of SPPs in section 2.6, in this section we continue to discuss the 

propagation properties of SPPs. Two critical parameters that determine mode characteristics 

are the propagation length Lp and the normalized mode area A (i.e. a larger value of A 

corresponds to a lower degree mode confinement) and are defined as [4] 

                                                           𝐿𝐿𝑝𝑝 = 𝜆𝜆/�4𝜋𝜋Im(𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒)�                                          (2.51) 

                                                     𝐴𝐴 = 𝐴𝐴𝑚𝑚
𝐴𝐴0

= ∬ 𝑊𝑊(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∞
−∞
max [𝑊𝑊(𝑥𝑥,𝑦𝑦)]

× 1
𝐴𝐴0

                                    (2.52) 

where λ is the operating wavelength, Im(neff) is the imaginary part of the mode effective 

refractive index 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒, Am is the mode area, Ao = λ2 /4 is the diffraction-limited mode area, 

and the energy density W (x, y) is defined as [34]  

 

                                  𝑊𝑊(𝑥𝑥,𝑦𝑦) = 1
2
𝑅𝑅𝑅𝑅 �𝑑𝑑[𝜔𝜔𝜔𝜔(𝑥𝑥,𝑦𝑦)]

𝑑𝑑𝑑𝑑
� |𝐸𝐸(𝑥𝑥, 𝑦𝑦)|2 + 1

2
𝜇𝜇0|𝐻𝐻(𝑥𝑥, 𝑦𝑦)|2               (2.53) 

 

where E (x, y) and H (x,y) are the electric and magnetic fields, respectively. 
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Research on plasmonic waveguides dates back to the 1970s to 1980s. In these early works, 

it was found that the SPPs waveguides can be used to localize guided modes beyond the 

diffraction limit. Later in 1997, J. Takahara et al. firstly demonstrated the possibility of sub-

diffraction guiding of SPPs modes in a cylindrical metal nanowire or nanohole configuration 

[35]. However, the sub-diffraction guiding of SPPs (i.e., the subwavelength mode 

confinement) was achieved at the cost of a short propagation length. Therefore, from the 

early 2000s, research interests started to focus on compromising the tradeoff between the 

mode confinement and propagation length [36]. In the early 2000s, two important plasmonic 

heterostructures were investigated, the insulator-metal-insulator (IMI) waveguide and the 

metal-insulator-metal (MIM) waveguide. The IMI waveguide can guide SPPs over distances 

of several centimeters, but the associated EM fields are weakly confined. While the MIM 

waveguide exhibits subwavelength mode confinement, it has a large attenuation loss, leading 

to a propagation length that is only in the order of a micrometer or lower. In the years that 

followed, various types of SPPs waveguides were proposed to mitigate this tradeoff, which 

included a metal wedge waveguide, a metal V-groove waveguide, and a dielectric-loaded 

SPPs (DLSPPs) waveguide. It was found that the metal wedge and V-groove waveguides can 

realize subwavelength confinement and an acceptable propagation length up to tens of 

micrometers. While the DLSPPs waveguide possesses an increased propagation length (up 

to hundreds of micrometers) it does have a relatively larger mode area. The tradeoff remained 

challenging until 2008 when there was a proposal for a novel hybrid SPPs (HSPPs) 

waveguide by R. F. Oulton [35], which could simultaneously offer subwavelength mode 

confinement and an extended propagation length up to hundreds of micrometers. This 

breakthrough research opened the way recently to a new range of SPPs based applications, 

such as a nanolaser and nanotweezers [39]. 
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2.9.1 Dielectric loaded SPPs (DLSPPs) waveguide 

A DLSPPs waveguide is one of the most popular plasmonic waveguides investigated in 

recent years. Fig. 2.7 shows a schematic view of the DLSPPs planar waveguide. Compared 

to a single planar dielectric-metal waveguide, a higher permittivity dielectric_1 layer is 

introduced in the DLSPPs waveguide, i.e. Ɛ2 > Ɛ3, with a thickness d. 

 

 

Fig. 2.7: Geometry of the 2D-DLSPPs waveguide with no permittivity variation along the 
y-direction [29] 

 
 

To investigate DLSPPs waveguide, it is assumed that SPPs propagate long the x-direction,  

and there is no spatial variation along the y-direction. Then the magnetic field Hy can be 

expressed as follows [36]: 

                                                 𝐻𝐻𝑦𝑦(𝑧𝑧) = 𝐴𝐴𝐴𝐴𝑘𝑘1𝑧𝑧𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖,      𝑧𝑧 < 0                                                   (2.54a) 

                               𝐻𝐻𝑦𝑦(𝑧𝑧) = 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑘𝑘2(𝑧𝑧−𝑑𝑑) + 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑘𝑘2𝑧𝑧,   0 < 𝑧𝑧 < 𝑑𝑑                          (2.54b) 

                                              𝐻𝐻𝑦𝑦(𝑧𝑧) = 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑘𝑘3(𝑧𝑧−𝑑𝑑),    𝑧𝑧 > 𝑑𝑑                                          (2.54c) 

and Ex (z) and Ez (z) are given by eq. (2.22a) and eq. (2.22b), respectively, in which 

                                          𝑘𝑘𝑖𝑖2 = 𝛽𝛽2 − 𝑘𝑘02𝜀𝜀𝑖𝑖     (𝑖𝑖 = 1,2,3)                                                      (2.55) 

By applying the boundary conditions, i.e. the continuity of Hy and Ex at the boundary z = 0 

and z = d, the dispersion relation of the DLSPPs mode can be expressed as [37]: 

                                                       𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑑𝑑 = 𝜀𝜀1𝑘𝑘(𝜀𝜀2𝜃𝜃+𝜀𝜀3𝛾𝛾)
𝜀𝜀2𝜀𝜀3𝑘𝑘2−𝜀𝜀12𝛾𝛾𝛾𝛾

                                              (2.56a) 

where  

                                                         𝛾𝛾 = �𝛽𝛽2 − 𝑘𝑘02𝜀𝜀2                                                   (2.56b) 
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                                                         𝜃𝜃 = �𝛽𝛽2 − 𝑘𝑘02𝜀𝜀3                                                   (2.56c) 

                                                         𝑘𝑘 = �𝑘𝑘02𝜀𝜀1 − 𝛽𝛽2                                                   (2.56d) 

For the DLSPPs waveguide with a very thick dielectric_1 layer, it can be speculated that the 

DLSPPs mode is actually the SPPs mode propagating along the single dielectric_1-metal 

interface. As d decreases, the field of the DLSPPs mode will be progressively squeezed inside 

the dielectric_1 region, indicating an enhanced mode confinement compared to that for the 

case of a very thick dielectric_1 layer. However, a further decrease in d gives rise to a rapid 

increase in the field outside the dielectric_1, corresponding to a weaker mode confinement. 

This implies that there is an optimal value of d, at which the DLSPPs mode achieves the 

strongest mode confinement. It has been demonstrated that a DLSPPs waveguide can provide 

a modest mode confinement (A ~ 0.16λ2) as well as a relatively long propagation length (Lp 

~ 100 µm) [37]. 

 

2.9.2 Hybrid SPPs (HSPPs) waveguide 

The schematic diagram of a typical HSPPs waveguide is shown in Fig. 2.9. Compared to 

DLSPPs waveguide, a lower permittivity dielectric_2 (Ɛ3, with a thickness of d) is 

sandwiched between the metal substrate and the higher permittivity dielectric_1 (Ɛ2, with a 

thickness of h). 

 

Fig. 2.8: Geometry of the HSPPs waveguide with no permittivity variation along the y-
direction [37]. 

 

To investigate the properties of the HSPPs waveguide, it is assumed that SPPs propagate  



31 
 

along the x-direction and there is no spatial variation along the y-direction. Then the magnetic  

field Hy can be expressed as follows [37]: 

                                                 𝐻𝐻𝑦𝑦(𝑧𝑧) = 𝐴𝐴𝐴𝐴𝑘𝑘1𝑧𝑧𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖,      𝑧𝑧 < 0                                          (2.57a) 

                               𝐻𝐻𝑦𝑦(𝑧𝑧) = 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑘𝑘2(𝑧𝑧−𝑑𝑑) + 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑘𝑘2𝑧𝑧 ,   0 < 𝑧𝑧 < 𝑑𝑑                      (2.57b) 

                         𝐻𝐻𝑦𝑦(𝑧𝑧) = 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑘𝑘3(𝑧𝑧−𝑑𝑑−ℎ) + 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑘𝑘3(𝑧𝑧−𝑑𝑑),    𝑑𝑑 < 𝑧𝑧 < (𝑑𝑑 + ℎ)         (2.57c) 

                                          𝐻𝐻𝑦𝑦(𝑧𝑧) = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑘𝑘2(𝑧𝑧−𝑑𝑑−ℎ), 𝑧𝑧 > (𝑑𝑑 + ℎ)                                       (2.57d) 

 

and Ex (z) and Ez (z) are given by eq. (2.57a) and eq. (2.57b), respectively, in which 

                                                       𝑘𝑘𝑖𝑖2 = 𝛽𝛽2 − 𝑘𝑘02𝜀𝜀𝑖𝑖        (𝑖𝑖 = 1,2,3)                                      (2.58) 

 

By applying the boundary conditions i.e. the continuity of Hy and Ex at the boundary z = 0, z= 

d, and z = (d+h), the dispersion relation of the HSPPs mode can be expressed as : 

                                                𝑘𝑘1
𝜀𝜀1
𝑚𝑚11 + 𝑘𝑘2

𝜀𝜀2
𝑚𝑚22 − 𝑚𝑚21 −

𝑘𝑘1𝑘𝑘2
𝜀𝜀1𝜀𝜀2

𝑚𝑚12 = 0                               (2.59) 

where,  𝑚𝑚11, 𝑚𝑚12, 𝑚𝑚21 and 𝑚𝑚22 are given by,  

�
𝑚𝑚11 𝑚𝑚12
𝑚𝑚21 𝑚𝑚22

� = �
cos(𝑘𝑘2𝑑𝑑) − 𝜀𝜀2

𝑘𝑘2
sin(𝑘𝑘2𝑑𝑑)

𝑘𝑘2
𝜀𝜀2

sin(𝑘𝑘2𝑑𝑑) cos(𝑘𝑘2𝑑𝑑)
� × �

cos(𝑘𝑘3ℎ) − 𝜀𝜀3
𝑘𝑘3

sin(𝑘𝑘3ℎ)
𝑘𝑘3
𝜀𝜀3

sin(𝑘𝑘3ℎ) cos(𝑘𝑘3ℎ)
�           (2.60) 

 

Eq. (2.60) can offer accurate solutions for the HSPPs mode; however, the physical 

explanation of the HSPPs mode from eq. (2.60) is not straightforward. The physical 

explanation can be provided by the so-called coupled-mode theory. In this theory, it is 

believed that HSPPs mode is generated due to the coupling between the photonic waveguide 

mode (supported by the dielectric_1 layer) and the SPPs mode (excited at the single 

dielectric_2-metal interface). In other words, the dielectric_1 surrounded by the dielectric_2 

can support a dielectric waveguide mode, and the dielectric_2-metal interface can support a 

SPPs mode. When the two modes with similar effective refractive indices are brought close 
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to each other, the dielectric waveguide mode will couple with the SPPs mode and form a 

HSPPs mode. Recently the HSPPs waveguide has attracted significant interest because it 

possesses a confinement capability beyond the diffraction limit (A ~ λ2/400 while retaining 

a relatively long propagation length (Lp ~ 150 µm [38]). 

 

2.10 Conclusion 

Overall, then as discussed in the sub-sections above, a variety of SPPs waveguide types have 

been developed. Each has its own strength and weakness, and still retains the fundamental 

tradeoff between the mode confinement and propagation length. The choice of SPPs 

waveguiding schemes should be selected by the requirements of specific applications. 
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Chapter 3 

ANALYSIS TECHNIQUES 

3.1 Introduction 

This chapter narrates the prevalent simulation software COMSOL MultiphysicsTM which was 

used to analyze the characteristics of Long-Range Surface Plasmon Polariton effect in 

different types of waveguides. COMSOL MultiphysicsTM is based on the finite element 

method, which breaks the overall simulation area into small domains and evaluates the total 

field values by summing each of them. Also, the Partial differential equations are discussed 

in this section. These PDEs are used to evaluate the different parameters after defining the 

proper boundary conditions as per the analysis domain. And last but not least, the meshing 

techniques is stated that play a significant role to distribute the simulation domain as per the 

requirement of the different structure, materials, and distribution of fields.  

 

3.2 The Finite Element Analysis and COMSOL Multiphysics 

The finite element method can offer an approximate solution to a particular problem 

integrating partial differential equations. The civil engineers initially used this method to 

analyze stress in the structures. Later finite element method was used in several other 

disciplines of engineering and considered as a key tool to model the various scientific 

problems- such as electric and magnetic fields, energy distribution over the area, and 

others. Engineers can apply this finite element method on the models with complex 

structures and eccentric boundary conditions, which made it extremely popular among the 

academics and field engineers.         

 

To imply the finite element method on the particular geometry leads to discretize or divide 

the whole structure into a finite number of smaller elements. This smaller unit is much easier 
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to analyze than that of the entire model area for its more superficial properties. Thus, several 

meshes from the overall geometry are formed by joining the smaller units, named as vertices. 

The unknown field profile for these small units can be sought and approximated using simple 

smooth functions such as polynomials, called interpolation or shape functions. Thus, the field 

parameters can be given by [39] 

 

                                            𝜙𝜙 = 𝑁𝑁1𝜙𝜙1 + 𝑁𝑁2𝜙𝜙2 + ⋯+ 𝑁𝑁𝑚𝑚𝜙𝜙𝑚𝑚                                      (3.1) 

 

where the unknown filed is given by 𝜙𝜙𝑖𝑖 for the interpolation function Ni for each element. 

Finite elements with linear interpolation functions give exact values for 𝜙𝜙𝑖𝑖 if the result being 

sought is quadratic, quadratic elements give similar values for 𝜙𝜙𝑖𝑖 for cubic solutions, etc. The 

accuracy of the solution solely depends on the distribution of the elements.  The result tends 

to get more accurate with the larger number of meshes, but the requirements of processing 

resources will be higher. So, the distribution of mesh is rather not symmetric over the entire 

geometry rather finer than other areas where the precision of the result is critical for the 

calculation. A matrix equation can be got, which controls the comportment of finite elements 

for a specific problem applying suitable assumption. This resultant characteristic equation 

has different names as per the field of study: in the optical module, it is called the refractive 

index matrix. The weighted residual method is a way of originating this characteristic matrix, 

while the variational method can also be useful. 

 

For the problems that work with the depreciation of any functional, the variational method is 

beneficial. It can be said that Hamilton’s principle works with such kind where the full energy 

of a system is defined. On the other hand, the variational method is used on problem which 

is related to the variational principle. Similarly, when the problem is related to differential 

equations, the weighted residual method is mainly used. The motto is to minimize the 
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remaining after a rough or test solution is replaced to the differential equations [39], and are 

universal mathematical tools applicable to solve all types of PDEs. Galerkin method is the 

most commonly used variational method [39]. 

 

From the characteristics matrices, set linear simultaneous equations can be got for the entire 

problem domain. After solving these equations, we got the mandatory field at the vertices, 

𝜙𝜙𝑖𝑖, adding up all the field quantities from the small meshes. The necessary boundary 

conditions and initial conditions should be appropriately set before executing the solution. 

To work with a sparse and symmetric matrix, we have to invert it to get the accurate results. 

The direct and iterative method is the two different techniques used to solve simultaneous 

equations [39]. To use the direct method, the set of equations should be entirely amassed 

before beginning, and it is based on well-known Gauss elimination and LU decomposition 

methods. The problem associated with a large number of mesh vertices requires massive 

storage. Iterative methods work efficiently for bigger models, such as the Gauss-Deidel 

method. They are implied to avoid the total accumulation of matrices of a large system [39].  

 

Many commercial software offers automation of finite element simulations, and COMSOL 

Multiphysics is very popular among them[45]. COMSOL Multiphysics gives a user-friendly 

environment for geometric modeling and a large material database. COMSOL Multiphysics 

enables a person to evaluate the desired field, having very brief knowledge of  PDEs or 

numerical analysis through in-build interfaces. COMSOL allows an engineer to express their 

PDEs by coefficients, in the weak form, or a general form. COMSOL introduces numerous 

modules useful to calculate different parameters, like the heat transfer module, the acoustics 

module, chemical engineering module, Optical module, etc. Each module contains the 

differential equations, which can be used to evaluate the diverse field parameters 

conveniently. As long as this research work is related to the optical modes of different 
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waveguides and how different characterizing parameters of the waveguides can be realized 

as active devices, COMSOL only uses the optical module, and later we strictly discuss on 

this topic. 

 

Firstly, engineers use some computer-aided design utilities to define the structure of any 

specific models in COMSOL. Later, from the vast material database, the particular material 

characteristics such as permittivity, density, and the refractive index can be given with utmost 

ease. These material parameters and related equations for different materials are emblazoned 

in COMSOL that allows the user to describe the problem scenario very quickly. Lastly, after 

applying the necessary boundary condition, the model area is discretized with small finite 

elements according to any suitable algorithm to solve the PDEs.   

 

3.3 Boundary Conditions of PDEs 

The relevant partial differential equations generated from Maxwell’s equations should be 

solved while investigating the optical modes of metal waveguides with variation in operating 

frequencies. Each of these equations is associated with a set of boundary conditions. 

 

3.3.1 Eigenmode analysis 

2D eigenmode solver of COMSOL belongs to the optical module calculates the mode field 

F(x, y) of a wave propagating in the z-direction deals with following Maxwell’s curl 

equations  

            𝛻𝛻 × 𝛻𝛻 × 𝑬𝑬 − 𝑛𝑛�2(𝑥𝑥, 𝑦𝑦)𝑘𝑘02𝑬𝑬 = 0                                           (3.2) 

                                                    𝛻𝛻 × 𝑛𝑛�−2(𝑥𝑥,𝑦𝑦)𝛻𝛻 × 𝑯𝑯− 𝑘𝑘02𝑯𝑯 = 0                                         (3.3) 

where, 𝑯𝑯 = 𝑯𝑯(𝑥𝑥,𝑦𝑦)𝑒𝑒𝑖𝑖(𝛽𝛽𝛽𝛽−𝜔𝜔𝜔𝜔), 𝑬𝑬 = 𝑬𝑬(𝑥𝑥,𝑦𝑦)𝑒𝑒𝑖𝑖(𝛽𝛽𝛽𝛽−𝜔𝜔𝜔𝜔),𝑘𝑘02 = 𝜔𝜔2𝜇𝜇0𝜖𝜖0 and β is the propagation 

constant in the z-direction. COMSOL’s optical module provides many supplementary 

boundary conditions which simplify the modeling process along with general boundary 
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conditions that always have to be fulfilled in electromagnetic theory. These consist of 

environments that permit the boundaries to act like perfect electric or magnetic conductors 

(i.e. 𝑛𝑛 × 𝐸𝐸 = 0, or 𝑛𝑛 × 𝐻𝐻 = 0), and the perfectly matched layer (PML). A perfectly matched 

layer acts both as a boundary condition and a surplus domain that captivates the radiation 

incident on a surface area without creating any reflections [45]. In this research work, the 

perfectly matched layer conditions are used which is related to two further conditions - the 

scattering and impedance boundary conditions.  

 

3.4 Discretization  

The most important part of the simulation process is the meshing of a model. The geometry 

of the structure does not control the result of the partial differential equations itself but the 

discretization of the analysis domain. Only a suitable discretization should not be sufficient 

enough to solve all the essential aspects of the resolution in detail. Also, optimizing the 

meshing algorithm is equally crucial to saving the computer’s resources during the simulation 

process. COMSOL provides an automatic discretization facility like any other finite element 

analysis software, which usually works fine. As stripe waveguides possess the extreme aspect 

ratio of plasmonic (nanometer or micrometer level), the automatic meshing algorithms are 

not enough. The reason is automated meshing algorithms do not consider the crucially of 

field calculation in particular regions. The user must optimize how the mesh should be 

generated. Still, the number of meshes must ensure that LR-SPP modes typically extend 

several µm into the cladding away from the metal waveguides.  

 

There are two types of meshes - free mesh and mapped mesh commonly. Free meshes consist 

of triangular and tetrahedral elements in two-dimensional models and three-dimensional 

models, respectively. Similarly, mapped meshes contain quadrilateral and hexahedral 

elements segments, respectively. The free mesh is created by a triangulation method called 
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the Delauney algorithm, thus functional for each dimension [45]. This triangulation method 

is applicable for every geometry of different shape or topology, making the free mesh 

advantageous over others. On the other hand, the use of mapped mesh is limited to regular 

mesh geometries that are mostly rectangular. The geometry of the model can be changed to 

meet the requirements of perfect meshing strategy.    

 

COMSOL makes mapped meshes governed by an algorithm to outline a consistent square 

grid and then relates to the model using transfinite interpolation [45]. The types of mapped 

mesh are not dependent on a set of tunable parameters that differs from the free mesh. Two 

types of meshes are exhibited in fig. 3.1. 

 
 

Fig. 3.1: (a) A triangular mesh with a denser area in the left side. (b) A quadrilateral mesh 
of evenly distributed region. 

 

The boundaries of different domains of a specific model usually are divided into small 

segments based on the quantity of elements and the orientation of the vertices both types of 

meshes. To ensure the better tuning of the discretization from users, subdomains mesh 

elements are kept into fixed points. A similar example is shown in Fig 3.1a, where the mesh 

seems finer at the left region, keeping the number of segments 70. When modeling plasmonic 

stripe waveguides, this feature is quite useful because, in the stripe region, the number of the 

mesh can be varied manually as per user requirements. Almost in every case in this research, 

the phenomenon of the LRSPP modes on the waveguide model was analyzed. The mesh of 
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a fixed density was defined in the waveguide to introduce a uniformity among various 

structures, which makes the comparative study more reliable. Fig. 3.2 exhibits a commonly 

used meshing for stripe waveguide. Here the metal stripe is discretized to maintain a specific 

vertex spacing in the lateral and transverse direction. 

 

 

                                  ( a )         (b) 

Fig. 3.2: (a) The meshed model of a stripe waveguide (b) Mapped mesh, which was defined 
manually in metal strip, enclosed by a free mesh in area of cladding . Here, the thickness of 

the metal is 13 nm [45]. 

 

3.5 Surface Plasmon Polaritons Restricted to Single Interface 

The simplest geometry supporting Surface Plasmon polaritons (SPPs) is that it contains only  

a single and flat interface. In this chapter, we analyze this simple structure theoretically and 

show some simulations that verify the result. 

 

3.5.1 Theoretical analysis 

Fig. 3.1 shows an interface between a dielectric, non-absorbing half-space (y>0) with a real 

dielectric constant ε2 greater than zero, and another conducting half-space (y<0) having a 
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dielectric function ε1(ω). The necessity of a metallic area implies that Re[ε1] <0. For metals, 

the overall condition is fulfilled at a frequency below the bulk plasmon frequency ωp.  

As, 0xk = from 2 2 2
0 y zk k kε = +  , for evanescent decay in the perpendicular y-direction yk  

needs to be imaginary. So, 2 2 2 2
0 0 0zk k kε β ε− = − > . Let, 1k , 2k  are the wave vector along y 

axis for y<0 and y>0, respectively.  

 

Fig. 3.3: Surface-plasmons on dielectric-metal boundaries. 

 

For TM results:  

Using the equations towards half spaces, both yields: 

for y>0 

                                         𝐻𝐻𝑥𝑥(𝑦𝑦) = 𝐴𝐴2 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒−𝑘𝑘2𝑦𝑦                                   (3.4a) 

                                   𝐸𝐸𝑦𝑦(𝑦𝑦) = − 𝛽𝛽
𝜔𝜔𝜀𝜀0𝜀𝜀2

𝐴𝐴2 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒−𝑘𝑘2𝑦𝑦                          (3.4b) 

                                     22
2

0 2

( )(y) A k yi z
z

i kE e eβ

ωε ε
−−−

=                                  (3.4c) 

for y<0                                                     1
1(y) A k yi z

xH e eβ−=                                           (3.5a) 
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                                     1
1

0 1

(y) A k yi z
yE e eββ

ωε ε
−= −                                 (3.5b) 

                                      11
1

0 1

( )(y) A k yi z
z

i kE e eβ

ωε ε
−=                                    (3.5c) 

where, A1 and A2 are constants and  

                                                                       2 2 2
1 0 1k kβ ε= −                                            (3.6a) 

                                                                       2 2 2
2 0 2k kβ ε= −                                            (3.6b) 

When the operating frequency is lower than the plasmon frequency of the metal, 𝜀𝜀1  holds 

negative value, and the argument of the square root will always satisfy the below condition 

2 2
0 0kβ ε− > . Continuity of Hx at  y = 0 implies that A1=A2 and continuity of Ez at the 

interface supports                                        2 1

2 1

k k
ε ε

= −                                                 (3.7) 

After the universal convention in the polarity of the exp in (3.4,3.5), confinement towards 

the surface needs that Re[ε1]<0 if ε2>0 - the surface waves remain only at edges between a 

metal with the inverse polarity of the dielectric permittivity ( Real part) of respective 

materials, i.e., between an insulator and a conductor. From (3.6)  and  (3.7)  

2 2
2 2 2 2 2 22 2
2 1 0 1 0 2

1 1

( ) kk k kε εβ ε β ε
ε ε

   
= = − = −   

   
 

               2 2 2 2 2 2
2 0 1 1 0 2( ) ( k )kε β ε ε β ε− = −  

                2 2 2 2
2 1 0 1 2 1 2( ) ( )kβ ε ε ε ε ε ε− = −  

                             
2

2 0 1 2

1 2

k ε εβ
ε ε

=
+
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 𝛽𝛽 = 𝑘𝑘0�

𝜀𝜀1𝜀𝜀2
𝜀𝜀1+𝜀𝜀2

                       (3.8) 

where, 𝛽𝛽 = 𝑘𝑘𝑧𝑧 = 𝜔𝜔
𝑐𝑐 �

𝜀𝜀1𝜀𝜀2
𝜀𝜀1+𝜀𝜀2

 
is the Surface Plasmon dispersion relation for a single interface. 

Dispersion curve: 

 
Fig. 3.4: Dispersion curve for a single interface.  

Fig 3.4 shows plots of equation (3.8) i.e. dispersion relation for a single interface where the 

metal-dielectric junction has negligible damping and is described by the real Drude dielectric 

function.  

In the frequency range ω<ωp, metal dielectric constant ε1(ω)<0, which fulfills the assumption 

2 2
0 0kβ ε− > .  

Again, 
          

𝛽𝛽 = 𝑘𝑘0�
𝜀𝜀1𝜀𝜀2
𝜀𝜀1+𝜀𝜀2

= 𝑘𝑘0√𝜀𝜀2�
𝜀𝜀1

𝜀𝜀1+𝜀𝜀2
                      (3.9) 

Since, 1ε is negative, for β to be real 1 2ε ε+  has to be negative. So, it can be seen that the 

value of the metal permittivity is required to be larger than dielectric permittivity for the SP 

to propagate along the interface i.e. 1 2ε ε> . 
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With the imposed conditions, it is also important to note that the second square root on the 

RHS of equation (3.9) is inevitably larger than one. So, β > 𝑘𝑘0√𝜀𝜀2 and this implies that the 

SPP excitations are always linked to the curves lying below of respective light lines. The 

phase-matching techniques are therefore required to excite them. [32] 

 

Radiation into the metal happens in the transparency region where ω > ωp. This radiation 

mode is called Brewster mode. Between the regime of the bound and radiative modes, a 

frequency gap region with purely imaginary β prohibiting propagation exists. In this region, 

called plasmon bandgap, the wave is evanescent, and it reflects back to the dielectric. 

 

For small wave vectors linked to low (mid-infrared or lower) frequencies [40], the SPP 

propagation constant is almost equal to k0 at the light line, and the waves spread over many 

wavelengths into the dielectric space. In this regime, SPPs, therefore, obtain the nature of a 

grazing-incidence light field and named as Sommerfeld-Zenneck waves [32]. The upper limit 

of frequency for propagating mode is defined as the surface plasmon frequency in which β 

diverges. It happens when the permittivity of the metal (ε1) nulls the other dielectric (ε2) 

                                                      𝜀𝜀1 = −𝜀𝜀2 ⇒ 𝜔𝜔𝑠𝑠𝑠𝑠 = 𝜔𝜔𝑝𝑝

�1+𝜀𝜀2
                                        (3.10) 

In this case, 0g
dv
d

ω
β

= → . The mode thus acquires electrostatic character, and is known as 

the surface plasmon. This equation tells us that the surface plasmon frequency is lower with 

the higher index of refraction of the dielectric. Below this frequency, light propagates in a 

bound mode. This high confinement of light at the interface specifies a true surface mode, 

called Fano mode [33]. 

 

However, in real metals, ε1(ω) is complex, as well as SPP propagation constant β. The 

traveling SPPs are damped with an energy attenuation length (also called propagation length). 
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At surface plasmon frequency spω , the wave vector approaches a maximum, finite value, 

instead of having something close to infinity for the case of undamped SPP. 

 

The propagation length can be described as the distance the wave travels along the interface 

until its energy falling-off to 1e− (≈0.368) of its real value. As the energy is directly 

proportional to the square of the field (energy 2 2Im( )zH e β−∝ ∝ ) , the propagation length ,  

                                                               1
2 Im( )pL

β
=                                                     (3.11) 

Fig. 3.5 shows the dispersion relation of SPPs propagating at the interface of silver/air and 

silver/silica, with the dielectric function ε1(ω) of silver [19]. Also in contrast to the case of 

ideal metal, the region between spω  and pω  is not prohibited any more, rather a quasi-bound 

leaky part of Re[β] exists in this regime. 

TE surface modes: 

Using the respective expressions for the field components for TE mode and continuity of Hx 

and Ez at the interface leads to the condition 1 1 2(k k ) 0A + = . As confinement to the surface 

 

Fig. 3.5: Dispersion relation of Ag/Air (gray curve) and Ag/Si (black curve) interface.  
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requires Re[k1] >0 and Re[k2] >0, thus this condition is only satisfied if A1 =0, and which 

makes A2 =0. Thus, no surface modes exist for TE polarization. Surface plasmon polaritons 

only exist for TM polarization. 

 

3.5.2 Simulation by COMSOL Multiphysics 

COMSOL Multiphysics [45] (a commercial FEM based simulation software ) is used to 

simulate the structure of a single, flat interface between a dielectric, non-absorbing half-space 

(y>0) with dielectric constant ε2  =12.25 and an adjacent conducting half-space (y<0) of silver 

whose dielectric constant is taken from the result of Johnson and Christy [34]. The right and 

the left boundary is set as Perfect Magnetic Conductor (PMC) while the upper and lower 

boundary (which are sufficiently far so that field decays to a very low value before reaching 

them) is set as Scattering Boundary Condition (SBC) 

 

Field Profile 

The three principal field components (Ez, Hx, Ey) are shown in Fig. 3.6  

 

 

 
                     (a)                                                 (b)     (c)  

 
 

Fig. 3.6: Ez (a), Hx(b), Ey(c) field profile for semi-infinite metal dielectric 
interface obtained by COMSOL. 
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Dispersion Curve 
 

        

                            (a) real part              (b) imaginary part  
  

Fig. 3.7: Comparison of theoretical and experimental values (continuous blue line) and 
COMSOLresult (red asterisk) of real  & imaginary part of propagation constant β .Also 

light line for dielectric is shown (as dashed blue line). 
 

 

FEM requires a finite domain that does not accurately correspond to the semi-infinite 

structure assumed in theory. So the result obtained by COMSOL is not strictly compatible 

with the theoretical value. The value of Hz, Ex, and Hy though very small, is not equal to zero 

as suggested by theory. Also, the peak value of Hx and Ey occur just not at the metal interface. 

 

3.6 Surface Plasmon Polaritons at a Thin Layer 

Now we can analyze when a second interface is added to the system capable of generating 

SPP. It was seen that when the separation between the interfaces becomes small, the Surface 

Plasmons on every edge begin to correlate, turning the values of coupled modes higher with 

numerous fascinating characteristics. 

 

3.6.1 Theoretical Analysis 

The actual geometry of a thin layer (medium 2) between two media (1 and 3) is presented in  
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Fig 3.8. As previously discussed for an IM geometry, only TM-polarized wave can excite 

SPP in naturally-occurring materials. This statement is also valid for other geometries. 

 

 

 
Fig. 3.8: Planar thin layer geometry. 

 

For the theoretical purpose, equations for the lowest-order bound modes for IMI structure are 

investigated. So we start with a general description of TM modes that are non-oscillatory in 

the y-direction normal to the interfaces. Thus, we can see that the fields decay exponentially 

in the claddings (I) and (III). We denote the component of the wave vector perpendicular to 

the interfaces simply as ki ≡ky,i. In the core region−a/2<y<a/2, the modes are restricted to the 

bottom and top interface of the couple. The field components are given in Table 3.1 

 

Table 3.1: Field components at different regions for a thin layer structure 

Field 
compon

ents 

Region 1 (y>a/2) 
 

Region 2 (-a/2< y<a/2) 
 

Region 3 (y<-a/2) 
 

(y)xH  1k yi zAe eβ −−  2 2k y k yi z i zCe e De eβ β −− −+  3k yi zBe eβ−  
(y)yE  

1

0 1

k yi zA e eββ
ωε ε

−−−  2 2

0 2 0 2

k y k yi z i zC e e D e eβ ββ β
ωε ε ωε ε

−− −− −  3

0 3

k yi zB e eββ
ωε ε

−−  

(y)zE  11

0 1

( k ) k yi ziA e eβ

ωε ε
−−−  2 22 2

0 2 0 2

(k ) ( k )k y k yi z i ziC e e iD e eβ β

ωε ε ωε ε
−− −−

+  33

0 3

k k yi ziB e eβ

ωε ε
−  

 

The requirement of continuity of Ez and Hx at the interface leads to: 
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At / 2y a= :  

   𝐴𝐴𝑒𝑒−𝑘𝑘1(𝑎𝑎/2) = 𝐶𝐶𝑒𝑒𝑘𝑘2(𝑎𝑎/2) + 𝐷𝐷𝑒𝑒−𝑘𝑘2(𝑎𝑎/2)        (3.12a) 

And    𝐴𝐴
𝜀𝜀1
𝑘𝑘1𝑒𝑒−𝑘𝑘1(𝑎𝑎/2) = − 𝐶𝐶

𝜀𝜀2
𝑘𝑘2𝑒𝑒𝑘𝑘2(𝑎𝑎/2) + 𝐷𝐷

𝜀𝜀2
𝑘𝑘2𝑒𝑒−𝑘𝑘2(𝑎𝑎/2)      (3.12b) 

At / 2y a= − :  

  𝐵𝐵𝑒𝑒𝑘𝑘3(−𝑎𝑎/2) = 𝐶𝐶𝑒𝑒𝑘𝑘2(−𝑎𝑎/2) + 𝐷𝐷𝑒𝑒−𝑘𝑘2(−𝑎𝑎/2)       (3.13a) 

  

𝐵𝐵
𝜀𝜀3
𝑘𝑘3𝑒𝑒𝑘𝑘3(−𝑎𝑎/2) = 𝐶𝐶

𝜀𝜀2
𝑘𝑘2𝑒𝑒𝑘𝑘2(−𝑎𝑎/2) − 𝐷𝐷

𝜀𝜀2
𝑘𝑘2𝑒𝑒−𝑘𝑘2(−𝑎𝑎/2)      (3.13b) 

Hx further has to fulfill the wave equation (3.15) in the three distinct regions, via 

    
2 2 2

0i ik kβ ε= − , for i =1, 2, 3.                              (3.14a) 

To simplify the notation, let’s define:  i
i

i

kR
ε

=           (3.15) 

Substituting the value of 1 ( /2)k aAe−  from equation  (3.12a) to (3.12b) we obtain: 

  
2 2 2 2( /2) ( /2) ( /2) ( /2)

1 2( ) ( )k a k a k a k aR Ce De R Ce De− −+ = − +  

multiplying by 2 ( /2)k ae : 

    2 2
2 1( ) ( )k a k aR D Ce R Ce D− = +                      (3.16a) 

Similarly, from (3.15) and (3.16a) we get, 

    2 2
2 3( ) ( )k a k aR C De R C De− = +        (3.16b) 

Re-arranging the terms, we can obtain the following relationship in a matrix form: 

2

2

1 2 1 2

3 2 3 2

0( )
0( )

k a

k a

Ce R R R R
DR R e R R

 + −    
=    − +     
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This is a homogeneous system of linear equations. Its non-zero solutions occur when the 

determinant of the matrix of coefficients is zero, resulting in the  dispersion relation for a thin 

layer: 

            
𝑒𝑒2𝑘𝑘2𝑎𝑎 = 𝑅𝑅1−𝑅𝑅2

𝑅𝑅1+𝑅𝑅2

𝑅𝑅3−𝑅𝑅2
𝑅𝑅3+𝑅𝑅2

         (3.17) 

    
22 3 3 2 21 1 2 2

1 1 2 2 3 3 2 2

k a k kk ke
k k k k

ε εε ε
ε ε ε ε

−−
=

+ +
        (3.18) 

 

Symmetric structures: 

For symmetric structures, media 1 and 3 are built by the same material. The dispersion 

relation as stated in (3.18) becomes 

 

          2

2
2 1 2

1 2

k a R Re
R R

 −
=  + 

 

                  2 1 2

1 2

k a R Re
R R

 −
= ± + 

 

 

Which is reduced to             
2 2 2

2 2 2

/2 /2
1

/2 /2
2

1
1

k a k a k a

k a k a k a

R e e e
R e e e

−

−

± ±
= − = −

 
        (3.19) 

    1 2

2

tanh
2

R k a
R

 ∴ = −  
 

or, 1 2

2

coth
2

R k a
R

 = −  
 

       (3.20) 

From (3.16a)    
2 2

2 2

2 2
2 2

/2 /2

1

/2 /22

k a k a
k a k a

k a k a
k a k a

De eR D Ce Ce D C
DR Ce D Ce D e e
C

−

−

−− −
= = − = −

+ + +
       (3.21) 
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Comparing Equations (3.15), (3.16), and (3.17) we can write, 

      

1 2

2

tanh 1
2

R k a D D C
R C

 = − ⇒ = ⇒ = 
 

       (3.22) 

And    1 2

2

coth 1
2

R k a D D C
R C

 = − ⇒ = − ⇒ = − 
 

                  (3.23) 

Therefore, in symmetric structures, the SPPs has two divisions: a symmetric (even Hx but 

odd Ez) and an anti-symmetric or asymmetric ( odd Hx but even Ez). 

There are two options for a symmetric structure: IMI (insulator-metal-insulator) and 
MIM(metal-insulator-metal). 
 
 

Dispersion relation in a thin layer: 

As can be seen in Fig 3.9, the odd modes possess frequencies ω+, which are higher than the 

respective frequencies for single interface SPP, and the even modes lower frequencies ω−. 

Odd modes have a fascinating property that the confinement of the coupled SPP to the metal  

 

 

Fig. 3.9: The dispersion properties of both modes 
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film decreases with decreasing metal film thickness, as the mode changes into a plane wave. This 

phenomenon supports the homogeneous dielectric environment. Absorptive metals are defined with 

a complex ε(ω); this triggers a sharp increase in SPP propagation length. These are called Long-range 

surface Plasmon polariton (LRSPP). The even modes exhibit the exact opposite behavior as in that 

case, confinement to the metal increases as well as decreasing metal film thickness, ensuing reduction 

in propagation length. The following figure shows the dispersion properties of both modes of lossless 

Drude’s metals. [29] 

 

 

Fig 3.10: Dispersion profiles for different geometries and lossless Drude metals. 
 

A) Symmetric IMI: 25nm and 50 nm metal layer immersed in free space. 
B) Similar to the previous geometry, but the metal is immersed in a dielectric with n=1.5. 

C) Symmetric MIM: 25 and 50 nm free-space layer immersed in metal. 
D) Asymmetric IMI: 25 nm metal layer surrounded by free space and other dielectric with 

n=1.1. 
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3.6.2 Simulation by COMSOL Multiphysics 

COMSOL Multiphysics is used to simulate the situation of an IMI structure. Here a silver 

layer of thickness 0.08 um is sandwiched between Silicon with dielectric constant 12.25. The 

dielectric constant of silver is taken from the result of Johnson and Christy [34] 

 

As previous, the right and left boundary is set as Perfect Magnetic Conductor (PMC) while 

the upper and lower boundary (which are sufficiently far so that field decay to a very low 

value before reaching them) is set as Scattering boundary condition (SBC) 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Fig.  3.11: Dispersion profiles, propagation lengths of symmetric geometries of metals       
 
 

A, B) IMI: 25 and 50 nm silver layer wrapped up in the free space. 
    

C, D) MIM: 25 and 50 nm free-space layer wrapped up in the metal (silver) . 
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Field profile 

The surface plot of the  three principal  field components (Ez, Hx, Ey) for IMI structure is 

shown in Fig 3.12 and Fig. 3.13 for asymmetric and symmetric mode respectively. 

Asymmetric  mode: 

The asymmetric mode has an odd Hx and Ey field profile but even Ez  

   

(a)                                                          (b)           (c) 

Fig. 3.12:  Surface plot of the field profile for asymmetric  mode in semi-infinite metal 
dielectric interface obtained by COMSOL. (a) Hx  (b)Ez (c)Ey. 

 
Symmetric mode: 
The asymmetric  mode has even Hx and Ey field profile but odd Ez  

   

                    (a)              (b)                          (c) 

Fig. 3.13:  Surface plot of the  field profile for symmetric  mode in  semi infinite metal 
dielectric interface obtained by COMSOL. (a) Hx  (b) Ez (c) Ey. 
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Dispersion Curves 

The effect of core thickness is analyzed at wavelength 1.55 mµ  for which dielectric function  

of silver is obtained as -130.77 + 3.217i by interpolating data from Johnson and Christy [18].  

 

 

 

       

 

 

 
 

               (a) real part     (b) imaginary part 
 

Fig. 3.14  Real and imaginary  part of propagation constant for symmetric (red asterisk) and 
asymmetric (blue asterisk) mode of IMI structure obtained from COMSOL for different metal 

thickness. Theoretical values are shown in solid line. (For symmetric red line  and for asymmetric 
blue line). 

 
 
 
 
 
 
 

 

                        

 

                             
                              (a)real part                       (b)imaginary part 
 

Fig. 3.15  Real and imaginary  part of propagation constant for symmetric (red asterisk) and 
asymmetric (blue asterisk) mode of IMI structure obtained from COMSOL for different 

frequencies. Theoretical values are shown in solid line. (For symmetric red line and for asymmetric 
blue line). 
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The theoretical propagation constant value for symmetric and asymmetric mode are obtained 

by solving the characteristic equations numerically. 

 
The effect of different wavelength is analyzed at core thickness of .08 mµ  with the dielectric 

function of silver obtained from Johnson and Christy [34]. Fig. 3.15 shows that as the 

frequency increases, the propagation constant also increases. Another observation found 

from the simulation is that at high frequencies, the higher effective index results in the field 

decaying very sharply. Whereas at a lower frequency, the effective index is lower and the 

field decays slowly. Fig. 3.16 and 3.17 clarify this observation. 

 

 

Fig 3.16: Height expression of  electric field (at 1.88 eV). 

 

        

Fig 3.17: Height expression of electric field (at 1.02 eV) 
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3.7 Methodologies 

1. The whole work considered three main types of plasmonic waveguides as follows:  

a) Metal strip waveguides 

b) Slot based waveguide 

c) Hybrid plasmonic waveguides with a metal cap and graphene layer.  

 

   
(a) (b) 

 

(c) 

 

Fig. 3.18: Cross section of the waveguides a) with metal strip and metal substrate and 
graphene in the gap, b) slot based waveguide and c) hybrid plasmonic with metal cap and 

graphene in the gap between metal and silicon rib 

 

2. Fig. 3.18(a) demonstrates the structure of a metal strip waveguide where a graphene 
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 layer is formed on a metal slab and a thin metal strip placed in graphene. 3.18(b) 

shows a slotted based waveguide embedded in graphene with a metal strip within. 

3. The structure in Fig. 3.18(c) is the hybrid waveguide with a metal cap on top. A very 

thin graphene layer is present in between the metal and a high refractive index 

dielectric silicon (Si) rib. The silicon (Si) is placed on a silica (SiO2) substrate. 

4. The SPP modes should be found in ghaphene layer surrounded by the metal (Ag) and 

dielectric (Si) interface on opposite sides. This internal layer between metal and Si is 

used to guide the SPP wave through the lower indexed material graphene as the decay 

of SPP wave is reduced by it. Graphene has a unique characteristic of fine-tuning its 

refractive index by changing the Fermi level, and thus it acts as a suitable wave 

transmission material. 

5. A full vectorial finite element method-based solver [45] is used to calculate the mode 

field and corresponding effective indices. 

6. The FEM is incorporated with the terminal elements and the perfectly matched layers 

(PML) boundary to achieve more precise results [46]. The refractive indices are taken 

1.445, 3.455 for SiO2 and Si, respectively, as described in [9]. 

7. For metal Ag, we took the complex permittivity εm = −129+i3.3 at a wavelength of  

1550 nm [47]. The complex permittivity, εg of graphene, is tuned as per description 

in [26] at the Fermi level, EF =0.8 eV. The refractive index ng(ω), though, is obtained 

by using the relation 𝑛𝑛𝑔𝑔 = �𝜀𝜀𝑔𝑔 [1]. 

8. For the three models, the analysis of the propagation of surface plasmon polariton 

incorporates the calculation of effective mode area, propagation length, and the figure 

of merit using the method as described in the following sections. All these parameters 

will be compared between the different waveguides. We take Graphene as a lower 

indexed dielectric while the comparison was made with conventional SiO2 from 

previous studies. 
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3.7.1 Effective mode area 

The available measures of modal area are inherited from conventional waveguiding theory. 

Since the plasmonic waveguide can have sharp features that lead to rapid sub-wavelength 

level differences in the form of the model, these measures are somewhat inconsistent if we 

apply them for plasmonic mode. We need to find a definition that will consider the true extent 

of the plasmonic field distribution in order to consistently quantify the mode confinement. 

Out of many definitions found in the literature, we will provide three different definitions 

and compare them in our study of different waveguide structures. 

The first definition A1 depends on the peak energy density and defined as [48], 

                                                   𝐴𝐴1 = 1
𝑀𝑀𝑀𝑀𝑀𝑀{𝑊𝑊(𝑟𝑟)}∫ 𝑊𝑊(𝑟𝑟)𝑑𝑑𝑑𝑑 

𝐴𝐴∞
                                        (3.24) 

    

here, W(r) is the energy density,  

                          𝑊𝑊(𝑟𝑟) = 1
2
𝑅𝑅𝑅𝑅 �𝑑𝑑[𝜔𝜔𝜔𝜔(𝑟𝑟)]

𝑑𝑑𝑑𝑑
� |𝑬𝑬(𝑟𝑟)|2 + 1

2
𝜇𝜇0|𝑯𝑯(𝑟𝑟)|2       (3.25) 

 

𝐴𝐴1 is directly related to the non-linear properties like spontaneous emission rate enhancement 

or Purcell factor. Since 𝐴𝐴1 depends on the maximum energy density, this measure may be 

misleading for a waveguide with very sharp features. This is useful to quantify the local field 

enhancement, which is not necessarily accompanied by strong confinement of total energy 

[48]. The second definition 𝐴𝐴2 is a numerical measure needs amalgamation of energy density 

over the cross-section, 

                𝐴𝐴2 =
�∫ 𝑊𝑊(𝑟𝑟)𝑑𝑑𝑑𝑑 
𝐴𝐴∞

 �
2

∫ 𝑊𝑊(𝑟𝑟)2𝑑𝑑𝑑𝑑 
𝐴𝐴∞

 
         (3.26) 

 

A2 is usually a better measure since it takes into consideration of the overall field. This 

measure has a firm foundation in optical fiber theory [42]. However, it is potentially sensitive 

to energy distribution. The third definition A3 is made, aiming to gauge confinement 
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irrespective of field distribution. A3 is defined as the minimum area where exactly a portion 

η, of the mode’s total energy, resides. Since η is a generic constant, A3 is promised to be a 

shape-independent measure of confinement. We choose η = 0:5 in our study. So, it will be 

the minimum area where half of the mode’s total energy will reside. In order to calculate A3, 

we need to solve below minimization problem [48], 

    𝐴𝐴3 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓(𝑟𝑟) ∫ 𝑓𝑓(𝑟𝑟)𝑑𝑑𝑑𝑑 
𝐴𝐴∞

         (3.27) 

so that,  

    ∫ [𝑓𝑓(𝑟𝑟) − 𝜂𝜂]𝑊𝑊(𝑟𝑟)𝑑𝑑𝑑𝑑 
𝐴𝐴∞

= 0         (3.28) 

 

We can iteratively solve the problem by using, 

              𝑓𝑓(𝑟𝑟) = 0, 𝑖𝑖𝑖𝑖 𝜔𝜔(𝑟𝑟) < 𝑊𝑊0,𝑓𝑓(𝑟𝑟) = 1, 𝑖𝑖𝑖𝑖 𝜔𝜔(𝑟𝑟) > 𝑊𝑊0       (3.29) 

where W0 is the contour containing η (= 0:5) of the mode’s total energy.  

 

3.7.2 Propagation length 

Although plasmonic structures provide extremely localized electromagnetic fields, there is 

an intrinsic cost involved in terms of the distance that the field can travel because of the 

damping inside the metal. If the plasmonic mode propagate harmonically in z-direction with 

field variation, exp [i(βz - ωt)], the propagation distance is defined as the distance space that 

a mode can travel before the energy density decaying to 1=e of its original value [48], 

 

                                𝐿𝐿𝑝𝑝 = 1
2𝐼𝐼𝐼𝐼{𝛽𝛽}

      (3.26) 

 

where, β is the propagation constant defined as β = neffk0 and k0 is the wave vector in 

vacuum equals to 2𝜋𝜋
𝜆𝜆0

 . This definition is well established and consistent thorough out the 

literature. 
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3.7.3 Figure of merit 

Another inconsistency arises when we try to evaluate the performance of a particular 

waveguide structure. Although most of the plasmonic waveguides works based on the same 

plasmonic phenomena, they exhibit different characteristics in terms of propagation, 

confinement and the trade-off between them. Figure of merit of a certain structure should 

take into consideration all these effects. Since the propagation distance is well defined, we 

need to choose a proper definition of confinement in order to quantify figure of merit 

objectively. We choose A2, since this is quite consistent and provides almost similar 

behaviour of the geometry independent definition A3. A2 usually provides the highest value 

among the three definitions, so we will be using it mostly in order to avoid the probability of 

overestimation of confinement during the calculation of figure of merit and to avoid the 

complexity involved in calculating A3. Nevertheless, as we argued, A3 should be the most 

consistent definition of mode area. We will try to use all these definitions when we look for 

an effective mode area and compare whenever possible. Thus, the figure of merit is defined 

as a ratio between the normalized propagation length and normalized mode area [48], 

     𝐹𝐹𝐹𝐹𝐹𝐹 =  𝐿𝐿𝑝𝑝/𝜆𝜆0
𝐴𝐴2/𝐴𝐴0

                     (3.27) 

Here, 𝐴𝐴0 = �𝜆𝜆0
2
�
2
 is the diffraction-limited mode area and 𝜆𝜆0 is the vacuum wavelength.  

 

3.8 Conclusion  

The chapter ends by clearing up the ideas of the finite element methods and solid properties 

were combined to instigate actual models of Long-Range plasmon waveguides. Though 

almost every structure were built and analyzed in COMSOL, for the foremost part, the 

chapter explains all the related topic for modelling using basic finite element method 

simulator. Lastly, we discussed the equation for determining the key performance 

characteristics; propagation length, modal area and figure of merit.    
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Chapter 4 

RESULTS AND DISCUSSION 

4.1 Introduction 

The analysis domain of the structure is divided into triangular edge elements to solve the 

Helmholtz equation and the effective refractive index �𝛽𝛽
𝑘𝑘0
� and mode fields are obtained in 

the form of eigenvalue and eigenvectors, respectively. While all three types of waveguides 

have already been designed previously with conventional SiO2 substrate, using graphene in 

this work has exhibited comparatively improved results in all aspects on an average. 

Furthermore, designing a hybrid waveguide with a metal cap and graphene has produced 

some exceptional results, as those will be demonstrated in this part of the report.   

4.2 Metal Strip Waveguides 

Metal strip on top of semi-infinitesimal metal slab structure is interesting because this is 

quite analogous to the microstrip waveguides, which are used at microwave frequency [79]. 

It is considered that one of the films having infinite height h (the metal slab) and another 

having finite length wstrip (the metal strip) placed at a finite gap w. According to [43], after 

studying the behavior for different gaps width and calculating different parameters as a 

function wstrip it is observed that propagation length decreases with decreasing wstrip since 

the fraction of power in the metal increases. Furthermore, it is interesting to notice that the 

propagation length of the strip actually goes beyond the slot at some length of wstrip. As 

wstrip increases, the modal area increases.  This is because there is power in the dielectric 

gap region, and because of its lower index, confinement is not so high.  But after some 

wstrip the edge mode begins to dominate.  Although A2 is no directly affected by the 

maximum power density, this will also affect the overall power distribution. So, after some 

value of wstrip, A2 doesn’t increase anymore. This behavior of the mode is also reflected in 
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propagation length [41].  

 

In a similar study, it was observed that FOM of the strip increases with increasing wstrip, 

but it is always less than that of the slot waveguide. This FOM is also the indication of a 

comparison of the propagation length for a given mode area. So the performance of strip 

only approaches to that of plasmonic slot waveguide only when wstrip → ∞. 

 

 
Fig. 4.1: Metal strip waveguide, Geometry of the waveguide which is made of silver (Ag) 

strip on top of the silver substrate and embedded in silica 
 
 

The followings are the achieved results after analyzing a metal strip waveguide combined 

with a silver strip on top of the silver substrate based on silica. The Fig. 4.2 shows the optical 

power distribution Pz of the above-mentioned structure, where the fundamental mode for 

surface plasmon polariton has been found with Wstrip = 40 nm, h = 50 nm, and wg = 10 nm. 

The power distribution along x axis and y axis of the same structure has been shown in Fig. 

4.3(a) and 4.3(b), respectively. It is visible that the surface plasmon effect was created along 

the surface of the metal strip, and confinement is maximum along x axis at the center of the 

graphene gap between stripe and metal substrate. Along y axis, the confinement is maximum 

at the interface of graphene and metal (Ag).  

 

Fig. 4.4. exibits the variation of propagation length with the width of the metal strip, Wstrip.  
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The gap between the strip and metal substrate has been varied as 10 and 20 nm and denoted  

as wg. The discontinuous lines show the values of propagation length using SiO2, whereas 

 

 

 

 

 

 

 

 

 

Fig. 4.2: Power distribution on the cross-section for fundamental mode         

 

solid lines refer to values after using graphene. As per the study [13], the propagation length 

is shown as increasing as Wstrip increases for SiO2. It is further observed that propagation 

length increases from 4 µm to 6 µm as wg rises from 10 to 20 nm. Now considering graphene 

in place of SiO2, the propagation length increases to7 µm (for wg = 10 nm) and 8 µm (wg = 

20nm). 

 

          (a)                                              (b) 

Fig. 4.3 Variation of Pz for fundamental mode along x and y axis 



64 
 

Overall, although the improvement is not significant, graphene shows still a better result than 

that with SiO2 (8.5 µm) with a gap of 20 nm between the strip and metal substrate in the 

graphene layer at the strip width of 40 nm at working wavelength of λ=1550 nm.  

 
Fig. 4.4: Propagation length versus the width of metal strip 

 

From Fig. 4.5, the normalized modal area has been demonstrated for both graphene and SiO2 

layers. While it is observed that for lower stripe width (40 nm) the modal area is almost 

similar for both graphene and SiO2 (approximately 0.003 for W=10 and 0.008 for W=20), 

they both kept increasing by about 50%. We can also witness that for a static height of SiO2 

and  

 

 

 

 

 

 

 

Fig. 4.5: Normalized modal area as functions of the width of metal strip. 
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graphene; the normalized mode area increases with the increase in Wstrip.  The increasing 

effective modal area with the increase of strip width and graphene or SiO2 width refers 

weaker confinement of plasmonic wave propagation.  

 

Fig. 4.6 shows the Figure of Merit (FOM) with the change of strip width (Wstrip) and widths 

of gap in graphene (wg) and in SiO2 (ws). FOM is the ratio of normalized propagation length 

and with modal area, and as an improved FOM refers to better result despite the value of 

propagation length and effective modal area, it is obvious from the result that using graphene 

instead of SiO2 shows the FOM as maximum as 1500 at Wstrip = 40nm compared to 800 nm 

for SiO2. Additionally, between the gap witdh of 10nm and 20nm, the later gives better the 

result for both cases (graphene and SiO2). For a metal strip it can be concluded that using 

graphene in the gap between the metal strip and metal substrate, the FOM was notably 

improved compared to SiO2.  

 
Fig. 4.6 Figure of Merit (FOM) as functions of the width of metal strip. 

 

4.3 Slot Based Waveguides 

This is another type of waveguide where two slots of Silicon are used on the base of graphene. 

In between the slots, a silver metal stripe is inserted where thickness of the strip is denoted 

by hm and Wm indicates the width of the metal strip, whereas dg is the thickness of the gap 
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between the slots.  The low-permittivity region between them is denoted as the slot 

waveguide. The use of the two silicon bulks and their proximity help to produce a new long-

range mode, which can be explained by the coupled mode theory [49,50*].  

 

 
 

Fig. 4.7: Slot based waveguide, the geometry of a slot based waveguide with two slots of 
Silicon with metal inserted within them and embedded in grapheme 

 
 

The above slot-based design has been analyzed, and optical power distribution, power 

variations along axes, propagation length, modal area, and figure of merits are discussed 

below. In Fig. 4.8, the optical power distribution Pz is shown, where the fundamental mode 

for surface plasmon polariton has been found with Wc = 40 nm, hm = 50 nm, and dS = 70 nm. 

The power distribution along x axis and y axis of the same structure has been shown in Fig. 

4.9(a) and 4.9(b) respectively. It is clearly seen that surface plasmon wave propagates along 

the surface of the metal strip, and confinement is maximum at the center of the silica gap 

between stripe and metal substrate along x axis. Along y axis, the confinement is maximum 

at the interface of silica and metal (Ag).  

 

Fig. 4.10 shows the propagation length versus width of the metal slot, Wc. The gap between 

the metal and metal substrate has been varied as 5 and 10 nm, which is reflected in ds. The 

dashed lines show the values of propagation length using SiO2, whereas solid lines refer to 
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values after using graphene. As per the study [49], the propagation length is shown as 

decreasing as Wc increases for SiO2. Wc has been varied 40nm to 200 nm.  

 

Fig. 4.8: Power density distribution on the cross section for fundamental mode       
 
   

  

 

 

 

 

 

 

(a)                                                                           (b) 

Fig. 4.9: Variation of Pz for the fundamental mode along x and y axis 

 

When hm = 50nm and ds = 70nm, we found the maximum propagation length of 224.8 nm, 

whereas, for ds =60, it was 125.67 (Figure 4.10). As Wm increases, propagation length 

decreases in every case, and the same applies to FOM also. Modal area increases as Wm 

increases is an indication of weaker confinement, which is evident when hm is 100nm (Fig. 

4.11). 
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Fig. 4.10: Propagation length versus the width of metal (Wm). 

 

We clearly see that the highest figure of merit is achieved only when ds=60nm and hm=50nm 

at the metal width, Wm, of 40nm and that is 4915 (Figure 4.12). However, in this case, the 

propagation length and modal area are 125nm and 0.0182 respectively. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11 Normalized modal area versus the width of metal strip. 
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Overall, For hm = 100nm, no significant changes have been observed in Figure 4.8, 4.9 and 

4.10, compared to those for hm =50 nm. It also observed that for this design the graphene did 

exhibit any significant results. The propagation length, in this case, was steady at around 6nm 

regardless the changes in Wm. Additionally, the highest figure of merit was as much as 2920 

nm at the metal width of 40nm. It, therefore, can be mentioned that silicon rather showed 

better result here compared to graphene.  

 

Fig. 4.12 Figure of Merit (FOM) as a function of width of metal strip. 

 

4.4 Hybrid Plasmonic Waveguides  

The typical waveguides, as discussed above, are composed of one metal and one dielectric. 

Confinement much smaller than the diffraction limit of light has been achieved in these 

structures with moderate propagation length at the range of few tens of micrometers. But for 

practical application e.g. photonic integration, this length is not sufficient. It has been 

reported in several papers hybrid plasmonic waveguides consisting of three material systems 

(metal-low index dielectric-high index dielectric) can provide better performance than the 
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conventional pure plasmonic waveguides [44]. These type of waveguides utilize the coupling 

between the SPP and the conventional dielectric mode. 

 

4.4.1 Hybrid plasmonic waveguide with a metal cap 

Another interesting hybrid structure is the metal cap on top of a Si rib separated by thin silica 

film, as shown in Figure 4.13 [43]. Even a simplified structure is possible with the rib 

replaced by a slab which is even easier to fabricate. It is evident from this study [yassin] that 

power is well confined in the low index silica region.  When we increase the width w of the 

waveguide, there will be more power in the Si rib, so the propagation length increases with 

the width [44]. Also, after reducing the silica film thickness h, the fraction of power in the 

metal increases, so the thicker the silica film, the longer the propagation length is. It is noticed 

that for a thin film, the propagation distance does not vary a lot along with the width.  But 

for large film thickness, there is huge variation when the width is increased. For small h, 

more power in the metal, the mode in the Si rib and the surface plasmon mode are more 

strongly coupled and hence, the effective mode area is very small.  

 

Fig. 4.13 Cross-sectional geometry of the hybrid metal cap with rib structure (left), when rib 
replaced with slab (right) 
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Because of this strong coupling with the surface plasmon mode, the propagation distance 

cannot increase a lot along with the width. Surface plasmon mode does not really depend on 

the width of the waveguide.  

In the following part, the designed hybrid waveguide with metal cap has been analyzed 

 

 

 

 
Fig. 4.14  Power density distribution on the cross-section for the fundamental mode 

 

and power distribution, propagation length, modal area and figure of merits are observed. For 

the design, the distribution of the optical power Pz is shown in Fig.4.14 where the 

fundamental mode for surface plasmon polariton has been found with Wc = 50 nm, hg = 5 

nm, and hsi = 300 nm. The figure clearly depicts the nanoscale energy confinement. Fig. 4.15 

(a) and (b) show the power distribution, Pz along the x and y axis for the same structural 

dimension. It is clearly seen that surface plasmon wave propagates along the surface of the 

metal and the confinement is highest at the center of the metal cap along the x axis. Along 

the y axis the fundamental mode confinement occurs at graphene layer as the power Pz 

distribution is almost zero in Si or Ag layers.  
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(a)                                                                               (b) 

Fig. 4.15: Variation of power (Pz) for the fundamental mode 

As this specific structure with graphene demonstrates surface plasmon propagation, thus can 

be investigated further. Fig. 4.16 shows the propagation length versus metal cap width, Wc. 

In this case, the height of the silicon rib, hsi is taken 300 nm and the height of the metal cap, 

hm is kept 100 nm. The layer of graphene, hg is varied as 5 nm and 50 nm. According to a 

study [13] while SiO2 layer is used between silver and silcon rib, the propagation length 

increases with the increase in Wc. The propagation distance becomes 401 μm from 76 μm 

when the core width increases from 50 nm to .45 μm while taking the height of SiO2 layer, 

h=50 nm. The propagation length decreases further with a thinner layer of SiO2, h= 5 nm, 

and from the sketch, we can pick the maximum value of propagation length 67 μm with a 

metal cap width of 0.45 μm. On the other hand, the highest value of propagation length is 

achieved 1814 µm (~1000 x λ) while we use graphene layer of height, hg = 5 nm and width 

of metal cap, Wc = 50 nm at working wavelength of λ=1550 nm.  

From the graph, it is clearly seen that for the graphene layer, the propagation length of the 

plasmonic wave decreases while the width of the metal cap, Wc, increases, and the trend is 

exactly reverse as reported in [13].  The propagation length decreases from 103 to 102 µm  

scale while we tune the graphene layer height, hg from 5 nm to 50 nm. It should be noted 



73 
 

 

Fig. 4.16: Propagation length versus core width. 

 

that the working equation of propagation length in the ref. [13] is different, and according to 

the equation of propagation length used in our investigation, the value of propagation length 

in the study [13] should be half of the value, which is shown in the Fig. 4.16. Thus, the overall 

propagation length is enhanced to a great extent while we use the graphene layer instead of 

silica in between silver and silicon. 

 

Fig. 4.17: Normalized modal area versus core width. 

Wc (nm) 
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Fig. 4.17 exibits the values of normalized modal area while the width of metal cap, Wc is 

varried. In this case, the height of the silicon rib, hsi and the height of the metal cap, hm are 

kept 300 nm and 100 nm, respectively. Dashed lines show the values of propagation length 

using SiO2 layer in between silver and silicon [13]. The height of silica layer, h decreases 

from 50 nm. of 10-1. We can also observe that for a fixed height of silica, normalized modal 

area increases with the increase in Wc. Higher Wc and h result larger surface area as well as 

larger effective modal area for plasmonic wave propagation, which offers a very weak 

confinement of photons. 

 

When we use graphene layer instead of silica, the normalized modal area decreases to a much smaller 

range of 10-3 with a height of graphene layer, hg = 5 nm. If we take the height hg = 50 nm, the 

normalized modal area increases, and it further increases with increase in Wc. The figure 

shows the increasing trend of the normalized modal area with larger Wc still, the values are 

smaller with graphene than that of silica.  

 
Fig. 4.18: Figure of Merit (FOM) versus core width 

 

Fig. 4.18 shows the Figure of Merit (FOM) with the change of width of the metal cap, Wc for 

the hybrid waveguide structure using graphene with hSi = 300 nm and hm = 100 nm. For 
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nanoscale fabrication, it is a challenge to keep the device very small with a long propagation 

length and tight confinement. When using SiO2 layer for the hybrid waveguide shown in Fig. 

4.18 instead of graphene, the higher width of the metal cap, the propagation length becomes 

larger and results in a higher effective modal area. As the  FOM is the ratio of normalized 

propagation length with the modal area, in spite of having higher propagation length, overall 

FOM decreases with a larger width of the metal core, Wc. Thus a trade-off between 

propagation length and the effective modal area is required, and the geometrical tunability 

for enhancing the propagation characteristics is limited. While we use graphene,  the 

propagation length decreases with increasing Wc, also the trend is similar for the normalized 

modal area. The highest figure of merit reaches the numerical value above 106, which can be 

achieved with the geometry of hg = 5 nm and Wc = 50 nm. The overall surface area covered 

by plasmonic propagation is 5x50 nm2, which qualifies the range of nanoscale fabrication.  

 

 

 

 

 

 

 

 

 

Wc (nm) 

Fig. 4.19: Propagation length (Lp) versus Si rib height.      

                                      

The unique transmission properties of graphene aid in guiding the SPP wave through the 

structure. The fundamental mode confinement of SPP wave is possible within the surface 

area of only 250 nm2, thus the modal area is significantly low in this case. The waveguide 

consisting of a graphene layer requires rather less optimization than other models (with 



76 
 

silica), as it shows higher propagation characterstics in the lower scale of geometry. So there 

is flexibility of choosing the dimension in designing long range surface plasmon waveguide, 

which is a very promising. Fig. 4.19 shows the the trend of propagation length with the 

change in Si rib height, hsi taking the height of graphene layer , hg = 5 nm and metal cap 

height, hm = 100 nm. We only examined the propagation length keeping above dimension 

fixed (hg = 5 nm and  hm = 100nm) because the effective modal area is minimum for this 

geometry. The main intention is to observe the change in propagation characteristics. The 

dashed line shows the change in propagation length, taking the width of the rib, Wc = 50 nm 

when the height of Si rib is varied towards zero. For zero height of Si rib, the structure 

becomes like a slab waveguide. When Wc = 50 nm, the propagation length decreases below 

100 µm and when hSi is smaller than 50 nm. The result is rather satisfactory while taking Wc 

= 100 nm, although the maximum propagation length is not achieved. When hSi is smaller, 

the propagation length becomes larger, and at hSi = 0 nm, we got the propagation length 450 

µm, which is also promising.  

 

4.5 Result  

 

For W=10 nm (metal strip) 

Wsripe 

A/A0 
(SiO2) 

A/A0 
(Graphene) 

FOM 
(SiO2) 

FOM 
(Graphene) Lp(SiO2) 

Lp 
(Graphene) 

40 3.30E-03 0.002542848 850 1132.591089 4.4 4.464011 
60 3.67E-03 0.002721606 939 1256.139585 5.3 5.299011 
80 3.79E-03 0.002818112 1000 1326.780263 5.8 5.795474 

100 3.79E-03 0.00286419 1049 1366.562849 6.15 6.066848 
120 3.78E-03 0.002882962 1086 1386.093957 6.35 6.193888 
140 3.69E-03 0.002889299 1113.85 1378.140283 6.5 6.171883 
160 3.65E-03 0.002894365 1133 1423.965564 6.5 6.388289 
180 3.69E-03 0.002932818 1148 1407.190823 6.54 6.396903 
200 3.60E-03 0.003179771 1157 1305.962563 6.56 6.436627 
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For W=5 nm (metal strip) 

Wsripe 
A/A0 

(SiO2) 
A/A0  

(Graphene) 
FOM 

(SiO2) 
FOM 

(Graphene) 
Lp(SiO2

) Lp (Graphene) 
 

40 0.00833 0.008808 452 956.1438 5.9 8.421465 
60 0.00958 0.010627 492 791.7046 7.38 8.413664 
80 0.0104 0.012328 520 681.8773 8.5 8.405917 

100 0.0108 0.013955 548 602.4466 9.17 8.406967 
120 0.01102 0.015551 567 541.2347 9.68 8.41701 
140 0.01106 0.017175 585 491.0964 10.02 8.434513 
160 0.01103 0.018914 601 447.2049 10.26 8.458484 
180 0.0109 0.020826 613 407.5928 10.4 8.48852 
200 0.01081 0.021933 628 387.0918 10.54 8.489927 

 

 

For hg =50 nm (Hybrid waveguide with metal Cap) 

Wc 
A/A0 
(SiO2) 

A/A0 
(Graphene) FOM(SiO2) 

FOM 
(Graphene) Lp(SiO2) Lp (Graphene) 

50 0.004128 0.004103  28643.97  182.1493 
100 0.123927 0.008238 280.6314 4671.04 53.9056 59.64593 
150 0.129828 0.012374 357.4521 1830.98 71.9313 35.11826 
200 0.148069 0.016504 408.7881 1186.69 93.8197 30.3568 
250 0.1647 0.020604 456.6152 967.39 116.567 30.89416 
300 0.179721 0.024619 500.1049 902.44 139.313 34.4369 
350 0.19367 0.028398 535.5735 1040.88 160.773 45.81681 
400 0.208155 0.03294 558.1635 840.05 180.086 42.88987 
450 0.223176 0.026517 565.2417 1307.57 195.53 53.74314 

 

 

For hg nm (Hybrid waveguide with metal Cap) 

Wc 
A/A0 
(SiO2) 

A/A0 
(Graphene) 

FOM(SiO2) FOM 
(Graphene) 

Lp(SiO2) 
Lp (Graphene) 

50  0.000416  2817929.1  1814.933 
100 0.03809 0.000828 375.0022 86360.50 22.14 110.878 
150 0.0397 0.001231 401.7266 136691.14 24.72 260.8673 
200 0.045601 0.001657 374.0419 89035.25 26.4378 228.6535 
250 0.052039 0.002065 354.3734 35380.34 28.5837 113.2688 
300 0.059549 0.002474 323.6283 22997.97 29.8712 88.20424 
350 0.06706 0.002886 299.7681 17041.73 31.1588 76.23814 
400 0.074034 0.003304 279.0104 13593.57 32.0172 69.6209 
450 0.081009 0.003731 258.4067 11537.82 32.4464 66.71989 

 



78 
 

Chapter 5 

CONCLUSIONS 

5.1 Conclusion 

In this work, a metal strip, a slot based waveguide, and a hybrid plasmonic waveguide with 

a metal cap have been used, and they were examined with the conventional SiO2 and novel 

material, graphene. For some nanoscale fabrications and subwavelength applicabilities, the 

overall size of the structure, propagation length, effective modal area, confinement of the 

wave, and Figure of Merit (FOM) are fundamental features as considered by the researchers. 

This work has emphasized on the material rather than the design of the waveguides and is 

successful in demonstrating that by using graphene, more miniature design is possible as per 

the present and upcoming future applications.  

 

While analyzing metal strip waveguides, it was found that, despite a slight improvement in 

propagation length and effective modal area, the Figure of Merit (FOM) was significantly 

improved (approximately by 50%) compared to conventional SiO2 after using graphene, and 

the better result was found with narrower gap width between the strip and the metal substrate. 

Besides, the propagation length was observed as much as 8.5 μm, which is about 75% higher 

than that of SiO2. The lower gap width of 10 nm exhibited a better result.  

 

On the other hand, the slot based waveguide demonstrated an improved result for SiO2 rather 

than graphene, where the performance remained almost constant with the change in metal 

width. It also can be commented that the lower the metal width is, the better the result overall. 

The maximum propagation length was found as 224 nm when the silver height of silver was 

50 nm, and with the gap ds of 70 nm at a metal width of 40 nm, whereas, figure of merit was 

maximized to 4951 by setting ds as 60nm.  

 



79 
 

In the following portion of the work, graphene layer-based hybrid plasmonic waveguide has 

been examined. The highest propagation length achieved here is 1814 µm with a very trivial 

confinement area of about 250 nm2. The propagation length gets higher when the width of 

the metal cap reduces, and the trend matches for both graphene layers of 5 and 50 nm. As the 

smaller metal cap width contributes to the reduced plasmonic wave propagation surface area; 

thus, the normalized modal area also decreases with a thinner layer of the metal cap. The 

overall performance indicator, the figure of merit, elevates in the range of 106 when we keep 

graphene layer 5 nm, which is much better than that of the silica layer, surrounded by metal 

and silicon.  

 

After comparing and analyzing both metal strip and hybrid plasmonic waveguides with a 

metal cap in terms of conventional SiO2 and graphene, clearly, graphene exhibited superior 

results at a lower level of width, and that refers that designing plasmonic waveguides with 

graphene could be a better candidate for nanoscale fabrication and subwavelength 

operability. The unique properties of this plasmonic structure with graphene demonstrate 

improved propagation profile, which can open a new direction to design nanoscale photonic 

devices.  

 

5.2 Future scopes of the work 

Photonic components attract a lot of attention because of fast, robust response to 

electromagnetic interference and higher energy efficiency. Further works could be done to 

expedite the use of hybrid plasmonic waveguides in linear and nonlinear applications. The 

drawbacks of traditional photonic devices, such as limited by diffraction, traditional 

operations, and dominated by ohmic losses, can be evaded by introducing a “hybrid” device 

that uses metals merely to confine the light.   
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The main weaknesses of long-range – SPP stripe waveguides are the dependency of high  

polarization and huge ohomic loss. The main challenge is getting the higher propagation 

keeping the tight confinement. Ongoing researchers currently focus on placing the waveguide 

in advance medium and pulsating it with a laser to reduce the propagation loss. This device 

has a lot more applications in designing high-efficiency lasers.  

 

Studies can be carried on a plasmonic diming device, housed by a metal nanorod and a glass 

layer used to coat the outer surface, an upconverting nanoparticle. In this manner, the 

upconverting nanoparticle (UPN) is placed in between a nanorod and a nanoparticle to make 

a sandwich model. Thus, the nanoparticle can be quenched by the metal nanosphere. When 

one of the links is broken by the interaction of a specific molecule of interest, the 

upconverting nanoparticle will glow. This can be used as a background-free biosensing 

method that will contribute greatly to diagnose the illness of the human cell and can be used 

to cure complicated diseases like cancer. We also can attach the nanoparticles with metal 

nanorods to create the boosted luminescence. This can be promising to design organic solar 

cell development as well as for LED TVs. 
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