

PERFORMANCE EVALUATION OF A MULTI-HOP WDM NETWORK WITH OXC ARCHITECTURE

MUNIRA HAQUE

A THESIS SUBMITTED IN THE PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF ENGINEERING

IN

ELECTRICAL, ELECTRONIC AND COMMUNICATION ENGINEERING

DEPARTMENT OF ELECTRICAL ELECTRONIC AND COMMUNICATION ENGINEERING MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY

JANUARY 2021

APPROVAL CERTIFICATE

This thesis titled "PERFORMANCE EVALUATION OF A MULTI-HOP WDM NETWORK WITH OXC ARCHITECTURE" submitted by Munira Haque, Roll No.-1013160035(P) has been accepted as satisfactory in partial fulfillment of the requirements for the Degree of Master of Science in Electrical Electronic and Communication **Engineering** in Jan 2021

BOARD OF EXAMINERS

Chairman

Dr. Satya Prasad Majumder Professor Department of Electrical and Electronic Engineering (EEE) Bangladesh University of Engineering and Technology (BUET) Dhaka-1000, Bangladesh

2.

1.

Member Dr. A K M Nazrul Islam (Ex-Officio) Brigadier General / Professor Department of Electrical, Electronic and Communication Engineering (EECE) Military Institute of Science and Technology (MIST) Mirpur Cantonment, Dhaka-1216, Bangladesh

3.

Member (Internal)

Member

Dr Md Golam Mostafa Colonel / Professor Department of Electrical, Electronic and Communication Engineering (EECE) Military Institute of Science and Technology (MIST) Mirpur Cantonment, Dhaka-1216, Bangladesh

4.

Dr Md Shah Alam (External) Professor Department of Electrical and Electronic Engineering (EEE) Bangladesh University of Engineering and Technology (BUET) Dhaka-1000, Bangladesh

DECLARATION

I hereby declare that this thesis is my original work and it has been written entirely by myself. I have duly acknowledged all the sources of information which have been used in the thesis. The thesis (fully or partially) has not been submitted for any degree or diploma in any university or institute previously.

Signature ____

Date:

(Munira Haque) January 2021

ABSTRACT

The combined effect of crosstalk and noise on Bit Error Rate (BER) of a multi-hop Wavelength Division Multiplexing (WDM) transmission system with Limited Wavelength Interchanging Cross Connects (L-WIXC) are investigated in this thesis. In an all-optical WDM network, the route to be followed and the wavelength to be used by the signal along the selected route is designated by an L-WIXC. But, propagation through the switching elements of an L-WIXC results in signal degradation and induces crosstalk both due to device intrinsic losses and their imperfect operation. Moreover, in a long-haul communication system, the cumulative loss of signal strength is restored using optical amplifiers which further degrade the signal due to spontaneous emission that adds noise to the signal during its amplification. In this thesis, the signal to crosstalk plus noise ratio at the receiver output of a multi-hop WDM network is derived for various L-WIXC architectures. An improved mathematical modelling is developed for the analysis of network performance in terms of BER and the mathematical formulations are then used to evaluate Bit Error Rate (BER) performance of the system in terms of parameters like number of hops, number of wavelength channels per fiber and number of fibers. Accordingly, the power penalty for different system parameters due to accumulated crosstalk and noise is determined at a given BER of 10^{-9} . Results show that there is a significant power penalty due to accumulated crosstalk and noise depending on the number of hops. Subsequently, the maximum allowable number of hops that a signal can travel, sustaining a specific level of power penalty for any combination of wavelength channels and input fibers, is evaluated numerically. A Comparative study of the system performance is also depicted for all architectures of L-WIXC which will provide a guideline for system design in choosing the most effective one while designing a WDM network.

ACKNOWLEDGEMENTS

First and foremost, all the praises and gratitude to Almighty Allah, who has created this incredible universe and led us in the quest for knowledge.

I would like to express my earnest gratitude and profound respect to my supervisor, Dr. Satya Prasad Majumder, for his continuous guidance, support and invaluable advice throughout the progress of my research work. I also sincerely appreciate the continuous support from the Head of Department of Electrical, Electronic and Communication Engineering (EECE), Military Institute of Science and Technology (MIST) during the progress of the work. I also acknowledge the support from my colleagues and superiors which has given me the opportunity to finish this thesis work. I must acknowledge the valuable cooperation provided by the faculty members of EECE Department of MIST for the completion of my research work.

Last but not least, I would like to convey my heartfelt gratefulness to my parents and my husband, whose contributions are inherent in every word of this work.

TABLE OF CONTENTS

Page no

2.3.1.2 Share Per Link Architecture 18

	2.3.2	L-WIXCs based on delivery and coupling switches (DCS)	19
		2.3.2.1 DCS-1 Architecture	19
		2.3.2.2 DCS-2 Architecture	20
	2.3.3	L-WIXCs based on couplers and filters	21
		2.3.3.1 Wavelength Switching-based architecture	21
		2.3.3.2 MWSF-based Architecture	22
2.4	EDFA	AS	23
2.5	Summary 24		24
Chapt	oter-3 ANALYTICAL MODEL FOR BER ANALYSIS IN WDM		M
NETV	VORK		25
3.1	Introd	luction	25
3.2	Cross	Crosstalk 2	
3.3	Assumption in Crosstalk Modeling 2'		27
3.4	Cross	talk Analysis of Share Per Node L-WIXC	28
	3.4.1	Coherence Property	28
	3.4.2	Crosstalk Aroused in Share Per Node L-WIXC	30
	3.4.3	Crosstalk Analysis	33
3.5	3.5 Analysis of Crosstalk for Other L-WIXC Architecture		36
	3.5.1	Share Per Link Architecture	36
	3.5.2	DCS-1 Architecture	37
	3.5.3	DCS-2 Architecture	38
	3.5.4	Wavelength Switching-based Architecture	39
	3.5.5	MWSF-based Architecture	39
3.6	Noise Generated in a Multi-hop WDM Network 4		40
3.7	BER Performance Analysis 4		41
3.8	Power Penalty (PP) Analysis 42		42
3.9	Summary 43		43

Chap	ter -4	RESULT and DISCUSSION	44
4.1	Introd	luction	44
4.2	BER I	Performance Trend	45
4.3	Evalu	ation of Power Penalty	48
4.4	Power	r Penalty Trend for Share per Node L-WIXC Architecture	48
4.5	Power	r Penalty Trend for Share per Link L-WIXC Architecture	52
4.6	Power	r Penalty Trend for DCS-1 L-WIXC Architecture	55
4.7	Power	r Penalty Trend for DCS-2 L-WIXC Architecture	58
4.8	Power	r Penalty Trend for WS-based L-WIXC Architecture	62
4.9	Power	r Penalty Trend for MWSF-based L-WIXC Architecture	65
4.10	Maxir	num Allowable Number of Hops	68
4.1	0.1 De	esigning a WDM Network with Share-per Node Architecture	69
4.1	0.2 De	esigning a WDM Network with Share-per Link Architecture	70
4.1	0.3 De	esigning a WDM Network with DCS-1 Architecture	72
4.1	0.4 De	esigning a WDM Network with DCS-2 Architecture	73
4.1	0.5 De	esigning a WDM Network with WS-based Architecture	75
4.1	0.6 De	esigning a WDM Network with MWSF Architecture	76
4.11	Com	parison of Maximum Allowable Number of Hops	78
4.12	Summ	nary	79
Chap	ter-5	CONCLUSION AND FUTURE WORKS	80
5.1	Concl	usions	80
5.2	Future	e Scope of the Work	81

BIBLIOGRAPHY

83

LIST OF SYMBOLS

Symbol	Meaning
Т	Temperature
k	Boltzman Constant
h	Plank's Constant
B_e	Receiver Bandwidth
Bo	Optical Filter Bandwidth
f_n	Noise Figure
r_L	Load Resistance
r_D	Photodiode Responsivity
n_{sp}	Spontaneous Emission Factor
f_c	Carrier frequency
i _d	Dark Current
i_b	Background Current
G	Gain of Amplifier
α	Fiber loss
L	Hop Length
P _{in}	Input Power

LIST OF FIGURES

Figure	Title of the Figure	Page no
Fig. 1.1	Attenuation of Light in a Silica Fiber as a Function of	4
	Wavelength	
Fig. 1.2	A typical point-to-point WDM link	6
Fig. 2.1	Multi-hop WDM Communication System Model	15
Fig. 2.2	Share Per Node L-WIXC Architecture	17
Fig. 2.3	Share Per Link L-WIXC Architecture	18
Fig. 2.4	DCS -1 L-WIXC architecture	19
Fig. 2.5	DCS-2 L-WIXC architecture	20
Fig. 2.6	Wavelength Switching-based L-WIXC Architecture	21
Fig. 2.7	MWSF based L-WIXC Architecture	22
Fig 3.1	Demonstration on Interband Crosstalk	26
Fig 3.2	Demonstration on Inband Crosstalk	26
Fig 3.3	Coherence time of Laser (t_1) and Modulated Light (t_2)	29
Fig. 4.1	Variation of BER with Received power for varying number of	45
	hops using Different L-WIXC architectures	
Fig. 4.2	Power penalty for a WDM network using Share per Node L-	50
	WIXC architecture as a function of number of hops varying	
	number of input wavelengths	
Fig. 4.3	Power penalty for a WDM network using Share-per-Link L-	53
	WIXC architecture as a function of number of hops varying	
	number of input wavelengths	
Fig. 4.4	Power penalty for a WDM network using DCS-1 L-WIXC	56
	architecture as a function of number of hops varying number	
	of input wavelengths	
Fig. 4.5	Power penalty for a WDM network using DCS-2 L-WIXC	60
	architecture as a function of number of hops varying number	
	of input wavelengths	
Fig. 4.6	Power penalty for a WDM network using MWSF-based L-	63
	WIXC architecture as a function of number of hops varying	
	number of input wavelengths	

Fig. 4.7	Power penalty for a WDM network using Wavelength	66
	Switching-based L-WIXC architecture as a function of	
	number of hops varying number of input wavelengths	
Fig. 4.8	Maximum allowable number of hops for a WDM network	69
	using Share-per-Node architecture as a function of number of	
	wavelengths in a channel varying number of input channels	
Fig. 4.9	Maximum allowable number of hops for a WDM network	71
	using Share-per-Link as a function of number of wavelengths	
	in a channel varying number of input channels	
Fig. 4.10	Maximum allowable number of hops for a WDM network	72
	using DCS-1 architecture as a function of number of	
	wavelengths in a channel varying number of input channels	
Fig. 4.11	Maximum allowable number of hops for a WDM network	74
	using DCS-2 architecture as a function of number of	
	wavelengths in a channel varying number of input channels	
Fig. 4.12	Maximum allowable number of hops for a WDM network	75
	using Wavelength Switching-based L-WIXC architecture as a	
	function of number of wavelengths in a channel varying	
	number of input channels	
Fig. 4.13	Maximum allowable number of hops for a WDM network	77
	using MWSF-based L-WIXC architecture as a function of	
	number of wavelengths in a channel varying number of input	
	channels	
Fig. 4.14	Comparison of variation of maximum allowable number of	78
	hops with number of input wavelengths per fiber for all	
	architectures of L-WIXC at BER=10 ⁻⁹	

XII

LIST OF TABLES

Table	Title of the Table	Page no
Table I	BER Performance Trend for Share Per Node L-	49
	WIXC Architecture	
Table II	BER Performance Trend for Share Per Link L-	52
	WIXC Architecture	
Table III	BER Performance Trend for DCS-1 L-WIXC	55
	Architecture	
Table IV	BER Performance Trend for DCS-2 L-WIXC	59
	Architecture	
Table V	BER Performance Trend for WS-Based L-WIXC	62
	Architecture	
Table VI	BER Performance Trend for MWSF-Based L-	65
	WIXC Architecture	

LIST OF ABBREVIATIONS

BER	Bit Error Rate
DCS	Delivery And Coupling Switch
DMUX	Demultiplexer
EDFA	Erbium Doped Fiber Amplifier
E/O	Electrical To Optical
IM/DD	Intensity Modulation-Direct Detection
LD	Laser Diode
L-WIXC	Limited Wavelength Interchanging Cross-Connect
MUX	Multiplexer
MWSF	Multi-Wavelength Selective Filter
O/E	Optical to Electrical
OEO	Optical Electrical Optical
0-0	Optical to Optical
OXC	Optical Cross-Connect
PP	Power Penalty
SCNR	Signal to Crosstalk plus Noise Ratio
SDM	Space Division Multiplexing
SOA	Semiconductor Optical Amplifier
SSM	Space Switch Matrix
UHF	Ultra High Frequency
VWP	Virtual Wavelength Path
WC	Wavelength Converter
WDM	Wavelength Division Multiplexing
WSXC	Wavelength Switching-based Cross Connect