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ABSTRACT 

In this thesis work, a new technique is proposed to forecast short term electrical load. Load 

forecasting is an integral part of power system planning and operation. Precise forecasting of 

load is essential for unit commitment, capacity planning, network augmentation and demand 

side management. It is significantly imperative for energy providers and other members in 

electric energy generation, transmission, distribution and markets. Forecasting of load 

demand is a complex problem as it is to solve nonlinearity with influenced external factors. 

Load forecasting can be generally categorized into three classes such as sort term, midterm 

and long term.  Short term forecasting is usually done to predict load for next few hours to 

few weeks. In the literature various methodologies such as regression analysis, machine 

learning approaches, deep learning methods and artificial intelligence systems have been 

used for short term load forecasting. Existing forecasting techniques may not always provide 

higher accuracy in short term load forecasting. To overcome this challenge, a new approach 

is proposed in this thesis for short term load forecasting. The developed method is based on 

the integration of convolutional neural network and long short-term memory network. The 

method is applied to Bangladesh power system to provide day ahead forecasting to month 

ahead.  It is found that in the field of short-term load forecasting, the proposed strategy 

results in higher precision and accuracy in terms of Mean average error (MAE), Mean 

average percentage error (MAPE) and root mean square error (RMSE). 

 

 

 

 

 
 

 

 

 

 



v 
 

 

 

ACKNOWLEDGEMENTS 
 

 

This thesis is the most significant accomplishment in my life. I would like to thank my 

parents for their continuous support, encouragement and sacrifice throughout the period and I 

will be indebted to them forever for all they have done. Similarly, I could not find words that 

express my gratefulness to my wife Sharmin Sultana, for her supportive and understanding 

attitude. 

 This is my immense pleasure to express my sincere and profound gratitude to my 

supervisor Dr. Nahid-Al-Masood, Associate Professor, EEE Dept, BUET for the patient 

guidance, encouragement and advice he has provided throughout my research time. I am 

grateful to him for giving me directions, confidence and valuable advice, and for everything 

that I have learned from him. He has had a tremendous impact on the way I perceive research 

and life in general. Dr. Nahid-Al-Masood has also been very helpful in many ways to me and 

for my research. His feedback from different critical angles has always been encouraging and 

useful. He also has taught me many practical aspects of research from the elementary level. 

Once again I thank my supervisor, with whom I feel that I genuinely have been privileged to 

work. 

 I profoundly thank Brigadier General A K M Nazrul Islam, PhD, Head, Dept. of EECE, 

MIST for his valuable and constructive feedback, assistance and being on my final defense 

panel. I thank Lieutenant Colonel Md Tawfiq Amin, PhD, EME for kind coordination and 

cooperation as the postgraduate course coordinator. Also, thanks to all the reviewers, for their 

appreciation and feedback on my thesis and publications 

 I would be pleased to extend my sincere thanks to all of my course teachers and staffs of 

EECE department, MIST for their cordial help and adequate support for successful 

completion of my research works. Special thanks to Major Wahed, Major Mohazzem, 



vi 
 

Assistant Professor Soyaeb and Mr. Hafizur Rahman for their cordial assistance and official 

support to complete the administrative procedures. 

 Although many of you may not understand, nor ever want to understand, much of what is 

written beyond this page, you should at least know that it could not have been done without 

you. 

SHAFIUL HASAN RAFI 

Military Institute of Science and Technology 

Dhaka, Bangladesh 

Aug 2020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

TABLE OF CONTENTS 

 

Board of Examiners.………………………………………………………………  i 

Declaration ……………………………………………………………………......  ii 

Dedication ………………………………………………………………...............  iii 

Abstract ….………………………………………………………………………..  iv 

Acknowledgements…………………………………………………………..........  v 

List of Symbols .…………………………………………………………………..  x 

List of Figures ………………………………………………………………….....  xi 

List of Tables. ………………………………………………………….................  xv 

List of Abbreviations...…………………………………………………………....  xvi 

   

   

1 INTRODUCTION  1 

1.1      Introduction …………………………………………………...............  1 

1.2      Electric Load Forecasting …………………………………………….  1 

1.3      Types of Load Forecasting..…………………………………...………  2 

1.4      Important Factors for Load Forecasting…………………………….....  3 

1.5      Literature Review…………………….. …………………………..…..  5 

1.6      Thesis Objective …..………. …………………………………..……..  8 

1.7      Thesis Outcome….. ...……………………………………………..…..  8 

1.8      Thesis Outlines ……………………………………………….…….....  8 

1.9       Summary…………..… ……………………………………….……....  9 

   

2 SHORT-TERM LOAD FORECASTING TECHNIQUES  10 

2.1      Introduction ……………………………..…………………….............  10 

2.2      Forecasting Model Classification ……………………………..............  10 

           2.2.1 Similar day approach …………………………………………  10 

           2.2.2 Statistical techniques…..……………………………………...  11 

                       2.2.2.1   Multiple regression method…………………….. ......  11 

                       2.2.2.2   Exponential smoothing……………………………....  12 

                       2.2.2.3   Simple moving average (S. M. A)…………………...  12 

                       2.2.2.4   Time series approach………………………………...  13 



viii 
 

           2.2.3    Fuzzy logic technique.…..…………………………………….  13 

           2.2.4    Support vector machine (SVM)……………………………….  14 

           2.2.5    Artificial neural network………………….…………...............  15 

           2.2.6    Deep neural network…………………………………………..  20 

             2.2.7    Recurrent neural network…………………....………………...  21 

                    2.2.8    Long short term memory network……………………….........  22 

                    2.2.9    Encoder decoder LSTM model………………………………..  23 

                    2.2.10  Convolutional neural network (CNN)………………................  24 

                    2.2.11  Genetic algorithm ……………………………………………..  26 

                    2.2.12  Knowledge-based expert system…………………………........  26 

         2.3      Summary………………………………………………………………  27 

   

3 DATA ANALYSIS   28 

 3.1  Introduction …………………………………………………………..  28 

  3.2  Prerequisites of a Good STLF System……….……………………….  28 

3.3       Load Characteristics of BPS………………………………………….  29 

3.4  Summary ……………………………………………………………..  33 

   

4 PROBLEM FORMULATION AND PROPOSED METHODOLOGY   34 

4.1  Introduction …………………………………………………………...  34 

4.2  Proposed Methodology …………………………………………….....  34 

4.3       Application of the Proposed Methodology……………………………  38 

4.6  Summary ……………………………………………………………...  39 

   

5 RESULT AND DISCUSSION  40 

5.1  Introduction …………………………………………………………...  40 

5.2  Evaluation Metrics……...……………………………………………..  40 

  5.2.1 Mean absolute error… ………………………………..............  40 

  5.2.2 The mean absolute percentage error…………………..............  41 

  5.2.3 Root mean square error………..………………………………  41 

5.3      Comparison of the Metrics…………………………………………….  42 

5.4  Forecasting Outcomes………………………………………………...  43 

  5.4.1 Monthly prediction for the year of 2018………………………  44 



ix 
 

  5.4.2 Weekly prediction for the year of 2018…………………….....  46 

           5.4.3    48 hours prediction for the year of 2018………………………  51 

       5.4.4 24 hours prediction for the year of 2018………………...........  53 

           5.4.5    Monthly prediction for the year of 2019………………………  57 

           5.4.6    Weekly prediction for the year of 2019…………………….....  62 

           5.4.7    48 hours prediction for the year of 2019………………………  66 

           5.4.8    24 hours Prediction for the year of 2019………………………  68 

5.5       Performance Calculation Using Evaluation Metrics………………….  72 

          5.5.1   Comparison of evaluation metrics for 30 days for the year          

                     of 2018...………………………………………………………. 

  

72 

          5.5.2   Comparison of evaluation metrics for 07 days for the year  

                     of 2018…….…………………………………………………… 

  

74 

          5.5.3   Comparison of evaluation metrics for 48 hours for the year  

                      of 2018……………………………………………………….... 

  

75 

          5.5.4   Comparison of evaluation metrics for 24 hours for the year  

                      of 2018……………………………………………………….... 

  

77 

          5.5.5   Comparison of evaluation metrics for 30 days for the year          

                     of 2019……………….……………………………………….... 

  

79 

          5.5.6   Comparison of evaluation metrics for 07 days for the year  

                     of 2019……………..……………………………………........... 

  

80 

          5.5.7   Comparison of evaluation metrics for 48 hours for the year  

                     of 2019…………….…………………………………………… 

  

82 

          5.5.8   Comparison of evaluation metrics for 24 hours for the year  

                     of 2019…………….…………………………………………… 

  

84 

5.6        Summary……………………………………………………………..  86 

   

6 CONCLUSIONS AND FUTURE WORK  87 

6.1    Conclusions ………….…………………………..…………………...  87 

6.2     Future Work ……………………………………...……………..........  88 

   

REFERENCES …………………………………………………………...............  89 

 

 



x 
 

LIST OF SYMBOLS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Similar Day approaches 

   The recursive function. 

   Forget 

f Activation function. 

   The hidden state 

   Input gate 

N Total number of the observation periods 

   Output gate 

   Actual load of a system 

   State at time t 

   Input at time 

  ̌ Actual load value 

   Predicted value 

  Sigmoid activation function 

   Random factor 



xi 
 

LIST OF FIGURES 

 

Fig. 1.1. Various factors affecting load forecasting 04 

Fig. 2.1. Support vector machine structure 15 

Fig. 2.2. An artificial neuron unit. 16 

Fig. 2.3. Sigmoid Function 17 

Fig. 2.4. Comparison of Sigmoid, Hard Sigmoid and Ultra-Fast Sigmoid 18 

Fig. 2.5. tanh activation function 19 

Fig. 2.6. A model of ANN 19 

Fig. 2.7. Deep neural network 20 

Fig. 2.8. A model of RNN 21 

Fig. 2.9.     A model of LSTM 23 

Fig. 2.10.   Encoder-Decoder LSTM model 24 

Fig. 2.11. A model of CNN 25 

Fig. 3.1. Average temperature variation 29 

Fig. 3.2. Average load demand variation 29 

Fig. 3.3. Load demand variation of January 2017 and December 2017 30 

Fig. 3.4. Load demand variation of January 2017 and May 2017 31 

Fig. 3.5. Load demand variation of May 2017 and June 2017 31 

Fig. 3.6. Load demand variation of July 2017 and August 2017 32 

Fig. 3.7. Load demand variation of January 2016 and January 2017 32 

Fig. 3.8. Load demand variation of July 2016 and July 2017 32 

Fig. 4.1. Proposed CNN-LSTM model 36 

Fig. 4.2. Flow chart of the proposed technique. 36 

Fig. 5.1.     Load forecasting of BPS for January 2018 44 

Fig. 5.2.     Load forecasting of BPS for March 2018   45 

Fig. 5.3.     Load forecasting of BPS for May 2018 45 

Fig. 5.4.     Load forecasting of BPS for July 2018 45 

Fig. 5.5.     Load forecasting of BPS for October 2018 46 

Fig. 5.6.     Load forecasting of BPS for November 2018 46 

Fig. 5.7.     Load forecasting of BPS for 01-07 January 2018 47 

Fig. 5.8.     Load forecasting of BPS for 01-07 February 2018 47 

Fig. 5.9.     Load forecasting of BPS for 01-07 March 2018 47 



xii 
 

Fig. 5.10. Load forecasting of BPS for 01-07 April 2018 48 

Fig. 5.11.   Load forecasting of BPS for 01-07 May 2018 48 

Fig. 5.12.   Load forecasting of BPS for 08-14 June 2018 48 

Fig. 5.13.   Load forecasting of BPS for 15-22 July 2018 49 

Fig. 5.14.   Load forecasting of BPS for 23-29 August 2018 49 

Fig. 5.15.   Load forecasting of BPS for 01-07 September 2018 49 

Fig. 5.16.   Load forecasting of BPS for 08-14 October 2018 50 

Fig. 5.17.   Load forecasting of BPS for 15-21 November 2018 50 

Fig. 5.18.   Load forecasting of BPS for 23-29 December 2018 50 

Fig. 5.19.   Load forecasting of BPS for 15-16 January 2018 51 

Fig. 5.20.   Load forecasting of BPS for 11-12 March 2018 51 

Fig. 5.21.   Load forecasting of BPS for 06-07 May 2018 52 

Fig. 5.22.   Load forecasting of BPS for 07-08 July 2018 52 

Fig. 5.23.   Load forecasting of BPS for 04-05 September 2018 52 

Fig. 5.24.   Load forecasting of BPS for 20-21 November 2018 53 

Fig. 5.25.   Load forecasting of BPS for 01 January 2018 53 

Fig. 5.26.   Load forecasting of BPS for 06 February 2018 54 

Fig. 5.27.   Load forecasting of BPS for 04 March 2018 54 

Fig. 5.28.   Load forecasting of BPS for 01 April 2018 54 

Fig. 5.29.   Load forecasting of BPS for 02 May 2018 55 

Fig. 5.30.   Load forecasting of BPS for 11 June 2018 55 

Fig. 5.31.   Load forecasting of BPS for 15 July 2018 55 

Fig. 5.32.   Load forecasting of BPS for 23 August 2018 56 

Fig. 5.33.   Load forecasting of BPS for 07 September 2018 56 

Fig. 5.34.   Load forecasting of BPS for 08 October 2018 56 

Fig. 5.35.   Load forecasting of BPS for 18 November 2018 57 

Fig. 5.36.   Load forecasting of BPS for 24 December 2018 57 

Fig. 5.37.   Load forecasting of BPS for January 2019 58 

Fig. 5.38.   Load forecasting of BPS for February 2019 58 

Fig. 5.39.   Load forecasting of BPS for March 2019 58 

Fig. 5.40.   Load forecasting of BPS for April 2019 59 

Fig. 5.41.   Load forecasting of BPS for May 2019 59 

Fig. 5.42.   Load forecasting of BPS for June 2019 59 



xiii 
 

Fig. 5.43.   Load forecasting of BPS for July 2019 60 

Fig. 5.44.   Load forecasting of BPS for August 2019 60 

Fig. 5.45.   Load forecasting of BPS for September 2019 60 

Fig. 5.46.   Load forecasting of BPS for October 2019 61 

Fig. 5.47.   Load forecasting of BPS for November 2019 61 

Fig. 5.48.   Load forecasting of BPS for December 2019 61 

Fig. 5.49.   Load forecasting of BPS for 01-07 January 2019 62 

Fig. 5.50.   Load forecasting of BPS for 01-07 February 2019 62 

Fig. 5.51.   Load forecasting of BPS for 01-07 March 2019 63 

Fig. 5.52.   Load forecasting of BPS for 01-07 April 2019 63 

Fig. 5.53.   Load forecasting of BPS for 01-07 May 2019 63 

Fig. 5.54.   Load forecasting of BPS for 08-14 June 2019 64 

Fig. 5.55.   Load forecasting of BPS for 15-22 July 2019 64 

Fig. 5.56.   Load forecasting of BPS for 23-29 August 2019 64 

Fig. 5.57.   Load forecasting of BPS for 01-07 September 2019 65 

Fig. 5.58.   Load forecasting of BPS for 08-14 October 2019 65 

Fig. 5.59.   Load forecasting of BPS for 15-21 November 2019 65 

Fig. 5.60.   Load forecasting of BPS for 23-29 December 2019 66 

Fig. 5.61.   Load forecasting of BPS for 15-16 January 2019 66 

Fig. 5.62.   Load forecasting of BPS for 11-12 March 2019 67 

Fig. 5.63.   Load forecasting of BPS for 06-07 May 2019 67 

Fig. 5.64.   Load forecasting of BPS for 07-08 July 2019 67 

Fig. 5.65.   Load forecasting of BPS for 04-05 September 2019 68 

Fig. 5.66.   Load forecasting of BPS for 20-21 November 2019 68 

Fig. 5.67.   Load forecasting of BPS for 06 February 2019 69 

Fig. 5.68.   Load forecasting of BPS for 02 March 2019 69 

Fig. 5.69.   Load forecasting of BPS for 01 April 2019 69 

Fig. 5.70.   Load forecasting of BPS for 01 June 2019 70 

Fig. 5.71.   Load forecasting of BPS for 15 July 2019 70 

Fig. 5.72.   Load forecasting of BPS for 23 August 2019 70 

Fig. 5.73.   Load forecasting of BPS for 07 September 2019  71 



xiv 
 

Fig. 5.74.   Load forecasting of BPS for 08 October 2019 71 

Fig. 5.75.   Load forecasting of BPS for 18 November 2019 71 

Fig. 5.76.   Load forecasting of BPS for 23 December 2019 72 

Fig. 5.77.   Monthly MAE for 2018 73 

Fig. 5.78.   Monthly RMSE for 2018 73 

Fig. 5.79.   Monthly MAPE for 2018 74 

Fig. 5.80.   Weekly MAE for 2018 75 

Fig. 5.81.   Weekly RMSE for 2018 75 

Fig. 5.82.   Weekly MAPE for 2018 75 

Fig. 5.83.   MAE of 48 hours for the different dates of 2018 76 

Fig. 5.84.   RMSE of 48 hours for the different dates of 2018 76 

Fig. 5.85.   MAPE of 48 hours for the different dates of 2018 77 

Fig. 5.86.   MAE of 24 hours for the different dates of 2018 77 

Fig. 5.87.   RMSE of 24 hours for the different dates of 2018 78 

Fig. 5.88.   MAPE of 24 hours for the different dates of 2018 78 

Fig. 5.89.   Monthly MAE for 2019 80 

Fig. 5.90.   Monthly RMSE for 2019 80 

Fig. 5.91.   Monthly MAPE for 2019 80 

Fig. 5.92.   Weekly MAE for 2019 81 

Fig. 5.93.   Weekly RMSE for 2019 82 

Fig. 5.94.   Weekly MAPE for 2019 82 

Fig. 5.95.   MAE for 48 hours of the different month of 2019 83 

Fig. 5.96.   RMSE for 48 hours of the different month of 2019 83 

Fig. 5.97.   MAPE for 48 hours of the different month of 2019 84 

Fig. 5.98.   MAPE for 24 hours of different dates of 2019 85 

Fig. 5.99.   RMSE for 24 hours of different dates of 2019 85 

Fig. 5.100. MAPE for 24 hours of different dates of 2019 85 

 

 

 

 



xv 
 

LIST OF TABLES 

 

Table 1.1:  Categories of Load Forecasting 03 

Table 5.1:  Comparison of RMSE, MAE and MAPE 43 

Table 5.2:  Monthly MAE, RMSE and MAPE for LSTM and CNN-LSTM 73 

Table 5.3:  Weekly MAE, RMSE and MAPE for LSTM and CNN-LSTM 74 

Table 5.4:  Weekly MAE, RMSE and MAPE for LSTM and CNN-LSTM 76 

Table 5.5:  Weekly MAE for LSTM and CNN-LSTM 78 

Table 5.6:  Monthly MAE, RMSE and MAPE for LSTM and CNN-LSTM 79 

Table 5.7:  Weekly MAE, RMSE and MAPE for LSTM and CNN-LSTM 81 

Table 5.8:  Weekly MAE, RMSE and MAPE for LSTM and CNN-LSTM 83 

Table 5.9:  Weekly MAE for LSTM and CNN-LSTM 84 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvi 
 

 

LIST OF ABBREVIATIONS 

 

ANN Artificial Neural Network 

ARIMA Autoregressive Integrated Moving Normal 

  ARMAX  Autoregressive Integrated Moving Average with Exogenous Variables 

BPS Bangladesh Power System 

CNN Convolutional Neural Network 

C-LSTM Cycle based Long Short Term Memory Network  

DNN Deep Neural Network 

GA Genetic Algorithms 

GRUN Gated Recurrent Unit Network 

LSTM Long Short Term Memory Network 

LTLF Long Term Load Forecasting 

MAPE Mean Absolute Percentage Error 

MTLF Midterm Load Forecasting 

MAE Mean Average Error 

PGCB Power Grid Company Bangladesh 

RNN Recurrent Neural Network   

RELU Rectified Linear Unit 

RMSE Root Mean Square Error   

STLF Short Term Load Forecasting  

SVM Support Vector Regression Machine 

TD-CNN Time Division Convolutional Neural Network 

 

 

 

 

 

 



 

1 
 

CHAPTER 1 

INTRODUCTION 

 

1.1  Introduction 

In the field of the electrical power system network, load forecasting is essential for 

appropriate planning, operation and control. Without precise prediction of load, power 

scheduling and unit commitment can‘t be done in a proper way. Load forecasting is 

particularly very important research issue for the achievement of getting higher efficiency 

and reliability in power system operation, transmission and control. Price forecasting of load 

can minimize the operational cost by giving correct input to the prior days scheduling. 

Power system reliability, load flow analysis, planning for the power system operation, 

transmission and distribution facilities also depend on precise load forecasting. 

 

1.2  Electric Load Forecasting 

In our daily life electricity plays a very important role. The economic development of any 

country is subjected to the electricity consumption. Designing, planning and operation of 

electric utilities are greatly depending on precise load forecasting procedure. In addition, it is 

indispensable to distribute substantial extent of electricity to increase the economy 

considerably by electric power suppliers. Based on the existing system information, load 

forecasting is the way of assessing the future electric load trend that is the calculation of 

future demand for a given perspective. Increment of power consumption in any country is 

greatly depending on the population growth, economic infrastructure development, fastest 

transportation system and human facilities. According to the interval period of time, load 

forecasting procedure is mostly classified into three main categories. Furthermore, it can 

also be divided in to the subjective and objective load forecasting methods. Fist one is the 
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subjective methods that are usually used to measure either individual or group opinion. 

These forecasting methods involve: 

a. Scales force aggregates. 

b. Customer assessment. 

c. Jury of supervisory judgment. 

d. The Delphi method. 

The second one is the objective forecasting methods that can be divided in two bodies such 

as time series methods that are computed using past history data and regression analysis. 

Regression models often integrate the previous history of other series. On the contrary, time 

series forecasting methodology is used to predict the future load based on previously 

observed electric load values which can easily be integrated into a computer program such 

that machine learning algorithm for getting automatic forecasting outcomes. The ultimate 

objective of applying time series forecasting method is to find predictable and repeatable 

patterns including increasing or decreasing linear trend, curvilinear trend and seasonal 

change in historical past data. However, now-a-days electricity load forecasting is important 

research issue because it is exceptionally critical task to achieve highly efficient and reliable 

the power system of a country with regards to demand response and the allocation of 

available resources. 

 

1.3  Types of Load Forecasting 

Load forecasting is generally partitioned into three categories. These are short term load 

forecasting (STLF), which predicts the load of next few hours to few weeks; midterm load 

forecasting (MTLF), which basically covers a week to a year; and long term load forecasting 

(LTLF), which predicts load for more than a year [1]- [2]. Some factors are usually 

considered for short term load forecasting such as input load flow study, energy transfer 

scheduling, and demand-side management in the daily operation [3]. Day-ahead load 
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scheduling, which is imperative for power system operation and control, is done through 

short term load forecasting. In order to correlate the predicted advancement in demand, the 

medium and long-term forecasting are applied for enlargement of capacity of generation, 

transmission and distribution. Different kinds of load forecasting are illustrated in Table 1.1 

Table 1.1: Categories of Load Forecasting 

 Time 

Intervals 

Forecasted 

Outcomes 

Accuracy Operation Planning 

STLF 24h-1week Load curves Fixed load 

curves 

Economics 

load dispatch 

Unit 

commitment 

MTLF 1 week-1 year Load curves Capacity>> 

Error 

Unit 

Commitment 

Reserve 

planning 

LTLF >1 year Energy 

needed 

Fixed 

energy 

Planning of 

the power 

system 

Future 

capacity 

extension 

 

Precise load forecasting is very much needed for mitigating the challenge with the upward 

trend in electricity market prices. Energy producer or suppliers are always dependent on the 

future demand to reduce power generation cost. Thereby, it is imperative to make a balance 

between power consumption and power supply. With the development of power market over 

the past decades, it has been appeared that the short term load forecasting takes part a vital 

role in Energy management system (EMS). 

 

1.4  Important Factors for Load Forecasting 

There are some factors which must be considered for short-term load forecasting like time 

factors, weather changing data, and classes of the consumers [4]. The medium- and long-

term load forecasting consider the historical weather and load data, the number of different 
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consumers, the appliances used in a particular place and their characteristics in different 

periods, the economic and demographic data and their forecasts, sales data of electric home 

appliances, and other factors. The most prominent factor to be specific the time factors take 

account of the time of the year, the day of the week, and the hour of the day [5]. Electric 

load between weekdays and weekends are not similar. Moreover, the load on different 

weekdays has different characteristics. Therefore, to forecast the future demand a 

mathematical model is needed using the proper selection of appropriate forecasting 

variables. Quality of the input variable signifies the accuracy of the model which would 

predict the future load. There are two types of variables such as deterministic and stochastic 

which affects the load forecasting. On the contrary, electric energy consumption is greatly 

depended on the human activities. Similarly, population and their economic status signify 

the human activities. Therefore, the factor affecting variables are correlated to each other. 

Sometimes the change of the comfort feeling of the consumers may changes the condition of 

the weather. For example, the necessity of the heaters (water, room) and air conditioner 

affect the weather conditions. 

 

Fig. 1.1.  Various factors affecting load forecasting 
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In Fig. 1.1, it is clear that there are many influencing factors affected on the electricity load 

demand. Firstly, time is one of the most popular factors that can be separated into midnight, 

morning, evening, night, lunch time and so on when it is considered for one day. Thus, it can 

be forecasted next day electricity demand because of available different past data for one 

day. Similarly, it can be considered seasonally, yearly, monthly, weekly and daily etc. Next, 

weather is also one important thing affected on load, for example, it can be diverged 

temperature, cloud cover or sunshine, humidity and so on. Moreover, calendar can also be 

considered like seasonal variation, daily variation, weekly cyclic and holidays, hence it can 

be get different data and predict different results. Likewise, the remaining things such as 

population, human facilities, economic for business and electricity prices are influenced on 

forecasting electricity load demand. 

 

1.5  Literature Review 

There are a very few reports to determine the load of Bangladesh Power System (BPS). A 

long term electricity demand of Bangladesh was projected from 2005 to 2035 considering 

the economic growth scenario. This study did not incorporate any methodology for short 

term load forecasting procedure. Some regional basis reports have already been focused for 

the issue of the load forecasting of BPS where different horizon load forecasting like daily, 

weekly, monthly, yearly is not presented [6]-[7]. In spite of the fact that there are a few 

studies of whole country which incorporates load forecasting of BPS by applying a 

conventional linear regression strategy using temperature variations [8]. 

        The STLF issue has been dealt with different procedures [9]-[10]. These procedures can 

be approximately classified into two gatherings, to be specific traditional and artificial 

intelligence systems. In the early literature, the most regularly used methodology is 

statistical method [11], which includes multiple linear regression [12]-[14], exponential 

smoothing [15], and the autoregressive coordinates moving normal (ARIMA) [16]. In any 
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case, due to the characteristics of non-linear features of the time series univariate load data, 

above mentioned techniques perform ineffectively in terms of mean square error (MAE), 

mean average percentage error (MAPE) and root mean square error (RMSE) to address the 

STLF [17]-[18]. 

In recent days , Intelligence based forecasting scheme  made extraordinary progress to 

solve the STLF because of having the non-linear learning capabilities which includes 

clustering strategies [19] , fuzzy logic framework [20], support vector machine (SVM) [21] , 

artificial neural networks (ANN) [22]-[28], recurrent neural network (RNN) [29] and hybrid 

methods [30]-[31]. In [32], an effective method based on ANN strategies fortified by a 

wavelet denoising algorithm is developed to predict the short-term load demand. The 

obtained results from the proposed approach exhibit that it considerably increases the 

accurateness of prediction. In recent times, deep learning approaches have drawn a special 

concern because of having more number of hidden layers which enables this model to deal 

with the complicated non-linear patterns [33]-[34]. Due to have the effective learning ability 

to capture the non-stationary and long term dependent load data pattern, RNN are most 

frequently used in the field of load prediction [35]. In [36], a RNN algorithm is implemented 

for household load forecasting which gives better performance in terms of root mean square 

error (RMSE). A modern load forecasting methodology using RNN is introduced in [37] 

which employments a concept of one-step-ahead. The proposed method gives outstanding 

performance in low power demand and high power demand region. It also exhibits the tinier 

fluctuations in different region as compared to the other models. After all, vanishing gradient 

and exploding gradient problem arise in RNN which reduce the prediction accuracy. To 

solve this issue, LSTM network has been implemented based on past information and 

obtained satisfactory outcomes in the long-term load forecasting arena [38]-[39]. In [40], an 

effective methodology using LSTM network is developed to make a precise forecasting 
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procedure that is capable of handling more complex time series load data with long-term 

dependencies. The proposed technique outstrips any other model in the complex electrical 

load forecasting arena. Moreover, recurrent unit neural network (GRUN) has been 

extensively used in the recent years due to the absence of vanishing gradient problem. In 

[41], a GRUN based algorithm is proposed for STLF procedure with multi-source data. The 

mean average percentage error (MAPE) obtained from this network is minimum, which 

outperforms other current methods. 

 In conjunction with the above illustrative techniques, the convolutional neural network 

(CNN) has been frequently used in the field of load prediction because of the ability to 

capture the electric demand local trend features when the two adjacent data points have 

strong relationship [42]. Local trend of the load data pattern in adjacent hours can be 

extracted by CNN. In [43], a modern load forecasting methodology based on CNN model is 

introduced and given significant comparison with various artificial neural networks. 

Obtained outcomes appeared that the error of the proposed network is smallest among all 

models.  From this experiment it tends to be reasoned that the CNN is especially viable in 

the field of load prediction and its hidden feature can be extricated by designing one 

dimensional convolution layer. 

 Moreover, for improving the forecasting accuracy, time-dependency convolutional 

neural network (TD-CNN) and cycle-based LSTM (C-LSTM) network has been 

implemented in the domain of STLF [44]. In [45], time-cognition CNN (TCMS-CNN) based 

multi-step STLF procedure is proposed which significantly improves the prediction ability 

after extracting substantial and complex features from the electric load sequences. It serves 

additional precision of the forecasted results and appears excellent constancy in multi-step 

time series and probabilistic forecasting, giving robust simplification in electricity market 

bidding and spot price calculation.  



 

8 
 

 In light of the above writing, LSTM and CNN are both illustrated to afford high 

precision results in STLF because of their preferences to extract hidden features from load 

sequences. Hence, it is preferred to implement a hybrid neural network based on CNN-

LSTM architecture for addressing the issue of STLF for BPS that can be able to capture and 

integrate that kind of hidden features to give a stable performance. 

 

1.6  Thesis Objective 

The specific aims of the research work are as follows: 

a. To develop CNN-LSTM based hybrid forecasting framework for STLF. 

b. To increase the prediction accuracy with the integration of the hidden features of  CNN 

model and LSTM model. 

c. To achieve better and stable performance in STLF. 

d. To apply the developed model on the historical load data of Bangladesh power system. 

1.7  Thesis Outcome 

The outcome of the research work is a CNN-LSTM network, which predicts the load 

demand of BPS with the help of the historical load data. Load forecasting results 

demonstrate the superiority of the proposed methodology by comparing with existing 

techniques. 

1.8  Thesis Outlines 

The remainder of this thesis is organized as follows. 

Chapter 2 highlights the brief overview of short term load forecasting techniques and their 

significance. 

Chapter 3 mainly describes the electric load characteristic of BPS. How the load data is 

formulated for problem design is also discussed in this chapter. 
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Chapter 4 mainly focused on the problem formulation and proposed methodologies for 

short term load forecasting. Details architecture of the CNN-LSTM model design is 

explained in this chapter.  

Chapter 5 contains the results obtained from the LSTM and CNN-LSTM based forecasting 

models. An extensive comparison in terms of certain performance metrics and in terms of 

detailed plot of predicted and actual values is presented in this section. Observations from 

the result as well as an analysis of the results observed are also included. 

Chapter 6 serves as the concluding remarks of the thesis. This chapter details the future 

works and improvements that can be carried out on these models as well as suggests a way 

in which these models can be used in tandem with one another for a power system. 

1.9  Summary 

This chapter addresses the introduction, details of the research objectives and motivation in 

general. Types of electric load forecasting, important factors of affecting load forecasting are 

also analyzed in this chapter. This chapter covers the recent previous works done by several 

researchers all over the world and describes the most modern method of load forecasting. 

Then the performance evaluation matrices of discussed methodology are stated clearly here. 

In the next chapter, various types of the short-term load forecasting techniques and their 

significance will be discussed.  



 

10 
 

CHAPTER 2 

SHORT-TERM LOAD FORECASTING TECHNIQUES 

 

2.1  Introduction 

Various strategies, which incorporate similar day approach, different regression approaches, 

time series forecasting, neural network, fuzzy logic, expert system, and statistical 

approaches, hybrid models are utilized for STLF. Time series component can be separated 

into four parts: trend, seasonal, cyclic and random. In trend component, it can be persistent 

and it indicates upward or downward trends. It can change due to technologies, population, 

age, culture, etc. and it can occur generally within several years‘ duration. A brief 

description of these techniques is presented below. 

 

2.2  Forecasting Model Classification 

Forecasting techniques are categorized into two main groups, i.e., traditional statistic models 

and artificial intelligence (AI) based models for STLF. Regression analysis, moving 

average, exponential smoothing, and stochastic time series models etc. are included in 

traditional statistical models. AI-based models include machine learning, data mining, 

genetic algorithms, artificial neural networks (ANN), fuzzy logic and knowledge based 

expert systems. Various models of load forecasting are illustrated as follows. 

 

2.2.1  Similar day approach  

Based on the historical data searching similar day approached is used. It usually searches the 

data for days within one, two, or three years with similar natures to the forecast day. Some 

indexes such as date, day of the particular week and weather are considered as comparative 

individualities. Rather than considering a load of similar single day, this approach can 
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include a regression analysis or a linear combination strategy with several similar days. This 

is usually clarified by the condition [3]. 

 

   √  ̂         ̂         ̂                                    (2.1) 

 

Where,     is denoted for the load deviation of the forecast day and historical days,      

temperature deviation on forecast day and historical days and     is the humidity deviation 

between historical days and forecast day. Temperature and load data basically defines the 

weighted factor   ̂ (i = 1, 2, 3,..). This factor is calculated using least square method which 

is constructed using regression analysis using historical load data and temperature. 

Therefore, similar days for load forecasting are selected by considering trends of load, 

humidity and temperature. 

 

2.2.2    Statistical techniques 

Statistical techniques rely on mathematical expressions, which give the relationship between 

load and several input factors. This kind of techniques can be divided into following groups 

 

a. Multiple regression method 

b. Exponential smoothing 

c. Simple moving average  

d. Time series approaches 

 

2.2.2.1  Multiple regression method 

It is a one kind of statistical techniques which is most frequently used in the field of STLF. 

In order to forecast electrical load, it is needed to build a relationship between load 

consumption and other factors such as day type index, weather condition, and lastly the 

classes of the customer. For making such relationship, various regression methods are 

generally used. Moreover, independent variables are selected based on the correlation 
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coefficients between load and candidate independent variables [26]. A multiple regression 

equation capturing the load pattern is developed as follows [14]. 

                      ⃗.  ⃗+e                         (2.2) 

Where, the electrical load is defined by y,    denotes the independent variable, regression 

coefficient is    for j ∈ [0, n] , and e is the modeling error. The row vector  ⃗ =               

contains independent variables which are affecting the load, and the column vector  ⃗ = 

              comprises of unknown  regression coefficients, where    refers to a 

transposition of  a.  

 

2.2.2.2  Exponential smoothing 

It is a traditional methodology which is regularly used for the issue of STLF. This models 

can be mathematically shown as follows.  

                                                                      (2.3) 

Where, the forecast value at time t and t + 1 is      and      , respectively. Actual value at 

time         . The weight of     defines the most recent observation and a weight of (1-  ) 

signifies the most recent forecast.   
 

 
 is the smoothing factor, where N is the number of 

observations involved in the average operation. Using (3), it can be noticed that the value 

obtained from the forecast at time         instantly depends on the actual value observed 

at time ‗t‘ and the forecasted value of  the time period ‗t‘. In this way, the exponential 

smoothing strategy deploys previous observations and requires less computational memory. 

 

2.2.2.3  Simple moving average (S.M.A) 

This method utilizes the concept of moving average (i.e. rolling window based technique) to 

predict electrical load. Mathematically, the S.M.A. strategy can be represented using the 

following equation. 

     
 

 
∑   

 
                                 (2.4) 
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Where,      is the forecast value at time t+1,     is the observation at time t and N is the 

number of terms included in the average. This strategy can be utilized for forecasting up to 

one, two, or three time periods. However, it is generally utilized for forecasting for one time 

period in progress because forecasting error increases with increases in time period [9].     

2.2.2.4  Time series approach 

Time series approaches are basically assumption techniques which comprises of the internal 

factors such as seasonal trend and auto correlation. These strategies identify and make a 

relation between such internal factors. Over the past decades, time series approach has been 

commonly used in the field of prediction such as electric load forecasting. In specific, 

classical time series strategies include ARMA (autoregressive moving normal), ARIMA 

(autoregressive integrated moving average), ARMAX (autoregressive moving average with 

exogenous variables), and ARIMAX (autoregressive integrated moving average with 

exogenous variables) models are most frequently used in STLF. ARMA model stands for 

stationary forms whereas an ARIMA is an expansion of ARMA which stands for non-

stationary forms. Moreover, time and electrical load as input are used by both the model 

ARMA and ARIMA. Among all the classical models, ARIMAX is the most effective 

approach for STLF because of having the dependency of on weather and time of a day. 

2.2.3  Fuzzy logic technique 

Fuzzy logic is considered as a non-conventional load forecasting technique. The complete 

Fuzzy logic process is described below. 

a. Fuzzification: Different inputs and output parameters which are often called fuzzy set 

numbers are defined by the variables of fuzzy logic. There may have nonlinearity between 

input and output parameters which can be simplified as linear by the membership functions.  

b. Fuzzy rule base: ―IF-THEN‖ rules are used for calculating the forecasting value. 
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c. Fuzzy inference system: This rule is employed to carry the data or information to fuzzy 

inference framework. It evaluates the data scrambled within the fuzzy rule base to create the 

output. 

d. Defuzzification, Output obtained from the fuzzy inference system is considered as input 

to make an output of non-fuzzy. 

2.2.4  Support vector machine (SVM) 

SVM is a method which is fruitfully used to solve the regression and classification 

problems. This technique was originated from Vapnik‘s statistical learning theory. The most 

common reasons for the wide utilization of SVM in STLF are: hypothetical guarantees 

around their execution, lower susceptibility to local minima and higher resistance to 

expanded complexity of the model, which stands for adding extra extents to input 

parameters. So that, SVM method can develops a fast algorithm for forecasting problem and 

offer good outcomes for many kind of tasks. A SVM generally used quadratic or linear 

algorithm in the training process. Sometimes asymmetric loss function is used for training 

process. A hyperplane or set of hyperplane is used to setup SVM with an infinite 

dimensional space. A support vector machine usually sets up a hyperplane or set of 

hyperplanes in a high- or infinite dimensional space. In order to get good separation, a hyper 

plane with the largest distance to the nearest training data points of functional margin is 

used. The sets of hyper planes basically separate the nonlinearly in a finite dimensional 

space. 
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Fig. 2.1.   Support vector machine structure. [10] 

 

Fig. 2.1 demonstrates a basic support vector machine structure. Firstly, a kernel function is 

introduced to sole the large amount of solution function. In the whole training process an 

additional quadratic function is used to achieve the requirement of the SVM parameters. In 

the Figure 2.1, input x represents the input of training data and output y refers to a 

corresponding output value. The prime objective function of the SVM is to features a map 

with the high dimensional input from a nonlinear mapping and proposing a linear regression. 

 The objective concept of SVM is to map the input data into a high dimensional space 

from a non-linear mapping and conduct a linear regression. 

2.2.5  Artificial neural network (ANN) 

Biological nervous systems can be represented a as computational based neural network 

which is called Artificial neural network.  A neural network has a basic component which is 

called neuron. The fundamental operation of the neuron is the handling the information such 

as historical data or inputs. The basic components of an ANN are as follows:  

 a. Weighting function. 
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      b. Summation of the input signals 

 c. Various kinds of activation functions 

     An artificial neuron structure is illustrated in Fig. 2.2. The output of the neuron is 

mathematically presented by the following equation: 

    ∑          
                                                                            (2.5) 

 

Fig. 2.2.   An artificial neuron unit [28] . 

 
Where, y is the output, x is the input, w is the weight and b is a numerical bias. Activation 

function f is usually restricted the output to value ranging from 0 to 1 or -1 to 1. The choice 

and inclusion of activation function in ANN is extremely important. The main contribution 

of the activation function is to introduce non-linear function mapping between response 

variable and inputs. Alternatively, it can be thought that, a NN without having non-linear 

activation function it is considered as like as a single-layer perceptron. Input to networks are 

usually linear transformation (input x weight), but real world problems are non-linear. A 

particular neural network function is determined by the presence of an activation function. 

So that it is a called a decision making function of a particular neural structure. This feature 

mapping is usually laid between 0 and 1, where 0 represent the absent of features whereas 1 

signifies the presence of the feature. As a result, small change in the weighting function 

cannot be affected the activation values because it only takes the value either 0 or 1. 
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Therefore, necessity of having continuous nonlinear functions arises between this ranges 

which must be differentiable. A neural network must have the capabilities of taking any 

input value from    to  . There are several different activation functions that are used in a 

neural network. For the sake of brevity, we will only look at three activation functions that 

are used in the LSTM architecture we used: 

 

Sigmoid: The sigmoid function is defined as: 

 

     
 

                                                        (2.6) 

 

The function is illustrated in the Fig. 2.3 where it is evident that the output varies from 0 to 

1. This function although used in many Neural Network calculations, it is slow to compute 

when used in a computationally demanding task. In many cases the high-precision 

exponential results aren't needed, and an approximation will suffice. Such is the case in 

many forms of gradient-descent/optimization neural networks: the exact values aren't as 

important as the "ballpark" values, insofar as the results are comparable with small error. 

Fig. 2.4 shows two variations of this function: ultra-fast sigmoid and hard sigmoid. There are 

different definitions of these [27], [46] and implementation depends on the software being 

used. 

 

Fig. 2.3.   Sigmoid function [47] 

Sigmoid Function 

F(
X

) 
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The sigmoid (blue) is smooth, while the ultra-fast (green) and hard (red) sigmoids are linear 

piece-wise. In fact, these approximations are computed as linear interpolations between pairs 

of cut-points. The green line plot, that touches the blue one at a few points forming a set of 

line segments. Computing the results of this approximation is significantly faster than calling 

a routine implementing the sigmoid via exponential and division: all it requires is 

determining in which linear segment x lies and doing a simple interpolation. The 

approximation is just that: approximate, but the errors are low enough that many ANN 

algorithms run fine with the approximation. More information regarding the applicability of 

the sigmoid function can be found in [47]. 

Linear: The linear activation function is simplified as  

                                                                         (2.7) 

tanh: The-tanh activation function seen in Fig. 2.5 is defined as follows: 

     
      

                                                          (2.8) 

 

Fig. 2.4.   Comparison of sigmoid, hard sigmoid and ultra-fast sigmoid [46]. 
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Fig. 2.5.   tanh activation function [32]. 

 

In load forecasting, various input/ target sets are required to prepare a neural network. Fig. 

2.6 shows the basic diagram of an ANN. 

 

Fig. 2.6.   A model of ANN [28]. 

 

For solving the issue of load forecasting model shown in figure 2.6 outlines time histories 

of actual load values. Then, it is signified by a non-linear function
 
as given by  

                                                      (2.9) 

tanh(x) 
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Where, the actual load of a system at an instant t is    , the  previous values of load     , 

n is the retrospective index review and    is a random factor. 

2.2.6  Deep neural network (DNN) 

In this study, deep learning algorithm is approached for training the model comprising of a 

large number of processing layers. Deep neural network is one kind of neural network model 

consisting of an input layer, hidden layer and an output layer. In Fig. 2.7, deep neural 

network structure is given, where x1, x2… xn is represented as input in input layer and y1… y2 

is the output in output layer. The hidden layers (h) between input and output represents a 

black box of the network.  

 

Fig. 2.7.   Deep neural network [10]. 

 

 In the forward propagation, a feed-forward network is trained by the DNN model to 

execute the corresponding output values throughout all hidden layers and neuron nodes. The 

following equation directs a nonlinear function indicated by  f  is calculated as follows: 

    ∑    
          

                                             (2.10) 
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where, 

y = scalar output, 

    = the i th input, 

   
 = the weight between nodes, 

f = activation function. 

The main core is to minimize an error term for the output layer after producing the 

corresponding output values. Thus, this network likens predicted output values with the 

actual existing values. 

 

2.2.7  Recurrent neural network (RNN) 

Recurrent neural networks are a special type of artificial neural network where previous step 

output is fed to the present input step. It has a memory unit which can able to remember all 

the information which has been calculated earlier. Theoretically, RNN generally handles all 

the available information in arbitrarily long sequences, however practically; they take into 

account a few previous steps. A basic RNN model is presented in the Fig. 2.8. 

 

Fig. 2.8.   A model of RNN  
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Recursive formula that gives the definition of RNN is as follows: 

                                                                     (2.11) 

                                                           (2.12) 

                                                                      (2.13) 

Where, input at time step t is     , the state at time t is     and    is the recursive 

function. 

Moreover, a basic RNN endures from the gradient vanishing and explosion problem 

when modeling long sequences data in the back propagation step of training process. To 

overcome this problem, a long short term memory networks (LSTM) is introduced in the 

field of load forecasting problems. 

 

2.2.8  Long short term memory network (LSTM) 

In the field of the time series prediction, a special type of recurrent neural network i.e. 

LSTM is used due to have the properties of remembering past data in its memory. This 

network is very much effective for processing, classifying and making time series based 

forecast. A LSTM network comprised of four units such as cell, input gate, output gate and 

forget gate. The cell transfers the information over random time periods. The gates are 

different neural networks which keep the data flow in to and out of the cell state. During 

training the standard RNNs, it experiences gradient vanishing and exploding problems 

which can easily be solved by LSTM network. A graphical representation of LSTM network 

is shown in Fig 2.9. The outputs of each node in LSTM block is computed as [34]: 

        [       ]                   (2.14) 

        [       ]              (2.15) 

  ̂           [       ]              (2.16) 

                ̂        (2.17) 

                               (2.18) 

                                                               (2.19) 
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Where,    is the input at time t.          represent input gate, forget and output gate 

respectively. Weight matrices are denoted as:             .   is called sigmoid activation 

function and     signifies the hidden state of all inputs at time t in an input vector 

representation form.  

 
 

Fig. 2.9.   A model of LSTM 

 

2.2.9  Encoder decoder LSTM model 

The encoder-decoder approach to sequence prediction has proven much more effective than 

outputting a vector directly and is the preferred approach. An encoder-decoder LSTM model 

consists of three sections such as: encoder block, intermediate vector section and decoder 

section which is shown in Fig. 2.10. Encoder is used to read the input sequences of the load 

data and the hidden state of this section is defined as: 

                          )                                    (2.20) 

In order to get the accurate prediction, encoder vector outlines all the values for all input 

elements. Internal representation and prediction of the output sequence is interpreted by 

decoder section. Hidden layer of the decoder is calculated using (2.21). 

              )                            (2.21) 

The output load values are calculated using          function which can be written as: 
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                                                                      (2.22) 

The encoder-decoder LSTM model used for STLF is presented in Fig. 2.10 

 

 

Fig. 2.10.   Encoder-Decoder LSTM model 

 

2.2.10   Convolutional neural network (CNN) 

CNN is one of the most promising neural networks for addressing the issue of STLF. CNNs 

are basically a special sort of artificial neural network that is capable of handling time series 

data using an organized network. Convolutional operation combines two functions on real 

valued arguments. This convolutional operation can be expressed as follows. 

                                                              (2.23) 

Where, x is called input function, w represents the weighting function i.e. a kernel 

function. Convolution operation's output is often called ―feature map‖. Convolutional 

operation in two-dimensional axis can be expressed as 

             ∑ ∑                             (2.24) 

Where, I  is defined as input function and  K  is denoted as two dimensional kernel. 

A convolutional network comprises of three layers such as convolutional layer, pooling 

layer, dense layer. Convolutional layer has three stages. A few convolution operations with a 
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linear activation are performed in the first stage. Second stage i.e. detector stage detects each 

linear activation and rectified it as rectified linear function. A pooling operation is used in 

the third stage. Pooling function reduces the dimensionality of the time series data and 

quickens the training time of the model. Pooling function is also used to down sample the 

data feature map autonomously without changing the depth. Pooling layer of maximum 

pooling operation is most commonly used to select the maximum values from obtained the 

sequence of the convolution layer and project it on the maximum pooling window. It doesn‘t 

have the parameters like convolution layers. Some other pooling operation such as average 

pooling, minimum pooling is often used where needed.  

After getting the value from the convolutional layers it is sent to the pooling layers for 

any kinds of pooling operation. At the end of this stage, the output is flatten and sent it to a 

dense layer for creating one dimensional output sequence. A back propagation algorithm is 

used for continuation of model learning scheme. A CNN Architecture is shown in Fig. 2.11. 

 

 

Fig. 2.11.   A model of CNN 
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2.2.11  Genetic algorithm 

Genetic algorithms (GA) represent an effective and vigorous approach for load forecasting. 

Some optimization problems such as constrained and unconstrained complications are 

solved by GA using natural selection and driven by the biological evolution. It adjusts a 

population of different solutions in numerous steps. In every step, this algorithm arbitrarily 

chooses individuals from the current population called as parents and generally produces 

children using parents for the next generation. Optimal solution is found over progressive 

generations according to their fitness. The GA has some fundamental rules to a new solution 

produced from the current solution. Steps that are involving to GA is represented as: 

 a. Initialisation of the individuals, called parents that contribute to the population of       

        the subsequent generation. 

 b.    Introducing Fitness function. 

 c. Crossover such that the combining rules of producing next generation  

  d. Mutation rules make children by applying arbitrary changes to individual parents 

 

2.2.12  Knowledge based expert system 

Knowledge based expert frameworks are most effective modern methods that have been 

technologically advanced in the field of artificial intelligence (AI) algorithm. This 

framework is basically introduced with a new problem using a computer based 

programming language which have the capacity of identifying, clarifying a new information 

available to it. To use this method in the field of STLF, electric load informations are to be 

provided for extracting the features with the help of the ―skilled engineer‖ called knowledge 

based expert system. This information is represented as facts and IF-THEN rules, and 

comprises of the set of relationships. Based on such relationship, load is eventually 

forecasted. 
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2.3  Summary 

This chapter reviews the recent improvement works in the region of Electrical load 

forecasting. Emphasis has been given to categorizing different short term electric load 

forecasting methods. In addition, this chapter presented notable feature of the different short 

term electrical load forecasting strategies. The next chapter describes the data analysis and 

electric load characteristic of BPS. 
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CHAPTER 3 

DATA ANALYSIS  

3.1  Introduction 

Forecasting of electrical load mainly depends on the past data. That is, the future load is 

usually forecasted on the basis of previous historical load data. Before we explain the 

methodology of our work, we would like to present the historical load data of BPS and 

explain some characteristic features of it which forms the basis of our methods. 

 

3.2  Prerequisites of a Good STLF System 

The radical changes in the electricity usage owing to the innovations in the technology that 

generates and delivers it, has set the start of a complete overhauling of the power grid and 

the entire energy landscape. Need for energy efficiency has become very crucial due to 

factors like the distributed generations, behind the meter solar photo voltaic resources, 

frequent peak demand variations and few others. Growth of the open and competitive energy 

markets sustain reliability and enhance efficiency. Appropriate load evaluation at various 

stages of power systems is essentially required for such energy markets‘ planning and 

operation. With this perspective, an accurate load forecasting solution could play a 

significant role in the optimization of capital, efficient utilization of distribution networks 

while maintaining system reliability intact. An efficient, reliable and robust STLF paradigm 

shall definitely shoulder the smart grid implementations of the power systems. A thorough 

study of literature in the contemporary perspective led to the following important 

requirements to be considered, analyzed and addressed while developing the proposed STLF 

technique in this research: 

a. Nonstationary nature of load profiles 

b. Adaptiveness of the STLF model 

c. Robustness of the STLF technique. 
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3.3  Load Characteristics of BPS 

Time series load data of BPS features a few interesting characteristics. Time series historical 

electric load data of BPS over the last five years (year of 2014 to 2019) have been collected 

from the Power Grid Company Bangladesh Limited (PGCB). The time series data were 

stored over a complete year, every week days from Saturday to Friday at 30 minute intervals 

in whole Bangladesh. The major load affecting variables are considered as the temperature 

variation, seasonal effect and day type index. Apparently, temperature variation is 

considered for the preliminary cause of electric load variation. In specific, the range of 

temperature variation frequently decides the electricity load variation range. Average 

temperature variation and load demand variation of Bangladesh is presented in the Fig. 3.1 

and Fig. 3.2 respectively. 

 

 

Fig. 3.1.   Average Temperature variation 

 

 

Fig. 3.2.   Average load demand variation 
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A day of 24 hours, in the early morning before sun rising (4.00 A.M. to 6.00 A.M.), the 

power demand is very low.  The demand comes to minimum point around 6 A.M-6.30 A.M. 

A while later, power demand starts to increase. It is slightly decreasing in the late morning 

(11.30 A.M.). In the following hours up to 5.00 P.M., it keeps up the demand apparently 

constant. The electricity consumption rapidly increases after 5.00 P.M. and comes to a peak 

value around 6.00 P.M. After reaching the peak value, it starts to decrease again. Up to 9.00 

P.M. power demand increases a very little, but it starts to decrease from 12.00 A.M. In the 

summer, peak load demand is around 20% of the average demand while it may reach around 

50% of the average load, particularly in the winter season. It is very difficult for any load 

forecasting framework to make a half hourly forecasting. So seasonal information is needed 

and month of that season should be identified to make a price forecasting otherwise it would 

fail to follow the load peak. Moreover, it is observed that within a week, consumption of 

power is higher on weekdays as compared to weekend or Govt. holidays. Sometimes, the 

rate of power consumption may have a few distinctions, but in general load pattern trend 

shows similarity. Besides, the load time series of the similar season shows the similar 

characteristics, to be specific December and January month exhibit similar load pattern 

which is shown in Fig 3.3.    

 

Fig. 3.3.   Load demand variation of January 2017 and December 2017 
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When a summer and winter month, namely January 2017 and May 2017 is plotted together 

Fig. 3.4 we notice that the wave shape is completely different insofar as the peak load 

doesn't exceed the average load by similar amounts in these two months, neither is the 

minimum demand characterized by drooping troughs. Two summer months, May and June 

in Fig 3.5 exhibit similar wave shape characteristics. The second half of June is distinctly 

different compared to the pattern of the first half with high difference between peak and 

average demands. This is due to the fact that the second half of June is when the rainy 

season sets in and the pattern of the load time series changes. The load time series for the 

first half of June, however, is similar to the May wave shape. The similarity of load time 

series in the rainy season is exhibited in Fig. 3.6. The first half of August and the July wave 

shape are extremely similar. 

 

 

Fig. 3.4.   Load demand variation of January 2017 and May 2017 

 

 

Fig. 3.5.   Load demand variation of May 2017 and June 2017 
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Fig. 3.6.   Load demand variation of July 2017 and August 2017 

 

 

Fig. 3.7.   Load demand variation of January 2016 and January 2017 

 

 

Fig. 3.8.   Load demand variation of July 2016 and July 2017 
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also has the capabilities of following the load peaks and crest in different period of the days 

and months to construct a time series. 

3.4  Summary  

This chapter represents the electric load characteristics of Bangladesh. From the analysis of 

the load characteristics it is observed that load pattern has some nonlinear and linear pattern 

depending on seasonal effect and temperature variation. Electricity demand is higher in the 

month of May to July(summer) than the month of Aug to December (Winter). Moreover, in 

a single day demand peak is changing rapidly in the peak hours such that from 5.00 P.M. to 

9.00 P.M. This analysis indicates the necessity of constructing a multiple time series for 

precise short term load forecasting. The next chapter describes the details procedure of 

STLF using proposed CNN-LSTM model. 
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CHAPTER 4 

PROBLEM FORMULATION AND PROPOSED 

METHODOLOGY 

 

4.1  Introduction 

The main challenge of the short term load forecasting issue is the diversity and volatility. It 

is greatly affected by input variables of the load datasets. Before going to the modelling part, 

the data need to be prepared appropriately and time series ought to be decomposed and 

stationarized. Toward this determination, it has been received a well ordered methodology 

for analysis and decomposition of the data to enable the flexibility of picking-up and using 

the time series at any degree of processing as per the prerequisite of modelling strategy and 

the analysis. 

 

4.2  Proposed Methodology 

Step 1: Data Framing  

In this step historical load data need to be collected from a particular region and null values 

have to be checked. Then load data set has to be divided in to training and test set for 

evaluating the proposed model. Collected data set ought to split into different standard 

weeks. Reformation of this data frame is very much effective for defining the model which 

can predict the power consumption for the week ahead and month ahead. 

Step 2: Constructing Multistep Time Series 

In the proposed model electric load data set has to transform in the shape of [sample, time 

steps, features]. At first, per sample, seven time steps have to take having one feature for 

total daily power consumption of seven days. The information of this pattern is not sufficient 

to train the network. So, it is needed to create more training information by changing the 
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problem to predict the next seven days given the prior seven days, irrespective of the 

standard week. Secondly, data set is needed to flatten at first and make eight-time series 

sequences. Then it is obligatory to iterate over the time steps and divide the data set into 

overlapping windows where it moves along one-time step and predicts the subsequent seven 

days. However, the test information from the data set is remained same in every case. 

Step 3: Building Forecasting Model 

It is needed to implement an encoder-decoder CNN-LSTM model which basically deals with 

the one dimensional data in the three dimensional pattern. The CNN block of the proposed 

model is defined two convolutional layers where convolution is taken place with the help of 

the kernel filter. The first convolution layer read across the input series and projects its 

sequences on to the features windows where second convolution layer is operated for 

amplifying the features obtained from the first layer. In our model, number of feature maps 

are 64 per each convolutional layer with three-time step kernel filter. A maximum pooling 

layer is generally used for getting the values after two times convolutions in the convolution 

layers. It is actually used for simplifying the input features. In the proposed model, 

maximum pooling operation has to be done by taking ¼ of the values with the original 

sequence. The results obtained from this operation are then flattened in to a long vector that 

is used as input to the decoding process of LSTM unit followed by dense layer which is used 

to provide the output. The developed model for load forecasting is shown in the Fig. 4.1. 

Step 4: Training the Proposed Model 

Proposed CNN-LSTM architecture has been build using Keras, an open source neural 

network library which is written in Python. Then the network is needed to train with the 

following layer specifications. 
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Fig. 4.1.   Proposed CNN-LSTM model 

 

 

 

Fig 4.2.   Flow chart of the proposed technique. 
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a. Convolution type : 1D  

b. No of filter: 64 with kernel size 3 

c. Activation function : Rectified linear unit (RELU) for CNN, LSTM and Dense layer 

d. Optimizer : Adam 

e. No of hidden layer : 200 for LSTM 

f. No. of training iterations (epochs) : 20 

g. Batch size : 16 

Flow chart of the proposed technique is shown in Fig. 4.2 and the detail algorithm for 

formulation of proposed scheme is as follows: 

Step 1: Read the electric load data. 

Step 2: Split the data set into training and test set. 

Step 3: Construct a time series using training in the shape of [sample, time step, features].  

Step 4: Divide processed data into overlapping windows. 

Step 5: Give input to the CNN from step 4. 

Step 6: Perform one dimensional convolution using two convolutional layer. 

Step 7: Pool maximum value from the result of each convolution. 

Step 8: Flatten the data from step 7 in to a long vector. 

Step 9: Decode the values from step 8 using LSTM. 

Step 10: Insert the decode values in to a Dense layer. 

Step 11: Take the output from dense layer and compare with the test data set which is                           

partitioned in step 2. 

Step 12: Plot the output values against test values from step 2. 

Step 13: Calculate error matrices using error matrices formula. 

Step 14: Stop the process. 
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4.3   Application of the Proposed Methodology 

Step 1:  

Historical time series half hourly Electric load data of BPS over the last five years has been 

collected from PGCB. First four years data is used for model training process and the data of 

final year is used for evaluating the performance of the models. Collected data set is spilt in 

to different standard weeks which starts from Saturday and ends on Friday. The daily data 

starts in late 2014 where the first Saturday in the dataset is 4th January. The final year of the 

data is in 2018 and the first Saturday for 2018 was January 6
th

. The data ends in last 

December 2018 and the closest final Friday in the data is 28
th

 December. This gives 52 

weeks of test data. After organizing all the split dataset, it gives 208 full standard weeks to 

train the developed CNN-LSTM model. This process can be examined by taking test data 

from the year of 2019 and testing data from 2014 to 2018. 

Step 2: 

The training data set in standard week is now provided with eight variables having the shape 

of [208, 7, 8].  

Step 3: 

Processed data from step 2 is applied in the proposed CNN-LSTM model is shown in Fig. 

4.1. 

Step 4: 

Proposed model is then trained with the processed electric load data of BPS with the layer 

specification described in step 4 in the previous section. 
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4.6  Summary 

Electric load profiles and the step by step proposed methodology is discussed in this chapter. 

Usually, use of the proposed CNN-LSTM scheme is verified with the real data collected 

from PGCB. In next chapter, the results obtained are presented and analyzed in terms of 

tables and graphs. A detailed discussion about the obtained results for different test is also 

synthesized on the chapter. 
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CHAPTER 5 

RESULT AND DISCUSSION  

 

5.1  Introduction 

This chapter presents the evaluation of the proposed CNN-LSTM scheme presented in 

Chapter 4. The performance of the proposed scheme is validated with the real electric load 

data set recorded in 2018 and 2019 separately. In section 5.4, we displayed the forecasting 

outcomes with the graphical representation in different periods of the year of 2018 and 2019 

respectively and in section. 5.5, evaluation metrics are analyzed in different horizons by 

comparing it with conventional LSTM network. 

 The proposed CNN-LSTM model was implemented using Keras, an open neural 

network library with specified layer specification described in section 4.2.  However, it is to 

note that, with the programming skills and platforms, the forecasting outcomes may vary 

without significantly changing the evaluation matrices reported in this thesis. 

 

5.2  Evaluation Metrics 

For the purpose of evaluating the effectiveness and accuracy of the developed model three 

type of matrices is defined such as mean average error (MAE), root mean squared error 

(RMSE) and mean absolute percentage error (MAPE). More accurate forecasting can be 

evaluated if the value of evaluation index is closer to zero. 

5.2.1 Mean absolute error 

Mean absolute error (MAE) is an evaluation metric by which difference between two 

observations or variables is calculated. Without considering any direction, MAE computes 

the average magnitude of the errors in a set of predictions.  Average of the absolute error is 

calculated by MAE which can be expressed as follows: 
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∑ |   ̌     |

 
                                                     (5.1) 

Where N is the total number of the observation periods,   ̌ is the actual load value and     

denotes the predicted value at time t. Moreover, MAE is a negatively oriented score which 

means that the lower the value the more accurate the prediction. 

5.2.2 Mean absolute percentage error 

The mean absolute percentage error (MAPE deviation (MAPD), is a measurement of 

prediction accuracy of a forecasting method. For example, it is also known as mean absolute 

percentage error in the estimation of a trend. It generally states accuracy in terms of 

percentage calculation which is stimulated by the formula: 

     
∑ |

(  ̌   )

  ̌
| 

   

 
                                                                                 (5.2) 

Like the previous metric, this is also a negatively oriented score. 

 

5.2.3 Root mean square error 

A quadratic scoring rule that measures the average magnitude of the error is called root 

mean square error (RMSE). It performs the square root of the average of squared differences 

between prediction and actual values. With symbols having the meanings as defined in 23 

we can express RMSE by the equation: 

 

     √
 

 
∑    ̌       

                                                     (5.3) 

RMSE is also a negatively oriented score. In all cases, the value of RMSE will greater than 

or equal to MAE.  
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5.3 Comparison of the Metrics 

None of the three metrics described so far is universally applicable in forecasting tasks. 

Some interesting implications for RMSE are the square root of the average squared errors. 

Before performing average operation, error values are squared so that the RMSE gives a 

relatively high weight to large errors. When large error values are unwanted, the RMSE 

would be more useful in the field of load forecasting. MAE, on the other hand, has been 

suggested to be better in assessing average model performance [17]. This claim, however, 

has been contested and a combination of the two has been proposed in [18]. Regardless, both 

of these methods have a glaring weakness in that their values can't be compared between two 

models without taking the base load level into consideration. For example, if two models 

predicting loads of two different power systems have a RMSE of say 2000 KW and 3000 

KW respectively, we cannot say with certainty that the second model is performing worse 

than the first one. If the first power system has a base load of 4 KW and the second 4 MW in 

which case the second model would be performing significantly better. 

 MAPE overcomes this limitation by expressing the error in mean percentage of actual 

values. This enables straightforward comparison of different models since just by observing 

the value a decision can be made. MAPE however, is also not without its limitations. The 

MAPE is expressed in terms of percentage which makes sense for values where divisions 

and ratios make a significant contribution. For temperature forecasting problems, it doesn‘t 

have any fruitful contribution so that MAPE are not considering an evaluation metrics. Even 

in load forecasts, the percentage expressed is a mean percentage of each actual value which 

makes it difficult to interpret the result physically; only an intuitive mathematical value can 

be discerned. Secondly, if just a single actual is zero such that    ̌    = 0, then the value of 

MAPE comes undefined. Furthermore, if it is wished make a forecast with positive data 

(MAPE doesn't make any sensible operation), then it is not able to make any forecast below 
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the value of zero. In MAPE calculation, inappropriately overforecast problem is treated 

differently than underforecast where it is not possible for an underforecast to contribute 

more than 100% (e.g., if       = 0 and   ̌    = 1), whereas an overforecast contribution is 

unbounded (e.g., if       = 5 and   ̌    = 1). This implies that the value of MAPE can be 

lower for biased than for unbiased forecasting procedure. Minimizing it may lead to 

forecasts that are biased low. It is quite clear from the preceding discussion then that none of 

the metrics can be considered appropriate or self-sufficient to compare performances of 

different forecasting models. The comparison can be summarized as follows (shown in table 

5.1): 

Table 5.1: Comparison of MAE, RMSE and MAPE 

RMSE MAE MAPE 

Error values are squared so 

that the RMSE gives a 

relatively high weight to 

large errors. 

Errors values are relatively 

low compared to RMSE 

because error values are not 

squared 

It gives high errors during 

low-demand periods 

Applied where large load 

prediction error values are 

unwanted 

It can be applied for both 

low demand periods and 

high demand periods 

Applied where higher load 

demand forecasting is 

required. 

It exhibits good Key 

performance indicator (KPI) 

It exhibits relatively high 

KPI. 

It exhibits poor KPI. 

 

Therefore, in this research work, all three of the metrics described above have been used to 

gauge the performance of the proposed model. 

 

5.4  Forecasting Outcomes 

The trained proposed CNN-LSTM model and LSTM model is able to forecast over the 

different time periods of 24 hours, 7 days and 30 days of the year of 2018 and 2019 with half 

hourly information. The time series load data set used in our experiment is collected from 

1st January 2014 to 31st December 2019.  Sampling of the load information was taken with 

half hourly interval. The electrical load data set contains total 105167 tests. For the first 
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experiment, the first four years load data set was chosen for training the CNN-LSTM model 

where test information was selected from different periods of 2018. For the second 

experiment, first five years data was chosen for training the network and the data of the last 

year i.e. 2019 was selected for test information. Data from the forecasting plots shown in 

Fig. 5.1 to Fig. 5.76, it has been observed that both the models can predict the actual load 

demand trend. However, the prediction trend obtained from CNN-LSTM based forecasts is 

very closer to the actual load pattern as compared to the prediction trend of LSTM model. 

5.4.1   Monthly prediction for the year of 2018 

The proposed models are used to forecast load for each month in 2018. The summarized 

results for each month are shown in the following figures (Fig. 5.1 to Fig. 5.2) individually. 

From all figures, horizontal axis and vertical axis represents time periods in half hourly 

index and load demand in MW. From the forecasting plots, it has been seen that the 

forecasting outcomes using proposed CNN-LSTM model follows the actual load trend 

precisely than the forecasting outcomes of the LSTM model. Moreover, prediction curves 

obtained from proposed CNN-LSTM model has minimum deviation (shown in table 5.1) 

from actual load demands as compared to LSTM model.  

 

 

Fig. 5.1. Load forecasting of BPS for January 2018 
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Fig. 5.2. Load forecasting of BPS for  March 2018 

 

Fig. 5.3. Load forecasting of BPS for May 2018 

 

 

Fig. 5.4. Load forecasting of BPS for July 2018 
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Fig. 5.5. Load forecasting of BPS for October 2018 

 

 

Fig. 5.6. Load forecasting of BPS for November 2018 
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Fig. 5.7. Load forecasting of BPS for 01-07 January 2018 

 

Fig. 5.8. Load forecasting of BPS for 01-07 February 2018 

 

Fig. 5.9. Load forecasting of BPS for 01-07 March 2018 
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Fig. 5.10. Load forecasting of BPS for 07-14 April 2018 

 

Fig. 5.11. Load forecasting of BPS for 01-07 May 2018 

 

Fig. 5.12. Load forecasting of BPS for 08-14 Jun 2018 
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Fig. 5.13. Load forecasting of BPS for 15-22 July 2018 

 

  Fig. 5.14.    Load forecasting of BPS for 23-29 August 2018 

 

      Fig. 5.15.  Load forecasting of BPS for 01-07 September 2018 
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Fig. 5.16. Load forecasting of BPS for 08-14 October 2018 

 

 

Fig. 5.17. Load forecasting of BPS for 15-21 November 2018 

 

 

Fig. 5.18. Load forecasting of BPS for 23-29 December 2018 
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5.4.3  48 hours prediction for the year of 2018 
 

It is used to forecast the load for 48 hours at a time such that prior two days using proposed 

CNN-LSTM model in every month of 2018. The forecasted results for 48 hours in differents 

couple of a days are shown in the following figures (Fig. 5.19 to Fig. 5.24) individually. 

From the forecasting plots, it has been seen that the forecasting outcomes using proposed 

CNN-LSTM model follows the actual load trend precisely than the forecasting outcomes of 

the LSTM model. From the prdiction pltots it is seen that proposed CNN-LSTM model 

exibits minimum deviation (shown in table 5.3) from actual load demands as compared to 

LSTM model. 

 

Fig: 5.19. Load forecasting of BPS for 15-16 January 2018 

 

Fig: 5.20. Load forecasting of BPS for 11-12 March 2018 
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Fig: 5.21. Load forecasting of BPS for 06-07 May 2018 

 

Fig: 5.22. Load forecasting of BPS for 07-08 July 2018 

 

 

 

Fig: 5.23. Load forecasting of BPS for 04-05 September 2018 
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Fig 5.24. Load forecasting of BPS for 20-21 November 2018 

 

5.4.4  24 hours prediction for the year of 2018 

It is used to forecast the load for 24 hours at a time such that day ahead using proposed 

CNN-LSTM model in every month of 2018. The forecasted results for 24 hours in differents 

days are shown in the following figures (Fig. 5.25 to Fig. 5.26) individually. From the 

forecasting plots, it has been seen that the forecasting outcomes using proposed CNN-LSTM 

model follows the actual load trend precisely than the forecasting outcomes of the LSTM 

model. From the prdiction pltots it is seen that proposed CNN-LSTM model exibits 

minimum deviation (shown in table 5.4) from actual load demands as compared to LSTM 

model. 

 

Fig. 5.25.   Load forecasting of BPS for 01 January 2018. 
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Fig. 5.26.   Load forecasting of BPS for 06 February 2018. 

 

Fig. 5.27. Load forecasting of BPS for 04 March 2018 

 

Fig. 5.28. Load forecasting of BPS for 01 April 2018 
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Fig. 5.29. Load forecasting of BPS for 02 May 2018 

 

Fig. 5.30. Load forecasting of BPS for 11 June 2018 

 

 

Fig. 5.31. Load forecasting of BPS for 15 July 2018 
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Fig. 5.32. Load forecasting of BPS for 23 August 2018 

 

Fig. 5.33. Load forecasting of BPS for 07 September 2018 

 

 

Fig. 5.34. Load forecasting of BPS for 08 October 2018 
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Fig. 5.35. Load forecasting of BPS for 18 November 2018 

 

Fig. 5.36. Load forecasting of BPS for 24 December 2018 
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the forecasting outcomes using proposed CNN-LSTM model follows the actual load trend 
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from proposed CNN-LSTM model has minimum deviation (shown in table 5.5) from actual 
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Fig. 5.37. Load forecasting of BPS for January 2019 

 

 

Fig. 5.38. Load forecasting of BPS for February 2019 

 

 

Fig. 5.39. Load forecasting of BPS for March 2019 
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Fig. 5.40. Load forecasting of BPS for April 2019 

 

Fig. 5.41. Load forecasting of BPS for May 2019 

 

 

Fig. 5.42. Load forecasting of BPS for June 2019 
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                    Half hourly Index  

 Fig. 5.43. Load forecasting of BPS for July 2019 

 

 

Fig. 5.44.  Load forecasting of BPS for August 2019 

 

 

Fig. 5.45. Load forecasting of BPS for September 2019 
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Fig. 5.46. Load forecasting of BPS for October 2019 

 

 

Fig. 5.47. Load forecasting of BPS for November 2019 

 

 

Fig. 5.48. Load forecasting of BPS for December 2019 
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5.4.6     Weekly prediction for the year of 2019 

The proposed models are used to forecast load for each week in every month in 2019. The 

forecasted results for some weeks in differents month are shown in the following figures 

(Fig. 5.49 to Fig. 5.60) individually. From all figures, horizontal axis and vertical axis 

represents time periods in half hourly index and load demand in MW. From the forecasting 

plots, it has been seen that the forecasting outcomes using proposed CNN-LSTM model 

follows the actual load trend precisely than the forecasting outcomes of the LSTM model. 

Prediction curves obtained from proposed CNN-LSTM model has minimum (shown in table 

5.6) deviation from actual load demands as compared to LSTM model. 

 
  

Fig. 5.49. Load forecasting of BPS for 01-07 January 2019 

 

Fig. 5.50. Load forecasting of BPS for 01-07 February 2019 
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Fig. 5.51. Load forecasting of BPS for 01-07 March 2019 

 

 

Fig. 5.52. Load forecasting of BPS for 01-07 April 2019 

 

 

Fig. 5.53.   Load forecasting of BPS for 01-07 May 2019 
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Fig. 5.54.   Load forecasting of BPS for 08-14 June 2019 

 

Fig. 5.55. Load forecasting of BPS for 15-22 July 2019 

 

 

Fig. 5.56. Load forecasting of BPS for 23-29 August 2019 
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Fig. 5.57. Load forecasting of BPS for 01-07 September 2019 

 

 

Fig. 5.58. Load forecasting of BPS for 08-14 October 2019 

 

 

Fig. 5.59. Load forecasting of BPS for 15-21 November 2019 
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Fig. 5.60. Load forecasting of BPS for 23-29 December 2019 

 

5.4.7  48 hours prediction for the year of 2019 

It is used to forecast the load for 48 hours at a time such that prior two days using proposed 

CNN-LSTM model in every month of 2019. The forecasted results for 48 hours in differents 

couple of a days are shown in the following figures (Fig. 5.61 to Fig. 5.66) individually. 

From the forecasting plots, it has been seen that the forecasting outcomes using proposed 

CNN-LSTM model follows the actual load trend precisely than the forecasting outcomes of 

the LSTM model. From the prdiction pltots it is seen that proposed CNN-LSTM model 

exibits minimum (shown in table 5.7) deviation from actual load demands as compared to 

LSTM model. 

 

Fig. 5.61.   Load forecasting of BPS for 15-16 January 2019 
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Fig. 5.62.   Load forecasting of BPS for 11-12 March 2019 

 

Fig. 5.63.   Load forecasting of BPS for 06-07 May 2019 

 

 

Fig. 5.64.   Load forecasting of BPS for 07-08 July 2019 
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Fig. 5.65.   Load forecasting of BPS for 04-05 September 2019 

 

Fig. 5.66.   Load forecasting of BPS for 20-21 November 2019 
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Fig. 5.67.   Load forecasting of BPS for   06 February 2019 

 

 

Fig. 5.68.   Load forecasting of BPS for 02 March 2019 

 

 

Fig. 5.69.   Load forecasting of BPS for 01 April 2019 
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                       Fig. 5.70.    Load forecasting of BPS for 01 June 2019 

 

     

 

                        Fig 5.71.   Load forecasting of BPS for 15 July 2019 

 

   

 

                        Fig 5.72.   Load forecasting of BPS for 23 August 2019 
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       Fig. 5.73.   Load forecasting of BPS for 07 September 2019 

 

 

Fig. 5.74.   Load forecasting of BPS for 08 October 2019 

 

 

Fig 5.75.   Load forecasting of BPS for 18 November 2019 
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   Fig. 5.76.   Load forecasting of BPS for 23 December 2019 

  

5.5  Performance Calculation Using Evaluation Metrics 
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0.7% less MAE, RMSE and MAPE than the LSTM network respectively. The improvement 

of all metrics is also graphically illustrated in the Fig. 5.77 to Fig. 5.79. 

Table 5.2: Monthly MAE, RMSE and MAPE for LSTM and CNN-LSTM 
 

Observation 

Period 

MAE RMSE MAPE 

LSTM Proposed 

CNN-

LSTM 

LSTM Proposed 

CNN-

LSTM 

LSTM Proposed 

CNN-

LSTM 

Jan 18 336.48 265.67 552.83 416.09 4.94 4.10 

Feb 18 421.68 376.91 621.92 578.48 6.60 5.77 

Mar 18 364.66 314.41 570.72 492.41 4.84 4.01 

Apr 18 575.43 526.17 817.86 676.36 8.09 7.46 

May 18 432.37 420.92 646.28 564.69 5.66 5.59 

Jun 18 431.96 391.46 717.09 554.90 5.78 5.30 

July 18 388.03 361.63 657.26 551.80 4.79 4.34 

Aug 18 491.58 388.62 840.20 706.53 6.31 4.94 

Sep 18 471.79 386.76 745.05 562.88 5.71 4.41 

Oct 18 394.06 336.45 713.56 514.08 5.29 4.53 

Nov 18 328.40 314.23 578.29 481.74 4.90 4.69 

Dec 18 344.71 325.11 577.13 504.02 5.40 4.96 

Average 415.1 367.36 669.85 550.33 5.69 5.01 

 

 
Fig. 5.77. Monthly MAE for 2018 

 
Fig. 5.78. Monthly RMSE for 2018 
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Fig. 5.79. Monthly MAPE for 2018 

 

5.5.2  Comparison of evaluation metrics for 07 days for the year of 2018 

The weekly comparison of MAE, RMSE, MAPE between the proposed CNN-LSTM and 

LSTM network is described in Table 5.3. For example, with the forecasted data in 01-07 Jan 

2018, the LSTM network provides an RMSE of 612.70 while the proposed CNN-LSTM 

offers a RMSE of 549.94 Similarly, the proposed method offers less RMSE with the data 

forecasted data in 22-28 Dec 2018. The similar trend is also evident from the data available 

in other weeks. In average, the proposed method provides 54.66, 99.12 and 0.93% less 

MAE, MAPE and RMSE than the LSTM network respectively. The improvement of all 

metrics is also graphically illustrated in the Fig. 5.80 to Fig. 5.82.  

Table 5.3: Weekly MAE, RMSE and MAPE for LSTM and CNN-LSTM 
 

Observation 

Period 

MAE RMSE MAPE 

LSTM Proposed 

CNN-

LSTM 

LSTM Proposed 

CNN-

LSTM 

LSTM Proposed 

CNN-

LSTM 

01-07 Jan 18 393.83 347.11 612.70 549.94 5.81 5.12 

01-07 Feb 18 396.44 368.74 679.23 538.87 6.44 5.64 
01-07 Mar18 405.23 391.59 647.73 605.66 5.57 5.46 

07-14 Apr 18 262.83 253.22 416.95 359.29 4.64 4.08 

01-07May 18 451.88 401.30 667.95 615.01 6.68 5.43 

08-14 Jun 18 443.62 417.72 773.26 667.27 6.09 5.41 
15-22 July 18 483.56 376.51 699.04 531.03 5.26 3.91 

23-29 Aug 18 460.19 393.01 712.63 566.49 6.15 5.02 
01-07 Sep 18 390.63 335.34 547.63 450.38 5.43 4.59 

08-14Oct 18 340.48 311.50 516.18 490.41 4.51 4.08 
15-21Nov 18 399.76 296.51 580.65 453.58 6.55 4.96 

22-28 Dec 18 363.16 243.11 496.43 333.01 5.80 4.04 
Average 399.3 344.64 612.53 513.41 5.74 4.81 
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Fig. 5.80. Weekly MAE for 2018 

 

Fig. 5.81. Weekly RMSE for 2018 

 

 

 

Fig 5.82. Weekly MAPE for 2018 
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CNN-LSTM offers a RMSE of 5.42.  Similarly, the proposed method offers less MAPE with 

230

330

430

530

Date 

LSTM CNN-LSTM

200

400

600

800

Date 

LSTM CNN-LSTM

3

3.5

4

4.5

5

5.5

6

6.5

7

Date 

LSTM CNN-LSTM



 

76 
 

the data forecasted data in 06-07 May 2018. The similar trend is also evident from the data 

available in other a couple of days. In average, the proposed method provides 106.81, 180.5 

and 1.52% less MAE, MAPE and RMSE than the LSTM network respectively. The 

graphical improvement of all metrics is also displayed in the Fig. 5.83 to Fig 5.85.  

Table 5.4: Weekly MAE, RMSE and MAPE for LSTM and CNN-LSTM 

 

 MAE RMSE MAPE 

Observation 

Period 

LSTM Proposed 

CNN-

LSTM 

LSTM Proposed 

CNN-

LSTM 

LSTM Proposed 

CNN-

LSTM 

15-16 Jan 18 407.74 308.53 551.53 391.58 7.07 5.42 

11-12 Mar 18 387.04 341.22 705.26 581.14 5.12 4.71 

06-07 May 18 702.71 493.87 1052.01 706.32 8.78 5.64 

07-08 July 18 446.11 354.88 663.68 457.28 4.87 3.87 

04-05 Sep18 521.17 432.16 709.73 602.57 6.86 5.65 

20-21 Nov 18 368.46 261.66 510.63 370.96 6.12 4.41 

Average 472.21 365.39 698.81 518.31 6.47 4.95 

 

 

Fig 5.83. MAE of 48 hours for the different dates of 2018 

 

 

Fig 5.84.  RMSE of 48 hours for the different dates of 2018 
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Fig 5.85. MAPE of 48 hours for the different dates of 2018 
 

5.5.4  Comparison of evaluation metrics for 24 hours for the year of 2018 
 

Daily comparison of MAE, RMSE, MAPE for the proposed CNN-LSTM and LSTM 

network are shown in Table 5.5. To give an example, with the forecasted data in 01 Jan 

2018, the LSTM network provides an MAE of 305.75 while the proposed CNN-LSTM 

offers a RMSE of 243.43.  Similarly, the proposed method offers less MAE with the data 

forecasted data in 18 Nov 2018. The similar trend is also evident from the data available in 

other day of 24 hours. In average, the proposed method provides 107.48, 195.88 and 1.79% 

less MAE, RMSE and MAPE than the LSTM network respectively. The graphical 

improvement of all metrics is also displayed in the Fig. 5.86 to Fig. 5.88.  

 

Fig 5.86. MAE of 24 hours for the different dates of 2018 
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Table 5.5:  Weekly MAE for LSTM and CNN-LSTM 

 

Observation 

Period 

MAE RMSE MAPE 

LSTM Proposed 

CNN-

LSTM 

LSTM Proposed 

CNN-

LSTM 

LSTM Proposed 

CNN-

LSTM 

01 Jan 18 305.75 243.46 497.91 356.34 5.27 4.12 

06 Feb 18 755.71 344.21 1287.22 460.56 12.68 4.42 
04 Mar 18 324.18 272.24 451.26 403.67 4.25 3.61 

01 Apr 18 317.56 272.30 428.13 347.16 5.64 4.38 
02 May 18 366.22 299.24 464.66 410.13 6.39 4.82 

08 Jun 18 452.67 339.19 857.19 442.01 5.64 4.48 
15 July 18 358.50 351.99 496.76 426.26 3.73 3.62 

23 Aug 18 471.06 343.89 728.52 533.58 6.67 4.64 
07 Sep 18 342.25 284.72 517.38 409.23 3.77 3.24 

08 Oct 18 380.64 263.62 491.98 354.28 4.26 2.93 
18 Nov 18 338.80 239.95 521.23 399.50 4.93 3.54 

23 Dec 18 367.18 236.03 465.97 314.83 5.89 3.89 
Average 398.38 290.9 600.68 404.8 5.76 3.97 

 

 

 

Fig. 5.87. RMSE of 24 hours for the different dates of 2018 

 

 

Fig. 5.88. MAPE of 24 hours for the different dates of 2018. 
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5.5.5  Comparison of evaluation metrics for 30 days for the year of 2019 

The performance of the proposed CNN-LSTM network is compared with the LSTM 

network in terms of monthly MAE, RMSE, and MAPE in Table 5.6. For instance, with the 

forecasted data in Jan 2019, the LSTM network provides a MAE of 486.49, while the 

proposed CNN-LSTM offers a MAE of 304.97. For the month of Feb 2019, LSTM offers a 

MAE of. 889.05, where MAE obtained from CNN-LSTM is 370.18. LSTM Similarly, the 

proposed method offers less MAE with the data forecasted data in October 2019.  The 

similar trend is also evident from the data available in other months. In average, the 

proposed method provides 173.76, 330.2, 3.07% less MAE, RMSE and MAPE respectively 

than the LSTM network. The improvement of all metrics is also graphically illustrated in the 

Fig. 5.89 to Fig.5.91. 

Table 5.6: Monthly MAE, RMSE and MAPE for LSTM and CNN-LSTM 

 

Observation 

Period 

MAE RMSE MAPE 

LSTM Proposed 

CNN-

LSTM 

LSTM Proposed 

CNN-

LSTM 

LSTM Proposed 

CNN-

LSTM 

Jan 19 486.49 304.97 577.94 429.79 5.71 4.23 

Feb 19 889.05 370.18 1260.03 538.77 12.81 5.34 

Mar 19 734.98 381.50 962.59 573.09 9.76 4.73 

Apr 19 664.96 402.77 1036.38 610.37 8.70 4.88 

May 19 692.62 471.63 1110.09 733.13 8.43 5.47 

Jun 19 649.99 426.56 1122.29 736.35 8.05 4.94 

July 19 559.02 489.24 859.10 645.65  6.58 5.65 

Aug 19 621.80 437.53 939.49 668.87 7.81 5.31 

Sep 19 614.79 438.94 929.80 669.94 7.71 5.35 

Oct 19 476.99 291.16 713.112 406.45 6.09 3.49 

Nov 19 474.16 298.62 821.09 464.95 7.13 3.93 

Dec 19 430.14 335.55 606.02 498.14 6.13 4.72 

Average 561.15 387.39 911.49 581.29 7.91 4.84 
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Fig. 5.89. Monthly MAE for 2019 

 

 

Fig. 5.90. Monthly RMSE for 2019 

 

Fig. 5.91. Monthly MAPE for 2019 
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offers a RMSE of 331.91. Similarly, the proposed method offers less RMSE with the data 

forecasted data in 08-14 October 2019. The similar trend is also evident from the data 

available in other weeks. In average, the proposed method provides 271, 400.77, 3.63% less 

MAE, RMSE and MAPE than the LSTM network. The improvement of all metrics is also 

graphically illustrated in the Fig.5.92 to Fig 5.94. 

 

Fig. 5.92. Weekly MAE for 2019 

 

Table 5.7: Weekly MAE, RMSE and MAPE for LSTM and CNN-LSTM 

 

Observation 

Period 

MAE RMSE MAPE 

LSTM Proposed 

CNN-

LSTM 

LSTM Proposed 

CNN-

LSTM 

LSTM Proposed 

CNN-

LSTM 

01-07 Jan 19 567.99 119.03 803.53 331.91 8.99 6.65 

01-07 Feb 19 1133.49 494.83 1552.89 718.33 16.64 6.86 

01-07 Mar19 727.63 318.64 944.99 445.34 10.48 4.26 

01-07 Apr 19 549.86 356.17 858.77 552.55 8.12 5.26 

01-07 May 19 657.59 358.08 1220.78 591.73 8.82 4.88 

08-14 Jun 19 609.90 446.49 1049.54 882.45 7.56 5.55 

15-22 July 19 523.35 433.68 716.04 577.57 5.52 4.14 

 23-29 Aug 19 652.43 422.81 968.67 607.37 7.13 4.28 

01-07 Sep 19 728.19 365.88 1155.09 548.76 9.92 4.92 

08-14 Oct 19 482.92 286.49 774.84 394.61 6.36 3.42 

15-21 Nov 19 386.92 297.45 690.64 470.34 6.08 4.18 

22-28 Dec 19 416.52 279.59 594.52 400.14 6.64 4.38 

Average 619.73 348.26 944.19 543.42 8.52 4.89 
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Fig. 5.93. Weekly RMSE for 2019 

 

 

Fig. 5.94. Weekly MAPE for 2019 

 

 
 

 

5.5.7  Comparison of evaluation matrices of 48 hours for the year of 2019 
 

Table 5.8 demonstrates the selected 48 hours comparison of MAE, RMSE, and MAPE for 

the proposed CNN-LSTM and LSTM network respectively. For example, with the 

forecasted data in 15-16 Jan 2019, the LSTM network provides RMSE of 503.85 while the 

proposed CNN-LSTM offers a RMSE of 290.17.  Similarly, the proposed method offers less 

MAPE with the data forecasted data in 04-05 September 2019. The similar trend is also 

evident from the data available in other a couple of days. In average, the proposed method 

provides 324.22, 529.96, 4.37 less MAE, MAPE and RMSE respectively than the LSTM 

network. The graphical improvement of all metrics is also displayed in the Fig 5.95 to Fig 

5.97. 
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Table 5.8: Weekly MAE, RMSE and MAPE for LSTM and CNN-LSTM 

 

Observation 

Period 

MAE RMSE MAPE 

LSTM Proposed 

CNN-LSTM 

LSTM Proposed 

CNN-

LSTM 

LSTM Proposed 

CNN-

LSTM 

15-16 Jan 19 355.97 201.21 503.85 290.17 5.54 3.03 

11-12 Mar 19 692.20 262.17 910.44 360.40 9.58 3.69 

06-07 May 19 848.83 347.19 1493.41 619.53 11.63 4.77 

07-08 July 19 618.83 439.01 976.78 575.28 6.19 4.53 

04-05 Sep19 732.71 249.17 1112.42 341.84 9.15 2.86 

20-21 Nov 19 386.50 190.95 606.73 236.63 5.72 2.71 

Average 605.84 281.62 933.94 403.98 7.97 3.59 

 

 

 
Fig. 5.95. MAE for 48 hours of the different month of 2019 

 

 
Fig. 5.96. RMSE for 48 hours of the different month of 2019 
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Fig. 5.97. MAPE for 48 hours of the different month of 2019 

 
 

5.5.8  Comparison of evaluation matrices of 24 hours for the year of 2019 

Daily comparison of MAE, RMSE, MAPE for the proposed CNN-LSTM and LSTM 

network are shown in Table 5.9. To give an example, with the forecasted data in 01 Jan 

2019, the LSTM network provides an RMSE of 652.79 while the proposed CNN-LSTM 

offers a RMSE of 249.90.  Similarly, the proposed method offers less RMSE with the data 

forecasted data in 07 September 2019. The similar trend is also evident from the data 

available in other day of 24 hours. In average, the proposed method provides 324.77, 434.49, 

4.33 less MAE, RMSE and MAPE than the LSTM network respectively. The graphical 

improvement of all metrics is also displayed in the Fig. 5.98 to Fig 5.100.  

Table 5.9: Weekly MAE for LSTM and CNN-LSTM 

 

Observation 

Period 

MAE RMSE MAPE 

LSTM Proposed 

CNN-LSTM 

LSTM Proposed 

CNN-LSTM 

LSTM Proposed 

CNN-LSTM 

01 Jan 19 493.71 211.92 652.79 249.90 8.82 3.65 

06 Feb 19 642.76 239.56 865.10 347.95 6.67 2.31 

02 Mar 19 793.11 230.04 918.56 286.09 12.72 3.38 

01 Apr 19 418.05 136.18 585.16 200.50 7.75 2.56 

02 May 19 407.96 150.39 502.86 206.25 5.82 5.21 

11 Jun 19 403.92 175.74 579.69 210.82 4.99 2.19 

15 July 19 775.62 192.31 954.05 258.19 8.72 2.31 

23 Aug 19 775.62 265.20 954.05 394.45 8.72 2.99 

07 Sep 19 878.13 353.07 1287.83 353.07 12.29 3.99 

08 Oct 19 480.82 335.58 636.21 435.76 5.12 3.62 

18 Nov 19 312.11 252.61 406.64 370.54 4.16 3.37 

23 Dec 19 300.40 242.38 377.38 192.81 4.76 3.03 

Average 556.85 232.08 726.69 292.19 7.55 3.22 
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Fig. 5.98. MAE for 24 hours of different dates of 2019 

 

Fig. 5.99. RMSE for 24 hours of different dates of 2019 

 

Fig. 5.100.    MAPE for 24 hours of different dates of 2019 
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5.6  Summary 

In this chapter, the performance of the proposed CNN-LSTM based load forecasting 

methodology us evaluated with real case historical load data recorded from 2014 to 2019 in 

Bangladesh power system network. The performance evaluation matrices are considered as 

MAE, MAPE and RMSE. This proposed scheme offered low value of MAE, MAPE and 

RMSE as compared to the others conventional forecasting model like LSTM method. Based 

on the observations presented in this chapter, concluding remarks and future works of the 

research are presented in the following chapter. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

6.1  Conclusions 

This research work proposes a noble approach of CNN-LSTM model for STLF. LSTM and 

CNN are both outlined to provide high precision forecast in STLF due to their advantages to 

capture hidden features. In this way, it has been developed a hybrid neural network CNN-

LSTM framework that can capture and facilitated such various hidden features to provide 

better execution. CNN-LSTM system basically comprises of a Convolution Neural Network 

(CNN) module, a Long Short Term Memory (LSTM) module and a feature-fusion module. 

The original electric load data from 2014 to 2019 is obtained from Power Grid Company 

Bangladesh. Within the data preparation step, null values are being checked and the load 

data is being part into training and test sets. At that point, the original dataset is transferred 

into two different datasets. Firstly, it is considered training set from 2014 to 2017 and test set 

is chosen from 2018. Secondly, training set is selected from 2014 to 2018 and test set is 

chosen from 2019. The CNN module is utilized to capture the local trend and the LSTM 

module is utilized to learn the long-term dependency. The two hidden feature is being 

concatenated within the feature-fusion module. The final forecast is generally created after a 

completely connected layer. 

 The performance calculation of the developed model was evaluated by exploring the 

electrical load forecast of Bangladesh. To verify the networks stability and effectiveness, a 

various segment of the data set was executed properly. The proposed model with everyday 

training dataset obtains better forecasting performance compared to LSTM model for every 

month in 2018 (test set was taken 2018) and 2019 (when test set was taken 2019). 

Furthermore, proposed model also performs better for weekdays, weekends, and holidays. 
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This empirical result shows that CNN-LSTM provides a promising model for electricity load 

forecasting in electric power system network. 

 In addition, proposed CNN-LSTM model gives the minimum value of MAE, RMSE and 

MAPE as compared to LSTM model. In every validation test predicted load values using 

CNN-LSTM model outperforms LSTM model all the times. Moreover, it also gives higher 

accuracy for March and July where they normally have lowest accuracy comparing to other 

months of the year. It also provides better accuracy for months with minimum temperature 

variation. In view of short term forecast model the output of proposed model is acceptable 

since mean absolute percentage error (MAPE) lies within 7%. Towards this end, it can be 

illustrated that proposed CNN-LSTM model can deal with the long sequence time series 

electric load data and predict the future load demand over a long period.  

6.2  Future Work 

The outcomes obtained from the proposed model indicate a future work where highly 

precise load forecasting framework can be developed by using CNN network integrated with 

a Gated Recurrent Unit (GRU). Another possible test what would be given satisfactory load 

forecasting outcomes by using convolutional long short term memory network (Conv-

LSTM) which is a variant of LSTM containing a convolution operation inside the LSTM 

cell. It basically replaces matrix multiplication with convolution operation at each gate in the 

LSTM cell. By doing so, it captures underlying spatial features by convolution operations in 

multiple-dimensional data. 
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