BEHAVIOUR OF CONCRETE FILLED SATAINLESS STEEL COLUMN UNDER AXIAL COMPRESSIVE LOAD

by Md Abdul Bari

A thesis submitted to the Department of Civil Engineering of Military Institute of Science and Technology, Mirpur, Dhaka, in partial fulfillment of the requirements for the degree

> Of MASTER OF SCIENCE IN CIVIL ENGINEERING (CIVIL & STRUCTURAL)

DEPARTMENT OF CIVIL ENGINEERING MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY MIRPUR, BANGLADESH

January, 2021

CERTIFICATE OF APPROVAL

The thesis titled "Behaviour of Concrete-filled Stainless Steel Tubular Columns Under Axial Compressive Loads", submitted by Md. Abdul Bari, Student Number: 1017110008(P) Session: Apr. 2017/Oct. 2018 has been accepted as satisfactory in partial fulfillment of the requirements for the degree of Master of Science in Structural Engineering on 21st January, 2021.

BOARD OF EXAMINERS

Major Md. Soebur Rahman, PhD, PEng Instructor, Class-B CE Dept., MIST, Dhaka.

Brig Gen Md Abul Kalam Azad, psc Head CE Dept., MIST, Dhaka.

Dr Tanvir Mustafy Assistant Professor CE Dept., MIST, Dhaka.

Dr. Raquib Ahsan Professor CE Dept., BUET, Dhaka. Chairman (Supervisor)

Member (Ex-Officio)

> Member (Internal)

Member (External)

DECLARATION

It is hereby declared that, except where specified methodologies had been made to other investigation, the work embodied in the thesis is the result of investigation carried out by authors under the supervision Major Md. Soebur Rahman, Instructor Class 'B', Department of Civil Engineering, Military Institute of Science and Technology, Mirpur, Dhaka.

Neither the thesis nor any part of it has been concurrently submitted for any degree at any other investigation.

(Signature of the Student) Md Abdul Bari

ABSTRACT

Concrete filled stainless steel tubular columns (CFSST) is an improved and innovative version of composite structure due to better mechanical properties compared to mild steel such as higher strength and ductility, corrosion resistance, fire resistance, speedy construction and low maintenance cost. It exhibits a rounded stress-strain behaviour with significant strain hardening. This study presents experimental as well as extensive numerical investigations on concrete filled stainless steel tubular (CFSST columns under concentric and eccentric axial loads. The experimental program conducted with twenty-four (24) CFSST columns. Out of those eighteen (18) concretes filled and six (6) hollow columns were constructed with various size, shape and concrete strength. These CFSST columns were tested for concentrically applied axial loads to observe the failure behaviour, the ultimate load carrying capacity and axial deformation. Numerical simulations were conducted on CFSST columns under axial compression using finite element method. Both geometric and material nonlinearities were included in the FE model. A concrete damage plasticity model was used to simulate the concrete material behaviour. Static general solution strategy was implemented to trace a peak and post peak response of CFSST columns under various conditions of loading. To validate the model, simulations were conducted with exactly same geometric and mechanical properties of current experimental study and test specimens from published literatures. Comparisons were also made between the FE predictions and experimental results in terms of peak load and corresponding strain, load versus deformation curves and failure modes of the CFSST columns. In general, the FE model was able to predict the strength and load versus displacement behaviour of CFSST columns with the accuracy of 95 percent.

A parametric study was conducted using the numerical model to investigate the influences of geometric and mechanical properties of CFSST columns subjected to axial compression. The geometric variables were load eccentricity ratio (e/D), construction stainless steel ratio (D/t) and slenderness ratio (L/D) to generate more results to investigate the behaviour of CFSST columns. The concrete strength was varied from normal (30 MPa) to ultra-high strength (120 MPa) and steel strength 448 MPa to 707 MPa. In general, e/D ratio, D/t ratio, L/D ratio, strength of steel and concrete was found to greatly influence the overall carrying capacity and ductility of CFSST columns. The effects of ultra-high strength concrete (120 MPa) and high strength stainless steel of 707 MPa on column behaviour was also explored. The Numerical results are also compared with the code predicted capacities (AISC-LRFD 2010). Finally, on the basis of the parametric study a prediction co-relation $P_0 = A_s \sigma_{0.2} + (D/t)^{-0.014} A_c f_c$. has been proposed to determine the sectional capacity with 98 percent accuracy for CFSST square columns.

ACKNOWLEDGEMENT

First of all, the authors sincerely express his deepest gratitude to the Almighty Allah, Alhamdulillah.

I would like to express my deepest gratitude to my supervisor, Major Md. Soebur Rahman PhD, PEng. Instructor Class 'B', Department of Civil Engineering, MIST, Mirpur, for giving his ceaseless supervision and pertinent services throughout the study and research. His constant guidance on research methods, motivation, patience attention in all stages of this research work, his deep knowledge and teaching capability on research methodology and details understanding has helped the authors in carrying out the research efficiently.

The author also grateful to all the most respected members of the Committee for advanced studies and research, for their valuable and constructive advice and suggestions throughout this research works.

The author also takes the opportunity to pay his heartfelt thanks to all the staff members of the Structures Laboratory in the Department of Civil and Environmental Engineering for their consistent support and painstaking contributions to the research and experimental work.

The authors would like to thank Ibrizu Ibrahim, Research Assistant, MIST, and for his cordial help and guidance as and when required in every step of the research. His invaluable suggestions, Assists and other administrative support and encouragement had been very helpful for the authors.

The author also appreciatively remembers the assistance and encouragement of his friends and well-wishers and everyone related to carry out and complete this study specially his family members, wife and two sons (Imran and Labib) for their constant support, encouragement and sacrifice throughout the research work

TABLE OF CONTENTS

ABS	STRACT		iv
ACKNOWLEDGEMENT			v
TABLE OF CONTENTS			vi
LIS	Г OF FIG	JURES	Х
LIS	T OF TA	BLES	xiii
LIS	Γ OF SY	MBOLS	xiv
LIS	Γ OF AB	BREVIATIONS	xvi
CHA	APTER 1	I: INTRODUCTION	
1.1	Gener	al	1
1.2	Backg	ground of the Study	2
1.3	Objec	tive and Scope of the Study	3
1.4	Organ	ization of the Thesis	4
CHA	APTER 2	2: LITERATURE REVIEW	
2.1	Introd	uction	6
2.2	Types	of composite columns	8
2.3	Resea	rch on concrete filled steel tubular column	9
	2.3.1	Bond behaviour of concrete-filled tubes	9
	2.3.2	Confinement effect of CFSST columns	12
	2.3.3	Experimental investigations	13
	2.3.4	Numerical investigations	17
2.4	AISC	code predicted capacity	20
2.5	Limit	ation of AISC code	23
2.6	Concl	usions	23
CHA	APTER 3	3: EXPERIMENTAL INVESTIGATION OF CFSST COLUMN	
3.1	Introd	uction	25
3.2	Test p	orogram	25
	3.2.1	Test specimen's preparation	26
	3.2.2	Introduction to test parameters	27

3.3	Colun	nn fabrication	27
	3.3.1	Steel section fabrication	27
	3.3.2	Concrete mix design	28
	3.3.3	Concrete placement	29
3.4	Mater	ial properties	31
	3.4.1	Steel properties	31
	3.4.2	Concrete properties	32
3.5	Test S	Setup procedure	34
	3.5.1	Testing machine and data acquisition system	34
	3.5.2	Setup and instrumentation of specimens.	35

CHAPTER 4: FINITE ELEMENT MODEL OF CFSST COLUMNS

4.1	Introduction	36
4.2	Element selection	36
4.3	Interaction between stainless steel and concrete	37
4.4	Sensitivity analysis	38
4.5	Material modeling of stainless steel	39
	4.5.1 Stainless steel	39
4.6	Material modeling of concrete	40
	4.6.1 Concrete damage plasticity model	41
	4.6.2 Compressive meridian (K _c)	42
	4.6.3 Dilation angle (ψ)	42
	4.6.4 Strain hardening and softening rule	42
4.7	End boundary conditions	45
4.8	Solving techniques	46
4.9	Newton Raphson and modified newton Raphson methods	46
4.10	Conclusions	47

CHAPTER 5: COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS

5.1	Introduction	48
5.2	Concentrically loaded columns	48
5.3	Comparison between current experimental results and FE analysis	49

	5.3.1	Material properties	49
	5.3.2	Experimental and numerical behaviour of CFSST columns	50
5.4	Comp	arison between Tao-2011 experiment results and FE analysis	53
	5.4.1	Materials properties (Tao-2011)	53
	5.4.2	Comparison of Tao et al. 2011 experimental and numerical	
	Resul	ts with current numerical results	54
5.5	Failur	e modes	56
5.6	Concl	usions	58
СНА	PTER (5:PARAMETRIC STUDY	
6.1	Introd	uction	59
6.2	Descr	iption of specimens	59
6.3	Desig	n of parametric study	60
	6.3.1	Concrete compressive strength (f _c)	61
	6.3.2	Stainless steel 0.2% proof strength ($\sigma_{0.2}$)	61
	6.3.3	Column depth to thickness ratio (D/t)	62
	6.3.4	Load eccentricity ratio (e/D)	62
	6.3.5	Column slenderness ratio (L/D)	63
6.4	Effect	of concrete compressive strength (f_c)	64
	6.4.1	Load versus average axial deformation response	67
	6.4.2	Comparison of peak load	69
	6.4.3	Modes of failure	69
6.5	Effect	of concrete compressive strength ($\sigma_{0.2}$)	70
	6.5.1	Load versus average axial deformation response	75
	6.5.2	Comparison of peak load	76
	6.5.3	Modes of failure	77
6.6	Effect	of column depth to steel thickness ratio (D/t)	78
	6.6.1	Load versus average axial deformation response	81
	6.6.2	Comparison of peak load	83
	6.6.3	Modes of failure	83
6.7	Effect	of load eccentricity ratio (e/D)	84
	6.7.1	Load versus average axial deformation response	86
	6.7.2	Comparison of peak load	88

	6.7.3 Modes of failure	88
6.8	Effect of column slenderness ratio (L/D)	89
	6.8.1 Load versus average axial deformation response	91
	6.8.2 Comparison of peak load	93
	6.8.3 Modes of failure	93
6.9	Summary of parametric study	95
6.10	Proposed design rules	99
6.11	Conclusions	101

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS

7.1	General	103
7.2	Conclusions	104
7.3	Recommendations for future research	106

REFERENCES

107

LIST OF FIGURES

Figure Contents	Page
Figure 2.1 Typical cross-sections of circular and square CFSST columns.	7
Figure 2.2 Detail X-sections of different composite columns, (i) FEC columns (a)-	(c); 9
(ii) PEC columns (d)-(e); (iii) CFSST columns (f)-(i).	
Figure 2.3: Surface roughness of stainless steel and carbon steel	11
Figure 2.4: Bond strength of stainless steel and carbon steel	11
Figure 2.5: Schematic failure modes of stub columns.	16
Figure 2.6: Typical axial load versus axial strain of CFSST columns.	16
Figure 3.1: Different stages of fabrication of the specimen.	30
Figure 3.2: Coupon test sample	32
Figure 3.3: Typical 0.2% proof strength, ultimate strength curve	32
Figure 3.4: Splitting and shear failure mode of concrete cylinders	33
Figure 3.5: Splitting and shear failure mode of 30 MPa concrete cylinders	33
Figure 3.6: Axial split failure mode of 40 MPa concrete cylinders	42
Figure 3.7: Specimen setup on UTM	34
Figure 3.8: Test interface in the controller	34
Figure 3.9: Parameters at the controller interface	34
Figure 3.10: Test Setup of specimens' top support and bottom support	35
Figure 3.11: Full test setup of specimen	35
Figure 4.1: Finite elements used in the numerical simulation	37
Figure 4.2: Master and slave contact pair	38
Figure 4.3: Meshing technique for steel and composite sections.	39
Figure 4.4: Full stress strain curves	40
Figure 4.5: Stress–strain model proposed for confined concrete	43
Figure 4.6: Load and solution strategy.	45
Figure 4.7: Newton-Raphson iterative method	46
Figure 4.8: Modified Newton-Raphson iterative method	47
Figure 5.1: Experimental and numerical behaviour of column groups	52
Figure 5.2: Tao et al. experimental and Numerical Behavior compared with self-	54
numerical of CFSST column.	
Figure 5.3: Experimental failure pattern	57
Figure 5.4: Numerical failure pattern	57

Figure Contents

Figure 6.1: 7	Typical cross section and long section of parametric CFSST column, (a) Cross	61
section (b) Lo	ong section	
Figure 6.2a:	Effect of concrete strength on axial load vs axial deformation curve (Set-1)	67
Figure 6.2b:	Effect of concrete strength on axial load vs axial deformation curve (Set-2)	67
Figure 6.2c:	Effect of concrete strength on axial load vs axial deformation curve (Set-3)	68
Figure 6.2d:	Effect of concrete strength on axial load vs axial deformation curve (Set-4)	68
Figure 6.2e:	Effect of concrete strength on axial load vs axial deformation curve (Set-5)	68
Figure 6.3a:	Stress contour of concrete at failure	70
Figure 6.3b:	Stress contour of concrete at failure	70
Figure. 6.3c:	Stress contour of steel at failure	70
Figure 6.3d:	Stress contour of overall failure	70
Figure 6.4.a:	Effect of yield strength of steel on axial load vs axial deformation (Set-21)	75
Figure 6.4.b:	Effect of yield strength of steel on axial load vs axial deformation (Set-22)	75
Figure 6.4.c:	Effect of yield strength of steel on axial load vs axial deformation (Set-23)	75
Figure 6.4.d:	Effect of yield strength of steel on axial load vs axial deformation (Set-24)	75
Figure 6.4.e:	Effect of yield strength of steel on axial load vs axial deformation (Set-25)	76
Figure 6.4.f:	Effect of yield strength of steel on axial load vs axial deformation (Set-26)	76
Figure 6.5a:	Stress contour of concrete at Failure	78
Figure 6.5b:	Stress contour of concrete at Failure	78
Figure 6.5c:	Stress contour of steel at failure	78
Figure 6.5d:	Stress contour of overall failure	78
Figure 6.6a:	Effect of yield strength of steel on axial load vs axial deformation (Set-45).	81
Figure 6.6b:	Effect of yield strength of steel on axial load vs axial deformation (Set-46).	81
Figure 6.6c:	Effect of yield strength of steel on axial load vs axial deformation (Set-47).	81
Figure 6.6d:	Effect of yield strength of steel on axial load vs axial deformation (Set-48).	81
Figure 6.6e:	Effect of yield strength of steel on axial load vs axial deformation (Set-49).	82
Figure 6.6f:	Effect of yield strength of steel on axial load vs axial deformation (Set-50).	82
Figure 6.6g:	Effect of yield strength of steel on axial load vs axial deformation (Set-53).	82
Figure 6.6h:	Effect of yield strength of steel on axial load vs axial deformation (Set-54).	82
Figure 6.7a:	Stress contour of concrete at failure	84

Figure Contents

Figure 6.7b:	Stress contour of concrete at failure	84
Figure 6.7c:	Stress contour of steel at failure	84
Figure 6.7d:	Stress contour of overall failure	84
Figure 6.8a:	Effect of (e/D) ratio on axial load vs axial deformation curve (Set-55)	86
Figure 6.8b:	Effect of (e/D) ratio on axial load vs axial deformation curve (Set-56)	86
Figure 6.8c:	Effect of (e/D) ratio on axial load vs axial deformation curve (Set-57)	87
Figure 6.8d:	Effect of (e/D) ratio on axial load vs axial deformation curve (Set-58)	87
Figure 6.8e:	Effect of (e/D) ratio on axial load vs axial deformation curve (Set-59)	87
Figure 6.8f:	Effect of (e/D) ratio on axial load vs axial deformation curve (Set-60)	87
Figure 6.9a:	Stress contour of concrete at failure.	89
Figure 6.9b:	Stress contour of concrete at failure.	89
Figure. 6.9c:	Stress contour of steel at failure	89
Figure. 6.9d:	Stress contour of overall failure	89
Figure 6.10a:	Effect of L/D ratio on axial load vs axial deformation curve	92
Figure 6.10b:	Effect of L/D ratio on axial load vs axial deformation curve	92
Figure 6.10c:	Effect of L/D ratio on axial load vs axial deformation curve	92
Figure 6.10d:	Effect of L/D ratio on axial load vs axial deformation curve	92
Figure 6.10e:	Effect of L/D ratio on axial load vs axial deformation curve	92
Figure 6.10f:	Effect of L/D ratio on axial load vs axial deformation curve	92
Figure 6.11:	Stress contour of concrete at failure.	94
Figure 6.12:	Stress contour of steel at failure	94
Figure 6.13:	Effects of concrete strength with steel strength for different D/t	95
Figure 6.14:	Effects of steel yield strength with concrete strength for different D/t.	96
Figure 6.15:	Effects of D/t ratio with concrete strength.	97
Figure 6.16:	Effects of D/t ratio with steel strength	98
Figure 6.17:	Effects of e/D ratio with concrete strength.	99

LIST OF TABLES

Table Contents	Page
Table 2.1: Limiting width to thickness ratios for compression steel elements in composite	21
members subject to axial compression.	
Table 2.2: Limiting Width to Thickness Ratios for Compression Steel Elements in	21
Composite Members Subject to Flexure.	
Table 3.1: Geometric and Mechanical Properties of Test Specimens	26
Table 3.2: Concrete Mix Design at Saturated Surface Dry (SSD) Condition (30 MPa)	28
Table3.3: Concrete Mix Design at Saturated Surface Dry (SSD) Condition (40 MPa).	29
Table 3.4: Concrete mix design at saturated surface dry (SSD) condition (50 MPa).	29
Table 3.5: Coupon Test Results	31
Table 3.6: Strengths of Different Concrete Cylinders of Different Age.	33
Table 4:1: Sensitivity Analysis	38
Table-5.1: Materials Properties	49
Table 5.2: Comparison of experimental and numerical result of varying concrete Strength.	51
Table 5.3: Geometrical and Mechanical Properties of Test Specimens (Tao et al-2011).	53
Table 5.4: Comparison of Experimental (Tao et al. 2011) and Numerical (Self) Results of	
Varying Concrete Strength and Section.	56
Table 6.1:Effect of Concrete Compressive Strength (f'c).	63-66
Table 6.2:Effect Of Stainless Steel Yield Strength ($\sigma_{0.2}$)	71-74
Table 6.3: Effect of Column Depth to Thickness Ratio (D/t)	79-80
Table 6.4: Effect of Load Eccentricity Ratio (e/D)	85-86
Table 6:5: Effect of Column Slenderness Ratio (L/D)	90-91
Table 6:6:Comparison of Proposed Prediction Formula with AISC Code & FE Results.	100

LIST OF SYMBOLS

Ac	Area of concrete,
As	Cross-sectional area of steel section
Asr	Area of continuous reinforcing bars
D	Depth of the column cross-section
L	Specimen length
В	Width of the square steel tube
Ec	Modulus of elasticity of concrete
E ₀	Initial elastic modulus of stainless steel
E_{s}	Modulus of elasticity of steel
F_{cr}	Critical stress,
e	Eccentricity
e/D	Eccentricity ratio
σ	Stress
σ_{u}	Ultimate strength of structural steel
σ0.2	0.2% Proof strength
F_y	Yield strength of structural steel shape
f'c	Compressive stress of concrete
$f_{ck} \\$	Characteristic concrete strength (=0.67fcu for normal strength concrete)
$f_{cd} \\$	Design value of concrete compressive strength
Pexp	Experimental peak load
P_{num}	Numerical peak load
Po	Nominal compressive strength
$\mathbf{P}_{\mathbf{p}}$	Nominal bearing strength
\mathbf{P}_{FE}	Peak load of FE analysis
PAISC	Peak load of AISC code
PCR	Peak load of proposed prediction formula
Х	Slenderness parameter
Ъp	Limiting slenderness parameter for compact element
$\boldsymbol{\lambda}_r$	Limiting slenderness parameter for noncompact element
Kc	Compressive meridian
ν	Poisson Ratio
Ψ	Dilation angle

- N Axial load
- ri Internal corner radius of the cold-formed section
- n Strain-hardening exponent
- Nuc FE predicted ultimate strength
- N_u Ultimate strength
- α Steel ratio (=As/Ac)
- ε Strain
- ϵ_{cu} Ultimate axial strain
- **ω**₀ Amplitude of initial geometric imperfections
- ξ Confinement factor

LIST OF ABBREVIATIONS

- ACI American concrete institute
- AIJ Architectural institute of Japan
- AISC American institute of steel construction
- BCA Building code of Australia
- BNBC Bangladesh national building code
- CC Concrete crushing
- CFBC Concrete filled box column
- CFST Concrete filled steel tubular
- CFSST Concrete-filled stainless-steel tubular
- CHS Circular hollow section
- COV Coefficient of variation
- EC4 Euro code 4
- Exp. Experimental
- FE Finite element
- FEC Fully encased composite
- FEM Finite element model
- HSC High strength concrete
- HSS High strength steel
- HSC High strength concrete
- LRFD Load and resistance factor design
- NSC Normal strength concrete
- Num Numerical
- NZBC New Zealand building code
- PEC Partially encased composite
- SSLC Structural specifications liaison committee
- SHS Square hollow section
- SCC Self-consolidating concrete