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ABSTRACT 

 

Microscopic traffic simulation models have been widely used to analyze the traffic operation 

and management strategies on highways and urban streets primarily because the simulation is 

less disruptive to traffic, less expressive, and faster than the field experimentation. In order to 

provide accurate and meaningful results, simulation models must be calibrated and validated 

before real simulation is conducted.  However, calibration methods differ in algorithm, level of 

accuracy, convergence time and level of effort. It is essential to choose a calibration method 

particularly suitable for a specific traffic and roadway condition.  

 

In this research, a new approach has been proposed for calibration of microscopic traffic 

simulation model VISSIM. Wiedemann 99 car following model and lane changing model 

parameters were simultaneously calibrated for freeways. Drone was used to capture real time 

traffic data over a 2.6 km stretch segment of the Dhaka-Mymensingh Highway (N3) in 

Bangladesh for the calibration and validation through image processing technique. New 

mathematical equation, based on the fusion of microscopic and macroscopic traffic data, has 

been derived dynamically from Leader-Follower pair of simulated vehicle trajectory data to 

evaluate the measure of performance (MOP) between the observed and simulated traffic data. 

Root mean square error (RMSE) between the measurement of space headway of 1191 instances 

of observed lane change and space headway derived from the mathematical equation by 

evaluating simulated vehicle trajectory data has been considered as the fitness function for 

calibration, and sum of absolute error (SAE) for validation against average headway 

measurement. Three optimization techniques namely, Genetic Algorithm (GA), Simultaneous 

Perturbation Stochastic Approximation (SPSA) and Simulated Annealing (SA) were used to 

examine their performances in terms of level of accuracy and computational time in calibrating 
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the parameters. In the perspective of present study on non-lane based mixed traffic condition 

with MOP derived from new mathematical equation based on micro and macro data, SA proved 

to be efficient reducing RMSE to 93.90%, while GA reduced to 92.15% and SPSA 91.85%. 

  

Though the microscopic simulation is getting increasingly common in traffic planning and 

operational research, the most important drawback of traffic simulation model is that the 

calibration and validation of such model can be very tedious. This invokes the necessity of a 

graphical user interface (GUI) for ease in calibration and result interpretation. In this study a 

user-friendly Optimization Program Control Interface (OPCI) has been demonstrated for auto 

calibration that controls the entire process of calibration and generates the desired graphical 

output for result interpretation and analysis.   
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CHAPTER 1  
 

INTRODUCTION 

 

1.1 General 

 
In the last few decades traffic simulation model has grown into a major planning tool for 

transportation engineers. One of the supreme advantages of using such tools is to assess 

different alternates and scenarios of any projects prior to their field implementations and thereby 

enhancing scope for significant improvements of the projects. Traffic simulation models could 

be divided into three categories including microscopic, macroscopic, mesoscopic simulation 

models. First category simulates the movement of individual vehicles in a traffic stream. It is 

helpful in capturing the more detailed aspects of the system. Car-following and lane-changing 

models are the two fundamental components in traffic micro-simulations. The second 

(macroscopic) category simulates transportation network section-by-section rather than by 

tracking individual vehicles. The relationships between flow, speed, and density of traffic 

stream form the fundamental basis of this category. Mesoscopic traffic simulation models 

combine the properties of the first and second models (TRB, 2000). 

 

Along with the increasing popularity and use of traffic simulations, an essential concern has 

been raised about their appropriate calibration and validation. Microscopic simulation models 

contain numerous independent parameters that can be used to describe traffic flow 

characteristics, driver behavior, and traffic control operations. These models provide a default 

value for each parameter, but they also allow users to change the values to represent local traffic 

conditions. The process of adjusting and fine-tuning model parameters by using field data to 

reflect local traffic conditions is model calibration. The findings based on the uncalibrated or 
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inappropriately calibrated models could be misleading and even erroneous. Thus, proper 

calibration is a crucial step in simulation applications. 

 

The calibration process, especially for microscopic simulations, could be a complex and time-

consuming task because of the large number of unknown parameters and significant 

computational load associated with large-scale traffic simulation runs (Toledo, 2004). Although 

there are numerous optimization procedures that have been used to calibrate microsimulation 

traffic models, the manual search, gradient approach, simplex-based approach, and artificial 

intelligence techniques have been used most frequently.  

 

Three widely practiced optimization algorithms are Genetic Algorithm (GA), Simultaneous 

Perturbation Stochastic Approximation (SPSA) and Simulated Annealing (SA) in which the 

former one is an artificial intelligence technique as mentioned earlier, SPSA is gradient based 

and SA is search based algorithm. These three optimization methods are based on different 

algorithm but serve the same purpose i.e. calibrating the parameters, at different level of 

accuracy and computational time. Generally, users demand that an optimization technique 

should fulfill three requirements. First, the method should be able to find the optimum values 

of parameter set to simulate real traffic scenario with minimum difference. Second, the 

convergence should be fast. Third, the program should have a minimum of control parameters 

so that it will be easy to use. In this thesis, an endeavor has been taken to compare above 

mentioned three methods of optimization and examine their performance in terms of 

applicability, accuracy, computational time and level of effort.  

 

While recent research has indicated that the accuracy of a simulation model can significantly 

improve through the use of automated calibration procedures, but this is not a typical practice. 
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Many engineers lack in tools or the skill necessary to easily program and implement such 

procedures. A graphical user’s interface (GUI) is necessary to make automated calibration more 

accessible to professional engineers. 

 

This chapter presents a brief overview of the history and background of traffic simulation 

models, addresses the specific problems associates with model calibration and data 

requirement, identifies the objectives and significances of the study and summarizes the 

remaining chapters to address the problems identified. 

 

1.2 Background of the Study 

In a developing country like Bangladesh there is a rapid development in communication and 

transport infrastructures. But neither the government agencies nor the private consultancy firms 

commonly use traffic simulation model for transportation planning and traffic management. It 

is well established that the traffic simulation models are much safer, less expressive, and faster 

than the field implementation tests. Unfortunately, in our traffic context, transportation 

engineers and professional lack adopting state-of-art technologies.  

 

In order to provide accurate and meaningful results, a simulation model must be calibrated and 

validated before a real simulation is conducted. Researches have shown that calibration of 

simulation model parameters using any of the optimization algorithm can efficiently improve 

the accuracy of simulation model output. However, practicing engineers rarely take this 

approach. Many of them do not have the tools or the skill to carry out calibration procedures 

which have been performed by researchers. Furthermore, a GUI for an automated calibration 

procedure is necessary to make these tools more available to students and professionals. 
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 Hence it is essential to make extensive use of traffic simulation model in national transportation 

planning and traffic management. It is also necessary to calibrate the simulation model before 

its implementation in order to improve its accuracy following any of the calibration techniques. 

Finally, a GUI for automated calibration will certainly help the users in analyzing and 

interpreting the results. 

 

1.3 Problem Statement 

In a developing country like Bangladesh there is a rapid infrastructure development in 

communication sector like mass rapid transit (MRT), elevated expressway, and subway. An 

operational traffic simulation model is required to evaluate its anticipated impact on traffic 

parameters of roadway. In order to depict the real traffic scenario, the driving behavior 

parameters of any micro simulation model including both the car following and the lane 

changing parameters are to be adequately calibrated. Most of the previous studies (Duong, 

Saccomanno & Hellinga 2010, Park & Kwak 2011, Crowe 2009, Menneni, Sun, & Vortisch 

2008, Park, Jongsun & Ilsoo 2006, Lownes & Machemehl 2006, Park & Qi 2005, Kim, Kim & 

Rilett 2004, Fellendorf & Vortisch 2001, Lee, Xu & Chandrasekar 2001) calibrated car 

following parameters and few literatures were found calibrating the lane changing parameters 

only (Park & Schneeberger 2003). Though significant number of researchers calibrated both 

the car following and lane changing parameters (Karakikesa, Spanglera & Margreiter 2017, 

Lidbe, Hainen & Jones 2017, Leyn & Vortisch 2015, Miller 2009, Park, Won & Yun 2006, 

Gomes, May & Horowitz 2004) but they did that at different stages/steps of simulation process 

appropriate for particular types of networks and compared against separate measure of 

performances (MOPs) using mostly macro traffic data like vehicle count, speed, flow, volume, 

queue length, delay, capacity etcetera. But none applied for simultaneous calibration of car 

following and lane changing parameters. Car following parameters were also focused in few 
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literatures for simulation of heterogeneous or mixed traffic (Siddharth & Ramadurai 2013, 

Manjunatha, Mathew & Vortisch 2012, Mathew & Radhakrishnan 2010) where lane changing 

parameters were completely ignored. Complex maneuvers commonly adopted by the drivers in 

mixed traffic condition makes the calibration process of lane changing parameters more 

erroneous, which is further aggravated in non-lane- based traffic condition. Large and detailed 

microscopic vehicle trajectory data sets are needed to calibrate and validate lane changing 

models more accurately. Absence of vehicle trajectory data will compensate the accuracy of 

simulation result which will mislead the transport planners. Simultaneous calibration of car 

following and lane changing parameters by incorporating the fusion of macro and micro traffic 

data will invariably improve the simulated model to represent the real world more reliably. 

 

1.4 Thesis Objectives and Scope of Work 

This study aims to develop a methodology for calibration of microscopic simulation models by 

simultaneous optimization of car following and lane changing parameters with the fusion of 

both macro and micro traffic data using heuristic optimization algorithms under non-lane based 

mixed traffic condition. The specific objectives are: 

a) To develop an efficient traffic simulation calibration method by simultaneous 

optimization of parameters related to car following and lane changing sub-models.    

b) To formulate an objective function by the fusion of macroscopic and microscopic 

traffic flow data.  

c) To investigate a robust heuristic optimization algorithm to be used for mixed traffic 

condition. 
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It is expected that the calibrated parameters will produce an accurate simulation model that will 

be used in deciding the operational impact of different infrastructural development projects.  

The scope of this thesis is restricted to uninterrupted arterials. The test site is the Tongi 

Diversion Road, a section of the Dhaka-Mymensingh Highway (N3) in Bangladesh (shown in 

Figure 6-1). The GUI has been developed to calibrate any number of driving behavior 

parameters of VISSIM microsimulation model. However, the calibration process is expected 

to accurately estimate and predict the complex nature of the prevailing   heterogeneous   traffic   

condition   of   the   test   site   through   appropriate modifications and extensions of 

programming codes for other traffic simulation models of VISSIM. 

 

1.5 Significance of the Study 

Understanding the consequences of a highway or traffic operations improvement before project 

implementation is essential to traffic engineers and planners. Decision- makers are hesitant to 

invest in highway projects that promise to improve safety and reduce congestion without some 

evidence that these promises are realizable. Experimenting with the transportation system can 

be costly, traffic disruptive, and impractical. Engineers have been able to avoid such 

experiments by turning to computer software for a comparatively low-cost method of analyzing 

transportation projects. 

 

In North America and Europe, use of traffic simulation model for traffic management has 

become a common practice. It is much more time and cost effective with enhanced accuracy 

than any other field implementation tests. Bangladesh is yet to adopt such technology in 

transportation planning. Whereas, the utility of such modeling software can be maximized in 

developing country like Bangladesh where there is a continuous growth of traffic 
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infrastructures with inherent deficiency in efficient traffic management. Few of the government 

and private universities are presently in possession of VISSIM simulation software for the 

purpose of pure academic research. It is envisaged that the use of VISSIM will be 

commercialized within next five years with a greater number of professionals and expertise on 

this modeling software. And use of simulation model will be of limited utility until and unless 

it is properly calibrated. The model must be calibrated basing on existing roadway and traffic 

condition. Hence the importance of method of calibration cannot be under emphasized.    

 

1.6.  Outline of Methodology/ Experimental Design 

1.6.1 General procedures  

Calibration of a micro simulation model for mixed traffic requires special procedures to address 

the unique characteristics of such traffic. Accordingly, a methodology will be proposed which 

will include representation of vehicles, geometry and traffic, followed by identification of car 

following and lane changing calibration parameters by sensitivity analysis, setting their ranges 

heuristically and determining the parameter values by an optimization model. The traffic 

representation addresses several distinct features of mixed traffic. First, to ascertain the need 

for calibration, the model will be simulated with the default setting (pre-calibration) and will 

be compared with field values against the appropriate MOPs; if the error is insignificant (which 

is generally unlikely), then the model with default settings can be adopted without any further 

calibration. If the error is significant, the calibration steps will be followed. 
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1.6.2 Data collection 

A minimum of 7200 seconds of video data will be collected using drone on Dhaka-

Mymensingh Highway. The video will be analyzed through software module to get the macro 

and vehicle trajectory data.  

 

1.6.3 Vehicle representation 

Simulation models typically come with a set of standard types of vehicles such as car, bus, 

truck, and motorcycle. However, in the case of mixed traffic, several non-standard vehicle types 

such as motorized and non-motorized three wheelers exist and these can significantly affect the 

simulation results. Therefore, the first step in the simulation will be to accurately define the 

static and dynamic characteristics of every vehicle type in terms of length, width, acceleration 

and deceleration, and speed ranges.  

 

1.6.4 Geometric representation 

The next step will be accurate representation of the geometry of freeway defined by the number 

of lanes and width of each lane. 

 

1.6.5 Traffic representation 

This phase involves identifying the local characteristics of the traffic and fine tuning the 

elements of networks so that the traffic in the simulation behaves similar to the one in the 

reality. One can observe different additional movements in terms of lane changes, smaller 

vehicles seeping through etc. The available parameters in the simulation model may not be 
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sufficient to replicate certain special movements by the vehicles in mixed traffic, but depending 

on the flexibility of network modeling, one can try to bring the behavior in the simulation as 

close as possible to reality. 

 

1.6.6 Selection of parameters 

Parameters that influence the safety distance, space headway, drivers’ aggressiveness, safe and 

relative speed, time to collision and gap acceptance between subject vehicle and following 

vehicle will be the primary preference for calibration. A sensitivity analysis will be conducted 

to identify the key parameters for calibration of particular type of network. 

 

1.6.7 Optimization algorithm 

Three state-of-art heuristic optimization algorithms namely Genetic Algorithm (GA), 

Simultaneous Perturbation Stochastic Approximation (SPSA) and Simulated Annealing (SA) 

will be applied for calibration of parameters and their performance will be compared in terms 

of applicability, accuracy, computational time and level of effort for simultaneous calibration 

of car following and lane changing parameters. 

 

1.6.8 Measures of Performances (MOPs) and objective function 

Microscopic traffic variable for lane changing maneuver like space headway between a pair of 

leader-follower vehicles is dependent on their speed, and density around the roadway which is 

macroscopic traffic variable. As such both the aggregated and disaggregated MOPs will be 

selected and blended together to derive a mathematical equation for the objective function. 
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1.7 Thesis Outline 

This thesis consisting of eight chapters as follows:  

Chapter 1 gives an introduction of the relevant research background, problems statement, 

objectives and scope, significance of the study and outline of methodology of this thesis work. 

 

Chapter 2 comprehensively reviews previous works on calibration of microscopic traffic 

simulation models with respect to their categories in terms of use of micro simulation tools, 

calibration methodology, and use of objective functions and MOPs. 

 

Chapter 3 presents the salient aspects of microscopic simulation model VISSIM with special 

emphasis on Wiedemann’s 99 car following and lane changing driving behavior parameters.  

 

Chapter 4 presents three widely used stochastic optimization algorithm GA, SPSA and SA and 

makes a comparative study on their approaches in optimization. 

 

Chapter 5 derives the mathematical equation for the measurement of MOP and objective 

function. It also discusses the conceptual framework of the thesis work along with computer 

coded VISSIM interface ‘Optimization Program Control Interface (OPCI) that controls the 

entire automation of calibration process. 

 

Chapter 6 proposes a seven steps calibration procedure which includes field data collection 

and processing, VISSIM model development, determination of MOPs and Objective function, 

selection of parameter and range, sensitivity analysis and the calibration approaches based on 

three optimization techniques i.e. GA, SPSA & SA.  
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Chapter 7 presents the OPCI generated calibration and validation results in accordance with 

three optimization techniques along with relevant interpretation and analysis. 

  

Chapter 8 summarizes the main conclusions of this thesis and discusses recommendations for 

future thesis works related to calibration of macroscopic traffic simulation mode in different 

traffic and roadway condition. 

 

Annexure A presents numerous figures and tables explaining the relationship between 

headway and speed of following vehicle that has been established by analyzing each pair of 

Leader-Follower vehicles trajectory data obtained from each VISSIM simulation output file.  

 

Annexure B orients with the various features of OPCI and the automation of calibration 

process.  
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CHAPTER 2  
 

REVIEW OF LITERATURE 

 

Many studies about calibration of traffic simulation models have been published. These studies 

adopted different traffic microsimulation tools and model parameters, heuristic optimization 

methodologies and suitable objective function against numerous MOPs. This chapter briefly 

reviews the literatures based on mentioned categories.    

 

2.1 Traffic Microsimulation Tools 

Car following and lane changing models of few widely used microsimulation tools are reviewed 

in Table-2.1: 

Table 2.1: Car Following and Lane Changing Model of Various Traffic Microsimulation 
Tools 

Tools Car Following Model Lane Changing Model 

VISSIM Model based on the psycho-physical 

behavior suggested by Wiedemann in 

1974 and subsequently developed in 

1999. The model constituted by 

different thresholds that form four 

regimes; Free driving, Following, 

Approaching and Braking. 

It classifies lane changes into free lane 

change and necessary lane change. The 

free lane change uses lag time to 

collision in the target lane as the 

decision variable. For necessary lane 

change, the model also checks the lead 

time to collision and maximum 

deceleration. 

AIMSUN Safety distance model based on the 

model developed by Gipps (1981). 

When constrained by the vehicle in 

front, the follower tries to adjust its 

speed in order to obtain safe space 

headway to its leader. When free, the 

AIMSUN describes a vehicle’s 

motivation to change lane in terms of 

necessity, desirability, and possibility 

to change lanes following the Gipps 

lane changing model. 
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vehicle’s speed is constrained by its 

desired speed and its maximum 

acceleration. 

MITSIM Three regimes with different 

follower behavior; free driving, 

following and emergency 

deceleration. The behavior in the 

following regime is based on an The 

Gazis-Herman-Rothery (GHR) 

model which states that the 

follower’s acceleration is 

proportional to the speed of the 

follower, the speed difference 

between follower and leader, and the 

space headway. 

The model distinguishes between 

mandatory and discretionary lane 

changes. These models assume three 

levels of decision making: decision to 

change lane, choice of lane to change 

to, and execution of the lane change 

(gap acceptance). 

TRANSIMS The model uses cellular automata 

which divides a roadway into cells of 

equivalent size. Each cell can hold 

either a part of a vehicle (for large 

trucks or buses) or a single vehicle. 

No parts of any two distinct vehicles 

can occupy the same cell. 

Cellular automata model assumes that 

vehicle changes to another lane if the 

number of empty cells ahead and 

backward of the current and target lane 

satisfy favorable speed conditions, 

then, the lane change potential is 

expressed with certain probability, 

depending on availability of sufficient 

space to perform the lane change. 

PARAMICS The acceleration model is based on 

the psycho-physical model 

developed by Fritzsche (1994). The 

model accounts for human 

perception in the definitions of the 

five model regimes; Danger, Closing 

in, Following I, Following II and 

Free driving. 

The model is based on the gap 

acceptance theory, which has front gap 

and rear gap (both in distance unit) in 

the target lane as the decision variables. 
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CORSIM CORSIM Uses the Pitt’s car 

following model that incorporates the 

vehicle spacing and speed 

differential between the lead and 

following vehicle as two independent 

variables. Follower will maintain 

safe gap from leader and decelerate 

while insufficient gap prevails.   

Halati (1997) developed the model 

which are classified as mandatory lane 

changing, discretionary lane changing, 

and random lane changing. Lane 

changing maneuvers depend on the 

availability of acceptable lead and lag 

gaps in the target lane. 

 

 

Cheu (1998) used FRESIM to calibrate twelve global parameters. Kim & Rilett (2001) 

illustrated simulation model CORSIM and TRANSIMS by ITS data. GENOSIM was developed 

by Ma & Abdulhai (2002) in combinatorial parametric optimization to calibrate the micro-

simulation model PARAMICS. Schultz & Rilett (2004) introduced statistical method for normal 

distribution of data using CORSIM. Park & Qi (2005) chose VISSIM to calibrate eight driving 

behavior parameters. Turley (2007) developed a GUI for automated calibration in CORSIM. 

Cunto & Saccomanno (2008) described the procedure for calibrating and validating safety 

performance in VISSIM. Mathew & Radhakrishnan (2010) proposed a methodology to calibrate 

VISSIM for heterogeneous traffic. Park & Kwak (2011) presented a case study on TRANSIMS 

to calibrate and validate fourteen parameters related to car following and lane change behavior 

model. Omrani & Kattan (2013) calibrated the driver behavioral and route choice parameters in 

PARAMICS. Manjunatha, Vortisch & Mathew (2013) used VISSIM to calibrate thirteen 

parameters (four parameters after sensitivity analysis) in a mixed traffic environment at two 

signalized intersections in Mumbai. 
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2.2 Calibration Approach 

Cheu (1998) was the first one to apply the GA to the parameter calibration of FRESIM. Kim & 

Rilett (2001) illustrated GA based approach for simulation model CORSIM and TRANSIMS 

by ITS data. GENOSIM was developed by Ma & Abdulhai (2002) in combinatorial parametric 

optimization using GA as the core algorithm. Park & Schneeberger (2003) used Latin 

Hypercube sampling along with a linear regression model to generate scenarios. However, they 

did not consider the correlations among the parameters. Schultz & Rilett (2004) introduced 

methodologies for lognormal and normal distribution of data (i.e., mean and variance) for 

calibration. Park & Qi (2005) used Latin Hypercube Design (LHD) algorithm and statistical 

method ‘Analysis of Variance’ (ANOVA), to identify the appropriate parameters and their 

acceptable ranges. Kim, Kim & Rilett (2005) developed a statistically based objective function 

based on nonparametric statistical techniques like the Moses’ distribution free rank-like test, 

Wilcoxon rank-sum test and the Kolmogorov-Smirnov test to compare the simulated result. 

 

Egami, Mon-Ma, Setti & Rilett (2006) proposed a system for GA based automatic calibration 

of two-lane traffic simulation models using several different highway sections to find the set of 

calibrated parameters. Turley (2007) developed a GUI for automated calibration in CORSIM 

using GA as the core algorithm. Omrani & Kattan (2013) has developed multi-criteria 

optimization framework for the simultaneous calibration of demand and supply parameters in 

dynamic traffic assignment (DTA). They applied GA to estimate origin-destination (OD) flows. 

Mathew & Radhakrishnan (2013) applied GA to obtain optimal parameters in heterogeneous 

traffic environment. Manjunatha (2013) applied GA in the unique features of mixed traffic at 

signalized intersections. 
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Hee-Sang, Kwang & Ho-Chan (2008) introduced free model concept as an alternative 

intelligent system technique to design a controller for complex dynamic system and calibrated 

the parameters of the free model by simultaneous perturbation stochastic approximation (SPSA) 

method. Wang, Jian, Guanglin & Xiaowei (2013) optimized transit operation strategies. The 

penalty function method was adopted to simplify the optimization model into a general 

programming model with linear constraints. GA and the SA algorithm were used to obtain near-

optimum solutions. Kuo, Yiyo, Luo & Chi-Ming (2011) proposed a SA based circular route 

optimization procedure to optimize the driving route for buses.  

 

2.3 Objective Functions and MOPs 

Cheu (1998) used the mean absolute error ratio (MAER) as the fitness function which 

were10.68% and 15.32% respectively for AVI OD and CORSIM OD. Kim & Rilett (2001) 

obtained TRANSIMS MAER values as 0.72% for the AVI OD and 12.16% for CORSIM OD. 

Ma & Abdulhai (2002) used queue length as MOP for validation and 90% accuracy with field 

data was obtained.  MAER was used as the objective function against volume and travel time 

by Schultz & Rilett (2004). Volume MAER resulted a difference of 8.5% and 8.4% and travel 

time MAER yielded 15.2% and 15.9% for lognormal and normal distribution alternatives 

respectively. Kim, Kim & Rilett (2005) observed distribution of travel time rather than mean 

time with MAER ranged from 0.7% to 6.7%. Park & Qi (2005) chose average travel time, Park 

& Kwak (2011) used travel times and vehicle count, Cunto & Saccomanno (2008) and Duong, 

Saccomanno & Hellinga (2010) chose safety performance as MOP. 

 

Turley (2007) considered average content and speed during sensitivity analysis and volume and 

travel time during calibration. Volume MAER ranges from 12.1% to 24.0% and travel time 
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MAER ranges from 87.6% to 88.2% resulted in difference between values of default and 

calibrated parameters. Mathew & Radhakrishnan (2010) considered absolute error value as the 

objective function. Omrani & Kattan (2013) chose normalized root mean square error (NRMSE) 

and the Geoffrey E. Havers statistic (GEH) as the fitness function against OD flow. The NRMSE 

between the observed and simulated results were found to be 17.7% & 15.4% in AM peak, and 

20.3% & 19.3% in PM peak for count data and speed values respectively. 

 

2.4 Lane Changing Parameters 

There were numerous literatures that had worked on lane changing parameters. Karakikesa, 

Spanglera & Margreiter (2017) describes a systematic calibration process of a motorway 

network in VISSIM, based on travel time measurements that were derived from limited number 

of Bluetooth detectors. Model’s systematic calibration and validation under the suggested 

approach show very good results in 96.5% of the created intervals, for both cars and heavy 

vehicles. After a reasonable adjustment of desired speeds of vehicle classes in first stage, they 

calibrated cc1 & cc2 of Wiedemann 99 car following model, and maximum deceleration 

(trailing vehicle), safety distance reduction factor and maximum deceleration for cooperative 

braking of lane changing model in second stage of calibration. 

 

Lidbe, Hainen & Jones (2017) made a comparative study to evaluate three meta-heuristics (GA, 

SA, and Tabu Search (TS)) optimization techniques for calibration of microsimulation models 

in VISSIM by calibrating Wiedemann 74 car following and lane changing parameters, and 

concluded that TS gives better calibration results compared to the GA and SA. 
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Yeom, Rouphail, Rasdorf, & Schroeder (2016) proposed a methodology to simulate freeway 

work zone capacity in VISSIM under various scenarios of work zone lane closure and calibrated 

car following parameters cc1 and cc2 and lane changing parameters like maximum deceleration 

for a necessary lane change (own and trailing), for a necessary lane change, −1 meter/sec2 per 

distance (own and trailing), safety distance reduction factor and maximum deceleration for 

cooperative braking. It can replicate any work zone queue discharge flow rate value consistent 

with the empirical model predictions. 

 

Essa & Sayed (2015) used Surrogate Safety Assessment Model (SSAM) for measurement of 

conflict (e.g., time to collision) and finding their locations and compared with simulated 

conflicts in VISSIM. They followed a two-step calibration procedure to enhance correlation 

between simulated and field-measured conflicts. The first calibration step was matching actual 

field conditions (desired speed and arrival type) to ensure that VISSIM gives real average delay 

values. The second step was the use of sensitivity analysis followed by a genetic algorithm 

procedure to calibrate the VISSIM parameters that had effect on the simulated conflicts. The 

results highlighted the importance of model calibration and identified several limitations of the 

SSAM. 

 

Leyn & Vortisch (2015) simulated German highway capacity and calibrated VISSIM driving 

behavior parameters for basic freeway segments. They successfully calibrated cc1, cc4, cc8 and 

cc9 of Wiedemann 99 car following parameters and cooperative lane change maximum speed 

difference, maximum collision time, −1 meter/sec2 per distance (own), accepted deceleration 

(trailing vehicle) and to slower lane if collision time above of lane changing parameters. They 

recommended that a separate parameter set for every behavior type and vehicle class (e.g., 
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passenger cars and heavy vehicles) is crucial, as certain passenger car driving characteristics are 

inappropriate for heavy vehicles.  

 

Siddharth & Gitakrishnan (2013) simulated Indian heterogeneous traffic conditions in Chennai 

with calibration of five Wiedemann 74 and car following, one lane changing, one lateral driving 

behavior parameters and four desired accelerations using GA optimization technique. 

Calibrated parameters yielded 8.19% flow MAPE during calibration and 10.2% flow MAPE 

during validation. 

 

2.5 Summary 

VISSIM, AIMSUN, MITSIM, TRANSIMS, PARAMICS and CORSIM have relatively 

different presentation of their car following and lane changing models. The parameter sets, 

though not discussed in this chapter, are significantly different. The resulting car following 

trajectories of a follower – leader vehicle pair and lane changing behavior will not be similar. 

However, the speed difference between follower and leader, and the space headway (or gap) 

are two important aspects of roadway parameters that have been focused in all the 

microsimulation tools for modeling both the car following and lane changing behavior.  

 

From the above review it is revealed that though different micro simulation tools have been 

used for modeling, VISSIM is the widely used latest trend in micro simulation model. A look 

at the method of calibration studies revealed that GA and SPSA were frequently used. The 

relevant literature lacks the use of SA optimization in traffic simulation calibration. Again, the 

concept of GA has been applied vastly by different researchers to calibrate their desired 
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parameters in their respective geographic locations basing on different roadway and traffic 

configurations. The obtained optimal parameter values will not be similar in the context of 

Bangladesh with heterogeneous traffic mix and unconventional physical elements of roadways. 

Though significant number of researchers calibrated both the car following and lane changing 

parameters but they did that at different stages/steps of simulation process appropriate for 

particular types of networks and compared against separate measure of performances (MOPs) 

using mostly macro traffic data like vehicle count, speed, flow, volume, queue length, delay, 

capacity etcetera. But none applied for simultaneous calibration of car following and lane 

changing parameters. Car following parameters were also focused in few of the literatures for 

simulation of heterogeneous or mixed traffic where lane changing parameters were completely 

ignored. Complex maneuvers commonly adopted by the drivers in mixed traffic condition 

makes the calibration process of lane changing parameters more erroneous, which is further 

aggravated in non-lane- based traffic condition.  
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CHAPTER 3  
 

MICROSCOPIC SIMULATION MODEL VISSIM 

 

3.1 General  

VISSIM was developed in Germany at the University of Karlsruhe in the early 1970s, but the 

software was not made commercially available until 1993. Because of its European roots, 

VISSIM was designed to model a variety of modes, including general traffic, buses, light rail, 

heavy rail, trucks, pedestrians, and bicyclists. VISSIM is a microscopic, time step and 

behavior-based simulation model developed to model urban traffic and public transport 

operations and flows of pedestrians. The program can analyze private and public transport 

operations under constraints such as lane configuration, vehicle composition, traffic signals, 

public transport stops, thus making it a useful tool for the evaluation of various alternatives 

based on transportation engineering and planning measures of effectiveness (PTV VISSIM 7 

User Manual). 

 

VISSIM comprises a traffic simulator and a signal state generator. The traffic simulator is a 

microscopic traffic flow simulation model including the car following and lane change logic. 

It contains network geometry and generates traffic. As in CORSIM, VISSIM uses links to 

represent roadway segments. VISSIM does not, however, have the traditional node structure 

found in CORSIM. The signal state generator contains the signal control logic that can be used 

to can model virtually any control logic, including fixed time, actuated, adaptive, transit signal 

priority, and ramp metering. The node-less network structure and separate signal state 

generator both give the user greater flexibility in defining the traffic environment. 
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3.2 Car following logic (The Wiedemann Approach) 

VISSIM uses the psycho-physical driver behavior model developed by Wiedemann (1974). 

The basic concept of this model is that the driver of a faster moving vehicle starts to decelerate 

as he reaches his individual perception threshold to a slower moving vehicle. Since he cannot 

exactly determine the speed of that vehicle, his speed will fall below that vehicle’s speed until 

he starts to slightly accelerate again after reaching another perception threshold. This results in 

an iterative process of acceleration and deceleration. Different thresholds and regimes of 

Wiedemann car following model is shown in Figure-3.1.   

 

Figure 3.1: Different Thresholds and Regimes of Wiedemann Car Following Model 
Source: PTV VISSIM 7 User Manual 
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The basic idea of the Wiedemann model is the assumption that a driver can be in one of four 

driving modes: 

 

3.2.1  Free driving  

Free driving has no influence of preceding vehicles. In this mode the driver seeks to reach and 

maintain a certain speed, his individually desired speed. The vehicle is located above all 

thresholds in the Figure-3.1. 

 

3.2.2 Approaching  

It is the process of adapting the driver’s own speed to the lower speed of a preceding vehicle. 

While approaching (passing the SDV threshold of Fgure-3.1), a driver applies a deceleration 

so that the speed difference of the two vehicles is zero in the moment he reaches his desired 

safety distance. 

 

3.2.3 Following  

The driver follows the preceding car without any conscious acceleration or deceleration. He 

keeps the safety distance more or less constant, but again due to imperfect throttle control and 

imperfect estimation the speed difference oscillates around zero. The thresholds SDV, SDX, 

OPDV and BX constitute the Following regime (Figure-3.1). 
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3.2.3 Braking  

It is the application of medium to high deceleration rates if the distance falls below the desired 

safety distance (Threshold BX of Figure-3.1). 

 

3.3 Driving Behavior Model  

A driving behavior model is the core of any traffic simulation model. It determines how the 

vehicles will behave within the network. In VISSIM, the driving behavior models contain a 

psycho-physical car following model for longitudinal vehicle movement and a rule-based 

algorithm for lateral movements. 

 

3.3.1 Car-following Models  

The car following model contains the following parameters: 

3.3.1.1 The look ahead distance 

It defines the distance that a vehicle can see forward in order to react to other vehicles either in 

front or to the side of it (within the same link). This parameter is in addition to the number of 

Observed Vehicles. 

 

3.3.1.2 The number of observed vehicles 

This parameter affects how well vehicles in the network can predict other vehicles’ movements 

and react accordingly. As some of the network elements are internally modeled as vehicles it 

might be useful to increase this value if there are several cross sections of network elements 

within a short distance. However, the simulation will run slower with higher values. 
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3.3.1.3 The look back distance  

It defines the distance that a vehicle can see backwards in order to react to other vehicles behind 

(within the same link). The minimum value is important when modeling lateral vehicle 

behavior. 

 

3.3.1.4 Temporary lack of attention  

It defines a period of time for which vehicles will not react to a preceding vehicle (except for 

emergency braking) for a certain amount of time. 

 

3.3.2 Basic models for car following behavior and their parameters 

Car following model selects the basic model for the vehicle following behavior. Depending on 

the selected model the model parameters change. ‘Wiedemann 74’ model is mainly suitable 

for urban traffic and ‘Wiedemann 99’ model is used for freeways traffic. ‘No Interaction’ 

model is used for simplified pedestrian behavior where vehicles do not recognize any other 

vehicles. Depending on the selected Car following model a different number of model 

parameters are available. 

 

3.3.2.1 Wiedemann 74 model parameters 

This model is an improved version of Wiedemann’s 1974 car following model. The following 

parameters are available: 

a) Average standstill distance (ax) defines the average desired distance between 

stopped cars. It has a fixed variation of ± 1m. 
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b) Additive part of desired safety distance (bx_add) and Multiplication part of desired 

safety distance (bx_mult) affect the computation of the safety distance. The distance 

d between two vehicles is computed using the formula: 

d = ax + bx 

where ax is the standstill distance 

bx = (bx _ add + bx _mult * z) * v 

v is the vehicle speed (m/s) 

z is a value of range [0,1] which is normal distributed around 0.5 with a standard 

deviation of 0.15. 

 

3.3.2.2 Wiedemann 99 model parameters 

This model is based on Wiedemann’s 1999 car following model. The following parameters are 

available: 

a) CC0 (Standstill distance) defines the desired distance between stopped cars. It has 

no variation. 

 

b) CC1 (Headway time) is the time (seconds) that a driver wants to keep. The higher 

the value, the more cautious the driver is. Thus, at a given speed v (m/s), the safety 

distance dx_safe is computed to: 

dx_safe = CC0 + CC1 • v. 
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The safety distance is defined in the model as the minimum distance a driver will 

keep while following another car. In case of high volumes this distance becomes 

the value with the strongest influence on capacity. 

 

c) CC2 (‘Following’ variation) restricts the longitudinal oscillation or how much more 

distance than the desired safety distance a driver allows before he intentionally 

moves closer to the car in front. The default value is 4.0m which results in a quite 

stable following process. 

 

d) CC3 (Threshold for entering ‘Following’) controls the start of the deceleration 

process, i.e. when a driver recognizes a preceding slower vehicle. In other words, it 

defines how many seconds before reaching the safety distance the driver starts to 

decelerate. 

 

e) CC4 and CC5 (‘Following’ thresholds) control the speed differences during the 

‘Following’ state. Smaller values result in a more sensitive reaction of drivers to 

accelerations or decelerations of the preceding car, i.e. the vehicles are more tightly 

coupled. CC4 is used for negative and CC5 for positive speed differences. The 

default values result in a fairly tight restriction of the following process. 

 

f) CC6 (Speed dependency of oscillation) value indicates the influence of distance on 

speed oscillation while in following process. If the value set to 0 the speed 

oscillation is independent of the distance to the preceding vehicle. Larger values 

lead to a greater speed oscillation with increasing distance. 
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g) CC7 (Oscillation acceleration) is the actual acceleration during the oscillation 

process. 

 

h) CC8 (Standstill acceleration) is the desired acceleration when starting from 

standstill. 

 

i) CC9 (Acceleration at 80 km/h) is the desired acceleration at 80 km/h  

 

3.3.3 Lane change 

There are basically two kinds of lane changes in VISSIM: 

a) Necessary lane change (in order to reach the next connector of a route) 

b) Free lane change (because of more room / higher speed) 

 

3.3.3.1 Necessary lane change 

In case of necessary lane change, the driving behavior parameters contain the maximum 

acceptable deceleration for the vehicle and the trailing vehicle on the new lane, depending on 

the distance to the emergency stop position of the next connector of the route.  

 

3.3.3.2 Free lane change 

In case of free lane change, VISSIM checks for the desired safety distance of the trailing vehicle 

on the new lane. This safety distance depends on its speed and the speed of the vehicle that 

wants to change to that lane. There is currently no way for the user to change the 
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"aggressiveness" for these lane changes. However, changing the parameters for the desired 

safety distance (which are used for the vehicle following behavior) will affect the free lane 

changes as well. 

 

In both cases, when a driver tries to change lanes, the first step is to find a suitable gap (time 

headway) in the destination flow. The gap size is dependent on the speed both of the lane 

changer and the vehicle that “comes from behind” (on that lane where the lane changer changes 

to). In case of a necessary lane change it is also dependent on the deceleration values of the 

“aggressiveness”. 

 

3.4 Summary  

VISSIM is a microscopic, time-step and behavior-based simulation model developed to model 

urban traffic and public transit operations. A driving behavior model is the core of any traffic 

simulation model. It determines how the vehicles will behave within the network. In VISSIM, 

the driving behavior models contain a psycho-physical car following model for longitudinal 

vehicle movement and a rule-based algorithm for lateral movements. The models are based on 

the continued work of Wiedemann. In this study, Wiedemann 99 car following model for 

freeways and lane changing model have been used and sensitive driving behavior parameters 

of VISSIM are calibrated which will be discussed in later section. 
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CHAPTER 4  
 

STOCHASTIC OPTIMIZATION ALGORITHM 

 

4.1 General 

Stochastic optimization algorithms have been growing rapidly in popularity over the last decade 

or two, with a number of methods now becoming standard approaches for solving challenging 

optimization problems. Stochastic optimization plays a significant role in the analysis, design, 

and operation of modern systems. Methods for stochastic optimization provide a means of 

coping with inherent system noise and coping with models or systems that are highly nonlinear, 

high dimensional, or otherwise inappropriate for classical deterministic methods of 

optimization. Many traffic simulation models require the user to define characteristics for 

several different driver types.  Since an engineer cannot quantify a priori how courteous or 

aggressive the drivers on a particular system might be, these driver behavior characteristics 

must often be reverse engineered based on field data. Some method of optimization must be 

used to find a set of parameters that best reflects observed characteristics of the system. Three 

popularly used stochastic optimization algorithms SPSA, SA and GA lend them well to this 

task and is accepted as efficient and robust optimization and search methodologies used in a 

variety of fields. This section will briefly discuss the concept of these three optimization 

methods. 

 

4.2 Genetic Algorithm (GA) 

Genetic algorithm is a heuristic search method that belongs to the larger class of evolutionary 

algorithms (Goldberg 1989, Holland 1975). GA optimization is a stochastic search process that 
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mimics the natural process of the survival of the fittest through the manipulation of a population 

of chromosome. GA starts with a population with random “chromosomes” (initial population 

of parameter values), where each chromosome represents a vector of parameters containing a 

solution for the optimization problem. Fitness is a subjective measure used by Charles Darwin 

to describe how likely an organism is to survive and produce offspring. A fitness value is 

assigned to each chromosome according to the quality of the solution. Based on the fitness 

value of individuals that contribute to the population of the next generation, selection rules 

select individuals with probabilities. Afterwards, a random decision to either “mutate” or 

“crossover” is executed.  

 

In case of mutation decision, a random “chromosome” is elected from the current population 

and the parameter values are then changed to create an “offspring” chromosome by random 

process, based on predefined probabilities. For crossover decision, two random 

“chromosomes” are elected and random information (parameter values) are swapped to create 

an offspring chromosome. The chromosome (parameter set) that yields the worse fitness results 

(e.g., higher RMSE) from either “mutation” or “crossover” operation is then dropped. This 

process is continued until the maximum number of iterations is achieved or there are no changes 

in parameter sets between iterations.  

 

One limitation of GA is that, while they tend not to converge on local extrema, they have no 

way of determining whether a solution is the absolute best possible. Rather, they can only 

compare a solution to others that have been tried. Thus, GA is most appropriate in situation 

where a “good enough” solution is desired, rather than an absolute optimum 
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4.3 Simultaneous Perturbation Stochastic Approximation (SPSA) 

Simultaneous perturbation stochastic approximation (SPSA) is well known for its application 

to tackle optimization problems where the direct measurement of gradient ɡ(θ) is impossible, 

such as in the case of micro-simulation calibration (Spall, 1998). For a system, L(θ) is a scalar-

valued performance measure, and θ is a continuous-valued ρ-dimensional vector of the system 

parameters that can be manipulated to achieve a better system performance. It is common that 

a noise Ɛ could occur when observing L(θ) and then the observation z(θ) is described as follows: 

𝑧(𝜃) =  𝐿(𝜃) + Ɛ                    (4.1) 

It is assumed that L(θ) is differentiable over θ and that the minimum θ* is obtained at a zero 

point of the gradient, i.e., in Eq. (2): 

ɡ(𝜃) = ቚ
ఋ௅

ఋఏ
ቚ

ఏୀఏ∗
= 0                    (4.2) 

SPSA algorithm starts with an initial guess θ0 (e.g., the default parameter values in the 

simulation software). It then applies a series of “simultaneous perturbation” over the successive 

steps until the approximation of the gradient ɡ(θ) almost surely converges to zero. Along the 

successive steps, default parameters in simulation will get replaced with the estimated 

parameters θk. θk is updated recursively in the standard form. 

𝜃෠௞ାଵ  =  𝜃෠௞ –  𝑎௞ ɡො௞(𝜃෠௞)                (4.3) 

where the gained sequence {ak} needs to satisfy the regularity conditions, and ɡො௞(𝜃෠௞) is the 

estimated gradient at 𝜃 =  𝜃௞ at kth   iteration. 

The perturbation is performed upon deriving ɡො௞(𝜃෠௞). At iteration step k, a ρ-dimensional 

random perturbation vector Δk is generated. Each of the ρ components of Δk is independently 
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generated form a zero-mean probability satisfying certain conditions. Each component of Δk is 

usually generated from the Bernoulli (±1) distribution.  

𝑧௞
(ା)

 (𝜃௞)   =  𝐿 (𝜃෠௞  + 𝑐௞ 𝛥௞ )  +  Ɛ௞
(ା)

                  (4.4)  

𝑧௞
(ି)

 (𝜃௞)   =  𝐿 (𝜃෠௞ − 𝑐௞ 𝛥௞ )  +  Ɛ௞
(ି)                 (4.5)  

where ck is a positive scalar, and 𝑧௞
(ା)

 (𝜃௞),  𝑧௞
(ି)

 (𝜃௞) are the measurements of the system under 

the perturbation 𝜃෠௞  +  𝑐௞ 𝛥௞,  𝜃෠௞  −  𝑐௞ 𝛥௞, respectively. 

According to Spall (1998), SPSA uses the following formula to obtain the approximation of 

ɡො୩൫𝜃෠௞൯: 

ɡො୩൫𝜃෠௞൯ =  
୸ౡ

(శ)
 ି ୸ౡ

(ష)

ଶ௖ೖ

⎣
⎢
⎢
⎢
⎡
Δ୩

ିଵ

.

.

.
Δ୩୮

ିଵ
⎦
⎥
⎥
⎥
⎤

                       (4.6) 

The gained sequences of 𝑎௞ and 𝑐௞ are used to balance the algorithm stability and the desired 

forms of the gain sequences are shown below: 

𝑎௞ =  
௔

(ଵା஺ା௞)ഀ
 ,  𝑐௞ =  

௖

(ଵା௞)ം
                (4.7) 

where A is a constant that is applied to stabilize the optimization process. Spall (1998) 

recommended some general guidelines regarding the choices of 𝑎௞ and 𝑐௞. If a is small, the 

calculations are stable initially. However, this may result in sluggish performance for large 

calculations. On the other hand, a large numerator, 𝑎௞>0, which is used to produce non-

negligible step sizes, leads to instability early in the calculation. It is most effective to set the 

numerator c to a small positive number. 
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4.4 Simulated annealing (SA) 

SA imitates the annealing process used in metallurgic. The term ‘annealing’ refers to the process 

in which a solid, that has been brought into liquid phase by increasing its temperature, is brought 

back to the solid phase by slowly reducing the temperature in such a way that all the particles 

are allowed to arrange themselves in a perfect crystallized state. Such a crystallized state 

represents the global minimum of certain energy function (Ledesma, Aviña & Sanchez, 2008). 

 

In order for annealing to occur properly, the two conditions have to be met. First, the initial 

temperature has to be high enough to ensure that the process will start from a state in which all 

the particles are randomly arranged into the liquid phase. Second, the subsequent cooling 

process has to be slow enough in order to ensure that the particles will have time to rearrange 

themselves and reach thermal equilibrium at each temperature. Otherwise, if the initial 

temperature is not high enough or the cooling process is too fast, the annealing process will 

result in an unstable glass instead of a perfect crystal. This represents a suboptimal situation in 

which a local minimum instead of global minimum of the energy function has been reached. 

 

Simulated annealing (SA) was first introduced by Metropolis (1953). It imitated the annealing 

process used in metallurgic, specifically where a solid that has been brought into liquid phase 

by increasing its temperature has been brought back to the solid phase by slowly reducing the 

temperature. This conversion was carried out in such a way that all the particles were allowed 

to arrange themselves in a perfect crystallized state, resembling the global minimum of certain 

energy function. Kirkpatrick (1983) introduced the application of SA for deterministic 

optimization problems as an analogy of the annealing process for a thermodynamic system. In 

emulating the physical annealing process, SA treated the feasible solutions as the possible 
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energy states in a physical system, and the fitness value in the optimization problem as the 

energy of a physical system.  

The parameters to be calibrated are denoted by vector θi, and F(θi) is the associated fitness 

value and i is the iterative index. The current solution is randomly perturbed to obtain a new 

feasible solution θj. The new solution is accepted with a probability of 𝑝௝
௞. 

𝑝௝
௞ = ൝

1               F(𝜃୧) ≤ F(𝜃୨)

𝑒𝑥𝑝
൤

ూ(ഇ౟)షూ(ഇౠ)

೅ೖ 
൨
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                  (4.8) 

where Tk is a monotonically decreasing scalar sequence, imitating the cooling of temperature 

in the physical annealing process. As the sequence number k increases, the probability of 

accepting an inferior solution (compared with the previous solution) decrease. 

Based on the above process, SA avoids being trapped at local minima to find the best fitness 

value by accepting not only the changes that decrease objective function, but also some changes 

that increase it. Generally, the escape from local minima in SA is dependent on the annealing 

schedule, the choice of initial temperature, the number of perturbations at each temperature, 

and the amount of temperature reduction (Venkataraman, 2001).    

 

4.5 Summary 

There are a large number of methods for numerical optimization in multivariate problems. 

Hence, a user with a challenging optimization problem faces the daunting task of determining 

which algorithm is appropriate for a given problem. This choice is made more difficult by the 

large amount of "hype" and dubious claims that are associated with some popular algorithms. 

An inappropriate approach may lead to a large waste of resources, both from the view of wasted 
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efforts in implementation and from the view of the resulting suboptimal solution to the 

optimization problem of interest.  

 

Methods involving a population of candidate solutions, such as GA, may be useful for a broad 

search over the domain of the parameters being optimized and subsequent initialization of more 

powerful local search algorithms. One of the weaknesses of a GA is the inability to determine 

if a particular solution is the best possible. Stopping criteria define when a solution is “good 

enough.” Generally, this will either be a predefined minimum fitness value or a maximum 

number of iterations. 

 

SPSA is generally used in nonlinear problems having many variables where the objective 

function gradient is difficult or impossible to obtain. SPSA is designed explicitly for noisy 

measurements unlike GA and SA. SPSA to be competitive (and possibly more efficient) in 

terms of the overall cost of the optimization process (Spall, 1998) in comparison with GA and 

SA, especially the case when only noisy values of the objective function are available. 

 

Simulated annealing (SA) employs a stochastic approach in the search of global optima. In 

contrast to GA's stochastic manipulation of a whole pool of candidate solutions, the SA 

algorithm avoids being trapped in the neighborhood of local optima by allowing for temporary 

increases in the “cost”, namely the difference between the simulated outputs and their 

corresponding field measurements. SA algorithm does not require direct gradient information. 

This algorithm is designed to traverse local minima enroute to a global minima. Since this 

method can address both discrete and continuous optimization problems, there is no need to 

assume the existence of a loss-function gradient.  SA is based on intriguing analogy to the 



37 

cooling of materials and the achievement of an optimal state for the material by cooling neither 

too fast nor too slow. While some positive experience has been reported with optimization by 

SA, it appears that there exist more efficient algorithms for many problems.  

 

However, a problem common to all stochastic optimization techniques is that values must be 

specified for algorithm’s tunable coefficients. All stochastic optimization techniques have such 

coefficients (the gain sequence is SPSA, probability of crossover and mutation in GA, cooling 

schedule and probability of accepting a step in SA). These coefficient values are typically 

problem-dependent and can have a profound effect on the performance of an algorithm. No 

search algorithm is uniformly better than all other algorithms across all possible problems. It is 

clear, however, that some algorithms may work better than others on certain classes of problems 

as a consequence of being able to exploit the problem structure. 
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CHAPTER 5  
 

DERIVATION OF MATHEMATICAL MODEL AND CONCEPTUAL 
FRAMEWORK 

 

5.1 General 

Microscopic traffic simulation utilizes car following and lane changing models to represent 

each driver’s behaviors in a roadway for studying the transportation systems as a cost-effective 

alternative to field tests. Lane changing model is as important as car-following model that 

govern the second-to-second motion of vehicles in microscopic traffic simulation tools 

(FHWA 1995, PTV 2007, Quadstone 2009, TSS 2002, Caliper 2011). In car following models, 

the behavior of the leading vehicle is relatively unaffected by the lag one, while the lane 

changing decision depends on many parameters, and hence is more complex. Lane changes 

involve a high level of interaction between vehicles, and the behavior of each vehicle is largely 

influenced by others. Thus, it is essential for any researcher to study the microscopic vehicle 

details in order to understand the interactions of vehicles. The objective of this study is 

simultaneous calibration of car following and lane changing parameters considering a mix of 

microscopic and macroscopic traffic data. In this chapter a new mathematical model will be 

derived to meet the above objective. 

 

5.2 Relation between Headway and Speed in Microscopic Traffic Data 

Car following model has been studied by researchers for more than 50 years and there are 

numerous models on lane changing behavior. A lane change involves the interaction of several 

vehicles. The variables that describe the interactions between these vehicles may be divided 

into three groups: (i) Space Headway; (ii) Time Headway; and (iii) Speed (Balal, Cheu & 

Gyan, 2015). Space Headway is defined as the distance between corresponding points of two 
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successive vehicles at any given time. It involves the measurement of the distance from rear 

bumper of lead vehicle to rear bumper of following vehicle at a point of time. If all the space 

headways in distance x over which the density has been measured are added then,  

 

∑ hୱ୧  =  x
୬౮
ଵ                    (5.1) 

 

But the density (k) is the number of vehicles nx at a distance of x, that is 

 

k =  
୬౮

୶
=  

୬౮

∑ ୦౩౟
౤౮
భ

 =  
ଵ

୦ጟ౩
                 (5.2) 

Where, h̅s is average space headway. The average space headway is the inverse of density 

which is true for aggregated data.  

 

Space headway is an important measure of performance which is affected by both the car 

following and lane changing parameters in any microscopic traffic simulation model. Again, 

in a car following model, it can be easily visualized that space headway is affected by speed of 

Leader-Follower vehicle pair; higher the speed, greater the safety distance or headway between 

them. Similarly, minimum gap (synonymously headway) for lane change also depends on the 

speed of the subject vehicle (Mizanur, Mashrur, Xie, & He, 2013). Therefore, in microscopic 

traffic simulation, space headway being an important traffic measurement, is influenced by 

speed variable in both the car following and lane changing model. Speed is not only the factor 

that influences headway. The microscopic driving behavior is also related to macroscopic 

property of traffic stream (Laval and Daganzo 2006) e.g. density. As discussed before, average 

headway is inverse of average density for aggregated data. For disaggregated vehicles 

trajectory data like second-to-second motion of vehicles, average density will still have some 

effect on headway, but may not be in depiction of fundamental relationship between them for 
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aggregated data. A pattern may be drawn between both the measurements while performing 

the regression analysis between each pair of Leader-Follower vehicle.  

 

The observations from NGSIM US101 and I80 data (Figure 5.1 and 5.2) show a fairly linear 

relationship among the following distance/space headway (hs) and following speed (v) of the 

Leader-Follower car pair with quite a bit of scatter (Menneni & Carlos, 2008). But examining 

the traffic data for this study it can be suggested that relationship can better be fitted with 

second or third order polynominal curve (Figure A.1, Table A.1 & A.2 of Annexure A).  For 

the microscopic disaggregated vehicle trajectory data, relationship between following space 

headway (hs) and following speed (v) of the Leader-Follower car pair is largely influenced by 

the average density (k̅) of the roadway. As such a new mathematical model can be derived 

basing on the analysis of VISSIM simulated data where space headway (hs) between the 

Leader-Follower car pair will be the function of following speed (v) and average density (k̅) of 

the roadway, a fusion of both macro and micro data.   

 

hୱ  =     ƒ (v, kጟ  )                   (5.3) 
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Figure 5.1: Average following speed vs following distance (NGSIM US101 Data) 
Source: Menneni & Carlos (2008) 

Figure 5.2: Average following speed vs following distance (NGSIM US I80 Data) 
Source: Menneni & Carlos (2008) 
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5.3 Mathematical Model 

Regression analysis of NGSIM vehicle trajectory data indicated that a fairly linear relationship 

exists between space headway (hs) and the speed (v) of following vehicle of the Leader-

Follower car pair with some scattered variation (Figure 5.1 and 5.2).   

 

hୱ  =     ƒ (v)                    (5.4) 

 

Again, for aggregated macroscopic data, 

             

hതୱ  =  
ଵ

୩ጟ 
                    (5.5)

         

The linear regression relationship between space headway (hs) and the speed (v) can further be 

smoothen by incorporating second order or third order polynominal equation where all the 

coefficients will be dependent on average density (k̅) of the roadway. As such  

  

hୱ  =     ƒ (v, kጟ  )                   (5.6) 

 

hୱ  =    aଶvଶ + aଵv + a଴   (second order polynominal)            (5.7) 

or 

hୱ  =    aଷvଷ + aଶvଶ + aଵv + a଴  (third order polynominal)            (5.8) 

 

Where, 

hs = Space headway (m) 

v  =  Speed of following vehicle of Leader-Following vehicle pair (m/sec). 

a0, a1, a2, a3 = Coefficients dependent on average density (k̅) of the roadway.  
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a଴  =     ƒ ( kጟ )                     (5.9) 

aଵ  =     ƒ ( kጟ )                   (5.10) 

aଶ  =     ƒ ( kጟ )                   (5.11) 

aଷ  =     ƒ ( kጟ )                   (5.12) 

 

By plotting the value of a0, a1, a2, a3 for each pair of Leader-Follower vehicle against their 

corresponding average density (k̅), it is revealed that linear/polynominal relationship exist 

between each coefficient and average density with some noisy data. It can easily be visualized 

that a discrete relation between them will be difficult to obtain due to presence of highly 

variable data. However, for simplicity, assuming a linear relationship, the ‘Box and Whiskers 

Plot’ is used to remove the noisy data. The box and whisker diagram (or box plot) is a way to 

visually organize data into fourths or quartiles. The diagram is made up of a “box,” which lies 

between the first and third quartiles, and “whiskers” that are straight lines extending from the 

ends of the box to the maximum and minimum data values. Thus, the middle two-fourths are 

enclosed in a “box” and lower and upper fourths are drawn as whiskers. The length of the box 

itself, equal to the third quartile minus the first quartile, is called the interquartile range. The 

population interquartile range is the difference between the 0.75 and 0.25 quartiles. To be more 

aggressive in defining the relation, we have used semi-interquartile range where the data 

between the 0.75 and 0.50 quartiles have been considered for defining an equation and data 

beyond the range have been discarded. The comparative improvement of curve fitting after 

removal of noisy data for 2nd degree and 3rd degree polynominal relation between each 

coefficient and the average density is shown in Figure A.2 and A.3 at Annexure. We can draw 

the 2nd order polynominal relationship between each of the coefficients and average density 

through following equations (equation 5.13, 5.14, 5.15 and 5.16): 
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a଴  =  ƒ ൫ kത൯ =   m଴kതଶ + n଴kጟ + p଴               (5.13) 

aଵ  =  ƒ ൫ kത൯ =   mଵkതଶ + nଵkጟ + pଵ                          (5.14) 

aଶ  =  ƒ ൫ kത൯ =   mଶkതଶ + nଶkጟ + pଶ                          (5.15) 

aଷ  =  ƒ ൫ kത൯ =   mଷkതଶ + nଷkጟ + pଷ                          (5.16) 

 

Replacing the values of coefficient in Equation 5.7 and 5.8 we get, 

hୱ  =    vଶ(mଶkതଶ + nଶkጟ + pଶ) + v(mଵkതଶ + nଵkጟ + pଵ) + (m଴kതଶ + n଴kጟ + p଴)         (5.17) 

or 

hୱ  =   vଷ൫mଷkതଶ + nଷkത + pଷ൯ +  vଶ(mଶkതଶ + nଶkጟ + pଶ) + v(mଵkതଶ + nଵkጟ + pଵ) + (m଴kതଶ +

n଴kጟ + p଴)                           (5.18) 

 

Where, v and k̅ are the independent variables, and m0, m1, m2, m3, n0, n1, n2, n3, p0, p1, p2, p3 

are the coefficients whose values are obtained from the equation 5.13, 5.14, 5.15 and 5.16. This 

equation of space headway (hs) has been drawn from each VISSIM simulated output data 

(output file *.fzp) with different combination of parameters. In each iteration of optimization 

algorithm with different combination of parameters, values of simulated headway (hs) which 

are dependent on the independent variable v & k̅ and the coefficients, will be directed towards 

the observed headway values. An objective function of difference in space headway (hs) 

between the actual and simulated trajectory data derived by above mathematical equation will 

able to calibrate the desired parameters more precisely. 
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5.4 Conceptual Framework 

5.4.1 Optimization Program Control Interface (OPCI) 

An Optimization Program Control Interface (OPCI) has been coded in Visual Studio 2015 

integrates the Visual Basic 2015 and VISSIM 7.0 to implement the calibration approach by 

three optimization methods. A snap shot of OPCI is shown in figure 5.3 and 5.4. 

 

 

 

 

Figure 5.3: Snap Shot of Optimization Program Control Interface 
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New program for GA, SPSA and SA algorithm has been coded in Visual Basic 15 for the 

OPCI. OPCI capture the observed video data, analyze and organize the vehicle trajectory data 

for comparison with simulation data. It communicates with VISSIM through COM interface, 

customize the input parameters and run simulation for specific number of iterations as per 

user’s choice. After every simulation, OPCI gets the simulation result from VISSIM, analyze 

and formulate equation for MOP, and compare with observed data as per objective function. 

Guided by the selected optimization algorithm it suggests new set of parameters for the 

subsequent simulation. Finally, OPCI produces the output of optimal parameters resulting 

from lowest value of objective function. OPCI also has the provision of preserving vehicle 

trajectory data and displays result in the forms of graphs and charts for further analysis. 

 

 

Figure 5.4: Sub Menu Bar of Optimization Program Control Interface 
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5.4.2 Conceptual flow diagram 

The conceptual flow diagram for the complete optimization process illustrated in figure 5.5.   

 

 

Figure 5.5: Conceptual Flow Diagram 
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5.5       Summary 

This chapter presented derivation of mathematical model and conceptual framework. The 

conceptual framework elaborately demonstrated how OPCI controls the entire calibration 

process.  
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CHAPTER 6  
 

 CALIBRATION AND VALIDATION PROCEDURES ALONG WITH A 
CASE STUDY 

 
6.1 General 

The proposed procedure developed for the calibration and validation of microscopic 

simulation models is similar to those presently in practiced. The main innovation lies in the 

simultaneous calibration of car following and lane changing parameters, mathematical 

formulation of new equation for comparing of MOP in the objective function, fusion of 

macroscopic and microscopic vehicle trajectory data and comparison of the performance of 

three optimization techniques in calibration of parameters. Moreover, an interface software 

OPCI has been developed to assist users in calibration of micro simulation model VISSIM 

incorporating above innovations. The proposed procedure for calibrating microscopic 

simulation models consists of seven main steps: field data collection and processing, VISSIM 

model development, determination of MOPs and Objective function, selection of parameter 

and range, sensitivity analysis, parameter calibration using optimization techniques, and model 

validation. This chapter presents the proposed calibration and validation approach step-by-step 

in more details describing on a particular case study. In this research, all simulation work was 

carried out with Version 7. 0 of VISSIM on a personal computer with a Pentium 2.53-GHz 

central processing unit and 4.00 GB of random-access memory.  

 

6.2 Data Collection and Processing 

6.2.1 Study area 

At the beginning of the study a suitable site has been selected and a high-resolution data 

collection and processing techniques has been adopted for the research. The collected data will 
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serve as the basis for the calibration and validation for traffic simulation model VISSIM. The 

study site is the Tongi Diversion Road, a section of the Dhaka-Mymensingh Highway (N3) in 

Bangladesh (shown in Figure 6.1). It is an 8-lane major arterial road in Dhaka, which connects 

the capital city with the Shahjalal International Airport. A straight 400 meters long 

uninterrupted section has been selected. There are exactly 4 through lanes on each direction of 

the test site totaling up to a width of 14.48 meters (m). The test section experiences a 

directional average annual daily traffic (AADT) of about 11451 vehicles. The traffic stream 

consists of 40% cars, 12% microbuses or jeeps, 10% motorcycles, 8% buses, 10% utility 

vehicles and 20% auto-rickshaws. Such geometric and traffic characteristics make the test site 

an ideal study location for non-lane-based heterogeneous uninterrupted traffic condition. 

Figure 6.1: The study site (courtesy: https://snazzymaps.com) 

Position of 
the drone 
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6.2.2 Data collection 

Collection of high-resolution traffic data required for the development of an accurate 

macroscopic model is a very challenging task under the existing traffic condition of the study 

area. This is mainly because loop detectors are unsuitable for the test site due to measurement 

errors caused by non-lane-based movement of vehicles activating either both or neither of 

two adjacent detectors. Small Unmanned Aerial Vehicles (drones) have been one of the latest 

tools for monitoring transportation infrastructure and operations. Their lower cost compared 

to current fixed location camera systems or Manned Aerial Vehicles (MAV) and their ability 

to cover a large length of road arterials depending on viewing angle and altitude, make them 

a promising tool of collecting both macroscopic and microscopic data (Emmanouil, Eleni, 

Golias and Adam 2017). Moreover, drones’ ability to hover over any area gives the ability to 

collect data from places that would be considered unavailable by other fixed cameras. 

Considering such advantageous, DJI Mavic drone has been used in this study to record traffic 

stream which was flown at a height of 25 meters at a fixed location shown in figure 6.1. At 

this height the drone has clearly captured the traffic stream up to 400 meters length of the 

roadway. The drone offers gimbal support system for the camera with 3-axis stabilization. 

Therefore, there was no shakiness or movement of camera during video recording.   The 

drone has the hovering accuracy of ±0.1 meters vertically and ±0.3 meters horizontally. A 

snapshot of the recorded traffic stream by the drone is shown in figure 6.2. The data obtained 

from drone is considered representative of the traffic condition of the roadway up to 2.6 

kilometer as there is no ingress or egress within this section of Dhaka-Mymensingh Highway.  
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Only the southbound vehicle stream was recorded. Although the non-lane-based 

heterogeneous behavior becomes more acute with the increase of traffic volume in the 

roadway, the test site was videoed from 11:00 AM to 2:00 PM on 19 July 2018. These videos 

were processed and the extracted data was filtered for anomalies. Ultimately, 7200 seconds 

data of 19 July was used for calibration and validation of the model parameters. During this 

period, total 1191 instances of lane changing event have been detected.  

 

6.2.3 Data processing 

OPCI has provision for built-in data processing. It uses OpenCV (Open Source Computer 

Vision Library), an open source computer vision and machine learning software library. 

OpenCV was built to provide a common infrastructure for computer vision applications and to 

accelerate the use of machine perception in the commercial products. The library has more than 

2500 optimized algorithms, which includes a comprehensive set of both classic and state-of-

the-art computer vision and machine learning algorithms. These algorithms can be used to detect 

Figure 6.2: Snapshot of Captured Traffic Stream by Drone 

Southbound Traffic 
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and recognize faces, identify objects, classify human actions in videos, track camera 

movements, track moving objects, extract 3D models of objects, produce 3D point clouds from 

stereo cameras, stitch images together to produce a high-resolution image of an entire scene, 

find similar images from an image database, etc. (website, https://opencv.org). For extracting 

high resolution traffic data from the video footages of the drone cameras, OpenCV Background 

Subtraction (BS) technique of image processing was used for coding the algorithm in Visual 

Basic 2015. BS is a common and widely used technique for generating a foreground mask 

(namely, a binary image containing the pixels belonging to moving objects in the scene) by 

using static cameras. As the name suggests, BS calculates the foreground mask performing a 

subtraction between the current frame and a background model, containing the static part of the 

scene or, more in general, everything that can be considered as background given the 

characteristics of the observed scene. 

 

The algorithm can successfully detect non-lane-based movement of vehicles. It can also identify 

non-motorized traffic, and distinguish between dark car and car shadow quite accurately. Video 

data and vehicle geometry are provided as input to the algorithm and it gives vehicle position 

at 0.2 sec of interval of each vehicle of the traffic stream along the roadway in following format 

(Table-6.1):  
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Table 6.1: Sample Data Extraction by OpenCV Algorithm 

Ser 
Time 

(sec) 

Vehicle 

No 

Lane  

No 

Position 

(meter) 

Speed  

(km/hr) 

Leader 

Vehicle No 

Following 

Vehicle No 

Headway 

(meter) 

Density 

(veh/km) 

245 9.2 5 1 123.27           

243 9.2 6 1 100.01           

241 9.2 7 4 50.21           

258 9.4 5 1 126.78           

256 9.4 6 1 103.5           

254 9.4 7 4 52.47           

253 9.4 8 2 49.78           

284 9.6 5 1 130.28           

282 9.6 6 1 106.97           

280 9.6 7 4 54.73           

279 9.6 8 2 52.21           

 

Once OpenCV algorithm extracts data in above format, OPCI puts up an algorithm to fill up the 

rest of the fields using SQL Server 14.0. After each simulation in VISSIM, the OPCI also 

extracts data from VISSIM output file *.fzp and fill up the fields in the similar format (Table-

6.2).  

Table 6.2: Sample Data Extraction by SQL Server Algorithm 

Ser 
Time 

(sec) 

Vehicle 

No 

Lane  

No 

Position 

(meter) 

Speed  

(km/hr) 

Leader 

Vehicle No 

Following 

Vehicle No 

Headway 

(meter) 

Density 

(veh/km) 

245 9.2 5 1 123.27 63 1 6 58.73 72 

243 9.2 6 1 100.01 63.18 5 10 23.26 72 

241 9.2 7 4 50.21 40.5 4 11 75.84 72 

258 9.4 5 1 126.78 63.18 1 6 59.22 71 

256 9.4 6 1 103.5 62.82 5 10 23.28 71 

254 9.4 7 4 52.47 40.68 4 11 77.07 71 

253 9.4 8 2 49.78 43.74 2 12 74.19 71 

284 9.6 5 1 130.28 63 1 6 59.72 71 

282 9.6 6 1 106.97 62.46 5 10 23.31 71 

280 9.6 7 4 54.73 40.68 4 11 78.31 71 

279 9.6 8 2 52.21 43.74 2 12 74.7 71 
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6.3 VISSIM Model Development 

The VISSIM model was constructed by tracing the roadway network over the aerial 

photographs which served as a background. Scale was established on the aerials by matching 

landmarks with the scaled aerials from the study site, and was also verified from field 

measurements. The number of lanes and other roadway geometry were confirmed by field visits. 

Driver behavior parameters like driver aggressiveness and saturation flow rates were calibrated 

based on field observations. The distribution of vehicle types was also calibrated to local 

conditions so that the percentage of cars, heavy trucks, and buses matched the traffic counts. 3D 

models of non-standard vehicles like motorized three wheelers were drawn and incorporated in 

the VISSIM model to replicate reality. Non lane-based traffic movement is achieved in VISSIM 

by placing the vehicles anywhere on the lane by setting the ‘Desired position at free flow’ to 

‘any’ and permitting the vehicles to overtake along the left or right of a slower vehicle by setting 

the option overtaking to all. To keep the record of the attribute values for each vehicle per time 

step, ‘saving vehicle records to a file option’ in VISSIM was selected. In this case study, only 

the southbound network was modelled in VISSIM. 

 

6.4 Measure of Performance (MOP) 

It is important to clearly identify all MOPs before proceeding forward in the calibration and 

validation process. Calibration of parameters will be performed based on microscopic data and 

with these set of calibrated parameters validation of model will be conducted by macroscopic 

data. As such, space headway derived from mathematical equation during lane change has been 

considered as MOP for calibration and average headway for validation. To formulate the 

mathematical equation for space headway, each pair of Leader-Follower vehicles trajectory data 

have been analyzed and a relation between headway and speed of following vehicle has been 
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established. OPCI has used the Gauss-Jordan Elimination algorithm to solve any systems of 

linear/polynominal equations. Figure-A.1 at Annexure A to this thesis explains the relationship 

obtained from one of the VISSIM simulation output file. From the figure, it can preferably be 

concluded that 3rd degree polynominal relationship will have smoother curve fitting. 

Comparative tables of coefficient values along with their degree of reliability for all 384 pairs 

of Leader-Follower vehicles are also presented in Table A.1 and A.2 at Annexure A to support 

the above statement.  

    

After finalizing the degree of polynominal function, when we plot the coefficient a0, a1, a2 and 

a3 each against the average density, we find that liner/polynominal relationship exist between 

each coefficient and average density with some noisy data. OPCI has used the ‘Box and 

Whiskers Plot’ to remove the noisy data. The comparative improvement of curve fitting after 

removal of noisy data for 2nd degree and 3rd degree polynominal relation between each 

coefficient and the average density is shown in Figure A.2 and A.3 at Annexure. A 2nd degree 

polynominal functions between each of the coefficient and average density have been 

considered in this thesis. 

 

6.5 Objective Function 

6.5.1 Calibration of parameters  

A good objective function plays a critical role in obtaining good results. A widely used error 

measure that can provide a fairly good initial estimate of the degree of fit between the simulated 

and the actual traffic measurements is the Root Mean Squared Error (RMSE). In this thesis the 

objective function has been designed to be RMSE of space headway (hs) between the actual 

data, and actual data modified by above mathematical equation obtained from simulation during 



57 

lane changes. During the simulation, space headway (hs) of each pair of Leader-Follower 

vehicles is influenced by the car following parameters whereas, the lane change events are 

dictated by the lane changing parameters. As such an objective function that combines only 

those data of space headway (hs) during any event of lane changes will invariably ensure 

simultaneous calibration of both car following and lane changing parameters. The objective of 

the calibration is to minimize the RMSE which is expressed as the following equations: 

 

RMSE୦ୣୟୢ୵ୟ୷  =  
ଵ

୫
∑ ඥ(O୧ − S୧)

ଶ୫
୧ୀଵ                   (6.1) 

 

Where, 

Oi= Observed space headway (m) 

Si = Space headway (m) obtained by the mathematical equation derived from Simulated 

microscopic trajectory data 

m = Number of lane changes 

 

6.5.2 Validation 

Regardless of the exact calibration procedure employed its success and efficiency depends on 

the measurements used during the validation as well as the MOP employed. The measurements 

used to compare reality with simulation cannot be easily defined because they depend on the 

given site to be modeled and the available instrumentation. In freeways the most common 

measurements are volume, speed or occupancy, and rather infrequently density which can be 

derived from occupancy (Hourdakis, Michalopoulos & Kottommannil, 2003). In this thesis, 

space headway (hs) which was equated based on simulated microscopic trajectory data, has been 

used as MOP for calibration of parameters. As such an aggregated macroscopic measurement, 

like average headway, has been considered as the MOP with Sum of Absolute Error (SAE) of 
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simulated and observed data on average headway over every 10 meters interval along the 

roadway on each second as the objective function for validation. This objective function will 

actually allow us to examine the performance of parameters calibrated on microscopic data to 

depict the actual output while validating through macroscopic data. The objective function for 

validation will be expressed as follows: 

  

SAE୦ୣୟୢ୵ୟ୷  =  ∑ 𝐴𝑏𝑠(𝑆௜ − 𝑂௜)
୫
୧ୀଵ                              (6.2) 

Where, 

Si = Simulated average headway (m) on each sec of time over every 10 m interval of the roadway  

Oi= Observed average headway (m) on each sec of time over every 10 m interval of the roadway  

m = Number of data 

 

 

6.6 Selection of Parameters 

6.6.1 Simulation with default parameters 

Once the vehicle population has been defined, the simulation should be tested with the 

default Driver Behavior parameters. This defines the global calibration step in micro-

simulation modeling. This initial calibration is performed with default parameters values as 

suggested in different literatures to check how the model reproduces observed traffic 

conditions in the field. In this study, the initial calibration for the VISSIM models failed to 

reproduce field observations with default driver behavior settings with RMSE of headway 

30.32 meter during lane change. Thus, fine tuning of the model parameters was necessary.  
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6.6.2 Selection of parameters 

Initial selection of parameters depends on the type of model being calibrated. Certain parameters 

can be eliminated immediately. The decision to eliminate a parameter in this step should be 

based on a priori knowledge that the parameter will not meaningfully impact the simulation 

accuracy. Parameters may also be eliminated if the model they are associated with is not used. 

For example, Wiedemann 74 is related to arterial operations and Wiedemann 99 to freeway 

operations. This case study was implemented on a freeway and as such, the parameters related 

to Wiedemann 74 were not be included for calibration. Similarly, as there was no signalized 

intersection in the test site, signal model parameters were not considered for calibration. The 

rest parameters had to pass through the sensitivity analysis to prove its worthiness in affecting 

the simulation result while eliminated parameters were assigned with their default values.   

  

6.6.3 Defining parameters range 

There is no exact method to determine the ranges for the parameters. The ranges must be 

determined through a combination of past experience, information from the VISSIM 

documentation, and engineering judgment. The goal should be to make the range of a parameter 

large enough to cover all feasible values of the parameter without including values which 

introduce impossible or flawed behavior in the model. Impossible or flawed behavior could 

include things such as drivers running red lights or vehicles driving over the top of one another 

in an intersection. When the analyst is uncertain of a reasonable parameter range it is 

recommended to use a larger rather than smaller range and if necessary, narrow the ranges later 

in the process. Finally, engineering judgment must be used to modify the ranges used in other 

literatures or from the VISSIM documentation to tailor ranges to the specific model. Default, 
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minimum and maximum parameter values in respect of Wiedemann 99 car following and lane 

change driver behavior are given in Table A.2 and A.3.  

 

6.7 Sensitivity Analysis 

Due to the complexity of the microscopic simulation models, the number of calibration 

parameters has a significant effect on the computation time. The objective of the sensitivity 

analysis is to identify key model parameters affecting MOPs. In a sensitivity analysis, 

parameters chosen from the step parameter selection are tested to assess their level of influence 

on MOPs. A baseline scenario is first developed using default values for all initially selected 

parameters. Afterward, the value of parameters is changed one at a time, while other parameters 

are kept to default values. Values of MOPs are collected for all scenarios. The trend of how the 

MOPs change over the varying parameter value demonstrates the intensity of the relationship 

between MOP and this parameter. Based on the sensitivity analysis results, parameters with low 

effect on MOP are excluded. 

 

To ascertain the influence of a parameter on the space headway values derived from equation 

26, a sensitivity analysis is to be conducted. Each parameter will be evaluated at four levels: 

low, medium, default, and high. The magnitude of these levels is chosen so that the likely useful 

range of the parameters is represented in the analysis. The results for the low, medium, and high 

levels will then be tested to determine whether a significant difference between the MOP results 

of each relative to the default state exists or whether they all appear to belong to the same 

distribution. During sensitivity analysis all parameters except the one being studied were held 

at their respective default values. The default values used in this analysis do not represent the 

optimal values of the parameters for all simulations. Student’s t-test was conducted to test if 
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there is a significant change in the value of MOP at 95% confidence level (α-level of 0.05) with 

comparison to default values. All averages and standard errors for sensitivity runs are based on 

10 replicate runs at different random seeds of simulation. In this study, Wiedemann 99 car 

following model for freeways and Lane change model have been used and sensitivity analysis 

has been performed to determine most influential driving behavior parameters, affecting the 

model output, to be calibrated. Total 9 parameters are found to be sensitive to this model. These 

are w99cc0, w99cc1, w99cc2, w99cc3, w99cc4, w99cc5, w99cc7, w99cc8 and coopDecel. 

Table 6.3 provides a summary of the sensitivity findings for each of the driver behavior 

parameters: 

Table 6.3: Summary of Headway Sensitivity to Parameters Modification 

Parameters Level Value 
Avg Headway 
Difference (m) 

Standard 
Deviation 

t-
Statistic 

Degree of 
Freedom 

Critical 
t-Value 

Significance 

w99cc0 

Default 1.5 1304 1273.02 0 0 0  

Low 0 1305.79 1273.22 0 3 3.182 No 

Med 2 33.16 3.2 794.53 3 3.182 Yes 

High 4 31.77 2.57 990.06 3 3.182 Yes 

w99cc1 

Default 0.9 1304.2 1800.47 0 0 0  

Low 0 1941.21 1102.87 1.16 3 3.182 No 

Med 2 25.22 7.16 357.26 3 3.182 Yes 

High 4 3803.58 1292.5 3.92 3 3.182 Yes 

w99cc2 

Default 4 1304.2 2205.17 0 0 0  

Low 0 26.61 3.79 674.19 3 3.182 Yes 

Med 5 666.4 1100.12 1.16 3 3.182 No 

High 10 1305.2 1272.23 2 3 3.182 No 

w99cc3 

Default -8 1304.2 2546.34 0 0 0  

Low -30 2573.25 3.82 668.58 3 3.182 Yes 

Med -19 2571.07 9.45 270.47 3 3.182 Yes 

High -8 1304 1273.02 0 3 3.182 No 

w99cc4 

Default -0.35 1304.4 2847.01 0 0 0  

Low -1 29.59 4.54 561.59 3 3.182 Yes 

Med -0.5 667.79 1102.99 1.16 3 3.182 No 

High 0 667.99 1101.04 1.16 3 3.182 No 

w99cc5 

Default 0.35 1304.2 3118.74 0 0 0  

Low 0 1306.19 1273.22 0 3 3.182 No 

Med 0.5 668.19 1103.22 1.15 3 3.182 No 

High 1 32.57 2.02 1260.61 3 3.182 Yes 
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Parameters Level Value 
Avg Headway 
Difference (m) 

Standard 
Deviation 

t-
Statistic 

Degree of 
Freedom 

Critical 
t-Value 

Significance 

w99cc6 

Default 11.44 1304 3368.55 0 0 0  

Low 0 1303.21 1272.63 0 3 3.182 No 

Med 10 1305 1273.22 0 3 3.182 No 

High 20 668.39 1103.1 1.16 3 3.182 No 

w99cc7 

Default 0.25 1304.2 3601.14 0 0 0  

Low 0 30.98 1.95 1305.87 3 3.182 Yes 

Med 0.5 670.17 1102.07 1.15 3 3.182 No 

High 1 29.59 4.57 557.82 3 3.182 Yes 

w99cc8 

Default 3.5 1304.2 3819.6 0 0 0  

Low 1 35.35 1.82 1397.4 3 3.182 Yes 

Med 4.5 1304.6 1273.22 0 3 3.182 No 

High 8 1304.6 1272.83 0 3 3.182 No 

w99cc9 

Default 1.5 1304.2 4026.21 0 0 0  

Low 0.5 1305.39 1274.02 0 3 3.182 No 

Med 1.75 1304.4 1273.42 0 3 3.182 No 

High 3 1305 1273.22 0 3 3.182 No 

decelRedDistOwn 

Default 200 1304.4 4222.79 0 0 0  

Low 200 1304.2 1273.22 0 3 3.182 No 

Med 200 1304.2 1273.22 0 3 3.182 No 

High 200 1304.2 1273.22 0 3 3.182 No 

accDecelOwn 

Default -1 1304.2 4410.56 0 0 0  

Low -1 1304 1273.02 0 3 3.182 No 

Med -1 1304.2 1273.22 0 3 3.182 No 

High -1 1304 1273.02 0 3 3.182 No 

MaxDecelOwn 

Default -4 1304.2 4590.66 0 0 0  

Low -4 1304.2 1273.22 0 3 3.182 No 

Med -4 1304 1273.02 0 3 3.182 No 

High -4 1304.2 1273.22 0 3 3.182 No 

accDecelTrail 

Default -0.5 1304 4763.9 0 0 0  

Low -0.5 1304.2 1273.22 0 3 3.182 No 

Med -0.5 1304.2 1273.22 0 3 3.182 No 

High -0.5 1304.4 1273.42 0 3 3.182 No 

decelRedDistTrail 

Default 200 1304.2 4931.11 0 0 0  

Low 100 1304.2 1273.22 0 3 3.182 No 

Med 175 1304.2 1273.22 0 3 3.182 No 

High 250 1304.2 1273.22 0 3 3.182 No 

MaxDecelTrail 

Default -3 1304 5092.78 0 0 0  

Low -3 1304.2 1273.22 0 3 3.182 No 

Med -3 1304.2 1273.22 0 3 3.182 No 

High -3 1304 1273.02 0 3 3.182 No 

minHdwy 

Default 0.5 1304.2 5249.53 0 0 0  

Low 0.5 1304.4 1273.42 0 3 3.182 No 

Med 0.5 1304.2 1273.22 0 3 3.182 No 

High 0.5 1304.2 1273.22 0 3 3.182 No 
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Parameters Level Value 
Avg Headway 
Difference (m) 

Standard 
Deviation 

t-
Statistic 

Degree of 
Freedom 

Critical 
t-Value 

Significance 

diffusTm 

Default 60 1304.2 5401.72 0 0 0  

Low 60 1304.2 1273.22 0 3 3.182 No 

Med 60 1304 1273.02 0 3 3.182 No 

High 60 1304.2 1273.22 0 3 3.182 No 

coopDecel 

Default -3 1304.2 5549.75 0 0 0  

Low -3 33.56 2.99 849.93 3 3.182 Yes 

Med -3 1303.8 1274.02 0 3 3.182 No 

High -3 667.99 1101.5 1.16 3 3.182 No 

safDistFactLnChg 

Default 0.6 1304 5693.88 0 0 0  

Low 0.6 1304.2 1273.22 0 3 3.182 No 

Med 0.6 1304.2 1273.22 0 3 3.182 No 

High 0.6 1304 1273.02 0 3 3.182 No 

 

 

6.8 Parameter Calibration Using Optimization Algorithm 

6.8.1 GA based calibration approach 

GA resembles the biological process of evolution and natural selection. The basic idea of the 

GA is that a population of individuals, each representing a possible solution to a given problem, 

is compared to an assigned fitness value to get the best individuals. Selecting the best individuals 

from the current generation and mating them to produce a new set of individuals using genetic 

manipulation like genetic crossover and genetic mutation, the optimal individual is obtained 

after many iterations of GA. 

 

6.8.1.1   Defining chromosomes to represent the parameters 

In GA gene is represented by a binary digit 0 or 1. One chromosome is defined as a group of 

genes used to represent a value of each parameter. Generation is the specified number of 

chromosomes and the population size is defined as the number of chromosomes included in one 

generation.  
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6.8.1.2   Determining number of genes for each parameter 

Numbers of genes for each parameter vary according to domain of parameter and the increment 

of parameter values. An equation is derived by Yu Lie (2006) and later used by many researchers 

to determine the number of genes needed for each parameter. Table 6.4 illustrate the suggested 

number of genes for driving behavior parameters.   

 

Table 6.4: Number of Genes for Each Parameter 

Serial Driving Behavior Parameters Unit Number of Genes 

1 CC0 (Standstill distance) meter 5 

2 CC1 (Headway time) second 4 

3 CC2 (‘Following’ variation) meter 3 

4 CC3 (Threshold for entering ‘Following’) - 5 

5 CC4 (Negative ‘Following’ thresholds) - 4 

6 CC5 (Positive ‘Following’ thresholds) - 4 

7 CC7 (Oscillation acceleration) m/ s2 3 

8 CC8 (Standstill acceleration) m/ s2 4 

9 Maximum deceleration for cooperative braking m/ s2 3 

Total number of Genes  35 

 

6.8.1.3   Population of Chromosomes 

Table 6.4 shows total 35 genes will represent the nine parameters for calibration. So, a 

chromosome with any combination of 35 genes will represent all nine parameters. The 

population size is therefore the number of chromosomes in one generation which is considered 
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16 in this thesis. We can recall here that holding the number of iterations constant, larger 

populations tends to reach higher fitness values than smaller populations.  

 

6.8.1.4   Decoding each chromosomes to parameter values 

The equations derived by Yu Lie (2006) have been used in this thesis for decoding each 

chromosome to parameter values.   

 

6.8.1.5   Selection, crossover and mutation of chromosome 

In GA, select, crossover and mutate are three operators needed in creating the next generation 

of chromosome. Selection is based on probability, and the chromosomes with higher fitness 

values will most likely be selected. In the study 50 percent of the total of 16 populations is 

reproduced for the next generation. Again, above mentioned 50 percent of chromosomes are 

recombined in the next generation with a crossover rate of 0.7 (i.e. 70 percent of the total 35 

genes). Two chromosomes interchange part of their genes to create two new chromosomes 

during crossover. One chromosome is mutated to create a new chromosome by changing one of 

its genes from 1to 0 or from 0 to 1. The probability of any element of a chromosome being 

mutated is approximately 1 percent.     

 

6.8.1.6   Creation of new generation 

After the operators of selection, crossover and mutation are carried out to the chromosomes of 

the former generation, more chromosomes will be produced to form the new generation while 

keeping the same population size. The whole iteration process will continue for 20 times in the 
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program. Finally, the chromosome that will be ranked with highest fitness value (meaning 

lowest RMSE) will represent the optimal parameter set.   

 

6.8.2 SPSA based calibration approach 

SPSA is based on highly efficient gradient approximation that relies on measurement of 

objective function, not on measurements of gradient of objective function (Spall, 1998). It is 

particularly advantageous when complete knowledge on the relationship between the 

parameters to be optimized and the objective function are not available or difficult to compute. 

Optimization in SPSA is based only two function measurements regardless of the dimension of 

the gradient vector. In the micro simulation calibration context in general, the objective function 

is the Loss (θ) which is a scalar valued MOP and θ is a continuous-valued ρ-dimensional vector 

of parameters to be optimized. With an initial guess of θ which is in our case is the default 

parameter values of VISSIM, SPSA method applies a series of “simultaneous perturbation” over 

the successive steps until the approximation of the gradient converges to zero.  

 

6.8.2.1   Number of iteration and coefficient selection 

In our study we have examined the convergence of gradient for 100 iterations with an 

initialization of counter k set to zero. A, c, 𝑎, α and γ are the non-negative coefficient in SPSA 

algorithm. The algorithm gain sequences are 𝑎௞ and 𝑐௞ which are expressed in the following 

equations: 

𝑎௞ =
௔

(஺ା௄ାଵ)ഀ 
      and      𝑐௞ =

௖

(௄ାଵ)ം
  

Recommended coefficient values of are given in the Table 6.5. 
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Table 6.5: Recommended Values of Coefficients-SPSA 

Serial Coefficient Value Remarks 

1 α 0.602  

2 γ 0.101  

3 𝑎 0.0017 ௔

(஺ାଵ)ഀ  
    * value of elements in ɡො௞൫𝜃෠௞൯ = smallest 

value of change in the elements of θ in the first 

iteration. 

4 c 1.89 Standard deviation of the measurement noise in y(θ)  

which can be estimated by collecting several y(θ)  

values at the initial guess of θ. 

5 A 10 ≤ 10% of number of iterations 

 

 

6.8.2.2   Generation of simultaneous perturbation vector 

A ρ-dimensional random perturbation vector Δ is generated by using Bernoulli ± 1 distribution 

with probability of 1/2 for each ± 1 outcome.  

 

6.8.2.3   Evaluation of objective function 

Two measurements of objective function based on the simultaneous perturbation of current 𝜃௞  

are obtained which can be expressed as  𝑦(𝜃෠௞ +  𝑐௞ ∗ 𝛥) and 𝑦(𝜃෠௞ − 𝑐௞ ∗ 𝛥). 
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6.8.2.4   Gradient approximation 

Simultaneous perturbation is applied to all components in 𝜃෠௞ of an unknown gradient 

ɡ୩൫𝜃෠௞൯ and the gradient approximation can be shown as: 

 

ɡො୩൫𝜃෠௞൯ =  
𝑦(𝜃෠௞ +  𝑐௞ ∗ 𝛥)   −  𝑦(𝜃෠௞ −  𝑐௞ ∗ 𝛥)

2𝑐௞

⎣
⎢
⎢
⎢
⎡
Δ୩

ିଵ

.

.

.
Δ୩୮

ିଵ
⎦
⎥
⎥
⎥
⎤

 

 

6.8.2.5   Updating θ Estimates 

In every iteration 𝜃෠௞ is updated as 𝜃෠௞ାଵ recursively in the standard stochastic approximation 

form. 

𝜃෠௞ାଵ  =  𝜃෠௞ –  𝑎௞ ∗  ɡො௞(𝜃෠௞) 

Where 𝑎௞ is a positive gain sequence of step sizes, and ɡො௞൫𝜃෠௞൯ is the approximation of ɡ(𝜃) at 

each iteration. 

 

6.8.2.6   Imposing constraints 

The above optimization form is adapted to accommodate a constraint of upper and lower bound 

for each component of 𝜃 and updated 𝜃 is modified, if necessary.  

 

6.8.2.7   Termination of algorithm 

The algorithm will terminate after 100 iterations with a value of k = k+1 in successive iterations. 
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6.8.3 SA based calibration approach 

The SA optimization technique bases it operation in considering the objective function of MOP 

as the equivalent energy function of an illusory annealing process. In this way a control 

parameter ‘t’, which is referred as the ‘temperature’, is used to control the randomness of the 

optimization process. ‘temperature’ is used to determine how and when new solutions are 

perturbed and accepted.  

 

The algorithm is defined in such a way that for high values of ‘t’, the search is performed totally 

at random; and then, when ‘t’ is decreased, the search becomes more and more directive. The 

algorithm is basically a three steps process: perturb the solution, evaluate the quality of the 

solution, and accept the solution if it is better than the new one (Ledesma, Aviña & Sanchez, 

2008). 

 

The SA annealing algorithm can be described as an iterative procedure composed by two nested 

loops. The inner loop simulates the achievement of thermal equilibrium at a given temperature, 

so it is going to be referred as the thermal equilibrium loop. The outer loop performs the cooling 

process, in which the temperature is decreased from its initial value towards zero until certain 

convergence criterion is achieved and the search is stopped. This loop is going to be referred as 

the cooling loop or annealing loop. 

 

6.8.3.1   Thermal equilibrium loop 

Starting with an initial model, 20 iterations were made inside the thermal equilibrium loop. Each 

iteration of the inner loop computes a new model that may or may not be accepted according to 

certain probability.  

 



70 

6.8.3.1.1  Perturbation scheme 

It defines the way in which the model is updated. The parameters to be calibrated are denoted 

by vector θi, and F(θi) is the associated fitness value and i is the iterative index. The current 

solution is randomly perturbed using a uniform distribution over the feasible set in the model 

space to obtain a new set of parameters θj with feasible solution F(θj). The new solution is 

accepted with certain probability.  

 

6.8.3.1.2  Acceptance criterion 

Metropolis algorithm is used to determine the acceptance criterion. In the algorithm, a 

measurement ‘ΔE’ is computed by subtracting the measurement of the objective function at the 

initial model from the updated model.  

𝛥𝐸 =  F(𝜃୨) − F(𝜃୧) 

If 𝛥𝐸 <  0 then updated model θj is always accepted. But, if 𝛥𝐸 ≥  0 then updated model is 

accepted with probability: 

𝑝 = 𝑒
ି௱ா

௧  

Where ‘𝑝’ is the probability of acceptance of updated model and ‘𝑡’ is ‘temperature’. On the 

other hand, if the updated model is not accepted, the new iteration will proceed with the same 

initial model θi. It is important to note that, at high values of temperature, the probability 

presents a uniform preference for any model; while, at very low temperatures, only those models 

for which ‘𝛥𝐸’ is very small will have a substantial chance of occurrence. The probability of 

accepting worse solution 𝑝଴ = 0.7 at the start and 𝑝௡ = 0.001 at the end of the model 

optimization has been considered. 
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6.8.3.2   Cooling loop 

The cooling or annealing loop, constitutes the outer loop of the algorithm. It starts with an initial 

model selected at random and an initial value of temperature 𝑡଴. At each iteration, the 

temperature is decreased in a progressive manner towards zero until certain convergence 

criterion is achieved.  20 iterations were made inside the cooling loop. 

 

6.8.3.2.1  Initial temperature 

The initial value of the temperature parameter is of critical importance to the success of the 

algorithm. A low initial temperature can result in a loss of the global character of the search by 

restricting the search to the region of the model space around the starting point. On the other 

hand, a too high initial temperature will keep the algorithm performing ‘random walks’ over the 

model space during a large number of iterations. This will result in an unnecessary waste of 

valuable computational time; and, what is worse, it can result in an unsuccessful search if the 

total number of iterations is limited. According to this, the initial temperature value must be 

defined in such a way that almost any perturbation must be accepted during the first iteration of 

the cooling loop. Initial temperature 𝑡଴ =  −1.0/𝑙𝑜𝑔(𝑝଴) and final temperature 𝑡௡ =

 −1.0/𝑙𝑜𝑔(𝑝௡) has been considered in this study. 

 

6.8.3.2.2  Cooling schedule 

It defines the way in which the temperature is going to be decreased. It is also of crucial 

importance in the success of the search. A very low cooling schedule will take too much iteration 

to reach the global minimum and, if the total number of iterations is limited, an unsuccessful 

search can result. On the other hand, a too fast cooling schedule can get the algorithm trapped 

in a local minimum or even in any smooth region of the error surface. In this study, after each 
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iteration of outer loop, temperature is decreased by a factor and replaces the existing temperature 

by, 

𝑡௞ାଵ = 𝑡௞ ∗ (
𝑡௡

𝑡଴
)

ଵ
௡ିଵ.଴ 

Where 𝑡௞  is the value of the temperature at iteration k, 𝑡଴ is the initial temperature, 𝑡௡ is the final 

temperature and 𝑛 is the number of outer loop. 

 

6.9       Summary 

This chapter presented an overview of the execution part of the thesis. Seven steps of proposed 

calibration procedure were sequentially explained on this subject case study. Data collection 

and processing, selection of MOPs and objective functions for parameter calibration and 

validation, and the calibration approaches based on three optimization techniques i.e. GA, SPSA 

& SA have been elaborately discussed. 
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CHAPTER 7  
 

CALIBRATION RESULTS AND VALIDATION 

 

7.1 General 

This chapter describes the detail analysis of calibration and validation results of the calibrated 

parameters against the three optimization algorithms generated by OPCI. 

 

7.2 Measurement of Objective Functions with Default Parameters 

With default parameters the measurement of RMSE with respect to space headway at any 

instances of lane change between the field data and simulated data was found 30.32 meter. 

Such unusual simulated result with default parameter indicates the necessity of model 

calibration.  

 

7.3 Calibration Results 

7.3.1 Genetic Algorithm (GA) 

7.3.1.1 Measurement of objective function 

The measurement of objective functions (i.e RMSE of space headway during lane change) in 

each generation of GA is presented in Table 7-1. The initial value of the objective function was 

6.35 meter and after calibration process the RMSE decreased to 2.38 meter (62.52% reduction). 

In comparison with default parameters this change is equivalent to a decrement in the RMSE 

of 92.15%. Table 7-1 shows the calibrated parameters and RMSE values at each generation of 

GA.  
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Table 7.1: RMSE Values at each Generation of GA 

Gen 
No 

w99cc0 w99cc1 w99cc2 w99cc3 w99cc4 w99cc5 w99cc7 w99cc8 coopDecel RMSE 

1 0.26 1.07 4.29 -25.74 -0.4 0.87 1 6.6 -6.1 6.35 

2 0.65 2.4 2.86 -12.26 0 0.53 0.29 6.6 -4.53 6.36 

3 0.52 2.4 2.86 -12.97 -0.87 0.2 0.71 1 -2.96 3.35 

4 0.52 2.4 2.86 -12.97 -0.87 0.2 0.71 1 -2.96 3.35 

5 0.52 2.4 2.86 -12.97 -0.87 0.2 0.71 1 -2.96 3.35 

6 0.52 2.4 2.86 -12.97 -0.87 0.2 0.71 1 -2.96 3.35 

7 0.52 2.4 2.86 -12.97 -0.87 0.2 0.71 1 -2.96 3.35 

8 0.52 2.4 2.86 -12.97 -0.87 0.2 0.71 1 -2.96 3.35 

9 0.52 2.4 2.86 -12.97 -0.87 0.2 0.71 1 -2.96 3.35 

10 3.61 1.6 1.43 -24.32 0 0.4 1 2.87 -5.58 2.38 

11 3.61 1.6 1.43 -24.32 0 0.4 1 2.87 -5.58 2.38 

12 3.61 1.6 1.43 -24.32 0 0.4 1 2.87 -5.58 2.38 

13 3.61 1.6 1.43 -24.32 0 0.4 1 2.87 -5.58 2.38 

14 3.61 1.6 1.43 -24.32 0 0.4 1 2.87 -5.58 2.38 

15 3.61 1.6 1.43 -24.32 0 0.4 1 2.87 -5.58 2.38 

16 1.55 1.6 1.43 -22.19 0 0.4 1 1 -5.05 2.38 

17 1.55 1.6 1.43 -22.19 0 0.4 1 1 -5.05 2.38 

18 1.55 1.6 1.43 -22.19 0 0.4 1 1 -5.05 2.38 

19 1.55 1.6 1.43 -22.19 0 0.4 1 1 -5.05 2.38 

20 3.61 1.6 1.43 -24.32 0 0.4 1 2.87 -5.58 2.38 

 

7.3.1.2 Convergence of Objective Functions 

The convergence of GA in respect of calibrated parameters and the objective function are 

shown in following figures. The figure shows the improvement of the objective function at 

each generation of the calibration process based on GA algorithm. It took 10 generations to get 
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the optimized parameter set for GA based calibration. A close examination of the successive 

solutions indicates that, in the beginning of the calibration, the population includes randomly 

generated individuals; over the iterations, the population evolves towards better solutions and 

in the very last iteration, the majority of the population individuals are virtually identical. 

 

cc0 cc1 cc2 

   

cc3 cc4 cc5 

   

cc7 cc8 coopDecel 
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Figure 7.1: Convergence of GA Parameters and Objective Function (Generated from 
CALVIS) 

Objective Function (Headway Difference during Lane Change) 

 

  

 

 

7.3.2 Simultaneous Perturbation Stochastic Approximation (SPSA) 

7.3.2.1 Measurement of objective function 

With 100 iteration in SPSA, the initial value of the objective function was 45.28 meter and 

after calibration process the RMSE decreased to 2.47 meter (95.55% reduction). In comparison 

with default parameters this change is equivalent to a decrement of 91.85% RMSE. Table 7-2 

shows the calibrated parameters and RMSE values at each iteration of SPSA. 
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Table 7.2: RMSE Values at each Iteration of SPSA 

Iteration w99cc0 w99cc1 w99cc2 w99cc3 w99cc4 w99cc5 w99cc7 w99cc8 coopDecel RMSE 

1 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 45.28 

2 2.63 1.79 4.9 -9.27 -0.01 0 0 4.39 -1.84 43.46 

3 0 2.6 5.7 -9.7 -2.05 2.05 0 1.8 -1.3 44.48 

4 1.37 0.77 3.87 -8 -0.22 0.22 0.38 3.37 -2.87 48.45 

5 1.37 0.77 3.87 -8 -0.22 0.22 0.38 3.37 -2.87 40.51 

6 1.37 0.77 3.87 -8 -0.22 0.22 0.38 3.37 -2.87 40.51 

7 1.37 0.77 3.87 -8 -0.22 0.22 0.38 3.37 -2.87 48.45 

8 1.37 0.77 3.87 -8 -0.22 0.22 0.38 3.37 -2.87 40.51 

9 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 34.16 

10 1.37 0.77 3.87 -8 -0.22 0.22 0.38 3.37 -2.87 40.51 

11 2.73 1.89 2.26 -9.37 -1.37 0 0 1.75 -1.74 36.71 

12 2.74 1.9 2.27 -9.38 -1.38 0 0 1.76 -1.75 36.72 

13 1.37 0.77 3.87 -8 -0.22 0.22 0.38 3.37 -2.87 40.51 

14 2.74 1.9 2.27 -9.38 -1.38 0 0 1.76 -1.75 36.72 

15 2.74 1.9 2.27 -9.38 -1.38 0 0 1.76 -1.75 36.72 

16 2.74 1.9 2.27 -9.38 -1.38 0 0 1.76 -1.75 36.72 

17 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 34.16 

18 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 34.16 

19 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 33.36 

20 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 33.36 

21 3.02 2.42 2.22 -9.65 -1.87 1.87 2.03 1.72 -4.52 31.77 

22 3.02 2.42 2.22 -9.65 -1.87 1.87 2.03 1.72 -4.52 31.77 

23 1.24 0.64 3.75 -8.12 -0.1 0.09 0.26 3.24 -2.99 28.6 

24 1.24 0.64 3.75 -8.12 -0.1 0.09 0.26 3.24 -2.99 28.6 

25 1.24 0.64 3.75 -8.12 -0.1 0.09 0.26 3.24 -2.99 28.6 

26 1.24 0.64 3.75 -8.12 -0.1 0.09 0.26 3.24 -2.99 28.6 

27 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 27.01 

28 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 27.01 

29 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 27.01 

30 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 27.01 

31 1.37 0.77 3.87 -8 -0.22 0.22 0.38 3.37 -2.87 26.21 
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Iteration w99cc0 w99cc1 w99cc2 w99cc3 w99cc4 w99cc5 w99cc7 w99cc8 coopDecel RMSE 

32 1.24 0.64 3.75 -8.12 -0.1 0.09 0.26 3.24 -2.99 25.42 

33 1.24 0.64 3.75 -8.12 -0.1 0.09 0.26 3.24 -2.99 25.42 

34 1.24 0.64 3.75 -8.12 -0.1 0.09 0.26 3.24 -2.99 25.42 

35 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 25.57 

36 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 25.57 

37 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 25.57 

38 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 25.57 

39 2.78 0 2.21 -6.58 -1.64 0 1.8 1.7 -1.45 24.62 

40 2.78 0 2.21 -6.58 -1.64 0 1.8 1.7 -1.45 24.62 

41 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 23.83 

42 0.01 0 4.98 -9.35 -0.01 1.35 1.49 4.47 -1.76 23.04 

43 2.83 0 2.16 -6.53 -1.47 1.47 1.61 1.65 -4.58 22.24 

44 0 0 5.11 -6.52 -0.01 1.48 1.62 4.6 -4.59 21.45 

45 1.5 0.9 4 -8 -0.35 0.35 0.25 3.5 -3 20.65 

46 1.5 0.9 4 -8 -0.35 0.35 0.25 3.5 -3 20.65 

47 1.5 0.9 4 -8 -0.35 0.35 0.25 3.5 -3 20.65 

48 2.64 1.8 2.35 -9.28 -1.28 1.28 0 1.84 -4.39 19.95 

49 2.76 0 2.23 -9.4 -1.4 1.4 0 4.52 -1.71 19.86 

50 2.87 0 2.12 -9.51 -0.01 1.51 1.65 1.61 -4.62 19.06 

51 0.09 1.79 2.36 -6.73 -1.27 1.27 1.41 4.39 -1.84 18.27 

52 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 17.69 

53 3.02 0 2.22 -6.35 -1.87 0 0 5.02 -4.52 16.68 

54 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 15.63 

55 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 15.09 

56 0.07 1.81 4.92 -9.29 -0.01 1.29 0 4.41 -1.82 12.35 

57 0.03 1.85 2.3 -6.67 -0.01 0 0 4.45 -1.78 11.32 

58 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 11.12 

59 0 1.94 5.05 -9.42 -0.01 0 0 4.54 -1.69 10.74 

60 0.01 1.87 4.98 -9.35 -1.35 1.35 1.49 1.77 -4.46 10.33 

61 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 9.55 

62 2.72 1.88 2.27 -9.36 -0.01 0 0 4.48 -1.75 9.02 

63 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 8.91 

64 0.09 1.79 2.36 -6.73 -1.27 1.27 0 1.85 -1.84 8.82 
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Iteration w99cc0 w99cc1 w99cc2 w99cc3 w99cc4 w99cc5 w99cc7 w99cc8 coopDecel RMSE 

65 0.05 1.83 4.94 -9.31 -0.01 0 0 1.81 -4.42 5.84 

66 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 5.8 

67 0.11 1.77 4.88 -9.25 -0.01 1.25 0 4.37 -1.86 5.78 

68 2.61 1.77 2.38 -6.75 -0.01 0 0 1.87 -1.86 5.65 

69 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 5.56 

70 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 3.99 

71 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 3.97 

72 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 3.37 

73 0 1.89 2.26 -9.37 -1.37 0 0 1.75 -1.74 3.26 

74 0 1.95 2.2 -9.43 -1.43 0 1.57 4.55 -4.54 3.18 

75 0.03 1.85 2.3 -9.33 -0.01 0 0 4.45 -1.78 2.49 

76 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 2.47 

77 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 2.47 

78 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 2.47 

79 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 2.47 

80 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 2.47 

81 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 2.47 

82 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 2.47 

83 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 2.47 

84 0 1.95 2.2 -9.43 -1.43 0 1.57 4.55 -4.54 3.18 

85 0 1.95 2.2 -9.43 -1.43 0 1.57 4.55 -4.54 3.18 

86 0 1.95 2.2 -9.43 -1.43 0 1.57 4.55 -4.54 3.18 

87 0 1.95 2.2 -9.43 -1.43 0 1.57 4.55 -4.54 3.18 

88 0 1.95 2.2 -9.43 -1.43 0 1.57 4.55 -4.54 3.18 

89 0 1.95 2.2 -9.43 -1.43 0 1.57 4.55 -4.54 3.18 

90 0 1.95 2.2 -9.43 -1.43 0 1.57 4.55 -4.54 3.18 

91 0 1.95 2.2 -9.43 -1.43 0 1.57 4.55 -4.54 3.18 

92 0 1.95 2.2 -9.43 -1.43 0 1.57 4.55 -4.54 3.18 

93 0 1.95 2.2 -9.43 -1.43 0 1.57 4.55 -4.54 3.18 

94 0 1.95 2.2 -9.43 -1.43 0 1.57 4.55 -4.54 3.18 

95 0 1.95 2.2 -9.43 -1.43 0 1.57 4.55 -4.54 3.18 

96 0 1.95 2.2 -9.43 -1.43 0 1.57 4.55 -4.54 3.18 

97 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 3.97 
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Iteration w99cc0 w99cc1 w99cc2 w99cc3 w99cc4 w99cc5 w99cc7 w99cc8 coopDecel RMSE 

98 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 3.97 

99 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 3.97 

100 1.36 0.52 3.63 -8 0 0 0.14 3.12 -3.11 3.97 

 

 

7.3.2.2 Convergence of objective function 

The fitness value of SPSA shows a noisy trajectory during the first few iterations and then 

follows the gradient approximation on the graph (Figure. 7.2). The convergence of SPSA in 

respect of calibrated parameters and the objective function are shown in following figures. 

Optimal parameter set has been obtained at 76 iteration of SPSA.  
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Objective Function (Headway Difference during Lane Change) 

 

 

Figure 7.2: Convergence of SPSA Parameters and Objective Function (Generated from 
CALVIS) 

 

7.3.3 Simultaneous Annealing (SA) 

7.3.3.1 Measurement of objective function 

The measurement of RMSE of space headway during lane change in each cycle of SA is 

presented in Table 7-3. The initial value of the objective function was 15.09 meter and after 

calibration process the RMSE decreased to 1.85 meter (87.74% reduction). In comparison with 

default parameters this change is equivalent to a decrement of 93.90% RMSE. Table 7-3 shows 

the calibrated parameters and RMSE values at each cycle of SA. 
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Table 7.3: RMSE Values at each Cycle of SA 

Cycle w99cc0 w99cc1 w99cc2 w99cc3 w99cc4 w99cc5 w99cc7 w99cc8 coopDecel RMSE 

1 1.5 0 4.05 -8 -0.93 0.7 0.48 2.53 -4.12 15.09 

2 1.12 0 4.03 -8 -0.74 1 0.24 3.29 -4.71 18.27 

3 0.71 1.25 1.53 -9.08 -0.44 0.3 0 5.88 -6.1 16.68 

4 0.74 1.6 1.65 -8.18 -0.09 0.33 0 5.66 -5.58 2.41 

5 0.65 2.18 1.89 -8 -1 0.85 1 6.8 -5.02 2.38 

6 0.7 1.51 1.54 -8.66 -1 0.3 0.69 6.32 -6 3.18 

7 2.17 1.64 1.04 -8.57 -0.97 0.34 0 3.73 -5.15 3.2 

8 2.21 1.94 1.2 -8 -0.21 0.19 0.51 4.29 -4.78 4.34 

9 3.65 1.92 0 -8.61 -0.47 0.95 0.58 5.04 -5.53 2.38 

10 3.87 3.54 0 -9.94 -1 0 0.43 3.48 -4.34 2497.99 

11 3.22 3.4 0.22 -10.04 -0.23 1 0 2.02 -2.81 2494.02 

12 2.65 3.5 1.52 -10.25 -1 0.99 0.2 1.87 -2.44 2490.84 

13 0.27 1.86 1.16 -12.4 0 1 0.61 5.66 -3.24 1.85 

14 1.44 2.42 1.57 -10.79 -0.82 0 1 3.34 -3.67 4.9 

15 1.73 1.85 0.55 -9.83 0 0.42 0.53 4.65 -4.66 2.38 

16 0.86 1.84 0.84 -10.66 0 0 0.76 4.8 -5.14 3.97 

17 0.79 1.6 0.18 -10.13 -0.37 0.58 0 4.96 -4.97 3.97 

18 0.26 1.92 0.89 -12.43 -0.19 0.63 0 5.2 -2.8 4.04 

19 0.27 1.86 1.16 -12.4 0 1 0.61 5.66 -3.24 1.85 

20 0.27 1.86 1.16 -12.4 0 1 0.61 5.66 -3.24 1.85 
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7.3.3.2 Convergence of objective function 

The evolution of model parameters during each iterations of SA is presented in figure 7.3. The 

progression of the parameters shows numerous local optima marked by small “valleys”, 

indicating that the lowest FV is within the close vicinity of the local minima. Presence of these 

small valleys prove that SA has a provision to accept a fraction of inferior solutions to escape 

local optima in search of global optima. The convergence of SA in respect of calibrated 

parameters and the objective function are shown in following figures. Optimal parameter set 

has been obtained at 13 cycles of SA.  
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Objective Function (Headway Difference during Lane Change) 

 

 

Figure 7.3: Convergence of SA Parameters and Objective Function (Generated from 
CALVIS) 

 

7.4 Comparison of Calibration Results 

7.4.1 Optimal parameters 

The optimization operation of GA, SPSA and SA is performed on the same search space to 

draw a comparison between the outcomes. Comparative set of optimal parameters obtained by 

GA, SPSA and SA in respect of headway during lane change MOP are shown in Table 7.4: 

Table 7.4: Optimal Parameters in respect of three Optimization Techniques 

Serial Driving Behavior Parameters Unit GA SPSA SA 

1 CC0 (Standstill distance) meter 0.77 1.36 0.27 

2 CC1 (Headway time) second 2.13 0.52 1.86 

3 CC2 (‘Following’ variation) meter 0 3.63 1.16 
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Serial Driving Behavior Parameters Unit GA SPSA SA 

4 CC3 (Threshold for entering 

‘Following’) 
- -28.58 -8.0 -12.4 

5 CC4 (Negative ‘Following’ 

thresholds) 
- -0.27 0 0 

6 CC5 (Positive ‘Following’ 

thresholds) 
- 0.13 0 1.0 

7 CC7 (Oscillation acceleration) m/ s2 0.57 0.14 0.61 

8 CC8 (Standstill acceleration) m/ s2 1.0 3.2 5.66 

9 coopDecel (Max Deceleration for 

cooperative braking) 
m/ s2 -4.01 -3.11 -3.24 

 

 

7.4.2 Convergence of objective functions 

Comparative calibration result and the improvement of the objective function at each iteration 

of the calibration process of GA, SPSA and SA as generated from the CALVIS are presented 

in figure 7.4 and 7.5: 

Figure 7.4: Summary of Comparative Calibration Result (Generated from CALVIS) 
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Figure 7.5: Comparative Convergence Charts (Generated from CALVIS) 

The average space headway difference during lane change is 1.7 meter as measured from the 

field data captured from a drone. But the value of the objective function with the default 

parameter set is 30.32 meter which is unusual as compared to the field data. Results shows that 

SA reaches best fitness value (FV) of 1.85 meter at 13th cycles (256 iterations) with 93.90% 

improvement from default parameters and 8.92% deviation from actual data, GA displays a FV 

of 2.36 meter at 11th generation (173 iterations) with 92.15% improvement from default 

parameters and 40.12% deviation from actual data, and SPSA shows the worst FV of 2.47 meter 

with 91.85% improvement from default parameters and 45.42% error from actual data at 76 

iterations. Visualization of the fitness values shows that SPSA remains oscillatory and follow a 

steep gradient of FV during the convergence process, GA shows a gradual convergence with 

very little oscillation of the FV whereas SA shows frequent fall and rise before converging 

towards the optimal parameter set (Figure. 7.5). SA outperformed GA and SPSA for the current 

calibration process.  
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7.4.3 Computational complexity 

Generally, there is a trade-off between the quality of the solution and the time available for 

calibration. Often in research projects and studies there is a time limit that is directly related to 

cost from practical considerations. CALVIS gives the user such flexibility that the entire 

calibration process can be oriented towards the quality of the solution while compromising time 

or vice versa. This trade-off between time and quality is reflected in the case study of the 

freeway scenario. For instance, Table 7.5 shows that SPSA converged to an optimal solution by 

76 iterations compared to other two techniques (173 for GA and 256 for SA). However, the 

quality of the output, FV in this case is found to be the least from others. As per as the 

computational time is concerned, GA proves to be economical with reasonable FV. The 

complexity of the calibration process depends on the number of involved micro-simulation 

parameters. This implies that the increase of the number of parameters has a substantial effect 

on the computational time and outcome of the calibration process. 

 

Table 7.5: Computational Complexity 

Optimization 

Algorithm 

Number of 

Iteration 

Optimal 

Converge at 

Optimal FV 

(m) 

Computational 

Time (Hr:Min) 

GA 320 173 2.38 08:59 

SPSA 100 76 2.47 12:01 

SA 400 256 1.85 11:05 
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7.5 Validation 

As discussed before, the model was calibrated based on micro simulation vehicle trajectory 

data. The calibrated model was then evaluated against aggregated MOP based on macro traffic 

data for validation. Average space headway for every 10 seconds of interval along every 10 

meters segments of roadway has been considered as the aggregated MOP for validation. With 

respective optimal parameters obtained from GA, SPSA and SA the model was again simulated 

for validation and the differences in result with the field data in relation to sum of absolute 

headway difference as objective function are shown in the figure 7.6 below (generated from 

CALVIS):  

 

Figure 7.6: Validation Result (Generated from CALVIS) 

With default parameters the sum of absolute headway difference between the actual observed 

traffic data and the simulated data was 32,128.21 meter. SA optimized parameters reduced the 

difference to 59.98% (12,859.27 meter) whereas, GA based parameters reduced to 40.09% 
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(19,248.47 meter) and SPSA based parameters to 37.82% (19,976.35 meter). The validation 

result indicates that the simulation parameters calibrated by analyzing micro traffic trajectory 

data have significant impact on macro measurement of traffic data in depicting aggregated 

values close to the observed field data.  

 

 

7.6       Summary 

The graphical and tabular representations of the calibration and validation results are presented 

in this chapter. While comparing with default parameters, the calibration results yielded an 

error minimization by 93.90% in SA algorithm, 92.15% in GA algorithm and 91.85% in SPSA 

algorithm. While comparing with actual data, the error is minimized to only 8.92% in SA 

algorithm which is remarkable. Again, the validation charts clearly amplify the justification of 

the calibration and satisfactorily validate the calibration of the model.  
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CHAPTER 8  
 

CONCLUSION AND RECOMMENDATIONS 

 

8.1 Conclusion 

Use of micro simulation model has become an inseparable element in traffic management, and 

there are no other good options than that of adopting such state-of-art technology. The purpose 

of this research was three-fold: a) to propose a simulation methodology by simultaneous 

calibration of car following and lane changing parameters, b) to formulate an objective function 

by the fusion of macroscopic and microscopic traffic data, and c) To investigate a robust 

heuristic optimization algorithm to be used for mixed traffic condition. This research addresses 

all three objectives mentioned above. 

 

This thesis proposed a seven steps procedure for calibrating microscopic simulation models: 1) 

field data collection and processing, 2) VISSIM model development, 3) determination of MOPs 

and Objective function, 4) selection of parameter and range, 5) sensitivity analysis, 6) 

parameter calibration using optimization techniques, and 7) model validation. The main 

innovation of the proposed calibration procedure lies in the simultaneous calibration of car 

following and lane changing parameters, mathematical formulation of new equation for the 

objective function, fusion of macroscopic and microscopic vehicle trajectory data and 

comparison of the performance of three optimization techniques in calibration of parameters. 

Calibration approaches based on GA, SPSA and SA were also elaborately discussed.  

 

While comparing with default parameters, the calibration results yielded an error minimization 

by 93.90% in SA algorithm, 92.15% in GA algorithm and 91.85% in SPSA algorithm. SA 
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outperformed GA and SPSA for the current calibration process. Again, the validation charts 

clearly amplify the justification of the calibration and satisfactorily validate the calibration of 

the model. The calibration procedure demonstrated in this thesis was successful in finding 

parameter sets that improved the accuracy of the model, relative to the default parameter values.  

 

Calibration is a complex and tedious process involving large set of micro-simulation 

parameters for a particular network. Previously several studies have added new techniques and 

automation to the calibration process (Balakrishna 2007, Ma 2007). However, the use of 

generic calibration tool for any micro-simulation model is very limited in the literature that is 

particularly important and invaluable to any practitioner or researcher considering the 

complexity, cost, and time associated with the calibration process. This study develops a 

generic calibration tool, CALVIS for microscopic simulation parameters in VISSIM 

environment. The optimization system of the tool is based on three heuristic algorithms: (1) 

GA, (2) SPSA, (3) SA. This tool offers greater flexibility to the user by providing control on 

every aspect of the calibration process. CALVIS includes significant features consisting of the 

ability to test the significance of the appropriate decision parameter set to check the suitability 

of any of the three heuristic optimization algorithms for a particular network. Note that 

CALVIS can be used to calibrate any type (rural, urban and etc.) and extent (large, medium 

and etc.) of network. However, in this study the operation of the tool is tested by a dataset 

obtained by a drone from a 400 meter stretched freeway of Dhaka, Bangladesh which is 

representative of 2.6 km segment of the freeway. 
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8.2 Recommendations for Future Study 

Although traffic simulation models have been studied for more than two decades in the 

developed world, research on this topic in Bangladesh as well as in other south-east Asian 

countries is extremely scarce and challenging. This is mainly due to the complexity of data 

collection and processing and the wide variations of driver population, vehicle components and 

traffic environment. The current study of calibration process cannot be applied equally to 

different roadway conditions and highly complex heterogeneous traffic operation. In fact, it 

should be kept in mind that there is not a single set of calibrated parameters that applies to 

all traffic situations. In this section some recommendations are provided for future research 

following the studies carried out in this dissertation. These are listed below. 

 

a) Scope of this thesis was limited to freeways only. Calibration process for unban 

roadways and intersection in context of Bangladesh should also be devised. 

 

b) Exploration on the possibility of online calibration in context of Bangladesh may 

be done for more accurate and automated calibration process. 

 

c) Finally, further and extensive expansion of the computer programmed interface to 

include all possible variations of traffic and roadway conditions that supports all 

micro simulation tools presently in vogue. 
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ANNEXURE A 

RELATIONSHIP BETWEEN HEADWAY AND SPEED OBTAINED 
FROM MICROSCOPIC VEHICLE TRAJECTORY DATA 

A relationship between headway and speed of following vehicle has been established by 

analyzing each pair of Leader-Follower vehicles trajectory data obtained from each VISSIM 

simulation output file. A comparison of such relationship pattern has been explained in 

following figure (Figure-A.1) considering one of the VISSIM simulated output files.  

Linear Relationship 2nd Degree Polynominal 
Relationship 

3rd Degree Polynominal 
Relationship 

   

 

 

   

   

  

 

 

 

 

 

Figure A.1: Comparison of relationship between Headway and Speed 



A-2 
 

The coefficient values obtained from the mathematical equation derived from the relationship 

of headway and speed of each pair of Leader-Follower vehicle along with reliability values of 

one of the simulated output files is given in Table-A.1 and A.2. 

 

Table A.1: Coefficient Values with Degree     Table A.2: Coefficient Values with Degree 
      of Reliability (2nd Degree Polynomial)           of Reliability (3rd Degree Polynomial)
   

a0 a1 a2 R2  a0 a1 a2 a3 R2 
0.0109 0.7392 -0.0056 89.67%  -0.0003 2.9545 -0.0755 0.0005 88.62% 

4.8717 -1.7846 0.0565 83.97%  0.0047 12.2768 -0.6477 0.0088 97.73% 

0.8697 -1.155 0.0348 88.35%  0.0159 9.6785 -0.4193 0.0047 89.17% 

0.111 -1.8205 0.0497 86.39%  -0.2109 4.1395 -0.1821 0.0022 91.13% 

0.6764 -2.1939 0.0664 91.12%  -0.0067 18.5339 -0.7694 0.0081 88.64% 

2.6267 -0.3804 0.0151 84.04%  -0.0104 16.134 -0.6847 0.0075 96.49% 

-0.0616 3.0276 -0.0269 91.01%  0.0015 18.4913 -0.829 0.0095 91.07% 

1.9819 -0.3097 0.0148 84.45%  -0.0011 17.0148 -0.7477 0.0084 84.23% 

1.0168 0.1322 0.0055 85.02%  -0.0107 21.5584 -1.0467 0.013 97.08% 

0.0624 0.3559 0.0031 84.31%  -0.0586 5.055 -0.1898 0.0019 89.24% 

0.0387 -2.8108 0.081 97.76%  -0.0217 4.9633 -0.1905 0.002 97.45% 

0.4372 0.1242 0.0096 88.36%  -0.001 1.5034 0.0231 -0.0004 90.81% 

0.0104 0.2377 0.0045 89.79%  -0.0234 7.2047 -0.2832 0.003 95.75% 

2.097 -1.5366 0.0445 89.09%  -0.0175 2.5927 -0.0903 0.0009 90.51% 

0.0285 0.5636 -0.003 89.37%  -0.0019 6.8961 -0.2031 0.0016 88.46% 

2.0591 -1.4378 0.0433 81.97%  0.0008 2.2699 -0.1465 0.0025 97.65% 

-0.0636 0.4957 -0.0024 81.10%  -0.0044 11.3269 -0.4315 0.0043 96.20% 

0.0115 0.7672 -0.0095 87.77%  0.0026 0.5895 -0.0106 0.0002 86.27% 

0.0418 0.6949 -0.0061 85.91%  0.0088 2.8665 -0.1244 0.0015 81.14% 

-0.0013 0.9773 -0.0086 94.30%  0.0085 10.4862 -0.4834 0.0058 97.69% 

0.738 -1.3008 0.045 83.87%  0.0003 2.5431 -0.0942 0.001 90.87% 

0.0017 0.7423 -0.0071 86.76%  0.0038 15.9885 -0.7579 0.0092 96.37% 

0.0533 -0.4685 0.0207 88.19%  0.0015 -1.1448 0.0648 -0.0007 83.17% 

0.1061 -0.1601 0.0116 82.61%  -0.0001 3.8541 -0.1604 0.0018 82.81% 

-0.0619 0.1778 0.0062 80.95%  0.004 1.4262 -0.0339 0.0003 86.26% 

-0.0028 0.767 -0.0089 84.90%  -0.0009 0.9375 -0.0069 0 93.24% 

0.003 0.5229 -0.0033 88.18%  0.0063 11.918 -0.6223 0.0084 96.40% 

2.0918 -0.9343 0.0316 91.08%  -0.0004 0.9762 -0.0185 0.0001 85.98% 

1.2321 -1.0474 0.0389 81.67%  0.0026 3.8356 -0.1284 0.0012 80.28% 

0.0315 0.7644 -0.0066 90.68%  0.0002 9.9744 -0.4471 0.0052 89.27% 

0.5354 -1.0602 0.0375 95.25%  -0.0009 16.9971 -0.7035 0.0074 94.88% 

0.2018 0.9747 -0.009 81.27%  -0.0004 0.3407 0.0111 -0.0002 87.12% 

0.0017 0.7961 -0.0066 95.84%  0.0003 1.098 -0.0262 0.0002 86.20% 

-0.0075 0.6493 -0.005 90.86%  -0.033 4.9611 -0.226 0.0028 98.50% 

0.218 -0.39 0.0147 84.50%  0.0016 14.2726 -0.7483 0.0101 95.15% 

0.0251 0.5155 -0.0017 89.23%  0.0008 1.4978 -0.0349 0.0003 91.39% 
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a0 a1 a2 R2  a0 a1 a2 a3 R2 
0.0029 0.4596 -0.0001 85.43%  0.1241 13.4734 -0.7076 0.0096 92.99% 

0.0256 0.5619 -0.0039 81.60%  0.0093 7.002 -0.2954 0.0034 98.55% 

0.0088 -1.1423 0.0387 96.36%  0.0146 1.4935 -0.0419 0.0004 82.66% 

2.5235 -1.9616 0.062 81.31%  0.0067 1.4038 -0.0299 0.0003 80.46% 

-0.0012 0.6779 -0.0054 88.21%  0 2.1749 -0.0525 0.0004 90.98% 

-0.002 0.8442 -0.0106 88.13%  0.0001 -1.391 0.0864 -0.001 90.66% 

11.4651 -0.5286 0.0172 88.89%  0.0009 11.0558 -0.3894 0.0036 94.49% 

0.9058 -1.479 0.0493 92.25%  0.0078 0.6633 -0.0078 0.0001 87.57% 

0.0164 -3.4845 0.0831 92.98%  0 19.6435 -0.9969 0.0131 86.90% 

14.7186 -1.2247 0.0324 92.59%  -0.0003 1.4215 -0.0509 0.0007 87.25% 

-0.0002 1.0114 -0.0159 89.11%  0 15.955 -0.6859 0.0075 88.48% 

-0.0784 -1.7161 0.0418 80.66%  0 3.6563 -0.195 0.0028 94.73% 

0.0302 0.6476 -0.0051 85.36%  0.0221 15.4907 -0.816 0.011 91.11% 

0 10.5175 -0.2119 92.55%  -0.0519 2.3914 -0.0909 0.001 87.82% 

0.3382 -0.8391 0.0247 92.38%  -0.0004 4.9549 -0.2232 0.0027 80.65% 

0.0053 -2.5727 0.0667 82.83%  0 -29.2543 1.3416 -0.0152 89.20% 

4.0981 -3.6576 0.0976 84.89%  -0.0257 2.3278 -0.0886 0.001 96.05% 

0.0166 -4.1375 0.1025 91.27%  0.0032 6.1085 -0.3202 0.0045 98.53% 

0.7533 -0.9316 0.0319 83.85%  0.0961 -23.603 1.1045 -0.0124 81.15% 

0.1926 -3.9649 0.1036 81.09%  0 20.289 -0.8965 0.0101 92.48% 

4.2837 -1.8536 0.0588 90.83%  0.0475 3.3348 -0.1435 0.0018 99.15% 

6.449 -1.3402 0.0381 93.20%  -0.0003 1.051 -0.0181 0 92.68% 

0.0351 0.6445 -0.0006 85.17%  0.0014 -31.0108 1.0289 -0.0083 81.67% 

0.0028 0.3766 0.001 85.01%  0.0001 1.3281 -0.035 0.0003 85.56% 

0.0103 0.7953 -0.0099 88.49%  -0.0018 9.1157 -0.396 0.0045 81.43% 

0.0244 -1.538 0.044 92.29%  -0.0148 7.9895 -0.3716 0.0047 83.15% 

0.0317 -1.5187 0.0511 80.98%  -0.0019 6.2563 -0.2507 0.0027 96.79% 

0.3991 -2.3293 0.0626 98.06%  0.0001 8.4055 -0.4064 0.0051 81.87% 

0.0088 0.5429 -0.0042 87.87%  -0.0491 23.4481 -1.1573 0.0145 95.29% 

0.0919 -3.1889 0.0913 95.57%  -0.0001 41.2135 -1.8872 0.0218 92.86% 

0.1503 -1.8508 0.0558 87.94%  -0.0023 11.4225 -0.5355 0.0065 96.94% 

0.3171 -8.0636 0.215 81.26%  0.0127 4.1894 -0.2594 0.004 81.69% 

0.0162 0.8243 -0.0101 85.32%  0.0397 9.0618 -0.482 0.0067 98.96% 

0.0039 0.6759 -0.0058 88.14%  -0.0198 2.6742 -0.1009 0.0011 82.53% 

0.0776 0.2008 0.006 91.17%  0.0644 5.089 -0.2256 0.0027 99.31% 

-0.0197 0.5583 -0.003 87.14%  -0.0148 1.6995 -0.0533 0.0005 83.39% 

0.0085 0.4722 -0.0022 81.33%  -0.0006 6.8377 -0.2937 0.0035 85.46% 

0.5143 -0.0414 0.0095 83.35%  -0.174 30.3749 -1.4186 0.0167 83.48% 

0.271 -4.5717 0.1174 90.45%  -0.007 21.9566 -0.9419 0.0104 82.19% 

0.0116 -2.9019 0.0857 91.59%  -0.2696 5.4542 -0.2216 0.0024 86.72% 

0.2478 0.9458 -0.0083 87.33%  -0.0009 6.3089 -0.2988 0.0038 83.80% 

-0.0879 0.6105 -0.0038 94.38%  0.0059 0.3056 0.004 0 86.43% 

0.0197 -0.1413 0.0198 80.30%  -0.0001 3.5191 -0.1397 0.0015 80.80% 

4.0656 -0.4335 0.0164 86.59%  0.0004 10.6835 -0.4921 0.0059 93.50% 

0.2663 0.4275 -0.0005 85.58%  -0.2459 11.1088 -0.529 0.0065 85.76% 



A-4 
 

a0 a1 a2 R2  a0 a1 a2 a3 R2 
6.3802 -1.2579 0.0399 92.02%  -0.0112 40.144 -1.8946 0.0225 90.12% 

-0.0011 0.5888 -0.0049 88.04%  0.0022 4.8757 -0.2348 0.0031 98.85% 

0.2156 -5.2079 0.1445 95.67%  -0.0003 1.2252 -0.0333 0.0003 84.37% 

0.0002 -3.9417 0.0998 96.31%  0.0037 3.9018 -0.2411 0.0039 96.16% 

0.0514 -4.2823 0.1119 92.44%  0.0012 21.973 -1.0788 0.0135 94.29% 

2.0246 -2.0555 0.067 80.81%  -0.0151 12.8592 -0.6809 0.0093 92.70% 

0.2792 0.6524 -0.0056 82.66%  -0.0027 89.0094 -4.4734 0.0566 83.87% 

0.1084 -2.8816 0.0725 85.15%  0.0011 16.0788 -0.8547 0.0116 94.57% 

-0.0007 0.4877 -0.0022 88.30%  -0.1442 2.4264 -0.0987 0.0012 83.13% 

0.0104 0.7414 -0.0083 85.30%  -0.0002 4.9681 -0.2027 0.0022 85.94% 

-0.0006 0.6755 -0.0076 84.88%  -0.0014 14.545 -0.6514 0.0075 90.78% 

0.0536 0.5939 -0.0032 93.55%  -0.0011 0.8947 -0.0166 0.0001 85.42% 

-0.0072 0.7358 -0.0082 88.95%  0.0006 5.4501 -0.2448 0.003 91.98% 

1.1178 -0.4588 0.0224 86.72%  0.0015 8.7118 -0.4063 0.0049 90.03% 

0.0038 0.6958 -0.0063 81.86%  0.0036 0.0694 0.0188 -0.0002 82.39% 

0.017 0.707 -0.0055 86.28%  0 0.9999 -0.0275 0.0003 80.91% 

0.0161 0.7133 -0.0061 88.13%  0.0039 4.1587 -0.1848 0.0022 89.83% 

0.0317 -0.0886 0.0102 88.79%  -0.0023 28.0058 -1.2614 0.0146 93.69% 

0.0287 -1.4412 0.0378 92.93%  0.0002 2.0532 -0.1515 0.0028 91.49% 

0.4454 -0.8001 0.0317 87.68%  -0.0087 5.231 -0.2291 0.0028 94.25% 

0.0408 -3.3068 0.089 84.89%  0.0002 -0.5326 0.0444 -0.0005 95.70% 

0.1566 0.5246 -0.0019 81.98%  -0.0341 4.8273 -0.1903 0.002 82.92% 

-0.0047 0.616 -0.0051 88.94%  0.0003 12.7329 -0.65 0.0087 82.39% 

0.5945 -1.9522 0.0609 93.85%  -0.0896 4.1135 -0.1583 0.0017 96.99% 

-0.0061 0.4988 -0.0029 85.12%  -0.0078 1.3224 -0.0374 0.0004 87.38% 

0.3323 -0.965 0.0276 90.82%  0.0645 4.872 -0.242 0.0033 99.06% 

0.1661 -3.4049 0.099 97.31%  -0.0001 0.2205 0.0147 -0.0003 87.84% 

0.7637 -0.8179 0.0241 84.69%  -0.0008 39.2446 -1.9812 0.0254 98.33% 

2.0521 -1.5741 0.0449 90.48%  0 -3.4386 0.0786 0.0002 96.31% 

0.4207 -1.4079 0.0305 91.86%  -0.0005 40.5633 -1.7875 0.0201 93.40% 

0.0645 -1.1339 0.038 93.82%  0.0007 19.0467 -1.0316 0.0143 94.93% 

0.0064 -2.8124 0.0734 91.10%  -0.0024 20.3968 -1.101 0.0152 97.02% 

5.5536 -1.7685 0.0558 81.51%  -0.003 2.5836 -0.0769 0.0007 87.62% 

0.0046 0.638 -0.0051 82.93%  0.0007 33.8572 -1.5102 0.017 90.31% 

2.1454 -0.0507 0.0093 87.63%  -0.0002 0.3998 0.0016 0 85.87% 

-0.0077 0.6705 -0.0062 83.68%  -0.1069 3.5711 -0.1612 0.002 91.41% 

-0.0343 0.4111 -0.0009 83.08%  -0.0002 2.3551 -0.0773 0.0007 85.59% 

-0.0056 0.5614 -0.003 86.70%  -0.0004 0.6348 -0.0053 0 86.12% 

0.4034 0.512 -0.0023 89.64%  -0.0019 0.7645 -0.0102 0.0001 90.45% 

0.186 -1.0318 0.0387 80.16%  0 -1.2384 0.0782 -0.0009 86.35% 

0.2011 0.7754 -0.0072 87.65%  0.0126 4.9324 -0.2445 0.0033 98.20% 

0.0193 0.4976 -0.0016 81.83%  0 1.0649 -0.0242 0.0002 80.90% 

0.2578 0.3511 0.0013 91.92%  0.0018 1.611 -0.0402 0.0003 87.23% 

0.0377 0.9111 -0.0075 85.07%  -0.0003 1.9409 -0.0603 0.0006 86.56% 

-0.0129 0.6092 -0.0037 80.55%  -0.0038 28.3487 -1.2173 0.0132 88.02% 



A-5 
 

a0 a1 a2 R2  a0 a1 a2 a3 R2 
0.0571 0.7247 -0.0062 84.73%  -0.002 23.4563 -1.2062 0.0158 92.36% 

0.0946 0.1542 0.0056 80.21%  0.0013 6.4861 -0.2516 0.0026 91.48% 

0.1748 -4.3236 0.1017 85.82%  0 35.4732 -1.4011 0.014 94.88% 

-0.003 0.167 0.0036 93.76%  -0.0035 4.6582 -0.1731 0.0018 89.10% 

0.0196 0.4573 -0.0004 88.23%  -0.0053 14.8456 -0.7586 0.0099 89.33% 

0.0542 0.941 -0.0072 81.61%  0.007 4.5803 -0.2241 0.003 92.09% 

0.0128 0.7371 -0.0073 84.06%  0.0005 12.0347 -0.6078 0.0079 87.29% 

0.0481 1.1685 -0.0138 90.36%  0 0.1748 0.012 -0.0002 87.09% 

0.0061 0.8965 -0.0075 82.44%  0.0151 3.6963 -0.1771 0.0025 94.56% 

0.0073 0.6067 -0.004 92.00%  0.0003 0.1362 0.0113 -0.0001 83.02% 

0 2.9142 -0.0311 93.95%  -0.002 11.1974 -0.4337 0.0044 95.58% 

0.5158 -0.393 0.0209 90.30%  0.0014 7.5173 -0.388 0.0054 97.89% 

3.3175 -0.4757 0.0188 90.02%  0.0085 10.5376 -0.4172 0.0043 96.33% 

0.609 0.425 -0.0001 87.79%  0.0048 11.6167 -0.5241 0.0061 97.88% 

0.0126 -3.2496 0.0799 91.30%  0.0099 2.2431 -0.0768 0.0008 92.53% 

11.2378 -1.0813 0.0259 87.36%  0.0009 9.2743 -0.4557 0.0058 96.86% 

1.2919 0.0058 0.0129 83.74%  -0.0028 12.6317 -0.4845 0.0048 88.75% 

0.3778 0.2846 0.0033 85.38%  0 35.7941 -1.6408 0.019 91.46% 

3.327 0.3278 0.0007 80.32%  -0.0076 26.3004 -1.224 0.0144 91.61% 

0.3743 0.1551 0.0056 87.54%  -0.0406 18.1307 -0.8035 0.0091 90.72% 

0.4053 -0.8107 0.0256 86.52%  0.011 15.1996 -0.8199 0.0114 85.44% 

0.006 -3.4161 0.0712 85.77%  -0.0003 1.9027 -0.0709 0.0008 84.79% 

-0.0063 0.713 -0.008 83.64%  0.1329 5.4061 -0.2894 0.0042 85.99% 

0.1307 -0.851 0.0332 98.93%  1.1462 1.0037 -0.024 0.0002 82.84% 

1.7887 0.4566 -0.0015 81.46%  0.0003 2.2459 -0.0717 0.0007 82.93% 

-0.1244 0.4091 0.0004 93.35%  -0.0382 3.7805 -0.1401 0.0015 97.56% 

0.1153 -2.8082 0.083 86.80%  -0.0003 -1.1815 0.0666 -0.0007 84.51% 

0.0656 -0.6017 0.0221 89.05%  0.003 -0.6916 0.0426 -0.0004 82.50% 

0.1692 -2.7496 0.0782 96.92%  0.0003 0.1129 0.0147 -0.0002 87.39% 

0.0882 0.2953 0.0072 95.82%  -0.041 1.0588 -0.0224 0.0002 88.54% 

0.0647 0.3607 0.0012 82.56%  -0.0079 21.5376 -1.1919 0.0168 88.82% 

0.7804 -5.1074 0.1374 88.20%  0.0008 11.3576 -0.6018 0.0083 93.04% 

0.0155 0.776 -0.0089 90.28%  0.0027 8.9703 -0.4734 0.0065 85.95% 

0.0052 -1.623 0.0464 89.47%  -0.0313 0.8795 -0.012 0.0001 88.76% 

0.0014 0.8115 -0.0111 81.26%  0.002 0.7652 -0.0122 0.0001 80.58% 

2.1697 -1.563 0.053 89.53%  -0.0035 2.2637 -0.0719 0.0007 94.07% 

5.2128 -1.2561 0.0386 92.86%  0.0023 1.2081 -0.0213 0.0002 86.99% 

0.0495 -0.6702 0.0261 91.64%  -0.0425 0.7714 -0.0082 0 83.17% 

11.2275 -2.1918 0.0591 85.32%  -0.0014 7.4261 -0.3369 0.004 87.92% 

1.1721 -1.7323 0.0478 97.08%  -0.001 40.5012 -1.7314 0.0187 89.81% 

0.2654 -1.3499 0.0448 86.83%  0 -0.6108 0.0291 -0.0002 94.53% 

0 3.9719 -0.0504 82.08%  0.0056 0.5631 -0.0056 0.0001 89.16% 

-0.0084 0.8614 -0.0129 92.49%  -0.0048 2.8715 -0.0966 0.001 82.33% 

2.7719 -0.3399 0.0172 88.35%  -0.0004 4.27 -0.1742 0.002 85.62% 

0.0682 -1.8307 0.0468 86.50%  -0.0009 17.574 -0.8342 0.0101 82.34% 



A-6 
 

a0 a1 a2 R2  a0 a1 a2 a3 R2 
0.0291 -1.6901 0.0442 98.99%  0.001 10.8847 -0.5568 0.0074 93.00% 

0.0003 5.404 -0.0613 99.85%  -0.0079 12.18 -0.6202 0.0082 82.04% 

0.0116 -3.2778 0.0752 96.96%  0.0001 3.6047 -0.1284 0.0013 90.80% 

0.0158 -2.999 0.0892 96.94%  -0.0002 1.348 -0.0275 0.0002 83.44% 

0.67 -0.2966 0.0166 82.89%  -0.0042 6.5541 -0.2705 0.003 86.17% 

0.0134 -3.1588 0.0923 92.86%  0 1.6377 -0.05 0.0005 90.27% 

0.1997 -0.0641 0.0083 90.67%  0.0617 13.3455 -0.6774 0.0089 80.83% 

0 -3.3418 0.0989 86.76%  -0.0068 7.4893 -0.351 0.0044 97.15% 

0.0566 -1.6957 0.0536 92.55%  -0.0446 1.9725 -0.0729 0.0008 83.35% 

-0.0037 -1.6206 0.0498 83.22%  -0.0206 16.6676 -0.7454 0.0085 97.30% 

0.2415 -0.1722 0.0154 90.80%  -0.0028 4.596 -0.185 0.002 98.74% 

0.057 -0.8268 0.0346 92.38%  -0.0322 1.9429 -0.0679 0.0007 92.65% 

0.0083 -2.3088 0.0665 94.29%  -0.0121 23.0303 -0.956 0.0101 84.86% 

0.0006 0.807 -0.0105 91.63%  0.0006 1.6065 -0.1122 0.0019 92.06% 

-0.0042 0.8605 -0.0123 86.76%  -0.0767 4.2616 -0.1659 0.0018 94.40% 

0.0013 0.785 -0.0096 88.49%  -0.0136 7.9016 -0.3101 0.0033 92.07% 

0.0005 0.5039 -0.0016 89.11%  -0.0077 2.9151 -0.11 0.0012 89.87% 

0.0077 0.3772 0.0006 85.99%  -0.2153 1.6833 -0.0466 0.0004 83.74% 

0.0376 0.5731 -0.0047 86.40%  0.0098 0.8483 -0.0134 0.0001 80.54% 

0.5493 -0.233 0.015 84.04%  -0.0054 3.8984 -0.1434 0.0015 90.25% 

0.0069 0.6804 -0.006 81.16%  0.0079 3.055 -0.1307 0.0016 88.97% 

6.6356 -0.0338 0.0086 80.19%  -0.0055 23.2693 -1.2821 0.018 82.51% 

0.0145 0.7339 -0.0083 92.00%  0 36.5267 -1.3841 0.0133 87.85% 

0.0133 0.6661 -0.0063 81.83%  0.0006 1.9297 -0.0806 0.0012 99.25% 

-0.0086 0.5932 -0.0031 84.70%  -0.0277 1.9545 -0.0563 0.0005 91.02% 

0.003 -3.3468 0.0845 92.09%  -0.1279 3.4058 -0.1288 0.0014 89.93% 

-0.0053 0.7517 -0.0073 85.69%  0.0654 0.0097 0.0167 -0.0002 95.99% 

0.3166 1.0187 -0.0103 88.23%  0.0107 3.4118 -0.216 0.0036 88.22% 

0.038 1.2218 -0.014 94.21%  0.0011 6.129 -0.2727 0.0032 89.73% 

0.0611 0.5311 -0.0024 84.41%  0.0055 3.2786 -0.1935 0.0031 97.53% 

0.273 0.5253 -0.0025 92.49%  0.0001 6.8714 -0.3013 0.0036 97.68% 

0.0252 -0.1545 0.0109 94.22%  -0.0024 13.3151 -0.7251 0.0102 93.65% 

21.15 -1.3809 0.0297 81.78%  -0.0007 9.1005 -0.4776 0.0065 90.00% 

0.1572 0.5788 -0.0036 85.95%  -0.012 31.2104 -1.5455 0.0195 91.44% 

0 2.6376 -0.0367 89.03%  -0.0004 3.7113 -0.1441 0.0016 83.76% 

0 2.9599 -0.0327 80.95%  0.0001 10.1656 -0.4782 0.0058 92.55% 

6.1623 -0.6211 0.0218 80.10%  0.0009 0.852 -0.0131 0 82.63% 

0.0452 -2.2911 0.0666 97.90%  -0.0041 11.0966 -0.5823 0.0079 88.29% 

7.585 -1.7721 0.0497 93.45%  0.0168 10.9308 -0.5809 0.008 98.01% 

0.1924 -2.6157 0.0802 95.83%  -0.0083 35.2266 -1.9231 0.0265 89.04% 

0.0026 0.8645 -0.0127 84.28%  0.0776 3.9678 -0.1896 0.0025 99.15% 

-0.0029 1.6963 -0.0195 97.84%  0.0003 10.9791 -0.5215 0.0064 92.79% 

0.7952 -2.602 0.0739 95.35%  -0.1565 10.5152 -0.5112 0.0064 91.71% 

0.12 0.4815 -0.0028 85.71%  0.0132 3.9264 -0.1843 0.0024 99.20% 

0.0021 0.7584 -0.0087 86.86%  -0.0017 2.0268 -0.0805 0.001 82.35% 



A-7 
 

a0 a1 a2 R2  a0 a1 a2 a3 R2 
3.5876 -1.5701 0.0386 91.52%  0.0058 8.8375 -0.439 0.0057 89.22% 

0.4077 -2.2946 0.057 96.79%  -0.0002 -1.598 0.1278 -0.002 93.09% 

10.6659 -2.6732 0.0787 85.26%  -0.0152 4.4549 -0.2034 0.0025 96.91% 

0 0.831 -0.0073 91.52%  0.0032 3.3271 -0.1587 0.002 84.86% 

0.0027 0.7594 -0.0078 93.44%  -0.0021 -0.2656 -0.0079 0.0005 99.07% 

0.0145 0.6452 -0.006 86.33%  0 11.8092 -0.3581 0.0034 99.66% 

0.0581 -3.3527 0.0936 95.80%  0.0002 4.1828 -0.2055 0.0026 96.70% 

1.2989 -3.7529 0.0995 91.64%  0.0004 4.1114 -0.2436 0.0039 96.07% 

0.0008 0.7637 -0.0083 92.50%  0 14.4314 -0.6951 0.0086 96.26% 

0.8163 -1.425 0.0363 82.49%  -0.0083 6.3881 -0.2909 0.0035 92.72% 

0.0047 0.6672 -0.0057 80.82%  0.0006 5.6141 -0.3348 0.0052 93.07% 

4.3559 -2.9276 0.0882 88.53%  0 7.7779 -0.2774 0.0026 97.63% 

-0.0201 0.8439 -0.0109 92.41%  -0.0012 7.7877 -0.3645 0.0045 87.04% 

1.2061 -1.0957 0.0352 97.55%  0.0006 12.3604 -0.6378 0.0085 93.85% 

0.055 -2.6368 0.0706 89.97%  0 -23.7958 1.078 -0.0119 83.31% 

-0.0441 0.7646 -0.0073 86.97%  0.0002 -2.0292 0.1497 -0.0023 80.24% 

8.2835 0.094 0.0036 86.86%  0.0024 5.6816 -0.2908 0.004 96.25% 

2.6108 -0.3739 0.018 88.01%  0.0002 14.2814 -0.7791 0.0109 92.33% 

0.0048 -3.1479 0.0775 92.65%  0.0001 13.4443 -0.655 0.0083 94.93% 

2.7231 -1.7076 0.0407 94.47%  -0.0022 14.5793 -0.7725 0.0105 92.31% 

0.009 0.8973 -0.0112 93.31%  -0.0005 1.0963 -0.0252 0.0002 90.76% 

0.0104 -4.8411 0.1138 82.92%  -0.0025 12.8926 -0.5876 0.0069 83.93% 

0.7217 -2.7516 0.0714 89.95%  -0.0001 1.144 -0.0267 0.0002 81.17% 

0 5.7266 -0.0999 80.68%  0 11.807 -0.5128 0.0058 89.11% 

0.0766 0.403 0.0005 88.72%  -0.0001 7.1007 -0.311 0.0036 84.10% 

0.0094 -3.3568 0.0974 85.16%  -0.0004 4.4224 -0.1912 0.0023 85.85% 

0.0237 -2.4081 0.0685 96.55%  -0.0068 6.7212 -0.2886 0.0033 93.15% 

0.0407 0.5652 -0.0029 81.28%  -0.2167 2.5777 -0.1049 0.0013 91.89% 

0.0075 -0.3439 0.02 95.15%  0.0004 1.5951 -0.0503 0.0005 86.01% 

0.0079 -3.1948 0.0946 81.64%  -0.0013 0.3564 0.0075 -0.0001 82.06% 

0.0116 1.0203 -0.0087 85.57%  0 16.4909 -0.7779 0.0094 91.88% 

0.0768 -4.7912 0.0944 85.02%  -0.0002 -0.0761 0.0319 -0.0005 82.76% 

0.1757 -0.4954 0.0166 89.93%  -0.0192 2.356 -0.0804 0.0009 89.00% 

0.063 -3.4897 0.0978 96.84%  0.0003 2.7239 -0.0804 0.0007 94.78% 

-0.001 0.7157 -0.0065 88.75%  0.0025 1.3256 -0.0378 0.0004 84.52% 

0.0133 -6.2697 0.1535 83.57%  0.033 1.4058 -0.0498 0.0006 87.76% 

0.2423 -1.5789 0.0475 96.89%  0.002 2.4989 -0.0933 0.001 90.70% 

6.7656 -0.9773 0.0327 92.49%  -0.5978 4.2206 -0.1738 0.002 91.58% 

0.2096 0.5239 -0.0035 81.25%  -0.0049 2.7508 -0.1122 0.0013 89.10% 

0.9375 -1.2039 0.0339 93.96%  -0.1404 4.206 -0.186 0.0023 95.80% 

1.0117 0.2564 0.0035 84.69%  0.0006 2.2313 -0.1331 0.0022 98.09% 

-0.0068 0.3901 -0.0006 83.44%  0.0191 4.097 -0.1915 0.0025 97.60% 

-0.0032 -1.5179 0.0411 92.89%  0.0028 9.2647 -0.5145 0.0074 96.19% 

0.0368 0.5059 -0.0017 86.55%  0 1.412 -0.0436 0.0004 86.82% 

0.3336 0.6171 -0.004 92.39%  0 -4.9867 0.2811 -0.0034 98.13% 
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a0 a1 a2 R2  a0 a1 a2 a3 R2 
0.6153 0.6831 -0.0027 83.90%  0.004 7.7355 -0.3994 0.0054 98.48% 

1.8253 0.0879 0.0053 84.20%  -0.0009 1.9394 -0.0668 0.0007 86.81% 

0.0402 -2.2247 0.0679 94.82%  0 1.3818 -0.0357 0.0003 88.57% 

1.1244 0.0255 0.0078 96.23%  0.0288 7.5038 -0.3019 0.0032 99.26% 

9.9063 -1.1793 0.0365 80.71%  0.0096 4.6933 -0.2106 0.0026 98.13% 

0.0912 -5.9855 0.169 86.68%  -0.0075 19.7627 -1.0953 0.0155 94.29% 

0.0136 -3.9876 0.1172 84.04%  -0.0149 12.5189 -0.6793 0.0095 94.65% 

0 2.7897 -0.0367 97.91%  0.0021 16.6638 -0.8969 0.0124 84.58% 

0.3068 -0.0075 0.0111 81.03%  -0.0002 0.8576 -0.0086 0 93.44% 

1.037 0.2935 0.0038 90.27%  -0.3793 6.9811 -0.3449 0.0045 90.66% 

9.7692 -0.6325 0.0201 94.59%  -0.0003 1.7565 -0.0491 0.0004 92.87% 

0.0481 -2.3079 0.0625 94.12%  0.0003 1.5474 -0.0468 0.0005 86.31% 

0.0045 -3.423 0.0929 96.78%  0.0004 7.3892 -0.3895 0.0054 96.25% 

0.0579 0.2358 0.0041 83.90%  -0.0132 12.8974 -0.6149 0.0076 93.88% 

0.1139 -4.446 0.1196 94.62%  0.0001 1.072 -0.0226 0.0002 92.45% 

0.0343 -2.3242 0.0717 93.97%  0.0328 2.1548 -0.0953 0.0012 82.60% 

0.0149 -5.2875 0.1431 84.75%  -0.0023 14.1917 -0.7737 0.0109 97.99% 

0 3.5517 -0.0413 81.67%  0 -4.7283 0.2676 -0.0035 88.45% 

3.5569 -1.4993 0.0464 97.10%  -0.0039 16.4847 -0.8844 0.0122 87.87% 

0.0349 0.6798 -0.0068 88.63%  0.0118 2.3473 -0.112 0.0016 99.10% 

0.094 0.2769 0.0025 85.27%  0.0006 8.2877 -0.4089 0.0053 90.43% 

0.0125 -3.3278 0.0796 88.73%  -0.0017 -0.0345 0.0303 -0.0004 85.19% 

0.0178 -2.4125 0.0484 95.75%  -0.4728 1.4837 -0.0435 0.0004 92.27% 

0.1265 0.3508 0 82.53%  -0.0048 4.3457 -0.1935 0.0024 98.78% 

0.0434 -1.2647 0.0336 96.57%  0.0002 17.0545 -0.821 0.0101 89.99% 

0.0632 0.6278 -0.0044 92.64%  0.0001 4.5656 -0.2486 0.0034 91.03% 

0.7827 -0.5326 0.022 87.87%  -0.0289 6.0056 -0.2392 0.0025 99.31% 

0.0802 -1.4523 0.0376 96.98%  -0.0003 2.2208 -0.0728 0.0007 93.82% 

0.1185 -3.0015 0.0856 96.92%  0 147.7799 -6.0862 0.063 84.80% 

10.1701 -3.6989 0.1032 82.16%  -0.007 16.8331 -0.7713 0.009 95.63% 

-0.0193 -1.3388 0.0398 81.23%  -0.0007 2.8147 -0.106 0.0012 91.02% 

0.0009 1.0187 -0.0107 86.58%  -0.0004 14.9055 -0.5829 0.0058 86.75% 

0.1665 0.732 -0.0038 92.85%  0 39.0054 -2.0125 0.0263 87.78% 

0.0132 -2.8559 0.0679 97.11%  0.0004 4.7493 -0.254 0.0036 96.83% 

0 4.1765 -0.0666 93.30%  -0.0002 10.1519 -0.5031 0.0065 89.98% 

0.0347 -3.058 0.0841 97.62%  0.0002 3.0821 -0.0968 0.0009 82.91% 

0.0305 -5.4931 0.1274 91.59%  -0.0007 1.8946 -0.0761 0.001 94.63% 

0.0313 -1.7501 0.0579 92.77%  0.0002 13.4995 -0.6376 0.0078 83.48% 

1.4934 0.1516 0.0064 80.07%  0 37.5123 -1.8898 0.0242 81.90% 

10.8282 -1.3137 0.0341 88.69%  -0.0014 1.6471 -0.0338 0.0003 85.28% 

0.0153 -7.0353 0.1586 82.16%  0.0007 24.0331 -0.8894 0.0084 86.51% 

0.0872 -2.6039 0.0698 96.99%  -0.0043 6.7087 -0.2543 0.0025 92.88% 

1.0063 -1.0562 0.0344 82.87%  0.0013 4.2279 -0.2545 0.004 97.40% 

0.1 -3.8677 0.0866 96.09%  -0.0006 0.6834 -0.0051 0 89.85% 

2.3617 -0.3901 0.0178 86.40%  0 101.593 -4.5269 0.0508 87.16% 
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a0 a1 a2 R2  a0 a1 a2 a3 R2 
0.0376 -3.0874 0.0809 94.66%  -0.0034 7.4514 -0.339 0.0041 98.49% 

0.0477 -2.7564 0.0573 95.83%  0.1142 3.6094 -0.1777 0.0024 99.18% 

8.1424 -0.0024 0.0055 81.23%  0.0014 3.4407 -0.1519 0.0019 89.95% 

0.0257 0.4849 -0.0016 85.79%  -0.0073 6.7969 -0.2884 0.0032 98.64% 

1.4955 -0.5978 0.0216 84.87%  -0.1164 2.7335 -0.0958 0.001 87.57% 

0.1636 -1.1983 0.0418 80.25%  -0.0112 4.1081 -0.1579 0.0017 96.13% 

0.092 -2.3959 0.066 95.66%  0 -44.698 1.6667 -0.0153 91.85% 

4.866 -1.2195 0.0315 88.14%  0.0009 1.0405 -0.0251 0.0003 87.27% 

5.2415 -0.4199 0.0176 96.09%  0.006 1.6783 -0.043 0.0004 95.33% 

19.0898 -1.044 0.0214 93.35%  -0.0202 2.2093 -0.065 0.0006 86.33% 

0 7.7603 -0.1084 99.18%  -0.1451 11.5873 -0.5894 0.0077 92.48% 

-0.0047 8.3555 -0.1501 93.98%  -0.0746 1.9472 -0.0671 0.0007 91.04% 

     -0.002 9.7785 -0.4889 0.0064 87.53% 

     0.0004 5.7973 -0.3186 0.0046 96.27% 

     0.0082 1.7955 -0.0552 0.0006 98.84% 

     0.0391 5.3529 -0.2708 0.0037 88.55% 

     0.0015 37.6796 -2.0339 0.0278 87.32% 

     -0.044 50.1603 -2.7491 0.0379 91.81% 

     0.0006 14.126 -0.8063 0.0118 84.61% 

     0.0005 10.6149 -0.5167 0.0065 88.39% 

     0 6.1153 -0.2998 0.0039 89.99% 

     -0.0121 2.5584 -0.1073 0.0014 95.79% 

     -0.0031 9.6487 -0.5155 0.0072 86.82% 

     0.1454 1.7716 -0.0714 0.0009 99.46% 

     0.0002 17.7098 -0.8267 0.0099 94.35% 

     0.0006 -1.6673 0.0161 0.0008 96.54% 

     0 10.337 -0.4724 0.0056 87.02% 

     0.0002 18.8706 -0.9441 0.0121 95.46% 

     0.0004 9.3079 -0.509 0.0072 94.84% 

     0.0004 19.634 -0.9969 0.013 86.47% 

     0.0176 2.3925 -0.1152 0.0017 99.08% 

     1.1774 2.8368 -0.1253 0.0016 83.25% 

     -0.0006 3.1197 -0.1173 0.0012 87.40% 

     -0.0008 8.9697 -0.4048 0.0048 94.28% 

     0.0005 10.3176 -0.4752 0.0056 87.49% 

     0.0001 14.4005 -0.5137 0.0047 97.02% 

     -0.0424 8.6853 -0.3378 0.0034 92.86% 

     0.001 2.5772 -0.1162 0.0015 96.66% 

     0.0012 3.979 -0.1317 0.0012 91.74% 

     -0.0027 6.2156 -0.2885 0.0036 97.43% 

     0.0007 8.4577 -0.354 0.0039 97.47% 

     0.1375 11.262 -0.594 0.0081 82.30% 

     0.001 8.1868 -0.4244 0.0058 97.55% 

     0.0248 13.1038 -0.6451 0.0082 84.15% 

     -0.2595 31.5119 -1.6492 0.0218 93.91% 
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a0 a1 a2 R2  a0 a1 a2 a3 R2 

     0.0003 -8.8968 0.3556 -0.0033 81.07% 

     -0.0038 29.1322 -1.2407 0.0134 94.62% 

     0 1.1868 -0.0193 0.0001 83.89% 

     -0.0034 3.142 -0.1185 0.0014 93.69% 

     0.0001 0.4466 -0.057 0.0012 97.17% 

     -0.0379 13.1638 -0.5816 0.0066 94.52% 

     0.0077 6.6314 -0.3148 0.004 80.16% 

     0.0012 3.5373 -0.1906 0.0029 97.46% 

     -0.0001 54.1257 -2.2777 0.0242 93.01% 

     0.0003 10.5874 -0.5756 0.0081 93.92% 

     -0.0087 4.8953 -0.1953 0.0021 97.39% 

     0.3442 3.4629 -0.1407 0.0016 92.15% 

     -0.0001 81.403 -3.4521 0.0368 86.86% 

     0.0008 7.598 -0.366 0.0046 97.89% 

     0.0045 10.9943 -0.5106 0.0061 97.96% 

     -0.0003 14.3107 -0.5853 0.0062 96.62% 

     -0.018 4.8633 -0.2036 0.0023 96.37% 

     0.0015 9.3391 -0.4649 0.006 96.30% 

     0.0005 11.7065 -0.4436 0.0043 96.88% 

     0 5.3376 -0.2611 0.0034 94.98% 

     -0.6291 2.1254 -0.0642 0.0006 89.48% 

     0.0643 9.0021 -0.4818 0.0067 81.31% 

     0.0867 7.5477 -0.3931 0.0054 83.50% 

     -0.0003 6.8587 -0.289 0.0032 83.17% 

     0.0045 5.6772 -0.2491 0.0029 86.61% 

     -0.0108 5.4527 -0.2412 0.0028 94.26% 

     0.0008 14.5273 -0.7494 0.0099 90.19% 

     -0.0002 9.2542 -0.4333 0.0053 96.73% 

     0.0385 3.3779 -0.1368 0.0015 92.30% 

     0.1508 1.5178 -0.0544 0.0007 99.47% 

     -0.3469 1.6941 -0.0536 0.0006 96.99% 

     0.0018 -53.9113 1.8772 -0.0158 80.35% 

     -0.0001 -3.7332 0.4529 -0.0075 94.12% 

 

Values of coefficient a0, a1, a2 and a3 are plotted against the average density of respective pair 

of Leader-Follower vehicle along the roadway. Box plot was used to define data population 

within the range of 0.75 and 0.50 quartiles. The comparative improvement of curve fitting after 

removal of noisy data for 2nd degree and 3rd degree polynominal relation between each 

coefficient and the average density is shown in Figure A.2 and A.3. 
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Coefficient 2nd Degree Polynominal Relationship 
2nd Degree Polynominal Relationship 

after Noise Removal 

a0 
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Figure A.2: 2nd Order Polynominal Relationship 
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Coefficient 3rd Degree Polynominal Relationship 
3rd Degree Polynominal Relationship 

after Noise Removal 
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a3 

 

  

 

Figure A.3: 3rd Order Polynominal Relationship 
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Table A.3: Default, Min and Max Values of Car Following Parameters 

Serial Driving Behavior Parameters  Unit Default 
Values 

Min 
Value 

Max 
Value 

1 CC0 (Standstill distance) meter 1.50 0.00 4.00 

2 CC1 (Headway time) second 0.90 0.00 4.00 

3 CC2 (‘Following’ variation) meter 4.00 0.00 10.00 

4 CC3 (Threshold for entering 
‘Following’) 

- -8.00 -30.00 -8.00 

5 CC4 (Negative ‘Following’ 
thresholds) 

- -0.35 -1.00 0.00 

6 CC5 (Positive ‘Following’ 
thresholds) 

- 0.35 0.00 1.00 

7 CC6 (Speed dependency of 
oscillation) 

- 11.44 0.00 20.00 

8 CC7 (Oscillation acceleration) m/ s2 0.25 0.00 1.00 

9 CC8 (Standstill acceleration) m/ s2 3.50 1.00 8.00 

10 CC9 (Acceleration at 80 km/h) m/ s2 1.50 0.50 3.00 

11 Minimum look ahead distance meter 0.00  

12 Maximum look ahead distance meter 250.00  

13 No of observed vehicles number 2  

14 Minimum look back distance meter 0.00  

15 Maximum look back distance meter 150.00  

16 Temporary lack of attention 
duration 

Second 0.00  

17 Temporary lack of attention 
probability 

% 0.00  

 

 

 



A-14 
 

Table A.4: Default, Min and Max Values of Lane Changing Parameters 

Serial Driving Behavior Parameters 

 

Unit Default 
Values 

Min 
Value 

Max 
Value 

1 Maximum deceleration (own) m/ s2 -4.00 -4.57 -3.66 

2 :−1 m/ s2 per distance (own) meter 100.00 100 250 

3 Accepted deceleration (own) m/ s2 -1.00 -3.66 -0.76 

4 Maximum deceleration (trailing 
veh) 

m/ s2 -3.00 -4.57 -2.44 

5 :−1 m/ s2 per distance (trailing veh) meter 100.00 100 250 

6 Accepted deceleration (trailing veh) m/ s2 -1.00 -3.66 -0.46 

7 Waiting time before diffusion second 60.00 30.00 200.00 

8 Min headway (front/rear) meter 0.50 0.46 0.61 

9 Safety distance reduction factor - 0.60 0.10 1.00 

10 Maximum deceleration for 
cooperative braking 

m/ s2 -3.00 -6.10 -2.44 
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ANNEXURE B  
‘CALVIS’ AN OPTIMIZATION PROGRAM CONTROL INTERFACE 

(OPCI) 
 

B.1 Motivation for Development of OPCI ‘CALVIS’ 

The proposed procedure of calibration discussed in this study involves a sequence of complex 

actions which requires priori knowledge on traffic microsimulation model and optimization 

algorithms. Extraction of real time video data and analyzing, derivation of regression equation 

from the relationship between space headway and speed, and between coefficients, obtained 

from previous relation, and average density, generation of new set of parameters as directed by 

the optimization algorithm to converge for optimal values of fitness function and finally 

analyzing, comparing and displaying the result, which all are colossal jobs and require 

tremendous effort and time. Manual experimentation with model parameters appears to be 

impractical because users have to undergo potentially endless trials to fine-tune parameter 

values to fit the simulation output with observed data. That provoked for development of an 

automated and robust optimization tool for calibration of microscopic traffic simulation 

parameters in VISSIM. 

 

To automate such calibration process, CALVIS (Calibration of VISSIM), a Windows-based 

Optimization Program Control Interface, has been developed in Visual Basic 2015 so that the 

user can easily and automatically optimize the parameter values for the simulation model.   

CALVIS integrates the Visual Basic 2015 and VISSIM 7.0 to implement the calibration 

approach by three optimization methods. New algorithm for GA, SPSA and SA has been coded 

in Visual Basic 15 for the OPCI. CALVIS capture the observed video data, analyze and organize 

the vehicle trajectory data for comparison with simulation data. It communicates with VISSIM 

through COM interface, customize the input parameters and run simulation for specific number 
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of iterations as per user’s choice. After every simulation, CALVIS gets the simulation result 

from VISSIM, analyze and formulate equation for MOP, and compare with observed data as 

per objective function. Guided by the selected optimization algorithm it suggests new set of 

parameters for the subsequent simulation. Finally, CALVIS produces the output of optimal 

parameters resulting from lowest value of objective function. CALVIS also has the provision 

of preserving vehicle trajectory data and displays result in the forms of graphs and charts for 

further analysis. 

 

 

B.2 Features of CALVIS 

 

B.2.1 Extraction of video data to desired format 

CALVIS uses OpenCV Background Subtraction technique of image processing for extracting 
vehicle trajectory data with each vehicle’s position at 0.2 seconds of interval along the roadway 
in the format as shown in Table 6.1 and 6.2 of Chapter 6. 

 

(a) 
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(b) 

 

 

 

(c) 

 

 

 



B-4 
 

(d) 

 

 

B.2.2 Simulation with default parameters 

 

 

Figure B.1: Screenshot of CALVIS for Extraction of Video data. 
(a)  Initial Screen of Video Extraction    (b)  Video Capturing  Process Ongoing  
(c)  Processing of  Data                             (d)  Data Extracted to Desired Format 

Figure B.2: CLAVIS Panel Screenshot for Simulation with Default Parameters  
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B.2.3 Perform sensitivity analysis 

 

 

B.2.4 Result of sensitivity analysis 

 

Figure B.3: CLAVIS Panel Screenshot for Sensitivity Analysis 

Figure B.4: CLAVIS Panel Screenshot for Result of Sensitivity Analysis 
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B.2.5 Simulation techniques 

B.2.5.1 GA optimization control panel 

 

 

B.2.5.2  SPSA optimization control panel 

 

 

Figure B.5: CLAVIS Panel Screenshot for GA Optimization 

Figure B.6: CLAVIS Panel Screenshot for SPSA Optimization 
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B.2.5.3  SA optimization control panel 

 

 

Figure B.7: CLAVIS Panel Screenshot for SA Optimization 

 
 

B.2.6 Validation control panel 

 

Figure B.8: CLAVIS Panel Screenshot for Validation 
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B.2.7 Results 
 

B.2.7.1  All results 

 
 
B.2.7.2  Calibrated parameters 
 

 

Figure B.10: CLAVIS Panel Screenshot for Results of Calibrated Parameters 

Figure B.9: CLAVIS Panel Screenshot for Results of Detail Iteration and Charts 
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B.2.7.3  Validation result 
 
 

 

 

Figure B.11: CLAVIS Panel Screenshot for Validation Result 


