APPROVAL OF BOARD OF EXAMINERS

The thesis titled "DETECTION OF BRAIN TUMORS FROM MRI IMAGES USING MACHINE LEARNING APPROACHES" submitted by Mohammad Shahjahan Majib, Roll No: 0418140002, Session: 2017 - 2018 has been accepted as satisfactory in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering on 01 February 2021.

BOARD OF EXAMINERS

1.

Name: Dr Md. Mahbubur Rahman Designation: Professor Affiliation: Department of CSE, MIST, Dhaka

Chairman (Supervisor)

2. Member Name: Brig Gen A B M Humayun Kabir Designation: Senior Instructor and Head of the Department Affiliation: Department of CSE, MIST, Dhaka

(Ex Officio)

3.

4.

Name: Dr. T. M. Shahriar Sazzad Designation: Assistant Professor Affiliation: Department of CSE, MIST, Dhaka

Member (Internal)

Name: Dr. Md. Shohrab Hossain **Designation:** Professor Affiliation: Department of CSE, BUET, Dhaka

Member (External)

DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its entirely. I have duly acknowledged all the sources of information which have been used in the thesis. The thesis (fully/ partially) has not been submitted for any degree or diploma in any university or institute previously.

Mohammad Shahjahan Majib

Department of Computer Science and Engineering Military Institute of Science and Technology 01 February 2021

SUMMARY

Tumor indicates unfettered presence of a cluster of cells in a specific area of the body part. Brain tumor is considered one of the most common tumors for both men and women and can lead to high death risk if patients fail to obtain appropriate medical treatment. In order to diagnose brain tumors, electronic modalities are integrated and among them MRI is a popular one. For MRI brain tumor region analysis segmentation, detection and classification are considered as important steps in digital imaging pathology laboratory. Existing state-of-the-art approaches demand widespread amount of supervised training data from pathologists and may still accomplish poor results in images from unseen tissue types. In this study, two approaches each for Conventional ML and Deep ML have been presented to identify brain tumors from MRI images. For Conventional ML, a suitable framework has been presented where for the first time in compare to all other existing accessible approaches morphological operations has been incorporated to eliminate undesirable regions and to assist segmentation and identification of region of interests. Compared with existing state-of the-art supervised models, our method generalizes considerably improved identified results on brain tumor cells deprived of training data. Even with training data, our approach attains the identical performance without supervision cost. This study results indicates an accuracy rate above 96.23% accuracy associated to existing works. For Deep ML, another framework is presented where 97.84% accuracy is achieved.

ACKNOWLEDGEMENT

The author would like to express his sincere gratitude to Professor Dr Md. Mahbubur Rahman of Department of Computer Science and Engineering, Military Institute of Science and Technology, Mirpur Cantonment for his kind supervision, guidance, encouragement and inspection throughout the entire research period. The author also recognizes Assistant Professor Dr. T. M. Shahriar Sazzad of Department of Computer Science and Engineering, Military Institute of Science and Technology, Mirpur Cantonment for his valuable guidance. At the same time, the author expresses thankful gratitude to Dr. Md. Sadequel Islam Talukder for supporting the work while providing all the necessary MRI brain tumor test images along with feature information to identify the ROIs. This study also thanks Military Institute of Science and Technology for their support to carry out this study successfully.

TABLE OF CONTENTS

SUMMARY	iii
LIST OF FIGURES	vii
LIST OF TABLES	ix
CHAPTER 1: INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	2
1.3 Thesis Objectives	2
1.4 Methodology	3
1.5 Thesis Scope	4
1.6 Organization of the Thesis	5
CHAPTER 2: LITERATURE REVIEW	6
2.1 Medical Imagery	6
2.1.1 Existing Available Approaches to Analyze Tissues	7
2.1.2 Traditional Microscopic Analysis	7
2.1.3 Capturing the Images Using Electronic Devices (e.g. Ultrasound,	8
CT, MRI, PET, X-Ray) and Analysis	
2.1.4 Computer Based Approaches Using Digitized Images Acquired from	9
the Slides of Biopsy Specimen	-
2.2 Image Processing Techniques	10
2.2.1 Pre-processing	10
2.2.1.1 Enhance Contrast.	10
2.2.1.2 Noise Removal Approach.	11
2.2.2 Segmentation.	12
2.2.2 Segmentation 2.2.3 Identification and/Classification	12
	13
2.3 Discussion.	
2.4 Summary.	20
CHAPTER 3: METHODOLOGY.	21
3.1 Introduction.	21
3.2 Research Methodology	21
3.3 Research Approach	21
3.4 Research Activity	22
3.4.1 Data Collection	22
3.4.2 Development of Proposed Approach	23
3.4.3 Dataset Used in this Study	24
3.4.4 Validation of the Proposed Approach	24
3.5 Techniques	26
3.5.1 Pre-processing	26
3.5.1.1 Intensity Enhancement.	27
3.5.1.2 Elimination of Unwanted Regions for Image Analysis	27
3.5.1.2.1 Mean Filter	27
3.5.1.2.2 Median Filter	28
3.5.1.2.3 Filter using Mathematical Morphological Operation	29
3.5.2 Segmentation	29
3.5.2.1 Threshold Based Segmentation	29
3.5.2.2 Clustering Approach	31
3.5.2.2 Clustering Approach	31
3.5.2.2.2 Feature Extraction.	32
3.5.3 Identification and/ Classification	33
	55

3.5.3.2 Classification	34
3.5.3.2.1 SVM	34
3.5.3.2.2 Naïve Bayes (NB) 3	37
• • • •	38
3.5.3.2.4 Decision Tree (DT)	39
3.6 Data Analysis Techniques	39
3.6.1 Selection Criteria of Analysis 4	10
3.6.2 Evaluation of Results	10
3.7 Summary 4	10
CHAPTER 4: EXPERIMENTAL RESULTS 4	11
4.1 Research Activity 1 4	11
4.1.1 Research Approach One 4	11
	13
	15
4.1.4 Summary 5	57
4.2 Research Activity 2 5	58
	58
4.2.2 Effects of Threshold Function	53
4.2.3 Selection of Pool Size	56
4.2.4 Performance of Classifiers	57
	30
CHAPTER 5: CONCLUSION 8	31
5.1 Main Outcomes	31
5.1.1 Research Activity One 8	31
	32
5.2 Thesis Contributions	33
	34
5.4 Future Works	35
References	86

LIST OF FIGURES

Figure: 3-1 Research Approach	22
Figure 3-2: Research activity plan (on the right), with steps for the proposed	
approach (on the left)	23
Figure 3-3: an example of expert marked (b) and test (a) images which are identical	
to each other collected from the medical laboratory and used in this research	
study	25
Figure 3-4: Kernel function and mapping	35
Figure 3-5: Kernel machine	37
Figure 3-6: A simple Neural Network and Convolutional Neural Network	36
Figure 4-1: Detailed flow-chart for research approach one	42
Figure 4-2: Detailed flow-chart for research approach two	43
Figure 4-3: Filter operation using Gaussian filter, Median filter and Morphological	
Operation (test image-1)	45
Figure 4-4: Filter operation using Gaussian filter, Median filter and Morphological	
Operation (test image-2)	46
Figure 4-5: Filter operation using Gaussian filter, Median filter and Morphological	
Operation (test image-3)	47
Figure 4-6: Filter operation using Gaussian filter, Median filter and Morphological	
Operation (test image-4)	48
Figure 4-7: Filtered image using different filters (test image-1)	49
Figure 4-8: Filtered image using different filters (test image-2)	50
Figure 4-9: Filtered image using different filters (test image-3)	51
Figure 4-10: Filtered image using different filters (test image-4)	52
Figure 4-11: Identification of results for research approach one and research	
approach two (test image- 1)	53
Figure 4-12: Identification of results for research approach one and research	
approach two (test image- 2)	54
Figure 4-13: Identification of results for research approach one and research	
approach two (test image- 3)	55
Figure 4-14: Identification of results for research approach one and research	
approach two (test image- 4)	56
Fig 4-15: Confusion Matrix for selecting filter size 40	59
Fig 4-16: Train vs Validation Accuracy for each Epoch for filter size 40	59
Fig 4-17: Train vs Validation Loss for each Epoch for filter size 40	59
Fig 4-18: Confusion Matrix for selecting filter size 28	60
Fig 4-19: Train vs Validation Accuracy for each Epoch for filter size 28	60
Fig 4-20: Train vs Validation Loss for each Epoch for filter size 28	60
Fig 4-21: Confusion Matrix for selecting filter size 16	61
Fig 4-22: Train vs Validation Accuracy for each Epoch for filter size 16	61
Fig 4-23: Train vs Validation Loss for each Epoch for filter size 16	61
Fig 4-24: Confusion Matrix for selecting filter size 32	62
Fig 4-25: Receiver Operating Characteristic (ROC) Curve for CNN	62
Fig 4-26: Train vs Validation Accuracy for each Epoch for filter size 32	62
Fig 4-27: Train vs Validation Loss for each Epoch for filter size 32	62
Fig 4-28: Confusion Matrix after selecting ReLU activation function in dense layer	63
Fig 4-29: Train vs Validation Accuracy for each Epoch after selecting ReLU	55
activation function in dense layer	63
Fig 4-30: Train vs Validation Loss for each Epoch after selecting ReLU activation	00
1.5. For train 15 , and and 2000 for each 2point and belocating ready activation	

function in dense layer	63
Fig 4-31: Confusion matrix after selecting softmax as activation function in dense	
layer	64
Fig 4-32: Train vs Validation Accuracy for each Epoch after selecting softmax	
activation function in dense layer	64
Fig 4-33: Train vs Validation Loss for each Epoch after selecting softmax activation	
function in dense layer	64
Fig 4-34: Confusion matrix after ReLU as activation function in second layer	65
Fig 4-35: Train vs Validation Accuracy for each Epoch after ReLU as activation	
function in second layer	65
Fig 4-36: Train vs Validation Loss for each Epoch after ReLU as activation function	
in second layer	65
Fig 4-37: Confusion matrix after 2x2 maxpooling	66
Fig 4-38: Train vs Validation Accuracy for each Epoch after 2x2 maxpooling	66
Fig 4-39: Train vs Validation Loss for each Epoch after 2x2 maxpooling	66
Fig 4-40: Receiver Operating Characteristic (ROC) Curve for SVM	68
Fig 4-41: Confusion Matrix for SVM	68
Fig 4-42: Receiver Operating Characteristic (ROC) Curve for RF	71
Fig 4-43: Confusion Matrix for RF	71
Fig 4-44: Receiver Operating Characteristic (ROC) Curve for DT	73
Fig 4-45: Confusion Matrix for DT	73
Fig 4-46: Receiver Operating Characteristic (ROC) Curve for KNN	75
Fig 4-47: Confusion Matrix for KNN	75
Fig 4-48: Receiver Operating Characteristic (ROC) Curve for MLP	78
Fig 4-49: Confusion Matrix for MLP	78
Fig 4-50: Receiver Operating Characteristic (ROC) Curve for NB	79
Fig 4-51: Confusion Matrix for NB	79

LIST OF TABLES

Table 2.1: Medical image analysis on MRI brain tumor images (Conventional ML)	16
Table 2.2: Medical image analysis on MRI brain tumor images (Deep ML)	18
Table 2.3: Important Literature findings	19
Table 3-1: Composition of research test image dataset	24
Table 3-2: Partition of the full datasets into training dataset and unseen test dataset	25
Table 4-1: Performance of different models	80