# COMPARATIVE STUDY BETWEEN NATURAL COARSE AGGREGATE (BRICK AND STONE) AND RECYCLED CONCRETE AGGREGATE (RCA) AND USE OF ADMIXTURE IN RCA FOR THE PURPOSE OF REGAINING THE INITIAL CONCRETE STRENGTH.

# LT MD MONIRUL HASAN LT S.A SHAH NEOWAZ FERDOUS ABDUL HANNAN KHAN

### A THESIS SUBMITTED FOR THE DEGREE OF BACHELOR

### OF SCIENCE



### DEPARTMENT OF CIVIL ENGINEERING

MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY

2018

#### **APPROVAL OF SUPERVISOR**

The thesis titled "COMPARATIVE STUDY BETWEEN NATURAL COARSE AGGREGATE (BRICK AND STONE) AND RECYCLED CONCRETE AGGREGATE (RCA) AND USE OF ADMIXTURE IN RCA FOR THE PURPOSE OF REGAINING THE INITIAL CONCRETE STRENGTH." submitted by LT Md. Monirul Hasan (<u>ID-</u>201511152); LT S.A Shah Neowaz Ferdous (ID-201511171); Abdul Hannan Khan (ID-201411031) Session 2014-2015 has been accepted cordially in partial fulfillment for the degree of Bachelor of Science in Civil Engineering

Major Mohammad Moinul Islam

Department of Civil Engineering

Military Institute Of Science and Technology

#### DECLARATION

Except required specific references related to this paper which has been included with this paper, overall studies and data in this thesis are the outcomes of the investigation carried out by the respective authors. Any part of this paper is not submitted elsewhere in return of achieving the award of any degree or diploma (except for publication).

LT Md Monirul Hasan Student ID: 201511152 LT S.A Shah Neowaz Ferdous Student ID: 201511171

Abdul Hannan Khan

Student ID: 201411031

Department of Civil Engineering

Military Institute of Science & Technology

Dhaka-1212

#### ABSTRACT

In the present context of Bangladesh, it has been seen that most of the time after demolishing any concrete structure, demolished aggregates are hardly used or recycled for further construction work. This demolished aggregate has a reasonable amount of monetary value. But rather than being used for further construction work it turns into the garbage and pollutes our environment as well as become a burden for us. This happens due to most of the people have the idea that this recycled concrete hardly possesses any strength. Again, in Dhaka and major cities in our country, the requirement of the road has increased significantly inside the town area. Most of these roads are constructed demolishing the concrete structure and producing demolished concrete as well as increasing carrying cost of this demolished concrete. So in this thesis work it has been tried to show the relative comparison of natural coarse aggregate(NCA) and recycled concrete aggregate(RCA) as well as regaining strength by mixing admixture with recycled concrete aggregate(RCA) so that recycled concrete aggregate(RCA) can be potential substitute natural coarse aggregate(NCA). So that aggregate of demolished concrete structure can be recycled for further construction rather than dumping. This will in one hand reduce pollution as well as reduce the overall cost. For the purpose of thesis work 1st class brick, 3rd class brick, and stone chips have been used. Using this natural course aggregate (NCA) cylinder block was cast with a simple ratio of 1:1.5:3. Then the compressive and tensile strength was checked after 28 days. Aggregate property tests like Aggregate crushing value(ACV), Aggregate impact value (AIV), Elongation index(EI), Flakiness index(FI), Los Angles abrasion test(LAAV), unit weight, specific gravity, Absorption capacity and void ratio test were done with both natural coarse aggregate(NCA) and recycled concrete aggregate(RCA) before casting of cylinder. This tests were done to draw a conclusion and compare between the natural coarse aggregate (NCA) and recycled concrete aggregate (RCA). For casting using

recycled concrete aggregate (RCA) mix ratio of 1:1.5:3, water-cement ratio, brand and type of cement, sand, and grading of aggregate were kept same as casting using natural coarse aggregate (NCA). After recycling once admixture was mixed with recycled concrete aggregate (RCA) show how much strength can be regained. It is found that a significant amount of strength was regained and it is very compatible and close to the initial strength. Thus a cost comparison was also done using natural coarse aggregate (NCA) and recycled concrete aggregate (RCA) and found to be very fruitful to use recycled concrete aggregate (RCA). Finally using this dumped recycled concrete aggregate (RCA), developing country like Bangladesh can be benefited from the point of monetary value and environmental issue like saving the natural resource, reducing fuel consumption, low carbon emission, reuse of waste material and stepping one step forward in green building concept.

#### ACKNOWLEDGMENT

The authors are highly delighted and grateful at the same time expressing their sincere gratitude to their supervisor Major Mohammad Moinul Islam, Instructor Class B, Department of Civil Engineering, Military Institute of Science & Technology (MIST), for his continuous supervision, innovative ideas, and guidance during whole thesis work. Without his direction and sincere assistance, it would have been really tough to carry out whole thesis work under a lot of limitation.

Sincere gratitude and profound indebtedness go to Major Md. Shoebur Rahman for his knowledge-based ideas. His innovative ideas guided the authors to the right track and made this thesis work easier.

Special thanks to Col. Md Masudur Rahman, Head of the Department of Civil Engineering, MIST, for providing all required facilities and kind support.

The authors also express their gratefulness to all laboratory craftsmen of Concrete Laboratory and Transportation Laboratory, MIST, for their technical assistance during the performance of work. Lastly, the authors thank those persons who helped directly or indirectly to complete this thesis work.

### CONTENTS

### Page No.

| ABSTRACTi                              |
|----------------------------------------|
| ACKNOWLEDGMENTiii                      |
| CONTENTSiv                             |
| ABBREVIATIONSviii                      |
| LIST OF TABLESix                       |
| LIST OF FIGURESx                       |
|                                        |
| CHAPTER ONE: INTRODUCTION1             |
| 1.1 Background1                        |
| 1.2 Objectives of the study            |
| 1.3 Scopes                             |
| 1.4 Outline of the thesis4             |
|                                        |
| CHAPTER TWO: LITERATURE REVIEW5        |
| 2.1 General                            |
| 2.2 Mix design procedure5              |
| 2.3 Types of Aggregate based on source |
| 2.3.1 Natural aggregate6               |
| 2.3.2 Manufactured aggregate           |
| 2.3.3 Recycled aggregate               |
| 2.3.4 Reused by product                |

|     | 2.4 Based on strength types of bricks       | 6  |
|-----|---------------------------------------------|----|
|     | 2.5 Types of aggregate                      | 7  |
|     | 2.5.1 Coarse aggregate                      | 7  |
|     | 2.5.2 Fine aggregate                        | 7  |
|     | 2.6 Factors influencing mix design          | 8  |
|     | 2.6.1 Workability                           | 8  |
|     | 2.6.2 Aggregate cement ratio                | 9  |
|     | 2.6.3 Type size and grading of aggregate    | 9  |
|     | 2.6.4 Durability                            | 10 |
|     | 2.6.5 Compressive strength                  | 10 |
|     | 2.7 Admixtures and its effect in mix design | 11 |
|     |                                             |    |
| CHA | PTER THREE: METHODOLOGY                     | 12 |
|     | 3.1 General                                 | 12 |
|     | 3.2 Collection of sample                    | 13 |
|     | 3.3 Under grade Ratio                       | 14 |
|     | 3.4 Laboratory test                         | 15 |
|     | 3.4.1 Fineness modulus test                 | 15 |
|     | 3.4.2 Aggregate impact value                | 18 |
|     | 3.4.3 Aggregate crushing value              | 20 |
|     | 3.4.4 Fineness index                        | 22 |
|     | 3.4.5 Elongation index                      | 23 |
|     | 3.4.6 Specific gravity                      | 24 |
|     | 3.4.7 Unit weight and void                  | 27 |
|     | 3.4.8 Los Angles Abrasion test              | 29 |

|     | 3.5 Compressive strength test of concrete cylinder         |    |
|-----|------------------------------------------------------------|----|
|     | 3.6 Tensile strength test of concrete cylinder             | 32 |
|     |                                                            |    |
| CHA | PTER FOUR: SUMMARY OF RESULTS                              |    |
|     | 4.1 Aggregate Property Test Results                        | 33 |
|     | 4.2 Cylinder Strength Test Results                         | 34 |
|     | 4.3 Comparison between Aggregate Property Test             |    |
|     |                                                            |    |
| CHA | PTER FIVE: COMPARISON OF TEST RESULTS                      | 37 |
|     | 5.1 Comparison of the strength of aggregate in NCA and RCA | 37 |
|     | 5.1.1 Comparison of AIV                                    | 37 |
|     | 5.1.2 Comparison of ACV                                    |    |
|     | 5.1.3 Comparison of EI                                     |    |
|     | 5.1.4 Comparison of FI                                     | 40 |
|     | 5.1.5 Comparison of LAAV                                   | 41 |
|     | 5.2 Comparison of cylinder compressive test                | 42 |
|     | 5.2.1 Comparison of 1 <sup>st</sup> class brick            | 42 |
|     | 5.2.2 Comparison of 3 <sup>rd</sup> class brick            | 43 |
|     | 5.2.3 Comparison of stone                                  | 44 |
|     | 5.3 Comparison of cylinder tensile test                    | 45 |
|     | 5.3.1 Comparison of 1 <sup>st</sup> class brick            | 45 |
|     | 5.3.2 Comparison of 3 <sup>rd</sup> class brick            | 46 |
|     | 5.3.3 Comparison of stone                                  | 47 |
|     |                                                            |    |

| 5.4 Comparison of 1 <sup>st</sup> class brick, 3rd class brick, and stone |    |
|---------------------------------------------------------------------------|----|
| 5.4.1 Compressive strength                                                | 48 |
| 5.4.2 Tensile strength                                                    | 49 |
| 5.5 Cost comparison                                                       | 50 |
| 5.5.1 Cost in 1 <sup>st</sup> class brick                                 | 50 |
| 5.5.2 Cost in 3 <sup>rd</sup> class brick                                 | 51 |
| 5.5.3 Cost in stone                                                       |    |
| CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS                               | 53 |
| 6.1 Findings from the study                                               | 53 |
| 6.2 Limitations of the study                                              | 54 |
| 6.3 Conclusion                                                            | 55 |
| 6.4 Recommendations for future study                                      | 55 |
|                                                                           |    |
| REFERENCES                                                                | 56 |

|        |     |       |       |                               |           |                                     |   | - |
|--------|-----|-------|-------|-------------------------------|-----------|-------------------------------------|---|---|
| APPEND | IX. | ••••• | ••••• | • • • • • • • • • • • • • • • | <br>••••• | • • • • • • • • • • • • • • • • • • | 5 | 7 |

## ABBREVIATIONS

| NCA                 | Natural Course Aggregate                                              |
|---------------------|-----------------------------------------------------------------------|
| RCA                 | Recycled Concrete Aggregate                                           |
| AASHTO              | American Association of State Highway<br>and Transportation Officials |
| ACV                 | Aggregate Crushing Value                                              |
| AIV                 | Aggregate Impact Value                                                |
| ASTM                | American Standard for Testing and<br>Materials                        |
| BS                  | British Standard                                                      |
| EI                  | Elongation Index                                                      |
| FI                  | Flakiness Index                                                       |
| FA                  | Fine Aggregate                                                        |
| FM                  | Fineness Modulus                                                      |
| IRC                 | Indian Roads Congress                                                 |
| LAAV                | Los Angeles Abrasion Value                                            |
| OD                  | Oven Dry                                                              |
| OPC                 | Ordinary Portland Cement                                              |
| RHD                 | Roads and Highways Division                                           |
| SSD                 | Saturated Surface Dry                                                 |
| WBM                 | Water Bound Macadam                                                   |
| 1 <sup>st</sup> RCA | 1 <sup>st</sup> time recycled aggregate                               |
| 2 <sup>nd</sup> RCA | 2 <sup>nd</sup> time recycled aggregate                               |

# LIST OF TABLES

### Page No.

| Table 3.1: The grading of course aggregate14              |
|-----------------------------------------------------------|
| Table 3.2: Sieve analysis of coarse aggregate16           |
| Table 3.3: Sieve analysis of Fine aggregate               |
| Table 3.4: Aggregate Impact Value   19                    |
| Table 3.5: Aggregate Crushing Value                       |
| Table 3.6: Result of FI.                                  |
| Table 3.7: Result of EI.  23                              |
| Table-3.8: Result of Specific Gravity (OD)                |
| Table -3.9: Result of Specific Gravity (SSD)   25         |
| Table -3.10: Comparison of Apparent Specific Gravity   26 |
| Table -3.11: Result of Unit Weight                        |
| Table -3.12: Result of Void (%)        28                 |
| Table-3.13: Result of LAAV                                |
| Table 3.14: Result of Compression Test31                  |
| Table 3.15: Result of Tensile Test                        |
| Table-4.1: Aggregate Property Test Results                |
| Table 4.2: Cylinder Strength Test Results                 |

# LIST OF FIGURES

#### Page No.

| <b>Fig-3.1</b> : | Grain Size Distribution Curve for Coarse Aggregate16                                        |
|------------------|---------------------------------------------------------------------------------------------|
| Fig-3.2:         | Grain Size Distribution Curve for Fine Aggregate17                                          |
| <b>Fig-4.1</b> : | Result of Unit Weight                                                                       |
| <b>Fig-4.2</b> : | Result of Void (%)35                                                                        |
| <b>Fig-4.3</b> : | Result of Specific Gravity (OD)                                                             |
| <b>Fig-4.4</b> : | Result of Specific Gravity (SSD)                                                            |
| <b>Fig-4.5</b> : | Comparison of Apparent Specific Gravity                                                     |
| <b>Fig-5.1</b> : | Comparison of AIV of 1 <sup>st</sup> Class, 3rd Class Brick, and Stone as NCA and RCA37     |
| <b>Fig-5.2</b> : | Comparison of ACV of<br>1 <sup>st</sup> Class, 3rd Class Brick, and Stone as NCA and RCA38  |
| <b>Fig-5.3</b> : | Comparison of EI of<br>1 <sup>st</sup> Class, 3rd Class Brick, and Stone as NCA and RCA39   |
| <b>Fig-5.4</b> : | Comparison of FI of 1 <sup>st</sup> Class, 3rd Class Brick, and Stone as NCA and RCA40      |
| <b>Fig-5.5</b> : | Comparison of LAAV of<br>1 <sup>st</sup> Class, 3rd Class Brick, and Stone as NCA and RCA41 |
| <b>Fig-5.6</b> : | Comparison of Compressive Strength of<br>1st Class Brick as NCA and RCA42                   |
| <b>Fig-5.7</b> : | Comparison of Compressive Strength of<br>3rd Class Brick as NCA and RCA43                   |
| <b>Fig-5.8</b> : | Comparison of Compressive Strength of<br>Stone as NCA and RCA                               |

| Fig-5.9: Comparison of Tensile Strength of                            |
|-----------------------------------------------------------------------|
| 1st Class Brick as NCA and RCA45                                      |
| Fig-5.10: Comparison of Tensile Strength of                           |
|                                                                       |
| 3rd Class Brick as NCA and RCA46                                      |
| Fig-5.11: Comparison of Tensile Strength of                           |
| Stone as NCA and RCA47                                                |
|                                                                       |
| Fig-5.12: Comparison of Compressive Strength of                       |
| 1st Class, 3rd Class Brick, and Stone48                               |
| Fig-5.13: Comparison of Tensile Strength of                           |
| 1st Class, 3rd Class Brick, and Stone                                 |
| Tst Class, 510 Class Blick, and Stone49                               |
| Fig.5.14: Cost comparison in                                          |
| 1st Class Brick by % of replacement of RCA50                          |
|                                                                       |
| <b>Fig.5.15</b> : Percentage of saving by replacement of % of RCA     |
| Fig.5.16: Cost comparison in                                          |
| 3rd Class Brick by % of replacement of RCA                            |
| Sid class blick by 70 of replacement of Refr                          |
| Fig.5.17: Percentage of saving by replacement of % of RCA51           |
| <b>Fig.5.18</b> : Cost comparison in Stone by % of replacement of RCA |
| <b>1 General</b> Contraction in Stone by 70 of replacement of Refr    |
| <b>Fig.5.19</b> : Percentage of saving by replacement of % of RCA     |

### **CHAPTER ONE**

### INTRODUCTION

#### **1.1 Background**

In the field of construction industry concrete is one of the most important building material. About 6 billion tons of concrete are produced every year (ISO, 2005) which is huge in amount. So it has become a challenge for the industry to produce this much amount of concrete per year using natural resources which has a lot of environmental impacts as well. And the demand is increasing day by day. For this reason, developed countries increased their attention in this issue thinking about the environmental impact and they set taxes on the use of fresh aggregate. For a country like Bangladesh, a large amount of waste is produced from this construction sector after demolishing the structure. After demolishing the structure this concrete material is used in a landfill in most of the cases which pollute the environment as well as wastes of material which contain a monetary value. So the use of recycled concrete is always welcomed to the present context which can be the most suitable solution to reduce the waste as well as it can save our natural resource.

It is seen that in some cases in our country this demolished concrete is used as aggregate in embankment construction or in road construction but most of the cases it is used in landfills. The main reason is that the quality of recycled concrete aggregate (RCA) is lower compared to the natural aggregate which turns into an important issue to use this (RCA) as structural concrete construction.

1

After crushing the demolished aggregate lose its initial strength. Which is the main reason for the degradation of the quality of (RCA) compare to the fresh aggregate? Which ultimately results in strength reduction in concrete construction using recycled concrete. In this paperwork, it has been analyzed how much strength is reduced in the subsequent stage after using the recycled concrete as aggregate in concrete construction repeatedly. For showing the comparison both recycled stone chips and brick chips have been used those are recycled for twice which will show the comparative strength reduction in both the cases. If this strength can be regained this recycled concrete can be used in concrete construction again which can reduce the cost of the construction work. The huge demand of aggregate in construction work can be met by using this recycled concrete .which reduce the demand for industrial production of normal coarse aggregate (NCA). And it is going to be an environmentally friendly process. To regain the strength admixture has been used which will increase the workability in mix design with a low water-cement ratio. For both recycled stone and brick chips, the same admixture has been used keeping all the parameter, same to compare in which case how much strength can be regained.

### 1.2 Objectives of the Study

Basing on the background discussed in the above section, main research objectives are as follows:

- 1. To compare brick chips and stone chips as RCA in terms of strength required for concrete mixing as well as pavement design.
- 2. To compare between NCA and RCA of brick and stone and find how much strength can be regained by using admixture with recycled concrete.
- 3. To reach a final decision basing on the study where to use this recycled aggregate which can be environmentally and economically feasible.

### 1.3 Scopes

To obtain the objectives stated above, the scopes of this thesis are set as follows:

- > Procuring aggregate of different types for comparing their strength.
- > Casting concrete cylinder block using those normal aggregate.
- > Reusing those aggregate for repeated casting in every cycle.
- Perform compressive and tensile tests on concrete cylinder block after 28 days in every cycle to compare the variation in compressive strength and tensile strength.
- > Using admixture with recycled concrete for regaining the strength.
- Summarize every test results graphically for comparing the variation of strength for different types of aggregate.

### **1.4 Outline of the Thesis**

Chronological development of whole thesis work has been divided into a number of chapters. The contents of the chapters are briefly presented below.

- Chapter One. Where introduction of this research work has been described briefly which includes of its background, objectives, and scopes of the study.
- Chapter Two. This chapter includes the literature regarding various types of aggregate, methods of mix design and influence of admixture in the mix design.
- Chapter Three. Which deals with the test methodologies. The standard procedures which were followed for each test are described in this chapter.
- > <u>Chapter Four</u>. which represents the test result of the tests performed
- > <u>Chapter Five.</u> Which represents the comparative test results graphically.
- Chapter Six. Which deals with the ultimate findings of whole thesis work and recommendation based on findings.

### CHAPTER TWO

### LITERATURE REVIEW

#### 2.1 General

Concrete is a major part of a structural member. Brick chips and stones are used as coarse aggregate and sand and cement as binder materials. Out of those constituent materials of concrete, the aggregate can be recycled. And the strength of the concrete using recycled aggregate will largely depend on the strength of aggregate used. There is also some other parameter which will influence the strength of concrete like the type of binder material, type of fine aggregate, workability, type size and grading of coarse aggregate, admixture, water-cement ratio and most importantly mix design procedure.

#### 2.2 Mix Design Procedure

For this study, one of the most used mix ratio of 1:1.5:3 has been used and the water-cement ratio was 0.42 for the mix. In the case of admixture, the mix ratio was the same but water-cement ratio was reduced to 0.35 and Master Rhio Build was used as an admixture. The admixture was mixed with a ratio of 600 ml per 100 kg cement.

#### 2.3 Types of Aggregates Based on Source.

**2.3.1. Natural Aggregates**. The aggregate, which is produced naturally from a natural source like sand gravel etc.

**2.3.2 Manufactured Aggregates**. The aggregate, which is manufactured in factory manually or mechanically, is known as manufactured aggregate such as brick chips, crushed rocks etc. For the manufacture of aggregate fly ash, soil can be used.

**2.3.3 Recycled Aggregates.** The aggregate, which is found from the recycling of previously used concrete, is known as recycled concrete. Examples include aggregate recycled from the demolished concrete structure, aggregate from scrap tires and asphalt pavement etc.

**2.3.4 Reused by-Product.** Aggregate that is found from the by-product of an industrial process. Examples include various types of aggregates that are found from steel and iron manufacturers. In 2005, instead of disposing of as landfill 2.35 million tons of iron and steel slag were effectively used in a productive way in Australia.

#### 2.4 Based on Strength types of Bricks

1<sup>st</sup> Class: These bricks are burnt in kilns, having standard shape and table molded.it has a sharp and straight edge and smooth surface with square shape. The clear ringing sound is emitted once it is being struck. These bricks are made of the good earth completely burnt and possess the qualities of good bricks. It has the crushing strength 1500 lbs per square inch.

 $2^{nd}$  Class: These bricks are also burnt in kilns and ground-molded. The shape of this brick is slightly irregular and the surface is little rough. It may not have a sharp and uniform edge and it may have hair cracks. It should have a minimum of 70 kg per sq. cm crushing strength.

**3<sup>rd</sup> Class:** It is also ground molded, possesses uneven and distorted surfaces and edges. If it is struck it provide dull sound .it is having a light color and used in those areas where is normal. These bricks are mainly used for the temporary and minor structure.

**4<sup>th</sup> class:** These bricks are over burnt and having dark color mostly.it is having very low compressive strength. These bricks are mainly used on roads floors or in such concrete structure where less compressive strength is desired. It is mainly used as aggregate or gravel in substandard structure.

#### **2.5 Types of Aggregates**

On the basis of size, the aggregate can be following types.

#### 2.5.1 Coarse Aggregate

Aggregates size bigger than 4.75 mm is called coarse aggregates. These mainly provide strength to concrete.

#### 2.5.2 Fine Aggregate

Aggregates passing through 4.75mm sieve are known as fine aggregates. They are used for filling up the gap in between coarse aggregate.

#### 2.6 Factors Influencing Mix Design

Concrete mix should possess certain desirable properties like workability, durability, strength etc. at the same time concrete mix should be prepared in such a way so that it becomes cost effective. Some of the important parameters, which control the proportion of ingredients in the mix, are shown below

#### 2.6.1 Workability

The concrete mixture should be such so that certain workability is attained. It is mainly determined to cope up with means of compaction, placing condition and type of construction at the site. Some of the factors which control the workability are shape and size of the mold, properties of aggregate, amount of water-cement ratio, amount of reinforcement etc. But the most important factors which control the workability is a proportion of water content. Few other parameters which can also influence the workability are the maximum size of aggregate and its grading. The more workable concrete mixture should be used for a heavily reinforced section. Admixture can also alter the workability of the concrete mix.

#### 2.6.2 Aggregate Cement Ratio

Some of the factors which influence the aggregate-cement ratio are grading of the aggregate, workability, shape size and texture of the aggregate. The selection of aggregate-cement ratio is done from the chart or table which is prepared from laboratory investigation. Aggregate cement ratio largely influences the strength of the concrete. A varying ratio of aggregate cement will provide varying strength. Concrete mix with a low water-cement ratio or low aggregate-cement ratio concrete contains high cement content. Absorption behavior of aggregate may reduce the effective water-cement ratio of the mix.

#### 2.6.3 Type Size and Grading Of Aggregate

Grading of aggregate is one of the important factors which can influence the workability of the mixture. A concrete can be good if it contains different types of aggregate like crushed rock, irregular gravel which is preferably angular in shape. For the heavily reinforced concrete section maximum size of aggregate is restricted to 5 mm (Indian standard code practice IS: 456. Another investigation was done by Bloem where he has indicated that if the maximum size of the aggregate exceeds 40 mm improvement of the aggregate does not occur. Aggregate should be carefully graded so that void in between the coarse aggregate is filled up by the fillers so that maximum density can be attained

#### 2.6.4 Durability

The durability of concrete depends on the type of exposure prevailing. If concrete is prepared with certain compaction and suitable ingredient under ordinary exposure it becomes durable. Most of the cases strength, workability, water cement ratio etc., these are taken into consideration rather than considering the durability of the concrete. The places where high durability is expected water-cement ratio should be reduced in those cases. Suitable air entrainment should be there in a concrete mix where the cycle of freezing and thawing exist. If fire-resistant concrete is expected natural aggregate should be used with a concrete mix like basalts, dolerites, limestone etc. hard coarse aggregate should be used in runways and spillways like gravel, granite to increase the compacted density which can resist erosion and abrasion effect.

#### 2.6.5 Compressive strength

A satisfactory level of Compressive strength is the prime requirement from a concrete. Strength o the concrete depends on water-cement ratio, durability, impermeability, abrasion resistance etc. for designing a high strength concrete water-cement ratio depends on the maximum size of the aggregate, workability, water cement ratio etc. again compressive strength of concrete depends on the type of cement or filler material used and method of curing applied.

#### 2.7 Admixture and its effectiveness in the mix

Admixture can be one of the good options to increase the workability of the concrete mix with a low water-cement ratio. Using admixture can reduce the water-cement ratio without increasing the cement content. There is various type of admixture which can influence the strength of the concrete mix in any way. But most of the time superplasticizer is used which contain the retarding agent. There are also few admixtures which are commercially available to increase the strength of concrete. But it should be mixed in a definite proportion which is provided by the definite code. Excessive use of the dose may not be effective in the concrete mix to get the desired result.

### **CHAPTER THREE**

### METHODOLOGY

#### **3.1 General**

For the study, three type of aggregate were used. They are 1<sup>st</sup> class brick, 3<sup>rd</sup> class brick, and stone. The bricks were crushed manually and following aggregate property test was conducted.

- Fineness Modulus test
- Aggregate Impact Value (AIV)
- Aggregate Crushing Value (ACV)
- Specific Gravity
- Flakiness & Elongation Index
- ➢ Unit Weight & Voids
- Los Angeles Abrasion Value

After conducting these tests a concrete cylinder was cast. For casting, all the mix were done following 1:1.5:3 ratio. Concrete cylinders were prepared for each type of aggregates and both compressive and tensile strength test was carried out at 28 days.

After measuring the strength of all the cylinders each type of concrete with different Coarse aggregates was crushed manually. Then again the above-mentioned aggregate tests were conducted using this recycled concrete and for better assimilation, it is named as 1<sup>st</sup> time recycle concrete in this paper. Then the concrete cylinder was cast with this 1<sup>st</sup> time recycle concrete aggregate (RCA). The mix, brand of cement, the source of sand and downgrade ratio of coarse aggregate were kept unchanged as initial casting. In addition to this admixture was used with 1<sup>st</sup> time recycle concrete aggregate (RCA) following the same ratio and procedure only the water-cement ratio was reduced from 0.42 to 0.35. After this again cylinder ware tested for compression and tension and like previous manually crushed. This time, the aggregate obtained after crushing it is named as 2nd time recycle concrete (RCA) in this paper for better understanding. Again the aggregate property test was done with 2<sup>nd</sup> time recycled concrete and after 28 days the compressive and tensile strength were measured.

#### **3.2 Collection of Sample:**

The bricks are collected from the brickfield near Gabtoli. Sylhet sand and also cement collected from Gabtoi. The stones and admixture were collected from concrete lab MIST. The cement used is Shah Portland cement.

### 3.3 Under grade Ratio

Mix design done for preparing the sample followed grade M20 where the ratio of 1:1.5:3 is used to prepare all the sample and also the grading of course aggregate were kept fixed by the following ratio:

| Sieve No | Percentage (%) |
|----------|----------------|
| 25 mm    | 0              |
| 19.5 mm  | 25.4           |
| 12.5 mm  | 54             |
| 9.5 mm   | 12.7           |
| 4.75 mm  | 7.9            |

Table 3.1: The grading of course aggregate.

Water-cement ratio was kept fixed at 0.42:1 in all casting except the concrete with admixture where the water-cement ratio was 0.35:1 and 800 ml of Master Rheobuilt 623 were used for per 100 kg of cement

#### **3.4 Laboratory Tests:**

The tests have been performed following the ASTM and BS specifications. The standard procedures followed for each test are described here.

#### **3.4.1 Fineness Modulus Test:**

**Objective**: To determine the gradation and the number of fines produced by the aggregates to be used in construction.

**Procedure**: This test requires a set of standard sieves arranged sequentially one below the other. The standard sieves used for coarse aggregate are 37.5 mm, 19 mm, 9.5 mm, 4.75 mm (#4), 2.36 mm (#8), 1.18 mm (#16), 600  $\mu$ m (#30), 300  $\mu$ m (#50), 150  $\mu$ m (#100) and a pan. Sieves used for fine aggregates are #4, #8, #16, #30, #50, #100, #200 and pan .A representative weighed sample was poured on the top sieve. The sieves were shaken well using a mechanical shaker. Then the amount retained on each sieve was carefully weighed [ASTM C136].

The Fineness Modulus (FM) of the sample was found out using the following formula:

# $FM = \frac{\Sigma(Cumulative percentage retained on standard sieves)}{100}$

A graph was plotted in a semi-log graph paper having sieve opening along x-axis and percent finer along the y-axis. The shape of the curve indicates the gradation of the aggregate, i.e. well-graded, uniformly graded or gap-graded.

#### **Data Calculation & Graph:**

| Course Aggregate | (NCA | & RCA) |
|------------------|------|--------|
|------------------|------|--------|

| Sieve Size (mm) | Mass<br>Retained<br>(kg) | Percent<br>Retained (%) | Cumulative<br>Percent<br>Retained (%) | Cumulative<br>Percent<br>Passing (%) |
|-----------------|--------------------------|-------------------------|---------------------------------------|--------------------------------------|
| 37.5            | 0                        | 0.00                    | 0.00                                  | 100.00                               |
| 19.0            | 17.82                    | 25.37                   | 25.37                                 | 74.63                                |
| 12.5            | 37.4                     | 53.24                   | 78.61                                 | 21.39                                |
| 9.50            | 9.46                     | 13.47                   | 92.08                                 | 7.92                                 |
| 4.75            | 5.566                    | 7.92                    | 100.00                                | 0.00                                 |
| 2.36            |                          | 0.00                    | 100.00                                | 0.00                                 |
| 1.18            |                          | 0.00                    | 100.00                                | 0.00                                 |
| 6.00            |                          | 0.00                    | 100.00                                | 0.00                                 |
| 3.00            |                          | 0.00                    | 100.00                                | 0.00                                 |
| 1.50            |                          | 0.00                    | 100.00                                | 0.00                                 |
| Pan             |                          |                         |                                       |                                      |
| Total           | 70.246                   | 100.00                  | 692.08                                | FM=6.92                              |

Table 3.2: Sieve analysis of coarse aggregate

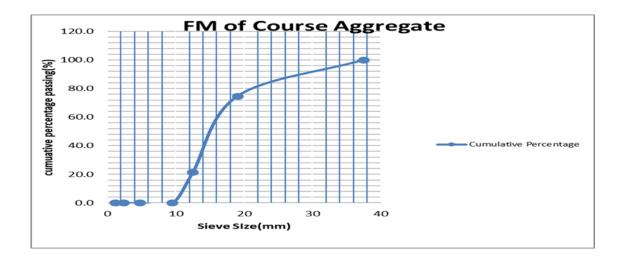



Fig 3.1: Grain Size Distribution Curve for Coarse Aggregate

#### **Fine Aggregate**

| Sieve Size (mm) | Mass<br>Retained<br>(gm) | Percent<br>Retained (%)<br>(gm) | Cumulative<br>Percent Retained<br>(%) | Cumulative<br>Percent Passing<br>(%) |
|-----------------|--------------------------|---------------------------------|---------------------------------------|--------------------------------------|
| 9.500           | 0                        | 0                               | 0.0                                   | 100.0                                |
| 4.750           | 0                        | 0                               | 0.0                                   | 100.0                                |
| 2.360           | 20                       | 4                               | 4.0                                   | 96.0                                 |
| 1.180           | 56                       | 11.2                            | 15.2                                  | 84.8                                 |
| 0.600           | 180                      | 36                              | 51.2                                  | 48.8                                 |
| 0.300           | 160                      | 32                              | 83.2                                  | 16.8                                 |
| 0.150           | 61                       | 12.2                            | 95.4                                  | 4.6                                  |
| Pan             | 23                       | 4.6                             | 100.0                                 | 0.0                                  |
| Total           | 500                      | 100.00                          | 249.00                                |                                      |
|                 |                          | FM =                            | 2.49                                  |                                      |

Table 3.3: Sieve analysis of Fine Aggregate

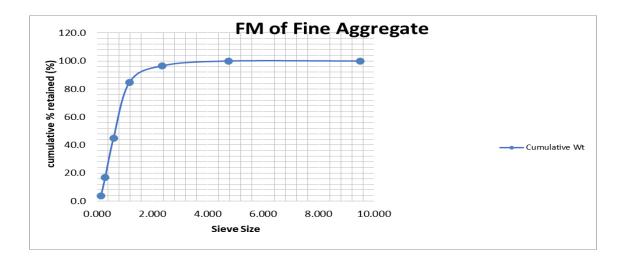



Fig 3.2: Grain Size Distribution Curve for Fine Aggregate.

**Result**: FM of Coarse aggregate was found 6.92% and fine aggregates were found 2.49%. Coarse and Fine aggregate were both gaps graded.

#### **3.4.2 Aggregate Impact Value:**

Objective: To get a relative measure of the resistance of an aggregate to sudden shock or impact.

Procedure: The required sieves sizes are 12.5 mm, 10 mm and 2.36 mm. For this test, the aggregates were dried in an oven for 4 hours. Then aggregates passing through 14 mm sieve and retained on 10 mm sieve were taken for AIV test. A cylindrical metal measure (dia. = 75 mm, depth = 50 mm) was filled up in three layers with aggregate, each layer was stroke 25 times with a tamping rod falling freely from a height of 50 mm. Aggregates were taken in standard mold and tamped in three-layer until overflow and excess aggregates were discarded from the top of the mold carefully. Then the aggregate was poured into a mold of (dia. = 102 mm, depth = 50 mm) AIV testing machine and was fixed in the impact testing machine. 15 blows were given at 1-sec interval with a hammer by dropping it from a height of  $380\pm5 \text{ mm}$ . The crushed aggregate was then transferred to a tray and sieved through a 2.36 mm sieve for 1 min.IS 2386 (Part IV) – 1963.

The AIV was obtained from the following formula:

$$AIV = \frac{B}{A} \times 100$$

Where A = initial weight of aggregate

B = weight of aggregate passing through 2.36 mm sieve.

The result was discarded in case of more than 1% loss of aggregate.

### Data:

### 1st Class Brick

| Туре                | Total  | Mold | Passing 2.36 Mm | AIV |
|---------------------|--------|------|-----------------|-----|
|                     | (gm)   | (gm) | (gm)            | (%) |
| NCA                 | 1320.6 | 1071 | 94.3            | 38  |
| 1 <sup>st</sup> RCA | 1338.3 | 1071 | 70.1            | 27  |
| 2 <sup>nd</sup> RCA | 1343.7 | 1071 | 96.2            | 36  |

### **3rd Class Brick**

| Туре                | Total<br>(gm) | Mold<br>(gm) | Passing 2.36 Mm<br>(gm) | AIV<br>(%) |
|---------------------|---------------|--------------|-------------------------|------------|
| NCA                 | 1316          | 1071         | 105.6                   | 44         |
| 1 <sup>st</sup> RCA | 1339          | 1071         | 92.2                    | 36         |
| 2 <sup>nd</sup> RCA | 1321          | 1071         | 95.2                    | 39         |

#### **Stone**

| Туре                | Total<br>(gm) | Mold<br>(gm) | Passing 2.36 Mm<br>(gm) | AIV<br>(%) |
|---------------------|---------------|--------------|-------------------------|------------|
| NCA                 | 1404.5        | 1071         | 43.6                    | 14         |
| 1 <sup>st</sup> RCA | 1367.5        | 1071         | 74.5                    | 26         |
| 2 <sup>nd</sup> RCA | 1353.3        | 1071         | 80.3                    | 29         |

### Table 3.4: Aggregate Impact Value

### 3.4.3 Aggregate Crushing Value

Objective: To get a relative measure of the resistance of an aggregate to crushing under a gradually applied compressive load.

Procedure: This test is similar to the AIV test except the dimensions of cylindrical metal measure are different (dia. = 115 mm, depth = 180 mm). After tamping the aggregate as before, it was poured into another cylinder with the base plate and tamped again in three layers. Then the cylinder along with the base plate and a plunger was placed in a compression testing machine. 400 KN force was applied for 10 minutes at a uniform rate. The rest of the procedure including the calculation is exactly the same as that of the AIV test [BS 812-110].

#### Data:

#### 1st Class Brick

| Туре                | Total<br>(gm) | Mold<br>(gm) | Passing 2.36 mm<br>(gm) | ACV<br>(%) |
|---------------------|---------------|--------------|-------------------------|------------|
| NCA                 | 3807.3        | 1623         | 643.2                   | 30         |
| 1 <sup>st</sup> RCA | 3793.9        | 1623         | 512.2                   | 24         |
| 2 <sup>nd</sup> RCA | 3782.5        | 1623         | 679.3                   | 32         |

### 3<sup>rd</sup> Class Brick

| Туре                | Total<br>(gm) | Mold<br>(gm) | Passing 2.36 mm<br>(gm) | ACV<br>(%) |
|---------------------|---------------|--------------|-------------------------|------------|
| NCA                 | 3605.3        | 1623         | 821.3                   | 42         |
| 1 <sup>st</sup> RCA | 3601.3        | 1623         | 933                     | 48         |
| 2 <sup>nd</sup> RCA | 3599.1        | 1623         | 1003.2                  | 51         |

### **Stone**

| Туре                | Total<br>(gm) | Mold<br>(gm) | Passing 2.36 mm<br>(gm) | ACV<br>(%) |
|---------------------|---------------|--------------|-------------------------|------------|
| NCA                 | 4230.3        | 1623         | 436.2                   | 17         |
| 1 <sup>st</sup> RCA | 4205.5        | 1623         | 562.3                   | 22         |
| 2 <sup>nd</sup> RCA | 4196.2        | 1623         | 653.2                   | 26         |

Table 3.5: Aggregate Crushing Value

### 3.4.4 Flakiness Index:

**Objective**: To identify whether an aggregate is flaky or not in order to know its strength.

**Procedure**: The required sieves for this test are 63 mm, 50 mm, 37.5 mm, 28 mm, 20 mm, 14 mm, 10 mm and 6.3 mm. The aggregates were kept in surface dry condition. They were sieved through all the sieves and the portions retained on 63 mm and passing through 6.3 mm were discarded. Each size fraction was weighed. Then aggregates were passed through appropriate slots of a thickness gauge. The aggregates passing through the slots were considered as flaky. The individual amount of aggregates passing through each slot was then weighed [BS 812-105.1]. Flakiness Index was obtained using the following formula:

 $FI = M_3/M_2 \times 100$ 

Where  $M_2 = sum$  of net mass retained on each sieve

 $M_3$  = total weight of flaky particles.

| FI | Value |
|----|-------|
|    |       |

| Туре                | 1 <sup>st</sup> Class Brick | 3 <sup>rd</sup> Class Brick | Stone |
|---------------------|-----------------------------|-----------------------------|-------|
|                     | (%)                         | (%)                         | (%)   |
| NCA                 | 19.4                        | 23.3                        | 17.9  |
| 1 <sup>st</sup> RCA | 8.4                         | 16.4                        | 8.9   |
| 2 <sup>nd</sup> RCA | 15.4                        | 17.2                        | 10.4  |

Table 3.6: Result of FI

### **3.4.5 Elongation Index**:

**Objective**: To determine whether an aggregate is elongated or not in order to know its strength.

**Procedure**: The sieves required for this test are 50 mm, 37.5 mm, 28 mm, 20 mm, 14 mm, 10 mm and 6.3 mm. The procedure is similar to that of FI test. The aggregates retained on 50 mm and those passing through 6.3 mm were discarded. Aggregates were passed through appropriate slots of a length gauge for their corresponding sieve sizes. Length of the gauge is the1.8 times of average of sieve size that the aggregate passes and the sieve aggregate retains. [BS 812-105.2]. The aggregates which did not pass were considered as elongated. Elongation Index was obtained using the following formula:

 $EI = M_3/M_2 \times 100$ 

Where  $M_2 = sum$  of the net mass of aggregate taken for a test

 $M_3$  = total weight of elongated particles not passing the gauge

| Туре                | 1 <sup>st</sup> Class Brick<br>(%) | 3 <sup>rd</sup> Class Brick<br>(%) | Stone<br>(%) |  |
|---------------------|------------------------------------|------------------------------------|--------------|--|
| NCA                 | 32.6                               | 38.7                               | 26.9         |  |
| 1 <sup>st</sup> RCA | 15.4                               | 32.4                               | 9.1          |  |
| 2 <sup>nd</sup> RCA | 14.2                               | 13.1                               | 14.4         |  |

#### EI Value

Table 3.7: Result of EI

### 3.4.6 Specific Gravity:

**Objective:** To determine the quality and water absorption capacity of aggregate in order to know the amount of water requirement of a concrete mixture made using these aggregates.

**Procedure**: Aggregate samples were oven-dried at 110<sup>o</sup>C for 24 hrs and then cooled at room temperature for 1-3 hrs. The samples were then immersed in water for 24 hrs to make it SSD. The weight of the SSD sample was taken. Then it was placed in a wire basket and immersed in water immediately. The immersed weight was taken. Then the sample was oven-dried again and its weight was taken [ASTM C127]. Specific gravity and water absorption capacity of the sample were found out using the following formulae:

Bulk Sp. Gravity (OD) =  $\frac{A}{B-C}$ 

Bulk Sp. Gravity (SSD) =  $\frac{B}{B-C}$ 

Apparent Sp. Gravity =  $\frac{A}{A-C}$ 

Absorption Capacity =  $\frac{B-A}{A} \times 100\%$ 

Where, A = weight of OD sample

B = weight of SSD sample

C = weight of SSD sample in water.

#### <u>Data</u>

#### Specific Gravity (Oven Dry)

| Туре                | 1 <sup>st</sup> Class Brick | 3 <sup>rd</sup> Class Brick | Stone |  |
|---------------------|-----------------------------|-----------------------------|-------|--|
| NCA                 | 1.88                        | 1.81                        | 2.63  |  |
| 1 <sup>st</sup> RCA | 2.06                        | 1.99                        | 2.47  |  |
| 2 <sup>nd</sup> RCA | 2.07                        | 2.01                        | 2.39  |  |

Table-3.8: Result of Specific Gravity (OD) of 1st Class, 3rd Class Brick and Stone as

#### NCA and RCA.

#### **Specific Gravity (Saturated Surface Dry)**

| Туре                | 1 <sup>st</sup> Class Brick | 3 <sup>rd</sup> Class Brick | Stone |  |
|---------------------|-----------------------------|-----------------------------|-------|--|
| NCA                 | 1.97                        | 1.91                        | 2.68  |  |
| 1 <sup>st</sup> RCA | 2.17                        | 2.14                        | 2.56  |  |
| 2 <sup>nd</sup> RCA | 2.18                        | 2.17                        | 2.50  |  |

Table -3.9: Result of Specific Gravity (SSD) of 1st Class, 3rd Class Brick and Stone as

NCA and RCA.

### **Apparent Specific Gravity**

| Туре                | 1 <sup>st</sup> Class Brick | 3 <sup>rd</sup> Class Brick | Stone |  |
|---------------------|-----------------------------|-----------------------------|-------|--|
| NCA                 | 2.07                        | 2.02                        | 2.76  |  |
| 1 <sup>st</sup> RCA | 2.31                        | 2.34                        | 2.73  |  |
| 2 <sup>nd</sup> RCA | 2.33                        | 2.39                        | 2.67  |  |

Table -3.10: Comparison of Apparent Specific Gravity of 1st Class, 3rd Class Brick and

Stone as NCA and RCA.

#### 3.4.7 Unit Weight and Voids:

**Objective**: To determine the percentage of voids present in the aggregate and the effort required for compaction of concrete to be used in construction.

**Procedure:** There is a standard bucket for this test. At first, weight and volume of the empty bucket were taken. Unit weight can be measured in two ways – loose or compact. For measuring loose unit weight, the bucket was simply filled with aggregate and weighed. For compact unit weight, the bucket was filled with aggregate in three equal layers, each layer being tamped 25 times with a tamping rod. Then it was weighed. The aggregates were oven-dried prior to the test [ASTM C29].

Unit Wt. =  $\frac{\text{Weight of aggregate}}{\text{volume of a bucket}} (kg/m^3)$ 

% voids =  $\frac{G-Y}{G} \times 100\%$ 

Where, G = sp. gravity of aggregate (OD)

Y = unit wt. (kg/L)

### Result:

### <u>Unit Weight</u>

| Туре                | 1 <sup>st</sup> Class Brick<br>(Kg/m <sup>3</sup> ) | 3 <sup>rd</sup> Class Brick<br>(Kg/m <sup>3</sup> ) | Stone<br>(Kg/m <sup>3</sup> ) |  |
|---------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------|--|
| NCA                 | 1160                                                | 1013                                                | 1645                          |  |
| 1 <sup>st</sup> RCA | 1192                                                | 1250                                                | 1526                          |  |
| 2 <sup>nd</sup> RCA | <b>2<sup>nd</sup> RCA</b> 1265                      |                                                     | 1432                          |  |

Table -3.11: Result of Unit Weight of 1st Class, 3rd Class Brick and Stone as NCA and

RCA.

### Void Ratio

| Туре                | 1 <sup>st</sup> Class Brick<br>(%) | 3 <sup>rd</sup> Class Brick<br>(%) | Stone<br>(%) |
|---------------------|------------------------------------|------------------------------------|--------------|
| NCA                 | 38.3                               | 44.04                              | 37.46        |
| 1 <sup>st</sup> RCA | 42.14                              | 37.19                              | 28.22        |
| 2 <sup>nd</sup> RCA | <b>2<sup>nd</sup> RCA</b> 38.89    |                                    | 40.09        |

Table -3.12: Result of Void (%) 1st Class, 3rd Class Brick and Stone as NCA and RCA.

### 3.4.8 Los Angeles Abrasion Test:

Objective: To determine the resistance of an aggregate to abrasion, which is an indication of the toughness of the aggregate.

Procedure: The sieves used for this test are 37.5 mm, 25 mm, 19 mm, 12.5 mm, 9.5 mm, 6.3 mm, 4.75 mm and 2.36 mm. Aggregates were rinsed and oven-dried at  $110 \pm 5^{0}$ C. The number of spheres to be used was selected as per Table-1, ASTM C131. In our case, the aggregates fell under the class B, so 11 spheres were used. The aggregates along with the spheres were put in the LAA machine and rotated. After completion of the rotation, the aggregates were taken out and sieved through a #12 sieve. The aggregates passing through the #12 sieve were weighed [ASTM C131]. Then LAAV was obtained from the following formula:

 $LAAV = \frac{\text{Wt.passing through \#12 sieve}}{\text{Total wt.of agg.}} \times 100\%$ 

#### Graph:

|                     | 1 <sup>st</sup> Class Brick  | 3 <sup>rd</sup> Class Brick | Stone |  |
|---------------------|------------------------------|-----------------------------|-------|--|
| Туре                | (%)                          | (%)                         | (%)   |  |
| NCA                 | 31                           | 42                          | 26.5  |  |
| 1 <sup>st</sup> RCA | 41                           | 64                          | 33.6  |  |
| 2 <sup>nd</sup> RCA | <b>2<sup>nd</sup> RCA</b> 63 |                             | 45    |  |

Table-3.13: Result of LAAV of 1<sup>st</sup> Class, 3rd Class Brick and Stone as NCA and RCA.

#### 3.5 Compressive Strength Test of Concrete Cylinder:

Objective: To determine the compressive strength of the concrete cylinder in order to gain knowledge about the ultimate compressive strength of concrete to be used in construction.

**Procedure**: Concrete was made from three types of aggregate, 1<sup>st</sup> Class bricks, Picket bricks, and stone chips. In total, three kinds of concrete were made. And with each of these three aggregates, three types of concrete were made. Each of these three types of concrete was crushed by hand and used as coarse aggregate for concrete mix. For next iteration of concrete mixes coarse aggregate found from crushing each individual type of concrete were used for respective concrete preparation. Again this concrete was tested and crushed and again used for concreting but this time admixture was used for all type of concretes. The ratio of Cement: FA: CA was 1:1.5:3 for all type of aggregates and the w/c ratio was taken as 0.418. The sand used for this purpose was Sylhet sand. Portland cement from local manufacturers was (Crown Cement) used. Cylinders were cast in steel molds having internal diameter 6 in. and internal depth 8 in. All the molds were greased properly prior to casting. Concrete was poured in them and tamped properly and left to set. After 24 hours, the cylinders were unmolded and immersed in water for curing.28-day compressive strength tests were done. For testing, cylinders were taken out of the water and left for at least 4 hrs. Then their dimensions and weight are measured. Each cylinder was placed longitudinally in the compression testing machine and the required input was given. Force was applied by the machine until the cylinder cracked. The results were obtained digitally from the machine. Three cylinders were tested for each day and the average result was taken [ASTM C39].

#### Casting with Casting 1<sup>st</sup> Casting 2<sup>nd</sup> Casting 3<sup>rd</sup> Casting **RCA** and (1<sup>st</sup> RCA) (2<sup>nd</sup> RCA) (NCA) Admixture (Psi) (Psi) (Psi) Туре (Psi) 1<sup>st</sup> Class Brick 2816 4155 3374 4324 3<sup>rd</sup> Class Brick 1664 1874 1309 2869 Stone 3808 3515 2816 5317

**Compressive Strength** 

Table 3.14: Result of Compression Test

### 3.6 Tensile Strength Test of Concrete Cylinder:

Objective: To get a measure of the tensile strength of concrete.

Procedure: The same concrete used for the compressive strength test was also used for this test. Split & cone test was carried out for tensile strength measurement. Cylinders were placed laterally in the compression testing machine and force was applied. The cylinders broke across their vertical diameter. The split tensile strength was obtained directly from the machine. The average of three-cylinder results was taken as the final result. The 28-day strength tests were performed [ASTM C496]

| Casting<br>Type             | 1 <sup>st</sup> Casting<br>(NCA)<br>(Psi) | 2 <sup>nd</sup> Casting<br>(1 <sup>st</sup> RCA)<br>(Psi) | 3 <sup>rd</sup> Casting<br>(2 <sup>nd</sup> RCA)<br>(Psi) | Casting with<br>RCA and<br>Admixture<br>(Psi) |
|-----------------------------|-------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|
| 1 <sup>st</sup> Class Brick | 474                                       | 391                                                       | 382                                                       | 453                                           |
| 3 <sup>rd</sup> Class Brick | 286.6                                     | 273.3                                                     | 262                                                       | 293                                           |
| Stone                       | 345                                       | 340                                                       | 324                                                       | 376                                           |

#### **Tensile Strength**

Table 3.15: Result of Tensile Test

# **CHAPTER FOUR**

# SUMMARY OF RESULTS

# 4.1 Aggregate Property Test Results:

This table represents the different aggregate property test:

|                                          | 1 <sup>st</sup> Class brick |                        |                        | 3 <sup>rd</sup> class brick |                        |                        | Stone |                        |                        |
|------------------------------------------|-----------------------------|------------------------|------------------------|-----------------------------|------------------------|------------------------|-------|------------------------|------------------------|
| Name<br>of test                          | NCA                         | 1 <sup>st</sup><br>RCA | 2 <sup>nd</sup><br>RCA | NCA                         | 1 <sup>st</sup><br>RCA | 2 <sup>nd</sup><br>RCA | NCA   | 1 <sup>st</sup><br>RCA | 2 <sup>nd</sup><br>RCA |
| ACV                                      | 29.6                        | 24.7                   | 31.2                   | 43                          | 27                     | 35                     | 16.7  | 21.9                   | 26.4                   |
| AIV                                      | 38                          | 27                     | 36                     | 44                          | 29                     | 39                     | 13.4  | 26                     | 29                     |
| LAAV<br>(%)                              | 31                          | 41                     | 53                     | 41                          | 53                     | 61                     | 26.5  | 33.6                   | 45                     |
| FI (%)                                   | 19.4                        | 8.4                    | 15.4                   | 23.3                        | 16.4                   | 17.2                   | 17.9  | 8.9                    | 10.4                   |
| EI (%)                                   | 32.6                        | 15.4                   | 14.2                   | 38.7                        | 32.4                   | 13.1                   | 26.9  | 9.1                    | 14.4                   |
| Specific<br>gravity<br>(SSD)             | 1.97                        | 2.17                   | 2.18                   | 1.91                        | 2.14                   | 2.17                   | 2.68  | 2.56                   | 2.5                    |
| Specific<br>gravity<br>(OD)              | 1.88                        | 2.06                   | 2.07                   | 1.81                        | 1.99                   | 2.01                   | 2.63  | 2.47                   | 2.39                   |
| Unit<br>Weight<br>kg/m <sup>3</sup>      | 1160                        | 1192                   | 1265                   | 1013                        | 1250                   | 1197                   | 1645  | 1526                   | 1432                   |
| Apparent<br>Specific<br>Gravity<br>Value | 2.07                        | 2.31                   | 2.33                   | 2.02                        | 2.34                   | 2.39                   | 2.76  | 2.73                   | 2.67                   |
| Void<br>(%)                              | 38.3                        | 42.14                  | 38.89                  | 44.04                       | 37.19                  | 40.45                  | 37.46 | 38.22                  | 40.09                  |

Table-4.1: Aggregate Property Test Results

### **4.2 Cylinder Strength Test Results:**

Compressive and tensile strengths of the cylinders made with different kinds of aggregates are presented below:

|                                             | 1 <sup>st</sup> class brick         |                                     |                                     | 3 <sup>rd</sup> class brick         |                                     |                                     | Stone                               |                                     |                            |
|---------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------------|
| Types of test                               | 1 <sup>st</sup><br>Casting<br>(NCA) | 2 <sup>nd</sup><br>Casting<br>(RCA) | 3 <sup>rd</sup><br>Casting<br>(RCA) | 1 <sup>st</sup><br>Casting<br>(NCA) | 2 <sup>nd</sup><br>Casting<br>(RCA) | 3 <sup>rd</sup><br>Casting<br>(RCA) | 1 <sup>st</sup><br>Casting<br>(NCA) | 2 <sup>nd</sup><br>Casting<br>(RCA) | 3 <sup>rd</sup><br>Casting |
| Average<br>Compression<br>Strength<br>(psi) | 4156                                | 3374                                | 3057                                | 1645                                | 1875                                | (RCA)                               | 3605                                | 3615                                | (RCA)<br>3159              |
| Average<br>Tensile<br>Strength<br>(psi)     | 345                                 | 340                                 | 324                                 | 285.6                               | 273.3                               | 263.2                               | 474                                 | 391                                 | 382                        |

Table-4.2: Cylinder Strength Test Results

### **4.3 Comparison of Aggregate Property Test**

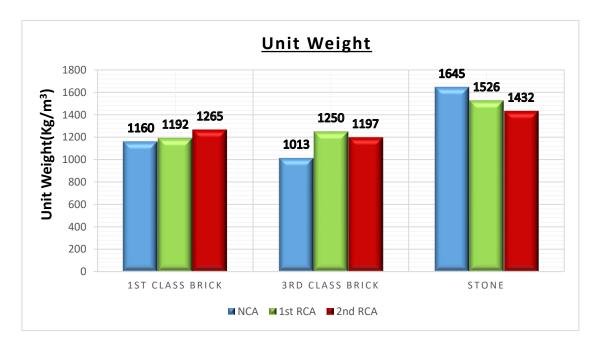



Fig-4.1: Result of Unit Weight of 1<sup>st</sup> Class, 3rd Class Brick and Stone as NCA and RCA.

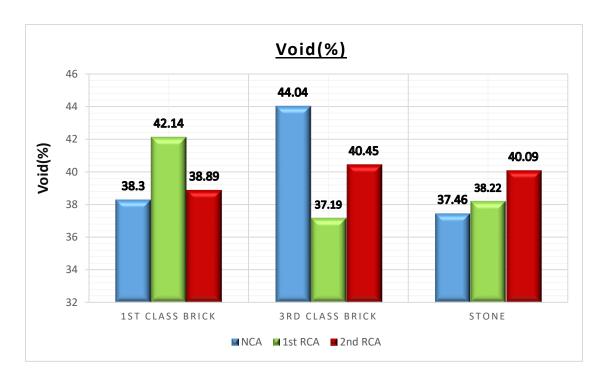



Fig-4.2: Result of Void (%) 1st Class, 3rd Class Brick, and Stone as NCA and RCA.

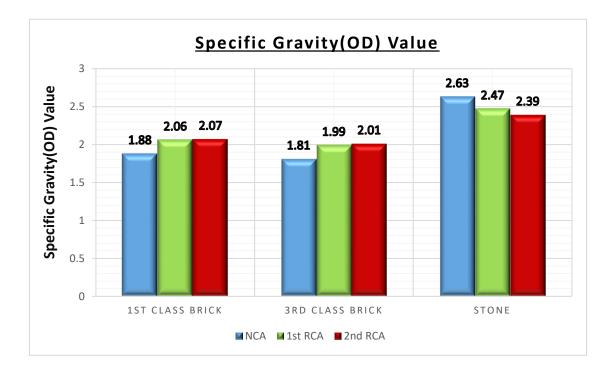



Fig-4.3: Result of Specific Gravity (OD) of 1<sup>st</sup> Class, 3rd Class Brick and Stone as NCA and RCA.

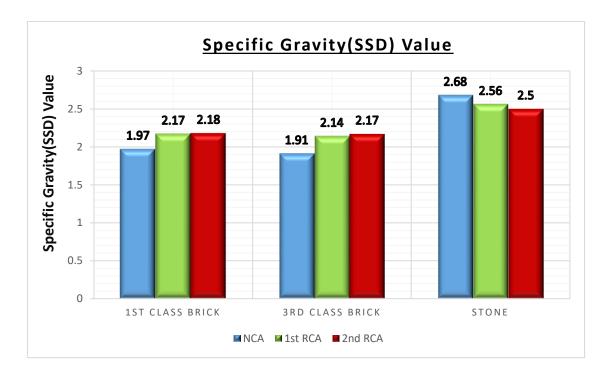
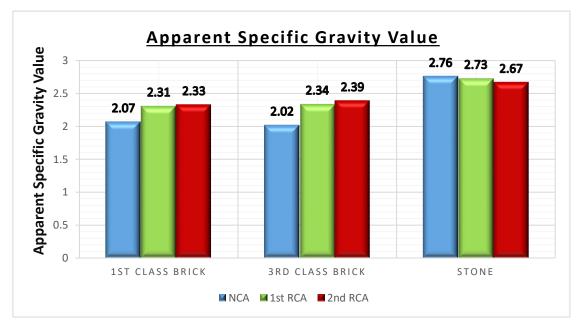
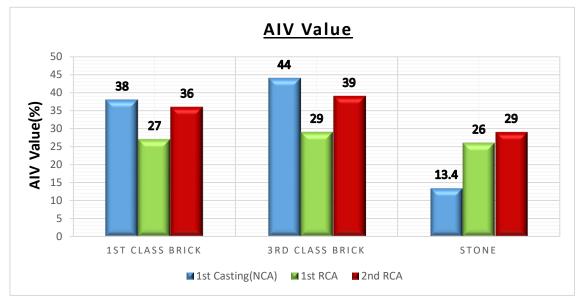



Fig-4.4: Result of Specific Gravity (SSD) of 1<sup>st</sup> Class, 3rd Class Brick and Stone as NCA and RCA.

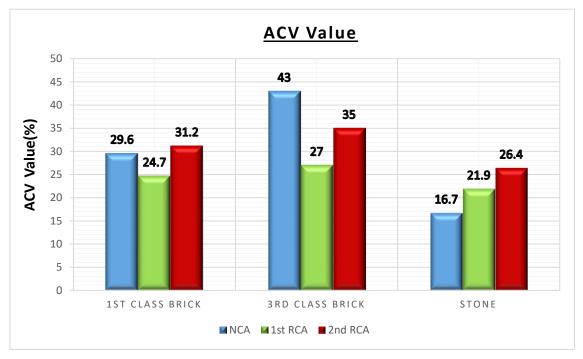




Fig-4.5: Comparison of Apparent Specific Gravity of 1<sup>st</sup> Class, 3rd Class Brick and Stone as NCA and RCA.

# **CHAPTER FIVE**

# **COMPARISON OF TEST RESULTS**

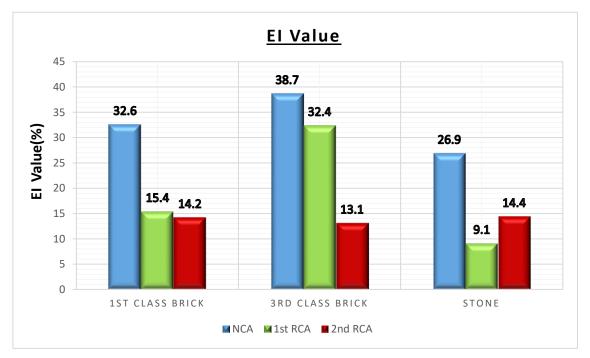
### 5.1 Comparison of Strength of Aggregate in NCA and RCA.


The aggregate properties of 1<sup>st</sup> class brick, 3<sup>rd</sup> class brick, and stone used to prepare the cylinders are presented as below:



### 5.1.1 Comparison in AIV

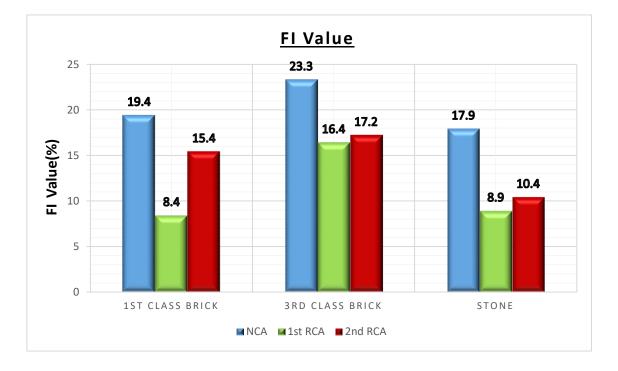
Fig-5.1: Comparison of AIV of 1<sup>st</sup> Class, 3rd Class Brick and Stone as NCA and RCA.


- The AIV value decreased in RCA in case of bricks recycled for the first time but it increased in case of RCA after recycling for the second time in comparison with first time RCA as AIV<30%.</li>
- 2. In the case of stone, it showed the opposite pattern and increased gradually in RCA.
- 3. The strength of stone NCA is more than stone RCA. But the strength of brick NCA is less than brick RCA.
- 4. The stone RCA and brick RCA, recycled for the first time can be used for road surface course



## **5.1.2 Comparison in ACV**

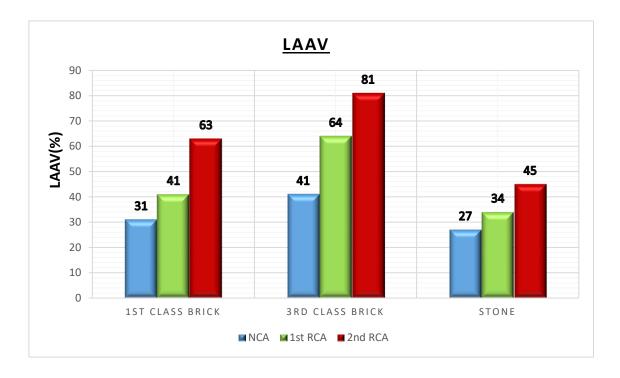
Fig-5.2: Comparison of ACV of 1<sup>st</sup> Class, 3rd Class Brick and Stone as NCA and RCA.


- 1. The ACV of brick RCA decreased after first recycling but increased after second recycling.
- 2. The ACV of stone increased gradually in RCA
- Brick RCA of 1<sup>st</sup> class brick and stone can be used in the concrete pavement (ACV 20~30%)
- 4. Brick RCA of 3<sup>rd</sup> Class brick can be used in pavement wearing. (ACV<45%)



### 5.1.3 Comparison in EI

Fig-5.3: Comparison of EI of 1st Class, 3rd Class Brick and Stone as NCA and RCA


- 1. The EI value of both brick and stone RCA is decreasing after 1<sup>st</sup> and 2<sup>nd</sup> recycling.
- 2. The aggregate having EI >45% is unsuitable for construction work, thus both brick and stone RCA can be used for the construction.
- Elongated aggregate is also not suitable for the road construction due to it will break in heavy traffic load. Thus both the RCA of brick and stone can be used for road construction (EI < 45%, BS 1241)</li>



## 5.1.4 Comparison in FI

Fig-5.4: Comparison of FI of 1<sup>st</sup> Class, 3rd Class Brick and Stone as NCA and RCA.

- 1. The FI value decreased in brick RCA and stone RCA after 1<sup>st</sup> time recycling but increased after the second time and still, the value is less than brick NCA
- 2. The aggregate having FI less than 30% is suitable for concrete mix, thus both brick and stone RCA satisfy this condition.
- 3. The brick and stone RCA both are suitable for road construction since the value is less than 30%(BS 1241)



### **5.1.5** Comparison in LAAV

Fig-5.5: Comparison of LAAV of 1st Class, 3rd Class Brick and Stone as NCA and RCA.

- 1. The LAAV value of both brick and stone RCA increase gradually.
- According to AASHTO 90 LAAV for the base course should be less than 40% and for sub base course it should be less than 50%. According to road design standard of the rural road by LGED and JICA the LAAV should not exceed 40% for base course.
- 3. Thus RCA of Stone and 1<sup>st</sup> time recycled brick can be used as base and subbase and the RCA of 2<sup>nd</sup> time recycled can be used as sub-base in road construction.

## 5.2 Comparison in Cylinder Compressive Test

# 5.2.1 Comparison in 1<sup>st</sup> Class Brick

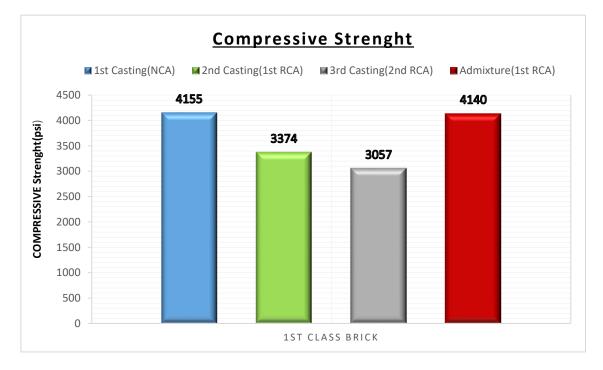
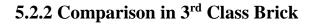




Fig-5.6: Comparison of Compressive Strength of 1<sup>st</sup> Class Brick as NCA and RCA.

- 1. The compressive strength of concrete block with brick RCA gradually decrease with the number of recycling.
- 2. The strength is regained by the use of admixture (Master Rheobuilt 623) and 99% strength is regained using the admixture.
- 3. So RCA can be used in construction with admixture in case of first-class brick.



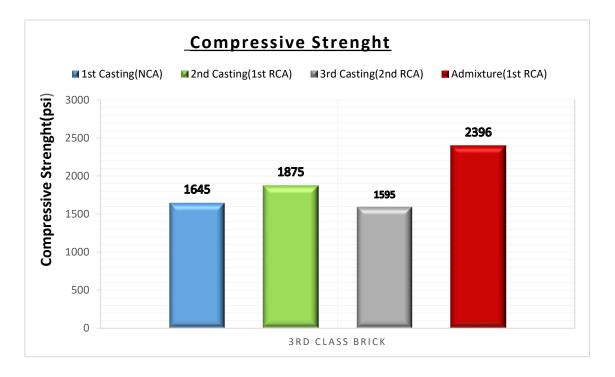
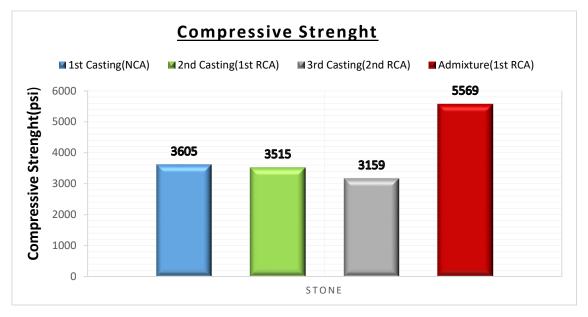




Fig-5.7: Comparison of Compressive Strength of 3<sup>rd</sup> Class Brick as NCA and RCA.

- The compressive strength of concrete block with 3<sup>rd</sup> brick RCA initially gained better strength than NCA concrete due to the addition of cement increased the aggregate strength. But during 2<sup>nd</sup> recycling, the strength reduced by approx. 5%
- 2. The strength is regained by the use of admixture (Master Rheobuilt 623) and it is more than the initial concrete with NCA.



### 5.2.3 Comparison in Stone

Fig-5.8: Comparison of Compressive Strength of Stone as NCA and RCA.

- The compressive strength of the stone block decreased the number of recycling but the rate of strength reduction is less compared to 1<sup>st</sup> class brick. (Reduction rate average=5%)
- 2. Again the strength regained by the use of admixture is much more than NCA concrete block (increased 55%).
- 3. So the RCA of stone performs better than RCA of brick.

# 5.3 Comparison in Cylinder Tensile Test

### 5.3.1 Comparison in 1st Class Brick

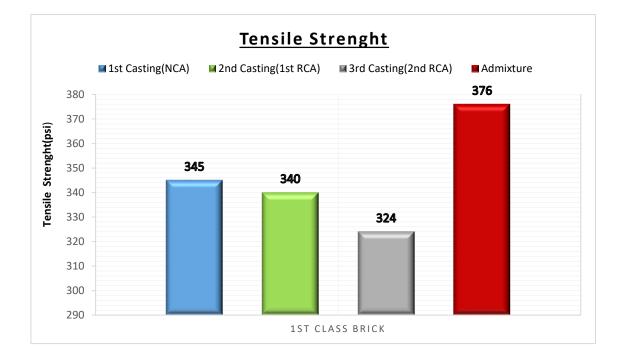
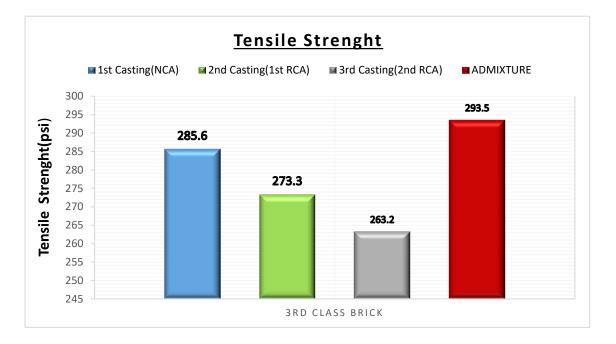
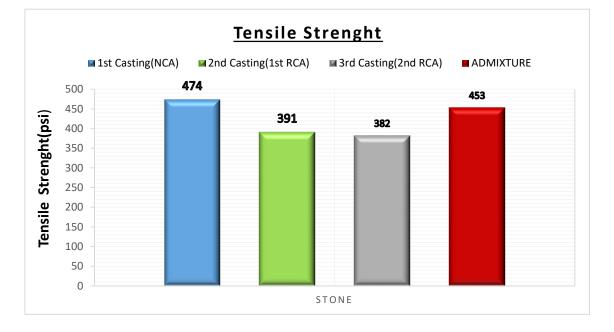




Fig-5.9: Comparison of Tensile Strength of 1<sup>st</sup> Class Brick as NCA and RCA.

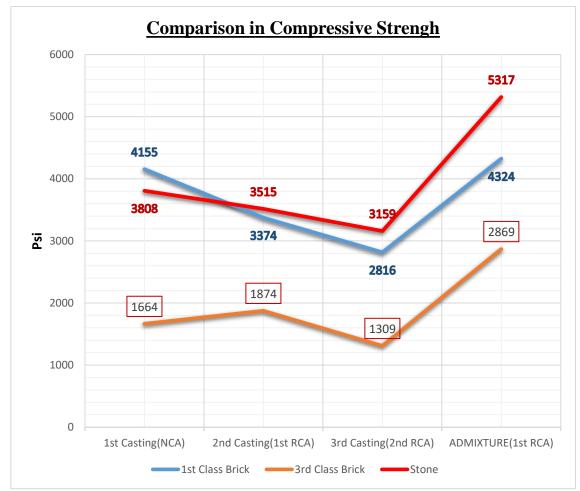

- The tensile of concrete block with NCA decrease gradually with times of recycling.(Average reduction rate=1.05%)
- 2. Use of admixture gained the strength of RCA block by 8.9%.



# 5.3.2 Comparison in 3<sup>rd</sup> Class Brick

Fig-5.10: Comparison of Tensile Strength of 3<sup>rd</sup> Class Brick as NCA and RCA.

- The tensile of concrete block with NCA decrease gradually with times of recycling in 3<sup>rd</sup> class brick (Average reduction rate=3%)
- 2. Use of admixture gained the strength of RCA block by 2.77%.

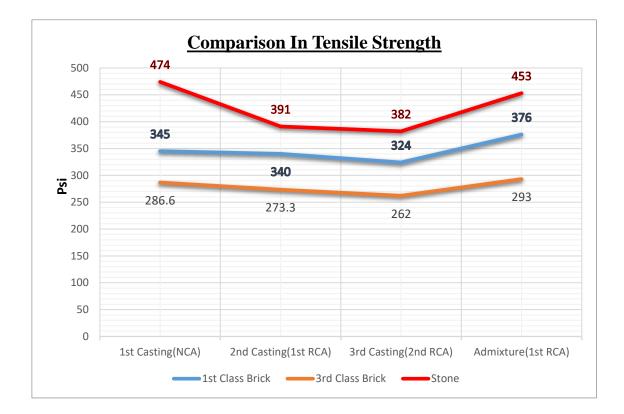



### 5.3.3 Comparison in Stone

Fig-5.11: Comparison of Tensile Strength of Stone as NCA and RCA.

- The tensile of concrete block with NCA decrease gradually with times of recycling in 3<sup>rd</sup> class brick (Average reduction rate=9%)
- 2. Use of admixture gained the strength of RCA concrete block by 95%.of initial NCA concrete block.

# 5.4 Comparison among 1<sup>st</sup> Class Brick, 3<sup>rd</sup> Class Brick, and Stone




### **5.4.1 Compressive Strength**

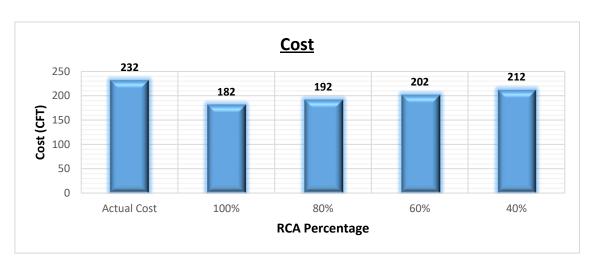
Fig-5.12: Comparison of Compressive Strength of  $1^{st}$  Class,  $3^{rd}$  Class Brick, and Stone

- The compression strength curve shows the similar behavior of 1<sup>st</sup> class brick and stone where the strength gradually decreased and regained with the addition of admixture.
- 2. In case of 3<sup>rd</sup> class brick, the compressive strength initially increased and then decreased in 2<sup>nd</sup> time recycle. Addition of admixture increased the strength but the overall compressive strength is below 2500 psi in all case.
- 3. The reduction rate of concrete RCA block is more than RCA stone block

4. The strength gained due to admixture is much more in RCA stone block than that of brick RCA.



### **5.4.2 Tensile Strength**


Fig-5.13: Comparison of Tensile Strength of 1<sup>st</sup> Class, 3<sup>rd</sup> Class Brick, and Stone.

- 1. The tensile strength behavior in all three cases shows the same pattern where the strength reduced in use of RCA.
- 2. The strength regained in all the case with the addition of admixture
- Overall variation due to NCA and RCA in 1<sup>st</sup> class brick is 24%, 3<sup>rd</sup> class brick is 9% and stone is 6%.

### **5.5 Cost Comparison**

### 5.5.1 Cost in 1<sup>st</sup> Class Brick

For estimating the cost per cft of concrete, the price of materials was taken corresponding to November 2018. Firstly the material cost was collected and the cost per cubic feet was calculated. This cost is actual or market cost of per cft of concrete. Then 100% of NCA used in initial estimating was replaced by cost less RCA. In this way, 80%, 60% and 40% of NCA were replaced by RCA and cost were calculated. This cost is shown in chart 5.14, 5.16 and 5.18. For easy assimilation and understanding chart 5.15, 5.17 and 5.19 was added which are showing the % value of saving for using the RCA.



### 5.5.1 Cost in 1<sup>st</sup> Class Brick

Fig.5.14: Cost comparison in 1st Class Brick by % of replacement of RCA

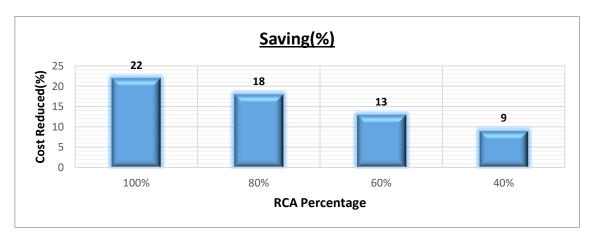
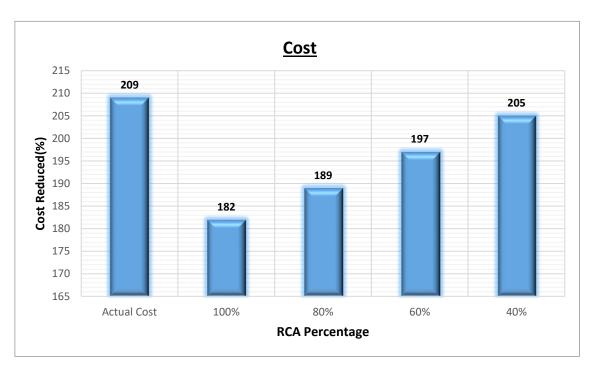




Fig.5.15: Percentage of saving by replacement of % of RCA



5.5.2 Cost in 3<sup>rd</sup> Class Brick

Fig.5.16: Cost comparison in 3rd Class Brick by % of replacement of RCA

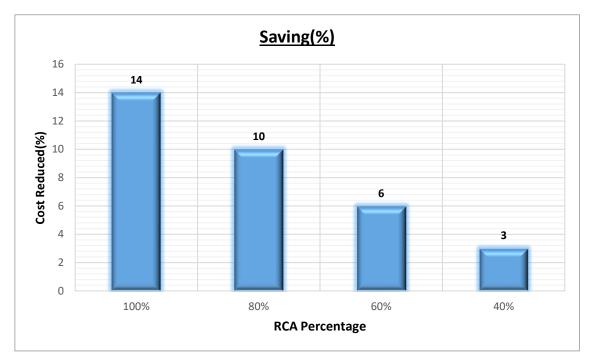
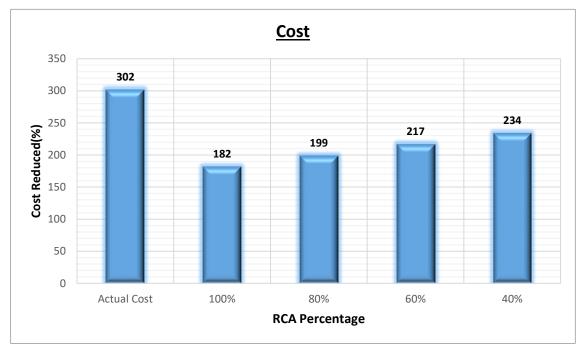




Fig.5.17: Percentage of saving by replacement of % of RCA



# 5.5.3 Cost in Stone

Fig.5.18: Cost comparison in Stone by % of replacement of RCA

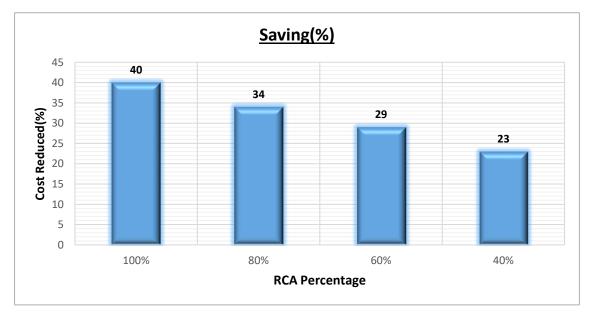



Fig.5.19: Percentage of saving by replacement of % of RCA

# **CHAPTER SIX**

# CONCLUSION AND RECOMMENDATIONS

### **6.1 Findings from the study:**

Base on the aggregate test properties and strength of the NCA and RCA of brick and stone chips, the findings of the study are as follow

- Both brick and stone chips showed a similar pattern in subsequent recycling and the strength reduced gradually in 1<sup>st</sup> class brick and stone. The aggregate properties also deteriorate in stone and brick chips except in brick RCA, the ACV and AIV value decreased than NCA. Overall results states that stone chips serve better than brick chips as RCA in all the aggregate test. The RCA of Stone has better strength in both compression and tensile test than RCA of 1<sup>st</sup> class brick. Therefore, it is preferable to use stone in a temporary structure, which may be further be reconstructed. In case of 3<sup>rd</sup> case brick RCA, it fails many of the tests and preferably should not be used as RCA
- 2. Both NCA is better in compression strength than RCA. To achieve higher strength and workability admixture was used with 1<sup>st</sup> RCA of both brick and stone aggregate and 95% of initial strength could be achieved in case of 1<sup>st</sup> class brick and 167% of initial strength achieved in stone RCA, which refers that stone is much better RCA than 1<sup>st</sup> class brick RCA. But both 1<sup>st</sup> class and stone RCA can be used in construction and pavement design since both passes in property test. In case of 3<sup>rd</sup> class brick, RCA strength increased but lack in other parameters. Thus not suitable as RCA.
- 3. The overall cost reduction in the use of 1<sup>st</sup> class brick is 22% while it is 40% in case of stone if 100% RCA is used. But practically 100 % RCA may not be available and if 40% replacement is possible then cost will be reduced to 9% in 1<sup>st</sup> class brick and 23% in stone which is very economic for construction.

### **6.2 Limitations of this study:**

Despite controlling the required process for the individual test there were limitations. They are as follow:

- 1. The study may be limited in two brick and one stone sample and with a fixed mix ratio. This narrowed the result of the study to a particular source of the sample but for the final conclusion, a wide variety of samples should be taken
- 2. The number of samples cast was limited as well as there was human error. The instruments required for a long time like oven cannot be operated for 24 hours to get the actual dry weight.
- The use of admixture was limited in one sample only. And the composition for mix design was also one since the study objective required fixed mix design in all sample casted
- 4. There were many test properties like modulus of elasticity, ductility and brittle behavior of the concrete could not be achieved due to time limitation
- 5. The cost comparison is time dependent and may change nature in the future.
- 6. The main limitation was the time. Due to time limitation, the actual or exact RCA strength was obtained. As a building will retain a minimum time after construction there may be a change in an aggregate property of RCA.

#### **6.3 Conclusion:**

At present more importance is given in environmental aspects of construction as well cost is the most concern part of construction works. But both cannot be satisfied together because eco-friendly construction involves cost. So this study involved to compromise two opposite aspects and can deduce an approximate solution that is a use of RCA. The study showed that stone RCA is comparatively better than brick RCA and use of admixture can regain the strength. RCA of 3<sup>rd</sup> class brick is not suitable for construction. So construction of less important elements of building like slab secondary beam, exterior beams can be designed with RCA to reduce the cost as well as ensure the strength. It is also environmentally good and aggregate sources are less used. RCA in pavement design can reduce cost as the buildings demolished to construct the road can be economically used or else this RCA needs to be transported as garbage and aggregate from other source need to be used which involves double cost. Finally, the use of RCA extensively can dissolve the misunderstanding between general mass that is RCA is not just a waste rather proper use RCA can save cost and also environmental friendly.

#### 6.4 Recommendations for future study:

Recycled concrete is a vast field of works since the construction volume at present days are increasing hugely as well as the source is limited to this study is actually nothing but the demand of time and further future study can be carried on following aspects:

- 1. Use of different available brick and stone sample of our country for study.
- 2. Study on recycled aggregate based on time variation.
- 3. Recycling of composite structure and its feasibility
- 4. The behavior of NCA and RCA in a marine environment like cox bazar.
- 5. The behavior of RCA under fire.
- 6. Associating RCA with green building concept so that a building constructed in such that even after demolition it can be used as effective RCA

### REFERENCES

ASTM C29/C29M-17a Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate.

ASTM C39/C39M-17b Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.

ASTM C127-15 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate.

ASTM C131/C131M-14 Standard Test Method for Resistance to Degradation of Smallsize Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine.

ASTM C136/C136M-14 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.

ASTM C496/C496M-17 Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.

BS 812-105.1:1989. Testing Aggregates. Methods for Determination of Particle Shape. Flakiness Index.

BS 812-105.2:1990. Testing Aggregates. Methods for Determination of Particle Shape. Elongation Index of Coarse Aggregate.

BS 812-110:1990. Testing Aggregates. Methods for Determination of Aggregate Crushing Value (ACV).

BS 812-112:1990. Testing Aggregates. Methods for Determination of Aggregate Impact Value (AIV).

Local Government Engineering Department, Local Government Engineering Department (LGED) and Japan International Cooperation Agency.

BS 1241 Tarmacadam and tar carpets (gravel aggregate)

# APPENDIX

| Туре         | Sample<br>Name | Mass of<br>container<br>(g) | Mass of<br>container +<br>Agg (g) | Mass<br>of<br>Agg, A<br>(g) | Mass of Agg<br>passing 2.36 mm<br>sieve, B<br>(g) | AIV=<br>(B/A)*100 |
|--------------|----------------|-----------------------------|-----------------------------------|-----------------------------|---------------------------------------------------|-------------------|
|              | NCA            | 1071                        | 1320                              | 249                         | 95                                                | 38                |
| 1st Class    | 1st RCA        | 1071                        | 1339                              | 268                         | 73                                                | 27                |
| Brick        | 2nd<br>RCA     | 1071                        | 1341                              | 270                         | 98                                                | 36                |
| <b>2</b> 4   | NCA            | 1071                        | 1342                              | 271                         | 120                                               | 44                |
| 2nd<br>Class | 1st RCA        | 1071                        | 1338                              | 267                         | 78                                                | 29                |
| Brick        | 2nd<br>RCA     | 1071                        | 1321                              | 250                         | 98                                                | 39                |
|              | NCA            | 1071                        | 1405                              | 334                         | 45                                                | 13.3              |
| Stone        | 1st RCA        | 1071                        | 1368                              | 297                         | 78                                                | 26                |
| Stone        | 2nd<br>RCA     | 1071                        | 1363                              | 292                         | 85                                                | 29                |

# > <u>Aggregate Impact Value (AIV)</u>

# > <u>Aggregate Crushing Value (ACV)</u>

| Туре         | Sample<br>Name | Mass of<br>containe<br>r (g) | Mass of<br>container +<br>Agg (g) | Mass of<br>Agg, A<br>(g) | Mass of Agg<br>passing 2.36 mm<br>sieve, B<br>(g) | ACV=<br>(B/A)*10<br>0 |
|--------------|----------------|------------------------------|-----------------------------------|--------------------------|---------------------------------------------------|-----------------------|
| 1 at         | NCA            | 1623                         | 3750                              | 2127                     | 630                                               | 29.6                  |
| 1st<br>Class | 1st RCA        | 1623                         | 3763                              | 2140                     | 529                                               | 24.7                  |
| Brick        | 2nd<br>RCA     | 1623                         | 3771                              | 2148                     | 671                                               | 31.2                  |
| 2nd          | NCA            | 1623                         | 3723                              | 2100                     | 903                                               | 43                    |
| Class        | 1st RCA        | 1623                         | 3735                              | 2112                     | 571                                               | 27                    |
| Brick        | 2nd<br>RCA     | 1623                         | 3742                              | 2119                     | 742                                               | 35                    |
|              | NCA            | 1623                         | 4223                              | 2600                     | 435                                               | 16.7                  |
| Stone        | 1st RCA        | 1623                         | 4203                              | 2580                     | 566                                               | 21.9                  |
| Stone        | 2nd<br>RCA     | 1623                         | 4183                              | 2560                     | 676                                               | 26.4                  |

# > Specific Gravity

| Туре      | Casting | OD<br>(gm) | SSD<br>(gm) | SSD<br>Submerged | Specific<br>Gravity<br>(OD) | Specific<br>Gravity<br>(SSD) | Specific<br>Gravity<br>(Apparent) |
|-----------|---------|------------|-------------|------------------|-----------------------------|------------------------------|-----------------------------------|
| 1st Class | NCA     | 1262       | 1323        | 651              | 1.88                        | 1.97                         | 2.07                              |
| Brick     | 1st RCA | 1252       | 1317        | 709              | 2.06                        | 2.17                         | 2.31                              |
| DITCK     | 2nd RCA | 1302       | 1371        | 741              | 2.07                        | 2.18                         | 2.33                              |
|           | NCA     | 1250       | 1321        | 629              | 1.81                        | 1.91                         | 2.02                              |
| 3rd Class | 1st RCA | 1030       | 1108        | 588              | 1.99                        | 2.14                         | 2.34                              |
| Brick     | 2nd RCA | 1123       | 1213        | 652              | 2.01                        | 2.17                         | 2.39                              |
|           | NCA     | 1050       | 1069        | 669              | 2.63                        | 2.68                         | 2.76                              |
| Stone     | 1st RCA | 1120       | 1164        | 709              | 2.47                        | 2.56                         | 2.73                              |
| Stolle    | 2nd RCA | 1113       | 1161        | 695              | 2.39                        | 2.5                          | 2.67                              |

# > Elongation Index

|              | Sieve Size(Retained) |               |               |                |                    |                    |       |       |
|--------------|----------------------|---------------|---------------|----------------|--------------------|--------------------|-------|-------|
| Туре         | Sample<br>Name       | 25.4-19<br>mm | 19-12.7<br>mm | 12.7-9.5<br>mm | 9.5-<br>6.35<br>mm | 6.35-<br>Pan<br>mm | Total | EI    |
|              |                      | gm            | gm            | gm             | gm                 | gm                 | gm    |       |
| 1-4          | NCA                  | 970           | 390           | 202            | 50                 | 18                 | 1630  | 32.6  |
| 1st<br>Class | 1st RCA              | 50            | 451           | 102.5          | 155                | 12                 | 770.5 | 15.41 |
| Brick        | 2nd<br>RCA           | 0             | 560           | 110            | 31                 | 9                  | 710   | 14.2  |
|              | NCA                  | 901           | 512           | 386            | 91                 | 49                 | 1939  | 38.78 |
| 3rd<br>Class | 1st RCA              | 763           | 465           | 195            | 152.5              | 43                 | 1618  | 32.37 |
| Brick        | 2nd<br>RCA           | 0             | 400           | 102.5          | 105                | 45                 | 652.5 | 13.05 |
|              | NCA                  | 0             | 760           | 649            | 236                | 0                  | 1645  | 32.9  |
| Stone        | 1st RCA              | 0             | 275           | 145            | 35                 | 0                  | 455   | 9.1   |
|              | 2nd<br>RCA           | 0             | 230           | 460            | 31                 | 0                  | 721   | 14.42 |

### Flakiness Index

|              | Sieve Size(Retained) |               |               |                |                    |                    |       |       |
|--------------|----------------------|---------------|---------------|----------------|--------------------|--------------------|-------|-------|
| Туре         | Sample<br>Name       | 25.4-19<br>mm | 19-12.7<br>mm | 12.7-9.5<br>mm | 9.5-<br>6.35<br>mm | 6.35-<br>Pan<br>mm | Total | FI    |
|              |                      | gm            | gm            | gm             | gm                 | gm                 | gm    |       |
| 1-4          | NCA                  | 561           | 191           | 131            | 70                 | 18                 | 971   | 19.42 |
| 1st<br>Class | 1st RCA              | 180           | 40            | 75             | 115                | 5                  | 415   | 8.3   |
| Brick        | 2nd<br>RCA           | 406           | 165           | 172            | 27                 | 0                  | 770   | 15.4  |
| 2.1          | NCA                  | 302           | 401           | 356            | 71                 | 31                 | 1161  | 23.22 |
| 3rd<br>Class | 1st RCA              | 481           | 201           | 65             | 42                 | 31                 | 820   | 16.4  |
| Brick        | 2nd<br>RCA           | 255           | 545           | 40             | 21                 | 0                  | 861   | 17.22 |
| Stone        | NCA                  | 0             | 210           | 465            | 201                | 20                 | 896   | 17.92 |
|              | 1st RCA              | 220           | 165           | 35             | 25                 | 0                  | 445   | 8.9   |
|              | 2nd<br>RCA           | 61            | 278           | 172            | 21                 | 0                  | 532   | 10.64 |

### Voids Ratio

| Туре               | Sample<br>Name | Unit Weight<br>A(kg/L) | Specific Gravity(Oven<br>Dry) B | Void(%)=<br>((B-A)/B)*100 |
|--------------------|----------------|------------------------|---------------------------------|---------------------------|
| 1 4 01             | NCA            | 1.645                  | 2.63                            | 37.46                     |
| 1st Class<br>Brick | 1st RCA        | 1.526                  | 2.47                            | 38.22                     |
| DIICK              | 2nd RCA        | 1.432                  | 2.39                            | 40.09                     |
|                    | NCA            | 1.192                  | 2.06                            | 42.14                     |
| 3rd Class<br>Brick | 1st RCA        | 1.16                   | 1.88                            | 38.3                      |
| DIICK              | 2nd RCA        | 1.265                  | 2.07                            | 38.89                     |
|                    | NCA            | 1.197                  | 2.01                            | 40.45                     |
| Stone              | 1st RCA        | 1.013                  | 1.81                            | 44.04                     |
|                    | 2nd RCA        | 1.25                   | 1.99                            | 37.19                     |

| Туре      | Sample<br>Name | Sample Weight<br>W1 gm | Weight passing 1.7mm<br>IS sieve<br>W <sub>2</sub> gm | Abrasion Value =<br>(W2 / W1) X 100 |
|-----------|----------------|------------------------|-------------------------------------------------------|-------------------------------------|
| 1st Class | NCA            | 5000                   | 1550                                                  | 31                                  |
| Brick     | 1st RCA        | 5000                   | 2050                                                  | 41                                  |
| -         | 2nd RCA        | 5000                   | 3150                                                  | 63                                  |
| 3rd       | NCA            | 5000                   | 2050                                                  | 41                                  |
| Class     | 1st RCA        | 5000                   | 3200                                                  | 64                                  |
| Brick     | 2nd RCA        | 5000                   | 4050                                                  | 81                                  |
| Stone     | NCA            | 5000                   | 1350                                                  | 27                                  |
|           | 1st RCA        | 5000                   | 1700                                                  | 34                                  |
|           | 2nd RCA        | 5000                   | 2250                                                  | 45                                  |

### > Los Angeles Abrasion Value