

PREDICTION OF FLUID FLOW AROUND 2D SQUARE

OBJECTS INSIDE A DOUBLE LID DRIVEN CAVITY USING

CFD AND ARTIFICIAL NEURAL NETWORK

MD. ATIF YASIR

(B.Sc. Engg., MIST)

A THESIS SUMITTED FOR THE DEGREE OF

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY

2021

APPROVAL OF BOARD OF EXAMINERS

The thesis titled “PREDICTION OF FLUID FLOW AROUND 2D SQUARE

OBJECTS INSIDE A DOUBLE LID DRIVEN CAVITY USING CFD AND

ARTIFICIAL NEURAL NETWORK” Submitted by Md. Atif Yasir, Roll No:

0418180012 (P), Session: 2017-18 has been accepted as satisfactory in partial fulfillment

of the requirement for the degree of Master of Science in Mechanical Engineering.

BOARD OF EXAMINERS

1. __

Professor Dr. Dipak Kanti Das

Department of Mechanical Engineering

Military Institute of Science and Technology

Supervisor

2. __

Professor Dr. Md. Mahbubur Rahman

Department of Computer Science and Engineering

Military Institute of Science and Technology

Co-supervisor

3. __

Brig Gen Md. Humayun Kabir Bhuiyan

Department of Mechanical Engineering

Military Institute of Science and Technology

Ex-officio

4. __

Lt Col Tahmina Sultana, PhD

Department of Science and Humanities (Math)

Military Institute of Science and Technology

Member

(Internal)

5. __

Professor Dr. A.B.M. Toufique Hasan

Department of Mechanical Engineering

Bangladesh University of Engineering and Technology

Member

(External)

DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its

entirety. I have duly acknowledged all the sources of information, which have been used

in the thesis.

Md. Atif Yasir

Department of Mechanical Engineering

Military Institute of Science and Technology

10 March 2021

Summary

i

SUMMARY

Using computational fluid dynamics (CFD) to solve fluid flow problems can use a lot of

computer processing power and simulation time. Artificial neural networks (ANN) can be

regarded as universal learners that are capable of learning nonlinear patterns or

relationships among many variables. A very well-known benchmark problem for viscous

incompressible fluid flow in the lid-driven cavity problem. People have developed different

numerical procedures to solve it. It is widely regarded as the first problem people usually

try to solve when they come up with a new approach. This research aims to apply fully

connected neural networks to learn and predict fluid flow inside a lid-driven cavity. A

double lid-driven cavity with top and bottom moving walls having some internal square

objects was selected as a training data to train, test and compare several fully connected

neural networks having different parameters to predict fluid flow inside it. The results show

that by training a neural network to recognize fluid velocity patterns around simple square

objects inside the cavity, it is possible to predict fluid velocities around objects having

relatively complex geometries with significant accuracy in a fraction of the time required

by a CFD solver. The results also show the comparison between effects of using different

mesh sizes in CFD and different learning rates in the neural network model.

Keywords: CFD, ANN, Double lid-driven cavity, Fluid flow prediction

Acknowledgements

ii

ACKNOWLEDGEMENTS

 First and foremost, I would like to thank the Almighty for His continuous blessings

that enabled me to come this far. What started as a prayer has now come to a successful

ending.

 I would like convey my sincerest gratefulness to my supervisor Professor Dr. Dipak

Kanti Das and my co-supervisor Professor Dr. Md. Mahbubur Rahman for giving me the

opportunity and guiding me in every step in performing a collaborative research involving

computational fluid dynamics and artificial neural networks. Without their continuous

support, this would have never been possible. It has truly been my honor and privilege to

work with them.

 I would like to thank the Head of the department of Mechanical Engineering, Brig

Gen Md Humayun Kabir Bhuiyan for his powerful encouragements throughout the whole

course. I would also like to thank Professor Dr. G. M. Jahid Hasan for supporting me

academically and personally. Sincere thanks to Professor Dr A.B.M. Toufique Hasan and

Lt Col Tahmina Sultana, PhD for helping me to evaluate this research.

 Finally, I would like to thank my parents and my siblings for supporting me and

taking care of me in every step of my life. I am truly indebted to them for their

understanding, encouragement and patience that they have shown throughout all my life.

Table of Contents

iii

TABLE OF CONTENTS

Page

SUMMARY i

ACKNOWLEDGEMENTS ii

TABLE OF CONTENTS iii

LIST OF SYMBOLS vi

LIST OF FIGURES vii

LIST OF TABLES x

CHAPTER ONE: INTRODUCTION 1

 1.1. Background of the Study 1

 1.2. Objectives 2

CHAPTER TWO: REVIEW OF LITERATURE 3

 3.1. Previous Works 3

 2.2. This Work 5

CHAPTER THREE: ARTIFICIAL NEURAL NETWORKS 6

 3.1. Foundation 6

 3.2. Basic Structure 7

 3.3. Types of Neural Networks 8

 3.3.1. Feedforward fully connected neural network 8

 3.3.2. Convolutional neural network 9

 3.3.3. Recurrent neural network 10

Table of Contents

iv

 3.4. Activation Functions 10

 3.4.1. Sigmoid function 10

 3.4.2. Hyperbolic tan function 12

 3.4.2. Rectified linear unit (ReLU) function 12

 3.5. Neural Network Learning 13

 3.5. Learning Rate 14

 3.6. Neural Network Testing 14

CHAPTER FOUR: LID-DRIVEN CAVITY 15

 4.1 Foundation 15

 4.2. Single Lid-driven Cavity 16

 4.2.1. Basics 16

 4.2.2. Staggered grids 17

 4.2.3. Solution using a C# code 22

 4.3. Double Lid-driven Cavity 24

 4.4. Double Lid-driven Cavity with an Internal Square Obstacle 26

CHAPTER FIVE: CFD DATASET GENERATION 29

 5.1. Grid Setup 29

 5.2. Dataset Generation using 24 × 24 Grid System 30

 5.3. Dataset Generation using 32 × 32 Grid System 31

 5.4. Dataset Generation using 40 × 40 Grid System 31

CHAPTER SIX: ANN MODEL AND TRAINING 33

 6.1. Network Structure 33

 6.2. Neural Network Training 34

Table of Contents

v

CHAPTER SEVEN: RESULTS: CFD VS ANN 38

 7.1. Preface 38

 7.2. First Test Setup 39

 7.2.1. Environment 39

 7.2.2. X-directional (U) velocity prediction 40

 7.2.3. Y-directional (V) velocity prediction 46

 7.3. Second Test Setup 52

 7.3.1. Environment 52

 7.3.2. X-directional (U) velocity prediction 53

 7.3.3. Y-directional (V) velocity prediction 59

 7.4. Time Comparison 65

 7.5. Two More Results 67

CHAPTER EIGHT: CONCLUSION 69

 8.1. Concluding Remarks 69

 8.2. Future Work 70

 8.2.1. Changing the neural network model 70

 8.2.2. Changing the training data and environment 70

REFERENCES 71

APPENDIX 73

List of Symbols

vi

LIST OF SYBMOLS

w Neural network weights

b Neural network biases

U, u Velocity in x-direction

V, v Velocity in y-direction

P, p Pressure

ρ Density

μ Dynamic Viscosity

t Time

Re Reynolds number

∇ Divergence operator

δ Artificial compressibility

L Characteristic Linear Dimension

List of Figures

vii

LIST OF FIGURES

 Page

Figure 3.1 Biological neuron 6

Figure 3.2 Neuron in neural network 8

Figure 3.3 Sigmoid function 11

Figure 3.4 Hyperbolic tan function 12

Figure 3.5 ReLU function 13

Figure 4.1 Single lid-driven cavity 16

Figure 4.2 Staggered grid system with U and V velocities 18

Figure 4.3 Staggered grid system with pressure points (P) and combination of

U, V and P

18

Figure 4.4 Continuity equation terms expansion 19

Figure 4.5 Navier-Stokes x-momentum equation terms expansion 20

Figure 4.6 Navier-Stokes y-momentum equation terms expansion 21

Figure 4.7 Single lid-driven cavity flow with C# CFD code and ANSYS 23

Figure 4.8 Double lid-driven cavity 24

Figure 4.9 Double lid-driven cavity flow with C# CFD code and ANSYS 25

Figure 4.10 Double lid-driven cavity with an obstacle 27

Figure 4.11 Double lid-driven cavity flow having a square obstacle with C#

CFD code and ANSYS

28

Figure 5.1 Environment segmentation for 24 × 24 grid system 30

Figure 5.2 Environment segmentation for 32 × 32 grid system 31

Figure 5.3 Environment segmentation for 40 × 40 grid system 32

Figure 6.1 Neural network structure 33

Figure 6.2 Neural network for 24 × 24 grid system 34

List of Figures

viii

Figure 6.3 Neural network for 32 × 32 grid system 35

Figure 6.4 Neural network for 40 × 40 grid system 35

Figure 6.5 MSE comparison between GF and LS learning rates in all three grid

systems

37

Figure 7.1 Double lid-driven cavity with two obstacles 39

Figure 7.2 Test setup 1 - 24 × 24 grid system ANN GF comparison (U velocity) 40

Figure 7.3 Test setup 1 - 24 × 24 grid system ANN LS comparison (U velocity) 41

Figure 7.4 Test setup 1 - 32 × 32 grid system ANN GF comparison (U velocity) 42

Figure 7.5 Test setup 1 - 32 × 32 grid system ANN LS comparison (U velocity) 43

Figure 7.6 Test setup 1 - 40 × 40 grid system ANN GF comparison (U velocity) 44

Figure 7.7 Test setup 1 - 40 × 40 grid system ANN LS comparison (U velocity) 45

Figure 7.8 Test setup 1 - 24 × 24 grid system ANN GF comparison (V velocity) 46

Figure 7.9 Test setup 1 - 24 × 24 grid system ANN LS comparison (V velocity) 47

Figure 7.10 Test setup 1 - 32 × 32 grid system ANN GF comparison (V velocity) 48

Figure 7.11 Test setup 1 - 32 × 32 grid system ANN LS comparison (V velocity) 49

Figure 7.12 Test setup 1 - 40 × 40 grid system ANN GF comparison (V velocity) 50

Figure 7.13 Test setup 1 - 40 × 40 grid system ANN LS comparison (V velocity) 51

Figure 7.14 Double lid-driven cavity with three obstacles making a relatively

complex shape

52

Figure 7.15 Test setup 2 - 24 × 24 grid system ANN GF comparison (U velocity) 53

Figure 7.16 Test setup 2 - 24 × 24 grid system ANN LS comparison (U velocity) 54

Figure 7.17 Test setup 2 - 32 × 32 grid system ANN GF comparison (U velocity) 55

Figure 7.18 Test setup 2 - 32 × 32 grid system ANN LS comparison (U velocity) 56

Figure 7.19 Test setup 2 - 40 × 40 grid system ANN GF comparison (U velocity) 57

Figure 7.20 Test setup 2 - 40 × 40 grid system ANN LS comparison (U velocity) 58

Figure 7.21 Test setup 2 - 24 × 24 grid system ANN GF comparison (V velocity) 59

Figure 7.22 Test setup 2 - 24 × 24 grid system ANN LS comparison (V velocity) 60

List of Figures

ix

Figure 7.23 Test setup 2 - 32 × 32 grid system ANN GF comparison (V velocity) 61

Figure 7.24 Test setup 2 - 32 × 32 grid system ANN LS comparison (V velocity) 62

Figure 7.25 Test setup 2 - 40 × 40 grid system ANN GF comparison (V velocity) 63

Figure 7.26 Test setup 2 - 40 × 40 grid system ANN LS comparison (V velocity) 64

Figure 7.27 Test setup 3 - 40x40 grid system and LS learning method 67

Figure 7.28 Test setup 4 - 40x40 grid system and LS learning method 68

List of Tables

x

LIST OF TABLES

 Page

Table 6.1 Terminologies used in figure 6.5 36

Table 7.1 Terminologies used in results 38

Table 7.2 Time comparison between CFD solver and ANN solver 65

Chapter One: Introduction

1 | P a g e

CHAPTER ONE

INTRODUCTION

1.1. Background of the Study

Computational fluid dynamics (CFD) is a subset of fluid mechanics that uses

numerical simulation and data structures to study and solve problems concerning fluid

flows. Computers are used to perform the calculations used to model the free-stream flow

of the fluid and the interaction of the fluid (liquids and gases) with surfaces defined by

boundary conditions. Better solutions can be found with high-speed supercomputers, which

are often used to solve the biggest and most difficult problems. Current research is yielding

software that increases the accuracy and speed of complex simulation scenarios like

transonic or turbulent flows. Usually, experimental apparatus such as wind tunnels are used

to conduct initial validation of such applications. Furthermore, a recently completed

analytical or scientific study of a particular problem may be compared. Full-scale

simulation, such as flight simulations, is often used for final confirmation. Aerodynamics

and aerospace analysis, weather modeling, natural science and environmental engineering,

manufacturing device architecture and analysis, biological engineering, fluid flows and

heat transfer, and engine and combustion analysis are only a few of the scientific and

engineering issues that CFD is used to solve in a variety of fields and industries.

Software programs like ANSYS, SimScale, OpenFOAM can accurately create such

simulations and using these simulations, engineers can modify or redesign according to

their needs. These software programs use iterative algorithms to calculate fluid velocity,

pressure and temperature from initial and boundary values. The iterative approaches are

time-consuming and often take days to complete. A new possible approach can be to use

Chapter One: Introduction

2 | P a g e

Artificial Intelligence (AI) to simulate the fluid flow. It is modeled after our brain in a way

which enables it to learn from examples just like how we learn from the very day we are

born. In case of fluid mechanics or fluid flow predictions, an AI can be trained using

thousands of previously generated data with Artificial Neural Network (ANN)

architectures, which can be used to predict the solution to an unknown set of problems in a

fraction of time. This approach differs from the traditional CFD algorithms, which do not

have the capabilities to “remember” how fluid behaves around several shapes of objects.

This can, for example, be a lot helpful for airplane manufacturers who have to spend a great

deal of time trying to make a more efficient wing design. Instead of using CFD software to

simulate fluid flow around the wings, they can use AI to predict fluid flow around them in

a reduced amount of time.

1.2. Objectives

 This research has the following three objectives:

i. To use the Navier-Stokes equations to calculate fluid velocities inside a double lid-

driven cavity with different grid sizes having a square object inside it in different

positions.

ii. To train several fully connected neural networks incorporating these velocities

generated using different grid sizes with globally fixed learning rates for all the

layers and layer-specific different learning rates.

iii. To test all the neural networks with objects placed in different locations and

compare their accuracies with the CFD results in terms of grid sizes, learning rates

and computational times.

Chapter Two: Review of Literature

3 | P a g e

CHAPTER TWO

REVIEW OF LITERATURE

2.1. Previous Works

Kutz [1] demonstrated the benefits of combining deep learning and fluid dynamics.

Deep neural networks (DNNs), he argued in his article, would almost certainly have a

transformative effect on modeling high-dimensional complex systems like turbulent flows.

This latest technology would force researchers to use this increasingly evolving data

analysis method for enhancing predictive capability by integrating multiple diverse data

sets. DNNs obviously reflect a paradigm shift for the group, who are attempting to come

up with fresh and creative ways to replace current structures in order to better explain how

the underlying mechanism operates and how trends can be observed in even the most

complex and seemingly random systems. Many developments have been influenced by

expert-in-the-loop insight and mechanically interpretable models, but DNNs have defied

these common theories by creating prediction engines that clearly outperform competing

approaches without supplying concrete examples of why.

 Baymani et al. [2] have used a new neural network-based approach for obtaining

the solution of the Navier–Stokes equations in an analytical function form in their paper.

The solution protocol was based on the formation of a two-part trial solution. As a result,

there were no customizable parameters in the first section, which fulfilled the boundary

conditions directly. The second component was designed to satisfy the governing equation

within the solution domain while leaving the boundary conditions alone. This part involved

a feed-forward neural network with adjustable parameters (weights) that had to be

calculated such that the estimated error function generated was as small as possible. The

Chapter Two: Review of Literature

4 | P a g e

capabilities of the method were shown by solving the Navier–Stokes problem with various

boundary conditions, and the method's details were discussed. By comparing the method's

efficiency and the consistency of the results to the existing numerical and analytical

solutions, the method's performance and accuracy were assessed.

 Mccracken [3] has developed a novel method for solving the Navier-Stokes

Equations for turbulence by training a neural network to model ionospheric velocity fields

based on 3-dimensional inputs using Bayesian Cluster and SOM neighbor weighting. The

velocity, Reynold's number, Prandtl number, and temperature were all used in this issue.

Data from Johns Hopkins University was used to train the neural network in MATLAB for

this research. The velocity fields were mapped by the neural network with a 67 percent

accuracy using the validation results.

 Sabir and Ya [4] have used a novel ANN technique for fluid flow modeling. They

attempted to obtain instantaneous numerical simulation for fluid flow using artificial neural

networks in their study. The geometrical boundaries profile was considered a significant

contribution for the ANN training process in the proposed system. Their research was

motivated by the need for quick responses, especially in medical situations, surgeon

diagnoses, engineering crises and when unusual circumstances arise. They were able to

achieve satisfactory results for 1D-flow equations in terms of both energy and momentum

equations. Their ANN method was effective in predicting fluid flow with known boundary

velocity.

 Guo et al. [5] used Convolutional Neural Networks (CNN) for steady flow

approximation. They suggested a general and scalable approximation model based on

Chapter Two: Review of Literature

5 | P a g e

convolutional neural networks for real-time prediction of non-uniform steady laminar flow

in a 2D or 3D domain (CNNs). They looked at different options for CNN geometry

representation and network architecture. They demonstrated that convolutional neural

networks could approximate velocity fields two orders of magnitude faster than a GPU-

accelerated CFD solver and four orders of magnitude faster than a CPU-based CFD solver

while maintaining a low error rate.

 Tsunooka et al. [6] used high-speed CFD simulation to forecast crystal growth.

They used a neural network to optimize the growth conditions and quickly predict the

outcomes of computational fluid dynamics (CFD) simulations for SiC solution growth. A

single CFD simulation was 107 times faster than the prediction speed. As a result of the

combination of CFD simulation and machine learning, optimal parameters for high-quality

and large-diameter crystals could be determined. As a result, they predicted such a

simulation to become the technology used in the design and control of crystal growth

processes.

2.2. This Work

 Motivated by these researches, this research aims to apply fully connected neural

networks to predict fluid flow in order to decrease the time required for calculating the

velocities while preserving much of the accuracy of a full-fledged CFD solution. A double

lid-driven cavity with top and bottom moving walls having some internal square objects

was selected as a training data to train, test and compare several fully connected neural

networks having different parameters to predict fluid flow inside it.

Chapter Three: Artificial Neural Networks

6 | P a g e

CHAPTER THREE

ARTIFICIAL NEURAL NETWORKS

3.1. Foundation

Neural networks and deep learning are hot topics in the realm of computer science

and technology. Since the beginning of this century, the world has seen many developments

in machine learning algorithms. Such algorithms are extremely complex and are often used

for doing things that were thought to be impossible even as little as 40 years ago. Things

like recognizing a face in a stadium full of thousands of people, driving a car through 9am

traffic, playing chess with renowned grandmasters etc. are some of the accomplishments

people have achieved with artificial intelligence and machine learning technology. This

wonderful technology is modeled after probably the most complex object in the world that

we often take for granted, and that is our brain. The fundamental computational or logical

unit of the brain is a neuron as shown in Figure 3.1.

Figure 3.1: Biological neuron

The entire brain is made up of billions of neurons connected to each other in a never-

ending maze of complexity. These connections are called Synapses and there are

Chapter Three: Artificial Neural Networks

7 | P a g e

approximately 1014 - 1015 of such in a single brain. They enable humans to learn, adapt and

take control of nature most of the time without even having to think about it. The basic

structure of a neuron involves a cell body, which has some small branches attached to it

and they are called dendrites. There is also a long distinctive wire like object attached to

the cell body and it is called the axon. The axon carries information from the cell body and

passes it to the next neuron through the dendrites. This connection between the two neurons

is called a synapse. After we are born, we start to learn both consciously and

subconsciously. Our brain takes in signals from our nerve endings and processes them or

remembers them by making connections between the neurons. When we walk, we usually

do not have to concentrate too much on walking. We do not calculate every step and take

necessary actions. Our brain has learned the method of walking through many failed

attempts when we were taught to walk in our childhood days. The synapses in our brain

“remembers” these failed attempts and adjusts our leg muscles in a way that enables them

to keep us walking without falling. It is no wonder that Artificial Intelligence, being the

driving force of modern technology is modeled after what is thought to be the most complex

system ever known to mankind, our brain.

3.2. Basic Structure

The basic structure of a neural network also involves neurons just like the brain. It

receives information from the previous neurons, processes it and sends it to the next neuron.

Information from the previous neurons are received as numerical values (x0, x1, x2 etc.) as

show in Figure 3.2. These are multiplied with the "weights" (w0, w1, w2 etc.), which are

another set of numerical values assigned to the connections. The multiplied values of these

weights (w0, w1, w2 etc.) and input values (x0, x1, x2 etc.), along with another numerical

value assigned to each neuron, called the bias (b), are then added up and processed by the

Chapter Three: Artificial Neural Networks

8 | P a g e

cell body using an activation function. The processed value is then passed to the next

neuron.

Figure 3.2: Neuron in neural network

Several activation functions are used to get output from each neuron. Sigmoid

function, hyperbolic tan (tanh), rectified linear unit (ReLU) are some of the most widely

used activation functions in neural networks. Sigmoid and ReLU functions have been used

as activation functions in this research.

3.3. Types of Neural Networks

There are many types of neural networks and each of them have their own

applications along with a set of advantages and disadvantages. The models that are mostly

used include:

3.3.1. Feedforward fully connected neural network

A feedforward fully connected neural network is an artificial neural network where

the connections between the neurons do not repeat or in other words, there are no cycles.

In this network, the information moves through the neurons in a single direction. During

Chapter Three: Artificial Neural Networks

9 | P a g e

the forward stroke or forward movement of data, information flows from the input neurons

in the input layers, through the hidden nodes in the hidden layer (if any) and to the output

nodes in the output layer. Output from any neuron does not end up being an input to its

preceding neuron. Similarly, during training of the network, the network parameters are

updated sequentially in a reverse direction. This starts from the output layer, goes through

all the hidden layers and ends with the input layer. The input layer takes input and the

output layer generates output. Each neuron in each layer is connected to all the neurons in

the previous layer; hence, the name is “Fully connected neural network”. Feedforward

neural networks are mainly used in classification, regression and data prediction problems.

A fully connected feedforward neural network has been used in this research where the

input nodes represent the structure of the environment in which fluid is flowing and the

output nodes represent the velocities of the fluid in that specific environment. A four-layer

neural network model has been used which has one input layer, one output layer and two

hidden layers.

3.3.2. Convolutional neural network

 Convolutional neural networks work in a different way. These networks are

typically used with image classification problems. In contrast with fully connected neural

networks, the neurons or nodes in convolution neural networks are not fully connected.

When dealing with image classification problems, the input neurons represent the color

value of the pixels that make up the image and not all pixels are connected to the next layer

of the network. Instead, the image is divided into several regions and the inputs of these

regions are connected separately to the nodes in the succeeding layer. Finally, fully

connected layers are used as the outer most hidden layers and the output layers.

Chapter Three: Artificial Neural Networks

10 | P a g e

3.3.3. Recurrent neural network

 Recurrent neural networks have direct connections between neurons or nodes in a

certain layer and its preceding layer. In contrast with feedforward networks where

information flows in a single direction only, in recurrent networks, cycles can be seen in

different stages of the network that enables the network to feed information directly from

a certain layer to its preceding layer. These networks are typically used in prediction of

power consumptions in electric grid systems throughout the world.

3.4. Activation Functions

 Using the idea that a neuron can “fire” inside our brain that represents flow of data

from one neuron to another, the mathematical modelling of neural networks also have

functions that mimics the brain and enables a neuron to “fire” or transfer data from one

neuron to another. Since these neurons are connected to each other, these transfer of data

from one neuron to another forms a chain of complex network that enables the entire

network to get modelled in such a way that they can remember what input values can

recreate which neurons to fire. The functions that make the neurons fire are called activation

functions. Several types of activation functions are used in neural networks. Some of the

mostly used activation functions include:

3.4.1. Sigmoid function

 The sigmoid function is a well-known mathematical function that can take any

numerical value and output a value ranging from 0 to 1. The sigmoid function can be written

as:

(1)

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥

Chapter Three: Artificial Neural Networks

11 | P a g e

Figure 3.3: Sigmoid function

 The main advantage of using a sigmoid function as activation function is that it

always produces an output ranging from 0 to 1. This crunching of data enables all the

neurons in all the layers of the network to have a controlled and efficient flow of

information through the network. Sigmoid functions play a major role in classification

problems where the output neurons simply have to generate a value close to 0 or 1 to

represent the input data being classified between several classifications. One good example

of this is a neural network, which is designed to classify between handwritten numbers.

There are ten numbers in the typical 10-based numbering system and so this network can

have 10 neurons in the output layer. If only the first neuron produces a value close to 1 and

other neurons produce values close to 0, the input number can be classified as a “0”. So the

output from the output layer may look like “1000000000” for “0”. Similarly, for “1”, the

output layer may look like “0100000000” and for “9”, the output layer may look like

“0000000001”.

Chapter Three: Artificial Neural Networks

12 | P a g e

3.4.2. Hyperbolic tan function

 The hyperbolic tan or tanh(x) is closely related to the sigmoid function in terms of

the output it can generate based on the inputs it receives. Tts output ranges from -1 to 1 as

opposed to the 0 to 1 range of the sigmoid function. The hyperbolic tan function can be

written as:

(2)

Figure 3.4: Hyperbolic tan function

3.4.2. Rectified linear unit (ReLU) function

 The ReLU function is one of the mostly used activation functions of a neural

network. It takes an input and outputs a 0 if the input is 0 or negative and outputs the input

value unchanged if it is positive. It can be written as:

(3)

tanh(x) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

𝑅𝑒𝐿𝑈(𝑥) = {
0, 𝑖𝑓 𝑥 ≤ 0
𝑥, 𝑖𝑓 𝑥 > 0

Chapter Three: Artificial Neural Networks

13 | P a g e

Figure 3.5: ReLU function

 ReLU function is used quite often in neural network models as it takes less

computational time and power to calculate. But unlike sigmoid or tanh function, ReLU

function cannot crunch the data between two numerical values and can generate values

ranging from 0 to infinity.

 In this research, ReLU function has been used in the inner layers of the network and

sigmoid function has been used in the outer layers of the network.

3.5. Neural Network Learning

To make a neural network learn involves setting known inputs and outputs to the

neural network, assigning random values to the weights and biases and using an algorithm

Chapter Three: Artificial Neural Networks

14 | P a g e

called the back-propagation algorithm to tune the weights in such a way that the known

inputs can produce the known outputs as accurately as possible.

3.5. Learning Rate

 The rate at which the network learns is also another parameter called the "learning

rate" and it is regarded as the most important hyper-parameter of a neural network

architecture. A learning rate too small will result in fine-tuning of the weights but will take

a very long time. A learning rate too high will result in faster training but the results will

tend to have more errors. The objective is to find an optimum learning rate, which will

enable the neural network model to learn accurately as fast as possible. In this research,

two different learning methods were used to compare the outputs that they generated.

3.6. Neural Network Testing

Neural networks are usually tested with some input values unknown to them to see

what output they can generate. This determines the accuracy of the neural networks. The

methodology used in this research involves a similar procedure. Known inputs based on

the shape and location of simple objects placed inside the lid-driven cavity and known

output velocities generated using CFD algorithms are used to train the neural networks.

They are then tested with unknown set of geometries the network never has trained with

and the accuracies are measured which determines the effectiveness of the neural networks.

Chapter Four: Lid-driven Cavity

15 | P a g e

CHAPTER FOUR

LID-DRIVEN CAVITY

4.1 Foundation

 The Navier-Stokes equations are a collection of partial differential equations that

describe how viscous fluids move. They are named after Claude-Louis Navier, a French

engineer and physicist, and George Gabriel Stokes, an Anglo-Irish physicist and

mathematician. The Navier–Stokes equations mathematically express conservation of

momentum and mass in Newtonian fluids. Typically, a state equation relating pressure,

temperature, and density is used.

 The lid-driven cavity problem is a well-known benchmark CFD problem involving

incompressible viscous fluid flow. It has a relatively simple two-dimensional geometry

consisting of unit lengths, widths, and unit velocities that can be altered in many different

ways to produce different results or different flow patterns. This problem has been solved

using both laminar flow and turbulent flow. Many different numerical techniques

developed by many individuals have been used to compute these solutions. This is a nice

problem for testing for several reasons. First, as mentioned above, there is a good amount

of literature to compare with. Second, the laminar solution is steady. Third, the boundary

conditions are simple and compatible with most numerical approaches. A double lid-driven

cavity with some internal square obstacles has been used as the environment for this

research. Starting with a single lid-driven cavity and no internal obstacles, the following

section will give a brief illustration of the chosen environment and the mathematical model

behind its solution using the Navier-Stokes equations.

Chapter Four: Lid-driven Cavity

16 | P a g e

4.2. Single Lid-driven Cavity

4.2.1. Basics

The single-lid driven cavity problem has been used for a long time to test or validate

new codes incorporating new solution methods. The geometry is a simple two-dimensional

square cavity having unit lengths. The top side is moving with a unit velocity (in +X

direction) and all other sides are stationary. The boundary conditions are showed in Figure

4.1. Fluid exists inside the cavity and the fluid particles are given motion due to the one

directional movement of the top lid. Keeping the velocities and the size of the cavity fixed

and by using different Reynolds numbers, it is possible to use just the Navier-Stokes

equation and a simple computer program to visualize fluid flow inside it.

Figure 4.1: Single lid-driven cavity

Chapter Four: Lid-driven Cavity

17 | P a g e

Using Reynolds Number (Re) 100, 400 and 1000, Marchi et al. [7] provided

numerical solutions with a 1024 × 1024 grid system. For this research, Reynolds number

has been kept constant at 100 and using three staggered grid systems (24 × 24, 32 × 32 and

40 × 40) and incorporating the Navier-Stokes equation of x-momentum, y-momentum and

continuity equation as shown by Chorin [8], x-directional velocity (U) and y-directional

velocity (V) have been calculated. Since this is an iterative approach involving time

derivative and the continuity equation does not contain a parameter for time, artificial

compressibility method was employed, which incorporates a fictitious time derivative of

pressure by adding it to the continuity equation and enables the set of equations modified

from the incompressible Navier-Stokes equations to be solved implicitly by marching in

pseudo time. However, the original equations are recovered when a steady-state solution is

reached.

4.2.2. Staggered grids

Staggering of grids involves calculating the velocities and pressures around actual

nodal points of the grid. This is a common practice when dealing with calculating the nodal

velocities using a grid system and the Navier-Stokes equations. To explain how this works,

figure 4.2 and 4.3 shows a 4 × 4 grid system. In figure 4.2, the x-directional (U) velocities

(blue arrows) and y-directional (V) velocities (orange arrows) are initialized and calculated

around actual nodal points. In figure 4.3, pressure values (yellow boxes) are also initialized

and calculated around actual nodal points. The combination of these three node variables

are shown in figure 4.3. This is done so that the x and y-directional flows can be treated as

purely pressure driven flows as each nodal point of U or V is surrounded by two pressure

points.

Chapter Four: Lid-driven Cavity

18 | P a g e

Figure 4.2: Staggered grid system with U and V velocities

Figure 4.3: Staggered grid system with pressure points (P) and combination of U, V and P

The equation for Reynolds number can be written as:

(4)

Since this study involves the lid-driven cavity having unit lid velocity, in order to keep

computations simple, 100 was used as the Reynolds number, which can be derived from

𝑅𝑒 =
𝜌𝑢𝐿

𝜇

Chapter Four: Lid-driven Cavity

19 | P a g e

the aforementioned equation having set the values of ρ, u, L and μ to be equal to 1, 1, 1 and

0.01 respectively. This simplifies the model.

The continuity equation can be written as:

(5)

Assuming the fluid having unit density, the continuity equation involving the artificial

compressibility method can be written as:

(6)

The terms can be expanded with a finite difference method as follows using a magnified

image (figure 4.4) of the region highlighted in gray in Figure 4.3.

Figure 4.4: Continuity equation terms expansion

(6a)

(6b)

(6c)

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑢) = 0

1

𝛿

𝜕𝑝

𝜕𝑡
+

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0

1

𝛿

𝜕𝑝

𝜕𝑡
=

1

𝛿

𝑝𝑛𝑒𝑤 − 𝑝

𝑑𝑡

𝜕𝑢

𝜕𝑥
=

𝑢𝐸 − 𝑢𝑊

𝑑𝑥

𝜕𝑣

𝜕𝑦
=

𝑣𝑁 − 𝑣𝑆

𝑑𝑦

Chapter Four: Lid-driven Cavity

20 | P a g e

The Navier-Stokes equations control fluid motion and can be thought of as Newton's second

law of fluid motion. They were derived by Navier, Poisson, Saint-Venant, and Stokes

between 1827 and 1845. The equations can be written as:

(7)

(i) (ii) (iii) (iv)

Here, U is the fluid velocity, p is the fluid pressure, ρ is the fluid density, and μ is the fluid

dynamic viscosity. The different terms correspond to the inertial forces (i), pressure forces

(ii), viscous forces (iii), and the external forces applied to the fluid (iv). For an

incompressible flow with the fluid having unit density, the Navier-Stokes x-momentum

equation can be written as:

(8)

The terms can be expanded with a finite difference method as follows using a magnified

image (figure 4.5) of the region highlighted in blue in figure 4.3.

Figure 4.5: Navier-Stokes x-momentum equation terms expansion

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢 ∙ ∇𝑢) = −∇𝑝 + ∇ ∙ (𝜇(∇𝑢 + (∇𝑢)𝑇) −

2

3
𝜇(∇ ∙ 𝑢)𝐼) + 𝐹

𝜕𝑢

𝜕𝑡
+

𝜕𝑢𝑢

𝜕𝑥
+

𝜕𝑢𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+

1

𝑅𝑒
𝛻2𝑢

Chapter Four: Lid-driven Cavity

21 | P a g e

(8a)

(8b)

(8c)

(8d)

(8e)

Similarly, for an incompressible flow with the fluid having unit density, the Navier-Stokes

y-momentum equation can be written as:

(9)

The terms can be expanded with a finite difference method as follows using a magnified

image (figure 4.6) of the region highlighted in orange in figure 4.3.

Figure 4.6: Navier-Stokes y-momentum equation terms expansion

𝜕𝑢

𝜕𝑡
=

𝑢𝑛𝑒𝑤 − 𝑢

𝑑𝑡

𝜕𝑢𝑢

𝜕𝑥
=

𝑢𝐸
2 − 𝑢𝑊

2

2𝑑𝑥

𝜕𝑢𝑣

𝜕𝑦
=

(
𝑢𝑃 + 𝑢𝑁

2) (
𝑣3 + 𝑣4

2) − (
𝑢𝑃 + 𝑢𝑆

2) (
𝑣1 + 𝑣2

2)

𝑑𝑦

𝜕𝑝

𝜕𝑥
=

𝑝𝑒 − 𝑝𝑤

𝑑𝑥

1

𝑅𝑒
𝛻2𝑢 =

1

𝑅𝑒

𝑢𝐸 − 2𝑢𝑃 + 𝑢𝑊

𝑑𝑥2
+

1

𝑅𝑒

𝑢𝑁 − 2𝑢𝑃 + 𝑢𝑆

𝑑𝑦2

𝜕𝑣

𝜕𝑡
+

𝜕𝑢𝑣

𝜕𝑥
+

𝜕𝑣𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+

1

𝑅𝑒
𝛻2𝑣

Chapter Four: Lid-driven Cavity

22 | P a g e

(9a)

(9b)

(9c)

(9d)

(9e)

4.2.3. Solution using a C# code

 By entering appropriate initial and boundary conditions and using these equations,

values of unew, vnew and pnew were calculated for this research with a C# code by an iterative

approach employing the values of dt and δ as 0.001 and 4.5 respectively. Computations

were terminated when summation of absolute relative errors between the adjacent x and y-

directional velocities dropped below 0.00001. Average of two adjacent U velocities were

taken and actual nodal U velocities were calculated. The same was done with V velocities.

For calculating pressure values, average of four values were taken and actual nodal pressure

values were calculated. Tecplot software was used to view the results obtained from the

CFD code. Commercially used ANSYS software was used to validate the results obtained

from the CFD code. Figure 4.7 compares U and V velocities obtained from the C# code

and ANSYS software. It is clear that the output from the C# code is almost the same as the

output obtained from ANSYS software. Some minor variations can be seen here and there

but these are mainly because of small differences in the color profiles set by Tecplot and

𝜕𝑣

𝜕𝑡
=

𝑣𝑛𝑒𝑤 − 𝑣

𝑑𝑡

𝜕𝑣𝑣

𝜕𝑦
=

𝑣𝑁
2 − 𝑣𝑆

2

2𝑑𝑦

𝜕𝑢𝑣

𝜕𝑥
=

(
𝑣𝑃 + 𝑢𝑊

2) (
𝑢1 + 𝑢4

2) − (
𝑣𝑃 + 𝑢𝐸

2) (
𝑢2 + 𝑢3

2)

𝑑𝑦

𝜕𝑝

𝜕𝑦
=

𝑝𝑛 − 𝑝𝑠

𝑑𝑦

1

𝑅𝑒
𝛻2𝑣 =

1

𝑅𝑒

𝑣𝐸 − 2𝑣𝑃 + 𝑣𝑊

𝑑𝑥2
+

1

𝑅𝑒

𝑣𝑁 − 2𝑣𝑃 + 𝑣𝑆

𝑑𝑦2

Chapter Four: Lid-driven Cavity

23 | P a g e

ANSYS. C# code was used instead of ANSYS software to generate fluid data because the

neural network algorithms were integrated into the same C# code and a single C# program

did the entire dataset generation, training and testing for this research.

Figure 4.7: Single lid-driven cavity flow with C# CFD code and ANSYS

Chapter Four: Lid-driven Cavity

24 | P a g e

4.3. Double Lid-driven Cavity

 In a similar way, using the same set of equations as mentioned earlier, the C# code

was used to simulate fluid flow inside a double lid driven cavity where the top and bottom

sides are moving with a unit velocity (in +X direction) and all other sides are stationary. In

this setup, the fluid inside the cavity is moved by two moving lids instead of only one as

seen in the previous single lid-driven cavity. The two moving lids adds a bit more

complexity to the way how fluid flows inside it. The boundary conditions are showed in

Figure 4.8. Mawarsih et al. [9] have used top and bottom moving lids to simulate fluid flow

inside it using staggered grids. Saha [10] used a double lid-driven cavity with walls moving

in different directions to predict fluid flow inside it.

Figure 4.8: Double lid-driven cavity

Chapter Four: Lid-driven Cavity

25 | P a g e

 Figure 4.9 compares U and V velocities obtained from the C# code and ANSYS

software. It is again clear that the output from the C# code is almost the same as the output

obtained from ANSYS software. Some minor variations can also be seen here and there but

these are mainly because of small differences in the color profiles set by Tecplot and

ANSYS.

Figure 4.9: Double lid-driven cavity flow with C# CFD code and ANSYS

Chapter Four: Lid-driven Cavity

26 | P a g e

4.4. Double Lid-driven Cavity with an Internal Square Obstacle

 This research involves making a neural network learn fluid flow patterns. In order

to achieve such a thing, different data generated using different setups are needed, which

have some similarities between them and patterns can be found among them. A single lid

driven cavity is just a plain tool for assessing newly discovered numerical methods to

simulate fluid flow inside it. A double lid-driven cavity is an updated version of the single

lid-driven cavity as it makes the environment a little bit more complex. To keep the

environment simple but still get different datasets for the neural network to learn, a double

lid-driven cavity with some internal square objects can be used as a training data because

it adds a lot more complexity to the simple single lid-driven cavity problem as well as the

double lid-driven cavity problem and it also enables different datasets to be generated by

placing the square objects in different positions inside the cavity allowing the neural

network to actually learn what effects the placement of the square object will have on the

fluid flow patterns generated by the two moving top and bottom lids.

 Again in a similar way, the same C# code was used to simulate fluid flow inside a

double lid driven cavity with an obstacle occupying 1/64th of the total cavity area placed

inside the cavity where the top and bottom sides of the cavity were moving with a unit

velocity (in +X direction) and all other sides were stationary. The obstacle placed inside

the cavity acted as a resistance to the flow generated by the moving lids as no slip conditions

exists on the sides of the square obstacle. The whole purpose of this was to see if it is

possible to achieve prediction of fluid flow around shapes created by stacking together

multiple square objects, therefore creating a relatively complex object. Huang and Lim [11]

performed simulation of lid-driven cavity flow with internal circular obstacles. Circular

Chapter Four: Lid-driven Cavity

27 | P a g e

objects were not selected, as they can be stacked together without leaving behind empty

spaces between them. Figure 4.10 show how the cavity can be divided into 64 segments

and how the square object can be placed inside it in different positions as illustrated by the

horizontal and vertical lines that make up the segmentations. The figure also shows the

boundary conditions for this setup. The reason the environment was chosen to be divided

into 64 segments is because of the different grid sizes used in this research. The three

different grid sizes that had been used had a common factor of 8. And so, (8 × 8) or 64 is

the number of segments that is needed in order to be able to place the object uniformly in

the different grid setups allowing them to have the exact same placement of the object that

coincided perfectly with the grid points of the separate grid systems.

Figure 4.10: Double lid-driven cavity with an obstacle

Chapter Four: Lid-driven Cavity

28 | P a g e

 Figure 4.11 compares U and V velocities obtained from the C# code and ANSYS

software. In addition, it is again clear that the output from the C# code is almost the same

as the output obtained from ANSYS software. Again, some minor variations can be seen

here and there but these are mainly because of small differences in the color profiles set by

Tecplot and ANSYS.

Figure 4.11: Double lid-driven cavity flow having a square obstacle with C# CFD code

and ANSYS

Chapter Five: CFD Dataset Generation

29 | P a g e

CHAPTER FIVE

CFD DATASET GENERATION

5.1. Grid Setup

 The chosen double lid-driven cavity environment was divided into three different

grid systems to see if the neural networks remains consistent in predicting accurate values

and if a denser grid system can help the neural network in learning more accurately as

denser grid systems have more nodal points in the same area thus improving the accuracy

of the output from the CFD iterations which are directly used to train the neural networks.

To keep the computational efforts relatively low, the following grid systems were used in

this research:

1. 24 × 24 grid resulting in 25 × 25 grid points

2. 32 × 32 grid resulting in 33 × 33 grid points

3. 40 × 40 grid resulting in 41 × 41 grid points

 As mentioned earlier, the square object was placed inside the cavity such that it

occupied 1/64th of the total cavity area. By dividing the cavity area into 64 segments, it

was possible to place the square object in 36 different places, which covered most of the

cavity region. The plan was to place the square object in these places and train the neural

network with only these 36 input-output datasets so that complex shapes made up with

these square objects could be used to test the neural network. Using three different grid

sizes, 3 CFD datasets each having 36 input-output pairs were generated for the neural

networks to train.

Chapter Five: CFD Dataset Generation

30 | P a g e

5.2. Dataset Generation using 24 × 24 Grid System

 24 × 24 grids can be divided into 64 segments (8 × 8), each made up of 3 grids as

shown in figure 5.1. The square object occupying 3 × 3 grids can be uniformly placed at 36

different positions. This resulted in the input data for the neural network, which has 36

datasets each consisting of 81 0’s and 1’s reflecting the position of the square object inside

the cavity. Figure 5.1 shows how placing the object in the middle of the cavity can be

interpreted by these 0’s and 1’s. Figure 5.1 also shows the placement of the object in 36

different locations. Using the C# code, as shown earlier, fluid velocities can be calculated

for each of the 36 setups. The corresponding output data for the neural network consisted

of 625 (252) pairs of nodal U and V velocities obtained from the C# CFD code. This enabled

the neural network to establish a relation between the placement of the object inside the

cavity and the flow pattern associated with it. So the input datasets for each of the two

directional velocities of this grid system for the neural network had 36 lines, where each

line had 91 0’s and 1’s. The target datasets each also had 36 lines having 91 velocities in

each line.

Figure 5.1: Environment segmentation for 24 × 24 grid system

Chapter Five: CFD Dataset Generation

31 | P a g e

5.3. Dataset Generation using 32 × 32 Grid System

 In a similar way, 32 × 32 grids can be divided into 64 segments (8 × 8), each made

up of 4 grids as shown in figure 5.2. The square object occupying 4 × 4 grids can be

uniformly placed at 36 different positions. Similar to the previous setup, this resulted in the

input data for the neural network, which has 36 datasets each consisting of 81 0’s and 1’s

reflecting the position of the square object inside the cavity. The corresponding output data

for the neural network consisted of 1089 (332) pairs of nodal U and V velocities obtained

from the C# CFD code.

Figure 5.2: Environment segmentation for 32 × 32 grid system

5.4. Dataset Generation using 40 × 40 Grid System

 Again, in a similar way, 40 × 40 grids can be divided into 64 segments (8 × 8), each

made up of 5 grids as shown in figure 5.3. The square object occupying 5 × 5 grids can be

uniformly placed at 36 different positions. Again, identical to the previous two setups, this

resulted in the input data for the neural network, which has 36 datasets each consisting of

Chapter Five: CFD Dataset Generation

32 | P a g e

81 0’s and 1’s reflecting the position of the square object inside the cavity. The

corresponding output data for the neural network consisted of 1681 (412) pairs of nodal U

and V velocities obtained from the C# CFD code.

Figure 5.3: Environment segmentation for 40 × 40 grid system

Chapter Six: ANN Model and Training

33 | P a g e

CHAPTER SIX

ANN MODEL AND TRAINING

6.1. Network Structure

 Figure 6.1 shows the schematic of the neural network model that has been used in

this research. ReLU activation function has been used in the first and second hidden layer

and Sigmoid activation function has been used in the output layer. ReLU is used because it

is fast and easier to calculate. Sigmoid is used in the output layer because it generates an

output that lies in between 0 and 1 which perfectly matches the lid-driven cavity’s unit lid

velocity as nothing inside the cavity will have a velocity more than 1.

Figure 6.1: Neural network structure

 Two different learning methods are also used in this research independently. The

first one involves setting a globally fixed (GF) learning rate throughout the entire network.

The second one involves using different learning rates in different layers or in other words,

layer specific (LS) learning rates.

Chapter Six: ANN Model and Training

34 | P a g e

6.2. Neural Network Training

 Separate neural networks have been used for each grid systems. Each neural

network has two segments. One for the U velocity and one for the V velocity. There are no

connections between the two segments of the neural network. It may be possible to use a

single neural network to for all the two directional velocities, but the number of network

parameters, (weights and biases) will be increased by an order of a couple magnitudes and

thus will lead to unnecessary complications in the overall target of this research. To keep

calculations simple and yet achieve a two-dimensional flow prediction, two different

networks were used which were trained and tested separately. In each segment of the

network, there are 81 input nodes in the input layer, 500 hidden nodes in the next hidden

layer (#1) and another 1000 hidden nodes in the next hidden layer (#2).

 For 24 × 24 grid system, there are 625 (252) output nodes in each of the output layer

corresponding to 625 pairs of nodal U and V velocities as shown in figure 6.2.

Figure 6.2: Neural network for 24 × 24 grid system

Chapter Six: ANN Model and Training

35 | P a g e

 For 32 × 32 grid system, there are 1089 (332) output nodes in each of the output

layer corresponding to 1089 pairs of nodal U and V velocities as shown in figure 6.3.

Figure 6.3: Neural network for 32 × 32 grid system

 For 40 × 40 grid system, there are 1681 (412) output nodes in each of the output

layer corresponding to 1681 pairs of nodal U and V velocities as shown in figure 6.4.

Figure 6.4: Neural network for 40 × 40 grid system

Chapter Six: ANN Model and Training

36 | P a g e

 For the 36 different setups in each of the three different grid systems, the neural

networks were trained with 10000 epochs and a globally fixed learning rate (GF) of 0.02

for all the layers. The networks were again trained with layer specific learning rates (LS)

of 0.002 for the second layer, 0.02 for the third layer and 0.2 for the output layer. Smaller

learning rates were used in the input layers because they have to learn more accurately as

opposed to the outer layers where they have to cope with the expected output from the

input-output training dataset and so they have to be changed a lot quite frequently. In other

words, the output layers need to learn faster than the input layers, and so the learning rates

have been kept large there. This is perfectly reflected in figure 6.5 where mean squared

errors (MSE) obtained from these two learning methods are shown for the 10000 epochs.

Table 6.1 shows the terminologies used in figure 6.5.

Table 6.1: Terminologies used in figure 6.5

Term Meaning

MSE 24 × 24 GF Mean squared error in 24 × 24 grid system incorporating globally

fixed learning rates

MSE 24 × 24 LS Mean squared error in 24 × 24 grid system incorporating layer

specific learning rates

MSE 32 × 32 GF Mean squared error in 32 × 32 grid system incorporating globally

fixed learning rates

MSE 32 × 32 LS Mean squared error in 32 × 32 grid system incorporating layer

specific learning rates

MSE 40 × 40 GF Mean squared error in 40 × 40 grid system incorporating globally

fixed learning rates

MSE 40 × 40 LS Mean squared error in 40 × 40 grid system incorporating layer

specific learning rates

Chapter Six: ANN Model and Training

37 | P a g e

Figure 6.5: MSE comparison between GF and LS learning rates in all three grid systems

 To sum it all up, a total number of six neural networks have been trained by

incorporating the three different grid sizes and the two different learning approaches used.

As each neural network had two segments for the U and V velocities, they generated

different mean squared errors. However, they propagated with the number of epochs in a

similar fashion. This is why each of the six sets of MSEs shown in figure 6.5 is actually a

set of errors calculated by taking the average of the errors generated at each epoch by the

two segments of the neural network.

 It is clearly observed that the neural network models using LS learning rates were

better optimized than GF learning rate, which resulted in the same accuracy achieved by

the LS models just after 1000 epochs compared to the GF models’ 10000 epochs.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
S

E

Epochs

MSE 24 × 24 GF MSE 24 × 24 LS MSE 32 × 32 GF

MSE 32 × 32 LS MSE 40 × 40 GF MSE 40 × 40 LS

Chapter Seven: Results: CFD vs ANN

38 | P a g e

CHAPTER SEVEN

RESULTS: CFD VS ANN

7.1. Preface

 During training, only one obstacle was placed at a time inside the double lid-driven

cavity. During testing, all trained networks for the three different grid systems each using

two different learning methods were tested with all the training data as well as some new

setups. New setups were made by putting together several square objects and placing

multiple square objects in different places at the same time. The networks were never

trained with such complex setups and were tasked to predict fluid flow around them. A

good number of tests have been performed and it has been seen that the more complex the

shape appeared to get, the more errors the neural network had in predicting the fluid flow.

Results of two such test for each of the three different grid setups are shown in detail.

Terminologies as mentioned in table 7.1 are used:

Table 7.1: Terminologies used in results

Term Meaning

CFD Results from CFD simulation using NS equations

ANN LS Results from ANN using Layer Specific learning rates

ANN LS Differences Absolute differences between CFD results and ANN LS results

ANN GF Results from ANN using Globally Fixed learning rates

ANN GF Differences Absolute differences between CFD results and ANN GF results

Time (ms) Approximate time (in milliseconds) required by the computer

to generate results (using a 7th generation core i5 with 8GBs of

onboard memory)

Chapter Seven: Results: CFD vs ANN

39 | P a g e

7.2. First Test Setup

7.2.1. Environment

 Two square objects were placed diagonally inside the double lid-driven cavity at

the same time. The network was tested with CFD data for a single object placed at a time

but how the fluid is going to behave when two objects were placed at the same time was a

new challenge for the neural network. The boundary conditions in the cavity was the same

as the training phase. The top and bottom walls were kept moving at unit velocities and the

cavity had unit length and width. Figure 7.1 shows the arrangement of the square objects

inside the cavity. The following pages compares the results of the U and V velocities

generated using the three different grid systems incorporating the two different learning

rates that have been used.

Figure 7.1: Double lid-driven cavity with two obstacles

Chapter Seven: Results: CFD vs ANN

40 | P a g e

7.2.2. X-directional (U) velocity prediction

 The placement of the two square objects resulted in the following output of U

velocity as shown in figure 7.2 from the neural network incorporating GF learning method

in 24 × 24 grid system. The first flow field is from the CFD code, the second flow field is

from the neural network, the third flow field shows the absolute differences between the

two flow fields and the fourth graph shows a quantitative representation of the absolute

differences. Some relative errors can be seen along the edges of the square objects. The

CFD solution took 5380 milliseconds where the ANN prediction took only 15 milliseconds.

Figure 7.2: Test setup 1 - 24 × 24 grid system ANN GF comparison (U velocity)

Chapter Seven: Results: CFD vs ANN

41 | P a g e

 The following output of U velocity as shown in figure 7.3 is from the neural network

incorporating LS learning method in 24 × 24 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. Relative errors in this case are less than that of

the GF learning method. Some errors are seen in the central part of the cavity. The CFD

solution took 5380 milliseconds where the ANN prediction took only 16 milliseconds.

Figure 7.3: Test setup 1 - 24 × 24 grid system ANN LS comparison (U velocity)

Chapter Seven: Results: CFD vs ANN

42 | P a g e

 The following output of U velocity as shown in figure 7.4 is from the neural network

incorporating GF learning method in 32 × 32 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. Some relative errors can be seen along the edges

of the square objects. The CFD solution took 10774 milliseconds where the ANN

prediction took only 15 milliseconds.

Figure 7.4: Test setup 1 - 32 × 32 grid system ANN GF comparison (U velocity)

Chapter Seven: Results: CFD vs ANN

43 | P a g e

 The following output of U velocity as shown in figure 7.5 is from the neural network

incorporating LS learning method in 32 × 32 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. Relative errors in this case are less than that of

the GF learning method. Some errors are seen in the central part of the cavity. The CFD

solution took 10774 milliseconds where the ANN prediction took only 31 milliseconds.

Figure 7.5: Test setup 1 - 32 × 32 grid system ANN LS comparison (U velocity)

Chapter Seven: Results: CFD vs ANN

44 | P a g e

 The following output of U velocity as shown in figure 7.6 is from the neural network

incorporating GF learning method in 40 × 40 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. The CFD solution took 16261 milliseconds

where the ANN prediction took only 31 milliseconds.

Figure 7.6: Test setup 1 - 40 × 40 grid system ANN GF comparison (U velocity)

Chapter Seven: Results: CFD vs ANN

45 | P a g e

 The following output of U velocity as shown in figure 7.7 is from the neural network

incorporating LS learning method in 40 × 40 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. The CFD solution took 16261 milliseconds

where the ANN prediction took only 31 milliseconds.

Figure 7.7: Test setup 1 - 40 × 40 grid system ANN LS comparison (U velocity)

Chapter Seven: Results: CFD vs ANN

46 | P a g e

7.2.3. Y-directional (V) velocity prediction

 The following output of V velocity as shown in figure 7.8 is from the neural network

incorporating GF learning method in 24 × 24 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. Some relative errors can be seen along the edges

of the square objects. The CFD solution took 5380 milliseconds where the ANN prediction

took only 14 milliseconds.

Figure 7.8: Test setup 1 - 24 × 24 grid system ANN GF comparison (V velocity)

Chapter Seven: Results: CFD vs ANN

47 | P a g e

 The following output of V velocity as shown in figure 7.9 is from the neural network

incorporating LS learning method in 24 × 24 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. Relative errors in this case are significantly less

than that of the GF learning method. The CFD solution took 5380 milliseconds where the

ANN prediction took only 16 milliseconds.

Figure 7.9: Test setup 1 - 24 × 24 grid system ANN LS comparison (V velocity)

Chapter Seven: Results: CFD vs ANN

48 | P a g e

 The following output of V velocity as shown in figure 7.10 is from the neural

network incorporating GF learning method in 32 × 32 grid system. The first flow field is

from the CFD code, the second flow field is from the neural network, the third flow field

shows the absolute differences between the two flow fields and the fourth graph shows a

quantitative representation of the absolute differences. Some relative errors can be seen

along the edges of the square objects. The CFD solution took 10774 milliseconds where

the ANN prediction took only 15 milliseconds.

Figure 7.10: Test setup 1 - 32 × 32 grid system ANN GF comparison (V velocity)

Chapter Seven: Results: CFD vs ANN

49 | P a g e

 The following output of V velocity as shown in figure 7.11 is from the neural

network incorporating LS learning method in 32 × 32 grid system. The first flow field is

from the CFD code, the second flow field is from the neural network, the third flow field

shows the absolute differences between the two flow fields and the fourth graph shows a

quantitative representation of the absolute differences. Relative errors in this case are

significantly less than that of the GF learning method. The CFD solution took 10774

milliseconds where the ANN prediction took only 31 milliseconds.

Figure 7.11: Test setup 1 - 32 × 32 grid system ANN LS comparison (V velocity)

Chapter Seven: Results: CFD vs ANN

50 | P a g e

 The following output of V velocity as shown in figure 7.12 is from the neural

network incorporating GF learning method in 40 × 40 grid system. The first flow field is

from the CFD code, the second flow field is from the neural network, the third flow field

shows the absolute differences between the two flow fields and the fourth graph shows a

quantitative representation of the absolute differences. The CFD solution took 16261

milliseconds where the ANN prediction took only 31 milliseconds.

Figure 7.12: Test setup 1 - 40 × 40 grid system ANN GF comparison (V velocity)

Chapter Seven: Results: CFD vs ANN

51 | P a g e

 The following output of V velocity as shown in figure 7.13 is from the neural

network incorporating LS learning method in 40 × 40 grid system. The first flow field is

from the CFD code, the second flow field is from the neural network, the third flow field

shows the absolute differences between the two flow fields and the fourth graph shows a

quantitative representation of the absolute differences. The CFD solution took 16261

milliseconds where the ANN prediction took only 31 milliseconds.

Figure 7.13: Test setup 1 - 40 × 40 grid system ANN LS comparison (V velocity)

Chapter Seven: Results: CFD vs ANN

52 | P a g e

7.3. Second Test Setup

7.3.1. Environment

 Three square objects were placed together as shown in figure 7.14, inside the double

lid-driven cavity in a way that they make up a relatively complex shape. Again, the

boundary conditions in the cavity was the same as the training phase. Figure 7.14 shows

the arrangement of the square objects inside the cavity. The following pages compares the

results of the U and V velocities generated using the three different grid systems

incorporating the two different learning rates that have been used.

Figure 7.14: Double lid-driven cavity with three obstacles making a relatively complex

shape

Chapter Seven: Results: CFD vs ANN

53 | P a g e

7.3.2. X-directional (U) velocity prediction

 The placement of the three square objects resulted in the output of U velocity as

shown in figure 7.15 from the neural network incorporating GF learning method in 24 × 24

grid system. The first flow field is from the CFD code, the second flow field is from the

neural network, the third flow field shows the absolute differences between the two flow

fields and the fourth graph shows a quantitative representation of the absolute differences.

Some relative errors can be seen along the edges of the square objects. The CFD solution

took 5023 milliseconds where the ANN prediction took only 20 milliseconds.

Figure 7.15: Test setup 2 - 24 × 24 grid system ANN GF comparison (U velocity)

Chapter Seven: Results: CFD vs ANN

54 | P a g e

 The output of U velocity as shown in figure 7.16 is from the neural network

incorporating LS learning method in 24 × 24 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. Relative errors in this case are less than that of

the GF learning method. Some errors are seen in the central part of the cavity. The CFD

solution took 5023 milliseconds where the ANN prediction took only 15 milliseconds.

Figure 7.16: Test setup 2 - 24 × 24 grid system ANN LS comparison (U velocity)

Chapter Seven: Results: CFD vs ANN

55 | P a g e

 The output of U velocity as shown in figure 7.17 is from the neural network

incorporating GF learning method in 32 × 32 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. Some relative errors can be seen along the edges

of the square objects. The CFD solution took 8776 milliseconds where the ANN prediction

took only 21 milliseconds.

Figure 7.17: Test setup 2 - 32 × 32 grid system ANN GF comparison (U velocity)

Chapter Seven: Results: CFD vs ANN

56 | P a g e

 The output of U velocity as shown in figure 7.18 is from the neural network

incorporating LS learning method in 32 × 32 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. Relative errors in this case are less than that of

the GF learning method. Some errors are seen in the central part of the cavity. The CFD

solution took 8776 milliseconds where the ANN prediction took only 23 milliseconds.

Figure 7.18: Test setup 2 - 32 × 32 grid system ANN LS comparison (U velocity)

Chapter Seven: Results: CFD vs ANN

57 | P a g e

 The output of U velocity as shown in figure 7.19 is from the neural network

incorporating GF learning method in 40 × 40 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. Some relative errors can be seen along the edges

of the square objects. The CFD solution took 26605 milliseconds where the ANN

prediction took only 57 milliseconds.

Figure 7.19: Test setup 2 - 40 × 40 grid system ANN GF comparison (U velocity)

Chapter Seven: Results: CFD vs ANN

58 | P a g e

 The output of U velocity as shown in figure 7.20 is from the neural network

incorporating LS learning method in 40 × 40 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. Relative errors in this case are less than that of

the GF learning method. The CFD solution took 26605 milliseconds where the ANN

prediction took only 53 milliseconds.

Figure 7.20: Test setup 2 - 40 × 40 grid system ANN LS comparison (U velocity)

Chapter Seven: Results: CFD vs ANN

59 | P a g e

7.3.3. Y-directional (V) velocity prediction

 The output of V velocity as shown in figure 7.21 is from the neural network

incorporating GF learning method in 24 × 24 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. Some relative errors can be seen along the edges

of the square objects. The CFD solution took 5023 milliseconds where the ANN prediction

took only 20 milliseconds.

Figure 7.21: Test setup 2 - 24 × 24 grid system ANN GF comparison (V velocity)

Chapter Seven: Results: CFD vs ANN

60 | P a g e

 The output of V velocity as shown in figure 7.22 is from the neural network

incorporating LS learning method in 24 × 24 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. Relative errors in this case are approximately the

same as of the GF learning method. The CFD solution took 5023 milliseconds where the

ANN prediction took only 15 milliseconds.

Figure 7.22: Test setup 2 - 24 × 24 grid system ANN LS comparison (V velocity)

Chapter Seven: Results: CFD vs ANN

61 | P a g e

 The output of V velocity as shown in figure 7.23 is from the neural network

incorporating GF learning method in 32 × 32 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. Some relative errors can be seen along the edges

of the square objects. The CFD solution took 8776 milliseconds where the ANN prediction

took only 21 milliseconds.

Figure 7.23: Test setup 2 - 32 × 32 grid system ANN GF comparison (V velocity)

Chapter Seven: Results: CFD vs ANN

62 | P a g e

 The output of V velocity as shown in figure 7.24 is from the neural network

incorporating LS learning method in 32 × 32 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. Relative errors in this case are a little less than

that of the GF learning method. The CFD solution took 8776 milliseconds where the ANN

prediction took only 23 milliseconds.

Figure 7.24: Test setup 2 - 32 × 32 grid system ANN LS comparison (V velocity)

Chapter Seven: Results: CFD vs ANN

63 | P a g e

 The output of V velocity as shown in figure 7.25 is from the neural network

incorporating GF learning method in 40 × 40 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. Some relative errors can be seen along the edges

of the square objects. The CFD solution took 26605 milliseconds where the ANN

prediction took only 57 milliseconds.

Figure 7.25: Test setup 2 - 40 × 40 grid system ANN GF comparison (V velocity)

Chapter Seven: Results: CFD vs ANN

64 | P a g e

 The output of V velocity as shown in figure 7.26 is from the neural network

incorporating LS learning method in 40 × 40 grid system. The first flow field is from the

CFD code, the second flow field is from the neural network, the third flow field shows the

absolute differences between the two flow fields and the fourth graph shows a quantitative

representation of the absolute differences. Relative errors in this case are a little less than

that of the GF learning method. The CFD solution took 26605 milliseconds where the ANN

prediction took only 53 milliseconds.

Figure 7.26: Test setup 2 - 40 × 40 grid system ANN LS comparison (V velocity)

Chapter Seven: Results: CFD vs ANN

65 | P a g e

7.4. Time Comparison

 Table 7.2 compares the time required for the CFD solver vs the two different ANN

solvers using 5 different setups.

Table 7.2: Time comparison between CFD solver and ANN solver

Setup Time (milliseconds)

24 × 24 grid system

Setup 1 CFD 6227

Setup 1 ANN GF 31

Setup 1 ANN LS 15

Setup 2 CFD 4156

Setup 2 ANN GF 15

Setup 2 ANN LS 15

Setup 3 CFD 4670

Setup 3 ANN GF 14

Setup 3 ANN LS 18

Setup 4 CFD 4578

Setup 4 ANN GF 18

Setup 4 ANN LS 23

Setup 5 CFD 5116

Setup 5 ANN GF 14

Setup 5 ANN LS 15

32 × 32 grid system

Setup 1 CFD 10250

Setup 1 ANN GF 31

Setup 1 ANN LS 31

Setup 2 CFD 6547

Chapter Seven: Results: CFD vs ANN

66 | P a g e

Setup Time (milliseconds)

Setup 2 ANN GF 15

Setup 2 ANN LS 31

Setup 3 CFD 7214

Setup 3 ANN GF 19

Setup 3 ANN LS 28

Setup 4 CFD 7874

Setup 4 ANN GF 20

Setup 4 ANN LS 31

Setup 5 CFD 8107

Setup 5 ANN GF 20

Setup 5 ANN LS 26

40 × 40 grid system

Setup 1 CFD 16094

Setup 1 ANN GF 31

Setup 1 ANN LS 15

Setup 2 CFD 9570

Setup 2 ANN GF 27

Setup 2 ANN LS 28

Setup 3 CFD 10874

Setup 3 ANN GF 29

Setup 3 ANN LS 32

Setup 4 CFD 13605

Setup 4 ANN GF 28

Setup 4 ANN LS 31

Setup 5 CFD 11619

Setup 5 ANN GF 29

Setup 5 ANN LS 29

Chapter Seven: Results: CFD vs ANN

67 | P a g e

7.5. Two More Results

 Two more test results are shown using 40 × 40 grid system and layer specific

learning method. The left images are generated by the CFD C# code and right images are

generated by the neural networks. The first one, as shown in figure 7.27, involves a

geometry involving five obstacles placed together forming an “L” shaped object. It is

clearly evident that the more complex the geometry becomes, the more erroneous the neural

network’s output becomes. However, by using deeper neural networks or by reduced order

modelling of the system, it may be possible by future researches to refine the output of the

network.

Figure 7.27: Test setup 3 - 40 × 40 grid system and LS learning method

Chapter Seven: Results: CFD vs ANN

68 | P a g e

 The second test result, as shown in figure 7.28, involves six obstacles placed

together in such a way that they make up a rectangle.

Figure 7.28: Test setup 4 - 40 × 40 grid system and LS learning method

 It is observed that the neural networks are able to predict fluid velocities with a fair

amount of accuracy in all of the cases in a fraction of the time taken by the CFD solver.

Both GF and LS methods did a good job in predicting the fluid flow. However, LS method

was better in predicting fluid flow near the obstacles as it had less errors near the obstacles

when compared to the GF method. Furthermore, the velocities obtained from the neural

networks can be used as initial values in CFD solvers to make them even more accurate.

Chapter Eight: Conclusion

69 | P a g e

CHAPTER EIGHT

CONCLUSION

8.1. Concluding Remarks

 The results obtained from this research clearly shows that it is indeed possible to

predict fluid flow patterns using neural networks. Researches often have to come up with

quick solutions or a snapshot of what the actual flow field will look like in order to get an

idea of what they are working with before generating a full-fledged CFD solution. In this

case, trained neural networks may provide a faster alternative to traditional CFD

approaches. Although this requires training the neural networks with vast amount of data,

which takes a lot of time, training has to be done only once. If a community driven platform

for practicing and implementing data driven fluid dynamics is established, where people

will share their trained neural networks with other people, it is quite possible to develop a

general artificial intelligence which can tackle even the most complex fluid mechanics

problems. Although different flow fields may appear to be unique and random, nature likes

to keep things simple. This is why patterns and similarities exists in how fluid behaves in

different situations under different physical constraints. It is the very nature of how neural

networks work that enables them to recognize these patterns and perform predictions.

Neural networks, albeit not as dynamic and capable as industrial CFD software at this very

moment, so was not facial recognition back in the early 2000s. Therefore, at the current

pace at which researchers are looking into developments in machine learning, it is quite

likely that artificial intelligence will play a major role in every aspect of peoples’ lives in

the days to come. This research may contribute to bridge the gap between fluid mechanics

and machine learning. The comparisons may help future researchers to come up with a

Chapter Eight: Conclusion

70 | P a g e

better way of integrating machine learning into fluid mechanics. The ultimate goal is to

establish a data driven approach to solve fluid mechanics problems in real life.

8.2. Future Work

 In this work, several parameters were kept constant. Future works can be done to

improve the output by treating these parameters as variables.

8.2.1. Changing the neural network model

 The model can be changed to add more hidden layers and neurons in each hidden

layer. Alternatively, the activation functions can be changed to see what effects they have

on the model.

8.2.2. Changing the training data and environment

 Training can be done with smaller square obstacles so that any shape can be

generated using a number of these smaller square obstacles. The lid velocities can be

changed and different Reynolds numbers can be used to make the model learn more.

References

71 | P a g e

REFERENCES

[1] Kutz, J.N. Deep learning in fluid dynamics. Journal of Fluid Mechanics 2017; 814:1–

4. URL https://dx.doi.org/10.1017/jfm.2016.803.

[2] Baymani, M., Effati, S., Niazmand, H., Kerayechian, A. Artificial neural network

method for solving the Navier–Stokes equations. Neural Computing and

Applications 2015; 26(4):765–773. URL https://dx.doi.org/10.1007/s00521-014-

1762-2.

[3] Mccracken, M.F. Artificial Neural Networks in Fluid Dynamics: A Novel Approach

to the Navier-Stokes Equations. Proceedings of the Practice and Experience on

Advanced Research Computing 2018. URL

https://doi.org/10.1145/3219104.3229262

[4] Sabir, O., Ya, T.M.Y.S.T. A New Artificial Neural Network Approach for Fluid Flow

Simulations. Proceedings of the International Conference on Neural Computation

Theory and Applications 2014. URL https://doi.org/10.5220/0005157503340338

[5] Guo, X., Li, W., Iorio, F. Convolutional Neural Networks for Steady Flow

Approximation. Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining 2016. URL

https://doi.org/10.1145/2939672.2939738

[6] Tsunooka, Y., Kokubo, N., Hatasa, G., Harada, S., Tagawa, M., Ujihara, T. High-

speed prediction of computational fluid dynamics simulation in crystal growth.

CrystEngComm 2018; 20(41):6546–6550. URL 10.1039/c8ce00977e;

https://dx.doi.org/10.1039/c8ce00977e.

[7] Marchi, C.H., Suero, R., Araki, L.K. The lid-driven square cavity flow: numerical

solution with a 1024 × 1024 grid. Journal of the Brazilian Society of Mechanical

References

72 | P a g e

Sciences and Engineering 2009; 31(3):186–198. URL

https://dx.doi.org/10.1590/s1678-58782009000300004.

[8] Chorin, A.J. A numerical method for solving incompressible viscous flow problems.

Journal of Computational Physics 1967; 2(1):12–26. URL

https://dx.doi.org/10.1016/0021-9991(67)90037-x.

[9] Mawarsih, E., Budiana, E.P., Yuana, K.A., Indarto, S., Kamal, D. Simulation of lid-

driven cavity with top and bottom moving boundary conditions using implicit finite

difference method and staggered grid. AIP Conference Proceedings 2018. URL

https://doi.org/10.1063/1.5062719

[10] Saha, K.C. Double Lid Driven Cavity with Different Moving Wall Directions for

Low Reynolds Number Flow. International Journal of Applied Mathematics and

Theoretical Physics 2018; 4(3):67–67. URL

https://doi.org/10.11648/j.ijamtp.20180403.11

[11] Huang, T., Lim, H.C. Simulation of Lid-Driven Cavity Flow with Internal Circular

Obstacles. Applied Sciences 2020; 10(13):4583–4583. URL

https://doi.org/10.3390/app10134583

Appendix

73 | P a g e

A
P

P
E

N
D

IX

 C
#

 C
o

d
e

fo
r

C
F

D
 S

im
u

la
ti

o
n

u
s
i
n
g

S
y
s
t
e
m
;

u
s
i
n
g

S
y
s
t
e
m
.
C
o
l
l
e
c
t
i
o
n
s
;

u
s
i
n
g

S
y
s
t
e
m
.
C
o
l
l
e
c
t
i
o
n
s
.
G
e
n
e
r
i
c
;

u
s
i
n
g

S
y
s
t
e
m
.
L
i
n
q
;

u
s
i
n
g

S
y
s
t
e
m
.
T
e
x
t
;

u
s
i
n
g

S
y
s
t
e
m
.
T
h
r
e
a
d
i
n
g
.
T
a
s
k
s
;

u
s
i
n
g

S
y
s
t
e
m
.
I
O
;

 n
a
m
e
s
p
a
c
e

C
S
C
F
D

{

c
l
a
s
s

C
F
D

{

p
u
b
l
i
c

L
i
s
t
<
d
o
u
b
l
e
>

t
r
a
i
n
_
d
a
t
a

=

n
e
w

L
i
s
t
<
d
o
u
b
l
e
>
(
)
;

p
u
b
l
i
c

L
i
s
t
<
d
o
u
b
l
e
>

t
r
a
i
n
_
l
a
b
e
l
_
x

=

n
e
w

L
i
s
t
<
d
o
u
b
l
e
>
(
)
;

p
u
b
l
i
c

L
i
s
t
<
d
o
u
b
l
e
>

t
r
a
i
n
_
l
a
b
e
l
_
y

=

n
e
w

L
i
s
t
<
d
o
u
b
l
e
>
(
)
;

p
u
b
l
i
c

d
o
u
b
l
e
[
,
]

u

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

+

1
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;

p
u
b
l
i
c

d
o
u
b
l
e
[
,
]

u
n

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

+

1
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;

p
u
b
l
i
c

d
o
u
b
l
e
[
,
]

u
c

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;

p
u
b
l
i
c

d
o
u
b
l
e
[
,
]

u
o

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;

p
u
b
l
i
c

d
o
u
b
l
e
[
,
]

v

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

+

1
]
;

p
u
b
l
i
c

d
o
u
b
l
e
[
,
]

v
n

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

+

1
]
;

p
u
b
l
i
c

d
o
u
b
l
e
[
,
]

v
c

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;

p
u
b
l
i
c

d
o
u
b
l
e
[
,
]

v
o

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;

p
u
b
l
i
c

d
o
u
b
l
e
[
,
]

p

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

+

1
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

+

1
]
;

p
u
b
l
i
c

d
o
u
b
l
e
[
,
]

p
n

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

+

1
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

+

1
]
;

Appendix

74 | P a g e

p
u
b
l
i
c

d
o
u
b
l
e
[
,
]

p
c

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;

p
u
b
l
i
c

d
o
u
b
l
e
[
,
]

p
o

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;

p
u
b
l
i
c

d
o
u
b
l
e
[
,
]

m

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

+

1
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

+

1
]
;

p
u
b
l
i
c

d
o
u
b
l
e
[
,
]

b
n

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;

p
u
b
l
i
c

i
n
t

i
,

j
,

s
t
e
p
;

p
u
b
l
i
c

d
o
u
b
l
e

d
x
,

d
y
,

d
t
,

d
e
l
t
a
,

e
r
r
o
r
,

R
e
,

i
p
r
;

p
u
b
l
i
c

i
n
t

o
b
j
e
c
t
_
x
;

p
u
b
l
i
c

i
n
t

o
b
j
e
c
t
_
y
;

p
u
b
l
i
c

i
n
t

o
b
j
e
c
t
_
l
e
n
g
t
h
;

p
u
b
l
i
c

i
n
t

o
b
j
e
c
t
_
w
i
d
t
h
;

p
u
b
l
i
c

s
t
r
i
n
g

f
i
l
e
_
n
a
m
e
;

p
u
b
l
i
c

b
o
o
l

s
a
v
e
_
f
i
l
e
;

p
u
b
l
i
c

d
o
u
b
l
e

l
v
e
l
;

p
u
b
l
i
c

v
o
i
d

s
e
t
P
a
r
a
m
s
(
i
n
t

x
,

i
n
t

y
,

i
n
t

l
,

i
n
t

w
,

s
t
r
i
n
g

f
,

d
o
u
b
l
e

l
v
,

b
o
o
l

s

=

f
a
l
s
e
)

{

o
b
j
e
c
t
_
x

=

x
;

o
b
j
e
c
t
_
y

=

y
;

o
b
j
e
c
t
_
l
e
n
g
t
h

=

l
;

o
b
j
e
c
t
_
w
i
d
t
h

=

w
;

f
i
l
e
_
n
a
m
e

=

f
;

s
a
v
e
_
f
i
l
e

=

s
;

l
v
e
l

=

l
v
;

}

p
u
b
l
i
c

v
o
i
d

R
u
n
S
i
m
(
)

{

s
t
e
p

=

1
;

d
x

=

1
.
0
/
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
-
1
)
;

d
y

=

1
.
0
/
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
-
1
)
;

d
t

=

0
.
0
0
1
;

d
e
l
t
a

=

4
.
5
;

Appendix

75 | P a g e

e
r
r
o
r

=

1
.
0
;

R
e

=

1
0
0
.
0
;

i
p
r

=

1
.
0
;

/
/

I
n
i
t
i
a
l
i
z
i
n
g

u

f
o
r

(
i

=

0
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;

i
+
+
)

{

f
o
r

(
j

=

0
;

j

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

-

1
)
;

j
+
+
)

{

u
[
i
,

j
]

=

0
.
0
;

u
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,

j
]

=

l
v
e
l
;

u
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

1
,

j
]

=

l
v
e
l
;

u
[
0
,

j
]

=

l
v
e
l
;

u
[
1
,

j
]

=

l
v
e
l
;

}

}

f
o
r

(
i

=

o
b
j
e
c
t
_
y

-

1
;

i

<
=

(
o
b
j
e
c
t
_
w
i
d
t
h

+

o
b
j
e
c
t
_
y

+

1
)
;

i
+
+
)

{

f
o
r

(
j

=

o
b
j
e
c
t
_
x
;

j

<
=

(
o
b
j
e
c
t
_
l
e
n
g
t
h

+

o
b
j
e
c
t
_
x
)
;

j
+
+
)

{

u
[
i
,

j
]

=

0
.
0
;

}

}

/
/

I
n
i
t
i
a
l
i
z
i
n
g

v

f
o
r

(
i

=

0
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

1
)
;

i
+
+
)

{

f
o
r

(
j

=

0
;

j

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

j
+
+
)

{

v
[
i
,

j
]

=

0
.
0
;

}

}

f
o
r

(
i

=

o
b
j
e
c
t
_
y
;

i

<
=

(
o
b
j
e
c
t
_
w
i
d
t
h

+

o
b
j
e
c
t
_
y
)
;

i
+
+
)

Appendix

76 | P a g e

{

f
o
r

(
j

=

o
b
j
e
c
t
_
x

-

1
;

j

<
=

(
o
b
j
e
c
t
_
l
e
n
g
t
h

+

o
b
j
e
c
t
_
x

+

1
)
;

j
+
+
)

{

v
[
i
,

j
]

=

0
.
0
;

}

}

/
/

I
n
i
t
i
a
l
i
z
i
n
g

p

f
o
r

(
i

=

0
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;

i
+
+
)

{

f
o
r

(
j

=

0
;

j

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

j
+
+
)

{

p
[
i
,

j
]

=

i
p
r
;

}

}

/
/
s
t
o
r
i
n
g

s
i
m
s
e
t
u
p

f
o
r

(
i

=

0
;

i

<
=

8
;

i
+
+
)

{

f
o
r

(
j

=

0
;

j

<
=

8
;

j
+
+
)

{

b
n
[
i
,

j
]

=

0
;

}

}

f
o
r

(
i

=

o
b
j
e
c
t
_
y

/

3
;

i

<
=

(
o
b
j
e
c
t
_
w
i
d
t
h

+

o
b
j
e
c
t
_
y
)

/

3
;

i
+
+
)

{

f
o
r

(
j

=

o
b
j
e
c
t
_
x

/

3
;

j

<
=

(
o
b
j
e
c
t
_
l
e
n
g
t
h

+

o
b
j
e
c
t
_
x
)

/

3
;

j
+
+
)

{

b
n
[
i
,

j
]

=

1
;

}

}

/
/
s
t
o
r
i
n
g

o
r
i
g
i
n
a
l

v
e
l
o
c
i
t
y

v
a
l
u
e
s

f
o
r

(
i

=

0
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

1
)
;

i
+
+
)

{

Appendix

77 | P a g e

f
o
r

(
j

=

0
;

j

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

-

1
)
;

j
+
+
)

{

u
o
[
i
,

j
]

=

0
.
0
;

u
o
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

1
,

j
]

=

l
v
e
l
;

u
o
[
0
,

j
]

=

l
v
e
l
;

}

}

f
o
r

(
i

=

0
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

1
)
;

i
+
+
)

{

f
o
r

(
j

=

0
;

j

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

-

1
)
;

j
+
+
)

{

v
o
[
i
,

j
]

=

0
.
0
;

}

}

f
o
r

(
i

=

0
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

1
)
;

i
+
+
)

{

f
o
r

(
j

=

0
;

j

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

-

1
)
;

j
+
+
)

{

p
o
[
i
,

j
]

=

i
p
r
;

}

}

w
h
i
l
e

(
e
r
r
o
r

>

0
.
0
0
0
0
1
)

{

/
/

S
o
l
v
e
s

u
-
m
o
m
e
n
t
u
m

e
q
u
a
t
i
o
n

f
o
r

(
i

=

1
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

1
)
;

i
+
+
)

{

f
o
r

(
j

=

1
;

j

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

-

2
)
;

j
+
+
)

{

u
n
[
i
,

j
]

=

u
[
i
,

j
]

-

d
t

*

(
(
(
(
u
[
i
,

j

+

1
]

*

u
[
i
,

j

+

1
]
)

-

(
u
[
i
,

j

-

1
]

*

u
[
i
,

j

-

1
]
)
)

/

(
2
.
0

*

d
x
)
)

+

(
(
1
.
0

/

(
4
.
0

*

d
y
)
)

*

(
(
(
u
[
i
,

j
]

+

u
[
i

+

1
,

j
]
)

*

(
v
[
i
,

j
]

+

v
[
i
,

j

+

1
]
)
)

-

(
(
u
[
i
,

j
]

+

u
[
i

-

1
,

j
]
)

*

(
v
[
i

-

1
,

j
]

+

v
[
i

-

1
,

j

+

1
]
)
)
)
)

+

(
(
p
[
i
,

j

+

1
]

-

p
[
i
,

j
]
)

/

d
x
)

-

(
(
1
.
0

/

R
e
)

*

(
(
(
u
[
i
,

j

+

1
]

-

(
2
.
0

*

u
[
i
,

j
]
)

+

u
[
i
,

j

-

1
]
)

/

(
(
d
x

*

d
x
)
)
)

+

(
(
u
[
i

+

1
,

j
]

-

(
2
.
0

*

u
[
i
,

j
]
)

+

u
[
i

-

1
,

j
]
)

/

(
(
d
y

*

d
y
)
)
)
)
)

Appendix

78 | P a g e

)
;

}

}

/
/

B
o
u
n
d
a
r
y

c
o
n
d
i
t
i
o
n
s

f
o
r

(
j

=

0
;

j

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

-

1
)
;

j
+
+
)

{

u
n
[
0
,

j
]

=

2

*

l
v
e
l

-

u
n
[
1
,

j
]
;

u
n
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,

j
]

=

2

*

l
v
e
l

-

u
n
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

1
,

j
]
;

}

f
o
r

(
i

=

1
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

1
)
;

i
+
+
)

{

u
n
[
i
,

0
]

=

0
.
0
;

u
n
[
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

-

1
]

=

0
.
0
;

}

f
o
r

(
i

=

o
b
j
e
c
t
_
y

-

1
;

i

<
=

(
o
b
j
e
c
t
_
w
i
d
t
h

+

o
b
j
e
c
t
_
y

+

1
)
;

i
+
+
)

{

f
o
r

(
j

=

o
b
j
e
c
t
_
x
;

j

<
=

(
o
b
j
e
c
t
_
l
e
n
g
t
h

+

o
b
j
e
c
t
_
x
)
;

j
+
+
)

{

u
n
[
i
,

j
]

=

0
.
0
;

}

}

/
/

S
o
l
v
e
s

v
-
m
o
m
e
n
t
u
m

f
o
r

(
i

=

1
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

2
)
;

i
+
+
)

{

f
o
r

(
j

=

1
;

j

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

-

1
)
;

j
+
+
)

{

v
n
[
i
,

j
]

=

v
[
i
,

j
]

-

d
t

*

(
(
(
(
v
[
i

+

1
,

j
]

*

v
[
i

+

1
,

j
]
)

-

(
v
[
i

-

1
,

j
]

*

v
[
i

-

1
,

j
]
)
)

/

(
2
.
0

*

d
y
)
)

+

(
(
1
.
0

/

(
4
.
0

*

d
x
)
)

*

(
(
(
v
[
i
,

j
]

+

v
[
i
,

j

+

1
]
)

*

(
u
[
i

+

1
,

j
]

+

u
[
i
,

j
]
)
)

-

(
(
v
[
i
,

j
]

+

v
[
i
,

j

-

1
]
)

*

(
u
[
i

+

1
,

j

-

1
]

+

u
[
i
,

j

-

1
]
)
)
)
)

+

(
(
p
[
i

+

1
,

j
]

-

p
[
i
,

j
]
)

/

d
y
)

-

(
(
1
.
0

/

R
e
)

*

(
(
(
v
[
i
,

j

+

1
]

-

(
2
.
0

*

v
[
i
,

j
]
)

+

v
[
i
,

j

-

1
]
)

/

(
(
d
x

*

d
x
)
)
)

+

(
(
v
[
i

+

1
,

j
]

-

(
2
.
0

*

v
[
i
,

j
]
)

+

v
[
i

-

1
,

j
]
)

/

(
(
d
y

*

d
y
)
)
)
)
)

Appendix

79 | P a g e

)
;

}

}

/
/

B
o
u
n
d
a
r
y

c
o
n
d
i
t
i
o
n
s

f
o
r

(
i

=

1
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

2
)
;

i
+
+
)

{

v
n
[
i
,

0
]

=

-
v
n
[
i
,

1
]
;

v
n
[
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]

=

-
v
n
[
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

-

1
]
;

}

f
o
r

(
i

=

0
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

1
)
;

i
+
+
)

{

v
n
[
i
,

0
]

=

0
.
0
;

v
n
[
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]

=

0
.
0
;

}

f
o
r

(
i

=

o
b
j
e
c
t
_
y
;

i

<
=

(
o
b
j
e
c
t
_
w
i
d
t
h

+

o
b
j
e
c
t
_
y
)
;

i
+
+
)

{

f
o
r

(
j

=

o
b
j
e
c
t
_
x

-

1
;

j

<
=

(
o
b
j
e
c
t
_
l
e
n
g
t
h

+

o
b
j
e
c
t
_
x

+

1
)
;

j
+
+
)

{

v
n
[
i
,

j
]

=

0
.
0
;

}

}

/
/

S
o
l
v
e
s

c
o
n
t
i
n
u
i
t
y

e
q
u
a
t
i
o
n

f
o
r

(
i

=

1
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

1
)
;

i
+
+
)

{

f
o
r

(
j

=

1
;

j

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

-

1
)
;

j
+
+
)

{

p
n
[
i
,

j
]

=

p
[
i
,

j
]

-

d
t

*

d
e
l
t
a

*

(
(
u
n
[
i
,

j
]

-

u
n
[
i
,

j

-

1
]
)

/

d
x

+

(
v
n
[
i
,

j
]

-

v
n
[
i

-

1
,

j
]
)

/

d
y
)
;

}

}

Appendix

80 | P a g e

/
/

D
i
s
p
l
a
y
i
n
g

e
r
r
o
r

e
r
r
o
r

=

0
.
0
;

f
o
r

(
i

=

1
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

1
)
;

i
+
+
)

{

f
o
r

(
j

=

1
;

j

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

-

1
)
;

j
+
+
)

{

m
[
i
,

j
]

=

(
(
u
n
[
i
,

j
]

-

u
n
[
i
,

j

-

1
]
)

/

d
x

+

(
v
n
[
i
,

j
]

-

v
n
[
i

-

1
,

j
]
)

/

d
y
)
;

e
r
r
o
r

=

e
r
r
o
r

+

M
a
t
h
.
A
b
s
(
m
[
i
,

j
]
)
;

}

}

i
f

(
s
t
e
p

%

1
0
0
0

=
=

1
)

{

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
E
r
r
o
r

i
s

"

+

e
r
r
o
r

+

"

f
o
r

t
h
e

s
t
e
p

"

+

s
t
e
p
)
;

}

/
/

I
t
e
r
a
t
i
n
g

u

f
o
r

(
i

=

0
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;

i
+
+
)

{

f
o
r

(
j

=

0
;

j

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

-

1
)
;

j
+
+
)

{

u
[
i
,

j
]

=

u
n
[
i
,

j
]
;

}

}

/
/

I
t
e
r
a
t
i
n
g

v

f
o
r

(
i

=

0
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

1
)
;

i
+
+
)

{

f
o
r

(
j

=

0
;

j

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

j
+
+
)

{

v
[
i
,

j
]

=

v
n
[
i
,

j
]
;

}

}

/
/

I
t
e
r
a
t
i
n
g

p

Appendix

81 | P a g e

f
o
r

(
i

=

0
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;

i
+
+
)

{

f
o
r

(
j

=

0
;

j

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

j
+
+
)

{

p
[
i
,

j
]

=

p
n
[
i
,

j
]
;

}

}

s
t
e
p

=

s
t
e
p

+

1
;

}

f
o
r

(
i

=

0
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

1
)
;

i
+
+
)

{

f
o
r

(
j

=

0
;

j

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

-

1
)
;

j
+
+
)

{

u
c
[
i
,

j
]

=

0
.
5

*

(
u
[
i
,

j
]

+

u
[
i

+

1
,

j
]
)
;

v
c
[
i
,

j
]

=

0
.
5

*

(
v
[
i
,

j
]

+

v
[
i
,

j

+

1
]
)
;

p
c
[
i
,

j
]

=

0
.
2
5

*

(
p
[
i
,

j
]

+

p
[
i

+

1
,

j
]

+

p
[
i
,

j

+

1
]

+

p
[
i

+

1
,

j

+

1
]
)
;

}

}

f
o
r

(
i

=

0
;

i

<
=

8
;

i
+
+
)

{

f
o
r

(
j

=

0
;

j

<
=

8
;

j
+
+
)

{

t
r
a
i
n
_
d
a
t
a
.
A
d
d
(
b
n
[
i
,

j
]
)
;

}

}

f
o
r

(
i

=

0
;

i

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

-

1
)
;

i
+
=
V
a
r
i
a
b
l
e
s
.
m
u
l
t
)

{

f
o
r

(
j

=

0
;

j

<
=

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

-

1
)
;

j
+
=
V
a
r
i
a
b
l
e
s
.
m
u
l
t
)

Appendix

82 | P a g e

{

t
r
a
i
n
_
l
a
b
e
l
_
x
.
A
d
d
(
V
a
r
i
a
b
l
e
s
.
n
o
r
m
(
u
c
[
i
,

j
]
,

-
1
.
0
,

1
.
0
)
)
;

t
r
a
i
n
_
l
a
b
e
l
_
y
.
A
d
d
(
V
a
r
i
a
b
l
e
s
.
n
o
r
m
(
v
c
[
i
,

j
]
,

-
1
.
0
,

1
.
0
)
)
;

}

}

/
/

O
U
T
P
U
T

D
A
T
A

s
t
r
i
n
g

d
a
t
a
1

=

"
V
A
R
I
A
B
L
E
S
=
\
"
X
\
"
,
\
"
Y
\
"
,
\
"
U
\
"
,
\
"
V
\
"
,
\
"
P
\
"
\
n
"
;

d
a
t
a
1

+
=

"
Z
O
N
E

F
=
P
O
I
N
T
\
n
"
;

d
a
t
a
1

+
=

"
I
=
"

+

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

+

"
,

J
=
"

+

V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

+

"
\
n
"
;

f
o
r

(
i

=

0
;

i

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;

i
+
+
)

{

f
o
r

(
j

=

0
;

j

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

j
+
+
)

{

d
o
u
b
l
e

x
p
o
s
,

y
p
o
s
;

x
p
o
s

=

j

*

d
x
;

y
p
o
s

=

i

*

d
y
;

d
a
t
a
1

+
=

x
p
o
s

+

"
\
t
"

+

y
p
o
s

+

"
\
t
"

+

u
c
[
i
,

j
]

+

"
\
t
"

+

v
c
[
i
,

j
]

+

"
\
t
"

+

p
c
[
i
,

j
]

+

"
\
n
"
;

}

}

F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e

+

"
.
p
l
t
"
,

d
a
t
a
1
)
;

/
/
D
U
M
P
I
N
G

S
I
M

V
A
L
U
E
S

u
s
i
n
g

(
S
t
r
e
a
m
W
r
i
t
e
r

w
r
i
t
e
r
1

=

F
i
l
e
.
A
p
p
e
n
d
T
e
x
t
(
"
t
r
a
i
n
i
n
g
_
d
a
t
a
.
t
x
t
"
)
)

{

w
r
i
t
e
r
1
.
W
r
i
t
e
L
i
n
e
(
S
t
r
i
n
g
.
J
o
i
n
(
"
,
"
,

t
r
a
i
n
_
d
a
t
a
)
)
;

Appendix

83 | P a g e

}

u
s
i
n
g

(
S
t
r
e
a
m
W
r
i
t
e
r

w
r
i
t
e
r
2

=

F
i
l
e
.
A
p
p
e
n
d
T
e
x
t
(
"
t
r
a
i
n
i
n
g
_
l
a
b
e
l
_
x
_
g
r
i
d
_
s
i
z
e
.
t
x
t
"
)
)

{

w
r
i
t
e
r
2
.
W
r
i
t
e
L
i
n
e
(
S
t
r
i
n
g
.
J
o
i
n
(
"
,
"
,

t
r
a
i
n
_
l
a
b
e
l
_
x
)
)
;

}

u
s
i
n
g

(
S
t
r
e
a
m
W
r
i
t
e
r

w
r
i
t
e
r
2

=

F
i
l
e
.
A
p
p
e
n
d
T
e
x
t
(
"
t
r
a
i
n
i
n
g
_
l
a
b
e
l
_
y
_
g
r
i
d
_
s
i
z
e
.
t
x
t
"
)
)

{

w
r
i
t
e
r
2
.
W
r
i
t
e
L
i
n
e
(
S
t
r
i
n
g
.
J
o
i
n
(
"
,
"
,

t
r
a
i
n
_
l
a
b
e
l
_
y
)
)
;

}

t
r
a
i
n
_
d
a
t
a

=

n
e
w

L
i
s
t
<
d
o
u
b
l
e
>
(
)
;

t
r
a
i
n
_
l
a
b
e
l
_
x

=

n
e
w

L
i
s
t
<
d
o
u
b
l
e
>
(
)
;

t
r
a
i
n
_
l
a
b
e
l
_
y

=

n
e
w

L
i
s
t
<
d
o
u
b
l
e
>
(
)
;

}

}

}

Appendix

84 | P a g e

C
#

 C
o

d
e

fo
r

A
N

N
 T

ra
in

in
g

u
s
i
n
g

S
y
s
t
e
m
;

u
s
i
n
g

S
y
s
t
e
m
.
C
o
l
l
e
c
t
i
o
n
s
.
G
e
n
e
r
i
c
;

u
s
i
n
g

S
y
s
t
e
m
.
L
i
n
q
;

u
s
i
n
g

S
y
s
t
e
m
.
T
e
x
t
;

u
s
i
n
g

S
y
s
t
e
m
.
T
h
r
e
a
d
i
n
g
.
T
a
s
k
s
;

 n
a
m
e
s
p
a
c
e

C
S
C
F
D

{

c
l
a
s
s

N
e
u
r
a
l
N
e
t
w
o
r
k

{

p
u
b
l
i
c

d
o
u
b
l
e

T
r
a
i
n
N
o
w
(
i
n
t

n
)

{

d
o
u
b
l
e

c
o
s
t

=

0
;

L
i
s
t
<
d
o
u
b
l
e
>

p
i
x
e
l
s

=

V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
d
a
t
a
[
n
]
;

L
i
s
t
<
d
o
u
b
l
e
>

t
a
r
g
e
t
s

=

V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
l
a
b
e
l
[
n
]
;

L
i
s
t
<
d
o
u
b
l
e
>

h
d
l

=

n
e
w

L
i
s
t
<
d
o
u
b
l
e
>
(
)
;

L
i
s
t
<
d
o
u
b
l
e
>

o
p
l

=

n
e
w

L
i
s
t
<
d
o
u
b
l
e
>
(
)
;

L
i
s
t
<
d
o
u
b
l
e
>

t
g
l

=

n
e
w

L
i
s
t
<
d
o
u
b
l
e
>
(
)
;

f
o
r

(
i
n
t

s

=

0
;

s

<

V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
l
a
b
e
l
_
c
o
u
n
t
;

s
+
+
)

{

d
o
u
b
l
e

t
a
r
g
e
t

=

t
a
r
g
e
t
s
[
s
]
;

t
g
l
.
A
d
d
(
t
a
r
g
e
t
)
;

}

f
o
r

(
i
n
t

d

=

0
;

d

<

V
a
r
i
a
b
l
e
s
.
n
e
u
r
o
n
s
_
i
n
_
h
i
d
d
e
n
_
l
a
y
e
r
;

d
+
+
)

Appendix

85 | P a g e

{

d
o
u
b
l
e

h
d
n

=

0
;

f
o
r

(
i
n
t

k

=

0
;

k

<

V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
d
a
t
a
_
c
o
u
n
t
;

k
+
+
)

{

h
d
n

+
=

p
i
x
e
l
s
[
k
]

*

V
a
r
i
a
b
l
e
s
.
w
1
[
d
]
[
k
]
;

}

h
d
n

=

V
a
r
i
a
b
l
e
s
.
s
i
g
m
o
i
d
(
h
d
n
)
;

h
d
l
.
A
d
d
(
h
d
n
)
;

}

f
o
r

(
i
n
t

s

=

0
;

s

<

V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
l
a
b
e
l
_
c
o
u
n
t
;

s
+
+
)

{

d
o
u
b
l
e

o
p
n

=

0
;

f
o
r

(
i
n
t

d

=

0
;

d

<

V
a
r
i
a
b
l
e
s
.
n
e
u
r
o
n
s
_
i
n
_
h
i
d
d
e
n
_
l
a
y
e
r
;

d
+
+
)

{

o
p
n

+
=

h
d
l
[
d
]

*

V
a
r
i
a
b
l
e
s
.
w
2
[
s
]
[
d
]
;

}

o
p
n

=

V
a
r
i
a
b
l
e
s
.
s
i
g
m
o
i
d
(
o
p
n
)
;

o
p
l
.
A
d
d
(
o
p
n
)
;

c
o
s
t

+
=

0
.
5

*

M
a
t
h
.
P
o
w
(
(
o
p
n

-

t
g
l
[
s
]
)
,

2
)
;

}

f
o
r

(
i
n
t

d

=

0
;

d

<

V
a
r
i
a
b
l
e
s
.
n
e
u
r
o
n
s
_
i
n
_
h
i
d
d
e
n
_
l
a
y
e
r
;

d
+
+
)

{

Appendix

86 | P a g e

d
o
u
b
l
e

i
n
t
e
r
_
v
a
l
u
e

=

0
;

f
o
r

(
i
n
t

s

=

0
;

s

<

V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
l
a
b
e
l
_
c
o
u
n
t
;

s
+
+
)

{

i
n
t
e
r
_
v
a
l
u
e

+
=

(
o
p
l
[
s
]

-

t
g
l
[
s
]
)

*

o
p
l
[
s
]

*

(
1

-

o
p
l
[
s
]
)

*

V
a
r
i
a
b
l
e
s
.
w
2
[
s
]
[
d
]
;

}

f
o
r

(
i
n
t

k

=

0
;

k

<

V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
d
a
t
a
_
c
o
u
n
t
;

k
+
+
)

{

V
a
r
i
a
b
l
e
s
.
w
1
[
d
]
[
k
]

-
=

V
a
r
i
a
b
l
e
s
.
l
e
a
r
n
i
n
g
_
r
a
t
e

*

i
n
t
e
r
_
v
a
l
u
e

*

h
d
l
[
d
]

*

(
1

-

h
d
l
[
d
]
)

*

p
i
x
e
l
s
[
k
]
;

}

}

f
o
r

(
i
n
t

s

=

0
;

s

<

V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
l
a
b
e
l
_
c
o
u
n
t
;

s
+
+
)

{

f
o
r

(
i
n
t

d

=

0
;

d

<

V
a
r
i
a
b
l
e
s
.
n
e
u
r
o
n
s
_
i
n
_
h
i
d
d
e
n
_
l
a
y
e
r
;

d
+
+
)

{

V
a
r
i
a
b
l
e
s
.
w
2
[
s
]
[
d
]

-
=

V
a
r
i
a
b
l
e
s
.
l
e
a
r
n
i
n
g
_
r
a
t
e

*

(
o
p
l
[
s
]

-

t
g
l
[
s
]
)

*

o
p
l
[
s
]

*

(
1

-

o
p
l
[
s
]
)

*

h
d
l
[
d
]
;

}

}

c
o
s
t

/
=

V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
l
a
b
e
l
_
c
o
u
n
t
;

r
e
t
u
r
n

c
o
s
t
;

}

}

}

Appendix

87 | P a g e

C
#

 C
o

d
e

fo
r

A
N

N
 T

es
ti

n
g

u
s
i
n
g

S
y
s
t
e
m
;

u
s
i
n
g

S
y
s
t
e
m
.
C
o
l
l
e
c
t
i
o
n
s
;

u
s
i
n
g

S
y
s
t
e
m
.
C
o
l
l
e
c
t
i
o
n
s
.
G
e
n
e
r
i
c
;

u
s
i
n
g

S
y
s
t
e
m
.
L
i
n
q
;

u
s
i
n
g

S
y
s
t
e
m
.
T
e
x
t
;

u
s
i
n
g

S
y
s
t
e
m
.
T
h
r
e
a
d
i
n
g
.
T
a
s
k
s
;

u
s
i
n
g

S
y
s
t
e
m
.
I
O
;

 n
a
m
e
s
p
a
c
e

C
S
C
F
D

{

c
l
a
s
s

T
e
s
t

{

p
u
b
l
i
c

v
o
i
d

T
e
s
t
N
o
w
(
L
i
s
t
<
i
n
t
[
]
>

o
b
j
e
c
t
s
,

s
t
r
i
n
g

t
p
,

s
t
r
i
n
g

f
)

{

i
n
t
[
]

l
a
y
e
r
s

=

n
e
w

i
n
t
[
]

{

8
1
,

5
0
0
,

1
0
0
0
,

V
a
r
i
a
b
l
e
s
.
n
n
o
u
t
p
u
t

}
;

s
t
r
i
n
g
[
]

a
c
t
i
v
a
t
i
o
n

=

n
e
w

s
t
r
i
n
g
[
]

{

"
r
e
l
u
"
,

"
r
e
l
u
"
,

"
s
i
g
m
o
i
d
"

}
;

d
o
u
b
l
e
[
]

l
e
a
r
n
i
n
g
_
r
a
t
e
s
x

=

n
e
w

d
o
u
b
l
e
[
]

{

0
,

0
,

0

}
;

d
o
u
b
l
e
[
]

l
e
a
r
n
i
n
g
_
r
a
t
e
s
y

=

n
e
w

d
o
u
b
l
e
[
]

{

0
,

0
,

0

}
;

N
e
u
r
a
l
N
e
t
w
o
r
k

n
e
t
x
G
F

=

n
e
w

N
e
u
r
a
l
N
e
t
w
o
r
k
(
l
a
y
e
r
s
,

a
c
t
i
v
a
t
i
o
n
,

l
e
a
r
n
i
n
g
_
r
a
t
e
s
x
)
;

N
e
u
r
a
l
N
e
t
w
o
r
k

n
e
t
y
G
F

=

n
e
w

N
e
u
r
a
l
N
e
t
w
o
r
k
(
l
a
y
e
r
s
,

a
c
t
i
v
a
t
i
o
n
,

l
e
a
r
n
i
n
g
_
r
a
t
e
s
y
)
;

N
e
u
r
a
l
N
e
t
w
o
r
k

n
e
t
x
L
S

=

n
e
w

N
e
u
r
a
l
N
e
t
w
o
r
k
(
l
a
y
e
r
s
,

a
c
t
i
v
a
t
i
o
n
,

l
e
a
r
n
i
n
g
_
r
a
t
e
s
x
)
;

N
e
u
r
a
l
N
e
t
w
o
r
k

n
e
t
y
L
S

=

n
e
w

N
e
u
r
a
l
N
e
t
w
o
r
k
(
l
a
y
e
r
s
,

a
c
t
i
v
a
t
i
o
n
,

l
e
a
r
n
i
n
g
_
r
a
t
e
s
y
)
;

n
e
t
x
G
F
.
L
o
a
d
(
"
w
b
_
x
v
e
l
_
"

+

t
y
p
e

+

"
_
G
F
"
)
;

n
e
t
y
G
F
.
L
o
a
d
(
"
w
b
_
y
v
e
l
_
"

+

t
y
p
e

+

"
_
G
F
"
)
;

n
e
t
x
L
S
.
L
o
a
d
(
"
w
b
_
x
v
e
l
_
"

+

t
y
p
e

+

"
_
L
S
"
)
;

n
e
t
y
L
S
.
L
o
a
d
(
"
w
b
_
y
v
e
l
_
"

+

t
y
p
e

+

"
_
L
S
"
)
;

Appendix

88 | P a g e

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
L
o
a
d
i
n
g

d
o
n
e
.
"
)
;

d
t
1

=

D
a
t
e
T
i
m
e
.
N
o
w
;

d
o
u
b
l
e
[
]

v
l
x
G
F

=

n
e
t
x
G
F
.
F
e
e
d
F
o
r
w
a
r
d
(
t
r
a
i
n
_
d
a
t
a
.
T
o
A
r
r
a
y
(
)
)
;

d
o
u
b
l
e
[
]

v
l
y
G
F

=

n
e
t
y
G
F
.
F
e
e
d
F
o
r
w
a
r
d
(
t
r
a
i
n
_
d
a
t
a
.
T
o
A
r
r
a
y
(
)
)
;

d
t
2

=

D
a
t
e
T
i
m
e
.
N
o
w
;

s
p
a
n

=

d
t
2

-

d
t
1
;

m
s

=

(
i
n
t
)
s
p
a
n
.
T
o
t
a
l
M
i
l
l
i
s
e
c
o
n
d
s
;

d
o
u
b
l
e
[
,
]

u
t

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;

d
o
u
b
l
e
[
,
]

v
t

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;

i
n
t

c
o
u
n
t
e
r

=

0
;

f
o
r

(
i
n
t

p

=

0
;

p

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;

p
+
+
)

{

f
o
r

(
i
n
t

q

=

0
;

q

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

q
+
+
)

{

u
t
[
p
,

q
]

=

V
a
r
i
a
b
l
e
s
.
d
n
o
r
m
(
v
l
x
G
F
[
c
o
u
n
t
e
r
]
,

-
1
.
0
,

1
.
0
)
;

v
t
[
p
,

q
]

=

V
a
r
i
a
b
l
e
s
.
d
n
o
r
m
(
v
l
y
G
F
[
c
o
u
n
t
e
r
]
,

-
1
.
0
,

1
.
0
)
;

c
o
u
n
t
e
r
+
+
;

}

}

s
t
r
i
n
g

d
a
t
a
4

=

"
"
;

s
t
r
i
n
g

d
a
t
a
5

=

"
"
;

d
o
u
b
l
e

t
o
t
a
l
_
g
f
_
e
r
r
o
r
U

=

0
;

d
o
u
b
l
e

t
o
t
a
l
_
g
f
_
e
r
r
o
r
V

=

0
;

Appendix

89 | P a g e

d
o
u
b
l
e

t
o
t
a
l
_
l
s
_
e
r
r
o
r
U

=

0
;

d
o
u
b
l
e

t
o
t
a
l
_
l
s
_
e
r
r
o
r
V

=

0
;

/
/
A
N
N

G
F

O
U
T
P
U
T

d
a
t
a

=

"
V
A
R
I
A
B
L
E
S
=
\
"
X
\
"
,
\
"
Y
\
"
,
\
"
U
\
"
,
\
"
V
\
"
\
n
"
;

d
a
t
a

+
=

"
Z
O
N
E

F
=
P
O
I
N
T
\
n
"
;

d
a
t
a

+
=

"
I
=
"

+

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

+

"
,

J
=
"

+

V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

+

"
\
n
"
;

d
a
t
a
2

=

"
V
A
R
I
A
B
L
E
S
=
\
"
X
\
"
,
\
"
Y
\
"
,
\
"
U

(
D
i
f
f
)
\
"
,
\
"
V

(
D
i
f
f
)
\
"
\
n
"
;

d
a
t
a
2

+
=

"
Z
O
N
E

F
=
P
O
I
N
T
\
n
"
;

d
a
t
a
2

+
=

"
I
=
"

+

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

+

"
,

J
=
"

+

V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

+

"
\
n
"
;

d
a
t
a
4

=

"
V
A
R
I
A
B
L
E
S
=
\
"
G
r
i
d

P
o
i
n
t
s
\
"
,
\
"
U

(
D
i
f
f
)
\
"
\
n
"
;

d
a
t
a
4

+
=

"
Z
O
N
E

F
=
P
O
I
N
T
\
n
"
;

d
a
t
a
4

+
=

"
I
=
"

+

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

*

V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

+

"
\
n
"
;

d
a
t
a
5

=

"
V
A
R
I
A
B
L
E
S
=
\
"
G
r
i
d

P
o
i
n
t
s
\
"
,
\
"
V

(
D
i
f
f
)
\
"
\
n
"
;

d
a
t
a
5

+
=

"
Z
O
N
E

F
=
P
O
I
N
T
\
n
"
;

d
a
t
a
5

+
=

"
I
=
"

+

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

*

V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

+

"
\
n
"
;

i
n
t

e
c
o
u
n
t
e
r

=

1
;

f
o
r

(
i
n
t

p

=

0
;

p

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;

p
+
+
)

{

f
o
r

(
i
n
t

q

=

0
;

q

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

q
+
+
)

{

d
o
u
b
l
e

x
p
o
s
,

y
p
o
s
;

x
p
o
s

=

q

*

d
x
;

y
p
o
s

=

p

*

d
y
;

d
a
t
a
4

+
=

e
c
o
u
n
t
e
r

+

"
\
t
"

+

r
e
l
_
c
h
a
n
g
e
(
u
t
[
p
,

q
]
,

u
c
[
p
,

q
]
)

+

"
\
n
"
;

d
a
t
a
5

+
=

e
c
o
u
n
t
e
r

+

"
\
t
"

+

r
e
l
_
c
h
a
n
g
e
(
v
t
[
p
,

q
]
,

v
c
[
p
,

q
]
)

+

"
\
n
"
;

e
c
o
u
n
t
e
r
+
+
;

t
o
t
a
l
_
g
f
_
e
r
r
o
r
U

+
=

r
e
l
_
c
h
a
n
g
e
(
u
t
[
p
,

q
]
,

u
c
[
p
,

q
]
)
;

t
o
t
a
l
_
g
f
_
e
r
r
o
r
V

+
=

r
e
l
_
c
h
a
n
g
e
(
v
t
[
p
,

q
]
,

v
c
[
p
,

q
]
)
;

Appendix

90 | P a g e

}

}

t
o
t
a
l
_
g
f
_
e
r
r
o
r
U

=

t
o
t
a
l
_
g
f
_
e
r
r
o
r
U

/

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

*

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

t
o
t
a
l
_
g
f
_
e
r
r
o
r
V

=

t
o
t
a
l
_
g
f
_
e
r
r
o
r
V

/

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

*

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

f
o
r

(
i
n
t

p

=

0
;

p

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;

p
+
+
)

{

f
o
r

(
i
n
t

q

=

0
;

q

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

q
+
+
)

{

d
o
u
b
l
e

x
p
o
s
,

y
p
o
s
;

x
p
o
s

=

q

*

d
x
;

y
p
o
s

=

p

*

d
y
;

d
a
t
a

+
=

x
p
o
s

+

"
\
t
"

+

y
p
o
s

+

"
\
t
"

+

u
t
[
p
,

q
]

+

"
\
t
"

+

v
t
[
p
,

q
]

+

"
\
n
"
;

}

}

f
o
r
e
a
c
h

(
i
n
t
[
]

o
b

i
n

o
b
j
e
c
t
s
)

{

o
b
j
e
c
t
_
x

=

o
b
[
0
]

*

V
a
r
i
a
b
l
e
s
.
d
i
v
;

o
b
j
e
c
t
_
y

=

o
b
[
1
]

*

V
a
r
i
a
b
l
e
s
.
d
i
v
;

f
o
r

(
i

=

o
b
j
e
c
t
_
y

+

1
;

i

<
=

(
o
b
j
e
c
t
_
w
i
d
t
h

+

o
b
j
e
c
t
_
y
)

-

1
;

i
+
+
)

{

f
o
r

(
j

=

o
b
j
e
c
t
_
x

+

1
;

j

<
=

(
o
b
j
e
c
t
_
l
e
n
g
t
h

+

o
b
j
e
c
t
_
x
)

-

1
;

j
+
+
)

{

u
t
[
i
,

j
]

=

1
.
0
;

v
t
[
i
,

j
]

=

1
.
0
;

}

}

}

f
o
r

(
i
n
t

p

=

0
;

p

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;

p
+
+
)

Appendix

91 | P a g e

{

f
o
r

(
i
n
t

q

=

0
;

q

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

q
+
+
)

{

d
o
u
b
l
e

x
p
o
s
,

y
p
o
s
;

x
p
o
s

=

q

*

d
x
;

y
p
o
s

=

p

*

d
y
;

d
a
t
a
2

+
=

x
p
o
s

+

"
\
t
"

+

y
p
o
s

+

"
\
t
"

+

r
e
l
_
c
h
a
n
g
e
(
u
t
[
p
,

q
]
,

u
c
[
p
,

q
]
)

+

"
\
t
"

+

r
e
l
_
c
h
a
n
g
e
(
v
t
[
p
,

q
]
,

v
c
[
p
,

q
]
)

+

"
\
n
"
;

}

}

d
a
t
a

+
=

"
T
E
X
T

X
=
5

Y
=
9
3

T
=
\
"
"

+

t
y
p
e

+

"

A
N
N

G
F

R
e
s
u
l
t
s

(
"

+

m
s

+

"

m
s
)
\
"
\
n
"
;

d
a
t
a
2

+
=

"
T
E
X
T

X
=
5

Y
=
9
3

T
=
\
"
"

+

t
y
p
e

+

"

A
N
N

G
F

D
i
f
f
e
r
e
n
c
e
s
\
"
\
n
"
;

d
a
t
a
4

+
=

"
T
E
X
T

X
=
5

Y
=
9
3

T
=
\
"
"

+

t
y
p
e

+

"

A
N
N

G
F

D
i
f
f
e
r
e
n
c
e
s
\
"
\
n
"
;

d
a
t
a
5

+
=

"
T
E
X
T

X
=
5

Y
=
9
3

T
=
\
"
"

+

t
y
p
e

+

"

A
N
N

G
F

D
i
f
f
e
r
e
n
c
e
s
\
"
\
n
"
;

f
o
r
e
a
c
h

(
i
n
t
[
]

o
b

i
n

o
b
j
e
c
t
s
)

{

d
a
t
a

+
=

"
G
E
O
M
E
T
R
Y

X
=
"

+

(
1
3
.
2

+

(
8
.
5
2

*

o
b
[
0
]
)
)

+

"
,

Y
=
"

+

(
1
1

+

(
9
.
6
5

*

o
b
[
1
]
)
)

+

"
,

T
=
S
Q
U
A
R
E
,

F
C
=
B
L
A
C
K
\
n
8
.
5
\
n
"
;

d
a
t
a
2

+
=

"
G
E
O
M
E
T
R
Y

X
=
"

+

(
1
3
.
2

+

(
8
.
5
2

*

o
b
[
0
]
)
)

+

"
,

Y
=
"

+

(
1
1

+

(
9
.
6
5

*

o
b
[
1
]
)
)

+

"
,

T
=
S
Q
U
A
R
E
,

F
C
=
B
L
A
C
K
\
n
8
.
5
\
n
"
;

}

F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e

+

"
_
A
N
N
_
G
F
.
p
l
t
"
,

d
a
t
a
)
;

F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e

+

"
_
A
N
N
_
G
F
_
E
r
r
o
r
.
p
l
t
"
,

d
a
t
a
2
)
;

F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e

+

"
_
A
N
N
_
G
F
_
E
r
r
o
r
_
L
i
n
e
U
.
p
l
t
"
,

d
a
t
a
4
)
;

F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e

+

"
_
A
N
N
_
G
F
_
E
r
r
o
r
_
L
i
n
e
V
.
p
l
t
"
,

d
a
t
a
5
)
;

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
G
F

A
N
N

D
o
n
e
.
"
)
;

/
/
A
N
N

L
S

O
U
T
P
U
T

d
t
1

=

D
a
t
e
T
i
m
e
.
N
o
w
;

Appendix

92 | P a g e

d
o
u
b
l
e
[
]

v
l
x
L
S

=

n
e
t
x
L
S
.
F
e
e
d
F
o
r
w
a
r
d
(
t
r
a
i
n
_
d
a
t
a
.
T
o
A
r
r
a
y
(
)
)
;

d
o
u
b
l
e
[
]

v
l
y
L
S

=

n
e
t
y
L
S
.
F
e
e
d
F
o
r
w
a
r
d
(
t
r
a
i
n
_
d
a
t
a
.
T
o
A
r
r
a
y
(
)
)
;

d
t
2

=

D
a
t
e
T
i
m
e
.
N
o
w
;

s
p
a
n

=

d
t
2

-

d
t
1
;

m
s

=

(
i
n
t
)
s
p
a
n
.
T
o
t
a
l
M
i
l
l
i
s
e
c
o
n
d
s
;

u
t

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;

v
t

=

n
e
w

d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;

c
o
u
n
t
e
r

=

0
;

f
o
r

(
i
n
t

p

=

0
;

p

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;

p
+
+
)

{

f
o
r

(
i
n
t

q

=

0
;

q

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

q
+
+
)

{

u
t
[
p
,

q
]

=

V
a
r
i
a
b
l
e
s
.
d
n
o
r
m
(
v
l
x
L
S
[
c
o
u
n
t
e
r
]
,

-
1
.
0
,

1
.
0
)
;

v
t
[
p
,

q
]

=

V
a
r
i
a
b
l
e
s
.
d
n
o
r
m
(
v
l
y
L
S
[
c
o
u
n
t
e
r
]
,

-
1
.
0
,

1
.
0
)
;

c
o
u
n
t
e
r
+
+
;

}

}

d
a
t
a

=

"
V
A
R
I
A
B
L
E
S
=
\
"
X
\
"
,
\
"
Y
\
"
,
\
"
U
\
"
,
\
"
V
\
"
\
n
"
;

d
a
t
a

+
=

"
Z
O
N
E

F
=
P
O
I
N
T
\
n
"
;

d
a
t
a

+
=

"
I
=
"

+

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

+

"
,

J
=
"

+

V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

+

"
\
n
"
;

d
a
t
a
2

=

"
V
A
R
I
A
B
L
E
S
=
\
"
X
\
"
,
\
"
Y
\
"
,
\
"
U

(
D
i
f
f
)
\
"
,
\
"
V

(
D
i
f
f
)
\
"
\
n
"
;

d
a
t
a
2

+
=

"
Z
O
N
E

F
=
P
O
I
N
T
\
n
"
;

d
a
t
a
2

+
=

"
I
=
"

+

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

+

"
,

J
=
"

+

V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

+

"
\
n
"
;

d
a
t
a
4

=

"
V
A
R
I
A
B
L
E
S
=
\
"
G
r
i
d

P
o
i
n
t
s
\
"
,
\
"
U

(
D
i
f
f
)
\
"
\
n
"
;

d
a
t
a
4

+
=

"
Z
O
N
E

F
=
P
O
I
N
T
\
n
"
;

Appendix

93 | P a g e

d
a
t
a
4

+
=

"
I
=
"

+

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

*

V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

+

"
\
n
"
;

d
a
t
a
5

=

"
V
A
R
I
A
B
L
E
S
=
\
"
G
r
i
d

P
o
i
n
t
s
\
"
,
\
"
V

(
D
i
f
f
)
\
"
\
n
"
;

d
a
t
a
5

+
=

"
Z
O
N
E

F
=
P
O
I
N
T
\
n
"
;

d
a
t
a
5

+
=

"
I
=
"

+

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j

*

V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

+

"
\
n
"
;

e
c
o
u
n
t
e
r

=

1
;

f
o
r

(
i
n
t

p

=

0
;

p

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;

p
+
+
)

{

f
o
r

(
i
n
t

q

=

0
;

q

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

q
+
+
)

{

d
o
u
b
l
e

x
p
o
s
,

y
p
o
s
;

x
p
o
s

=

q

*

d
x
;

y
p
o
s

=

p

*

d
y
;

d
a
t
a
4

+
=

e
c
o
u
n
t
e
r

+

"
\
t
"

+

r
e
l
_
c
h
a
n
g
e
(
u
t
[
p
,

q
]
,

u
c
[
p
,

q
]
)

+

"
\
n
"
;

d
a
t
a
5

+
=

e
c
o
u
n
t
e
r

+

"
\
t
"

+

r
e
l
_
c
h
a
n
g
e
(
v
t
[
p
,

q
]
,

v
c
[
p
,

q
]
)

+

"
\
n
"
;

e
c
o
u
n
t
e
r
+
+
;

t
o
t
a
l
_
l
s
_
e
r
r
o
r
U

+
=

r
e
l
_
c
h
a
n
g
e
(
u
t
[
p
,

q
]
,

u
c
[
p
,

q
]
)
;

t
o
t
a
l
_
l
s
_
e
r
r
o
r
V

+
=

r
e
l
_
c
h
a
n
g
e
(
v
t
[
p
,

q
]
,

v
c
[
p
,

q
]
)
;

}

}

t
o
t
a
l
_
l
s
_
e
r
r
o
r
U

=

t
o
t
a
l
_
l
s
_
e
r
r
o
r
U

/

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

*

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

t
o
t
a
l
_
l
s
_
e
r
r
o
r
V

=

t
o
t
a
l
_
l
s
_
e
r
r
o
r
V

/

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i

*

V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

f
o
r

(
i
n
t

p

=

0
;

p

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;

p
+
+
)

{

f
o
r

(
i
n
t

q

=

0
;

q

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

q
+
+
)

{

d
o
u
b
l
e

x
p
o
s
,

y
p
o
s
;

x
p
o
s

=

q

*

d
x
;

y
p
o
s

=

p

*

d
y
;

Appendix

94 | P a g e

d
a
t
a

+
=

x
p
o
s

+

"
\
t
"

+

y
p
o
s

+

"
\
t
"

+

u
t
[
p
,

q
]

+

"
\
t
"

+

v
t
[
p
,

q
]

+

"
\
n
"
;

}

}

f
o
r
e
a
c
h

(
i
n
t
[
]

o
b

i
n

o
b
j
e
c
t
s
)

{

o
b
j
e
c
t
_
x

=

o
b
[
0
]

*

V
a
r
i
a
b
l
e
s
.
d
i
v
;

o
b
j
e
c
t
_
y

=

o
b
[
1
]

*

V
a
r
i
a
b
l
e
s
.
d
i
v
;

f
o
r

(
i

=

o
b
j
e
c
t
_
y

+

1
;

i

<
=

(
o
b
j
e
c
t
_
w
i
d
t
h

+

o
b
j
e
c
t
_
y
)

-

1
;

i
+
+
)

{

f
o
r

(
j

=

o
b
j
e
c
t
_
x

+

1
;

j

<
=

(
o
b
j
e
c
t
_
l
e
n
g
t
h

+

o
b
j
e
c
t
_
x
)

-

1
;

j
+
+
)

{

u
t
[
i
,

j
]

=

1
.
0
;

v
t
[
i
,

j
]

=

1
.
0
;

}

}

}

f
o
r

(
i
n
t

p

=

0
;

p

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;

p
+
+
)

{

f
o
r

(
i
n
t

q

=

0
;

q

<

(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;

q
+
+
)

{

d
o
u
b
l
e

x
p
o
s
,

y
p
o
s
;

x
p
o
s

=

q

*

d
x
;

y
p
o
s

=

p

*

d
y
;

d
a
t
a
2

+
=

x
p
o
s

+

"
\
t
"

+

y
p
o
s

+

"
\
t
"

+

r
e
l
_
c
h
a
n
g
e
(
u
t
[
p
,

q
]
,

u
c
[
p
,

q
]
)

+

"
\
t
"

+

r
e
l
_
c
h
a
n
g
e
(
v
t
[
p
,

q
]
,

v
c
[
p
,

q
]
)

+

"
\
n
"
;

}

}

d
a
t
a

+
=

"
T
E
X
T

X
=
5

Y
=
9
3

T
=
\
"
"

+

t
y
p
e

+

"

A
N
N

L
S

R
e
s
u
l
t
s

(
"

+

m
s

+

"

m
s
)
\
"
"
;

d
a
t
a
2

+
=

"
T
E
X
T

X
=
5

Y
=
9
3

T
=
\
"
"

+

t
y
p
e

+

"

A
N
N

L
S

D
i
f
f
e
r
e
n
c
e
s
\
"
"
;

d
a
t
a
4

+
=

"
T
E
X
T

X
=
5

Y
=
9
3

T
=
\
"
"

+

t
y
p
e

+

"

A
N
N

L
S

D
i
f
f
e
r
e
n
c
e
s
\
"
\
n
"
;

d
a
t
a
5

+
=

"
T
E
X
T

X
=
5

Y
=
9
3

T
=
\
"
"

+

t
y
p
e

+

"

A
N
N

L
S

D
i
f
f
e
r
e
n
c
e
s
\
"
\
n
"
;

Appendix

95 | P a g e

f
o
r
e
a
c
h

(
i
n
t
[
]

o
b

i
n

o
b
j
e
c
t
s
)

{

d
a
t
a

+
=

"
G
E
O
M
E
T
R
Y

X
=
"

+

(
1
3
.
2

+

(
8
.
5
2

*

o
b
[
0
]
)
)

+

"
,

Y
=
"

+

(
1
1

+

(
9
.
6
5

*

o
b
[
1
]
)
)

+

"
,

T
=
S
Q
U
A
R
E
,

F
C
=
B
L
A
C
K
\
n
8
.
5
\
n
"
;

d
a
t
a
2

+
=

"
G
E
O
M
E
T
R
Y

X
=
"

+

(
1
3
.
2

+

(
8
.
5
2

*

o
b
[
0
]
)
)

+

"
,

Y
=
"

+

(
1
1

+

(
9
.
6
5

*

o
b
[
1
]
)
)

+

"
,

T
=
S
Q
U
A
R
E
,

F
C
=
B
L
A
C
K
\
n
8
.
5
\
n
"
;

}

F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e

+

"
_
A
N
N
_
L
S
.
p
l
t
"
,

d
a
t
a
)
;

F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e

+

"
_
A
N
N
_
L
S
_
E
r
r
o
r
.
p
l
t
"
,

d
a
t
a
2
)
;

F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e

+

"
_
A
N
N
_
L
S
_
E
r
r
o
r
_
L
i
n
e
U
.
p
l
t
"
,

d
a
t
a
4
)
;

F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e

+

"
_
A
N
N
_
L
S
_
E
r
r
o
r
_
L
i
n
e
V
.
p
l
t
"
,

d
a
t
a
5
)
;

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
L
S

A
N
N

D
o
n
e
.
"
)
;

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
G
F

e
r
r
o
r

U

"

+

t
o
t
a
l
_
g
f
_
e
r
r
o
r
U
)
;

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
G
F

e
r
r
o
r

V

"

+

t
o
t
a
l
_
g
f
_
e
r
r
o
r
V
)
;

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
L
S

e
r
r
o
r

U

"

+

t
o
t
a
l
_
l
s
_
e
r
r
o
r
U
)
;

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
L
S

e
r
r
o
r

V

"

+

t
o
t
a
l
_
l
s
_
e
r
r
o
r
U
)
;

t
r
a
i
n
_
d
a
t
a

=

n
e
w

L
i
s
t
<
d
o
u
b
l
e
>
(
)
;

t
r
a
i
n
_
l
a
b
e
l
_
x

=

n
e
w

L
i
s
t
<
d
o
u
b
l
e
>
(
)
;

t
r
a
i
n
_
l
a
b
e
l
_
y

=

n
e
w

L
i
s
t
<
d
o
u
b
l
e
>
(
)
;

}

}

}

	mythesis-hd
	mythesis-st
	mythesis-body
	APPENDIX

