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Summary 
 

 

i 
 

SUMMARY 

 

Using computational fluid dynamics (CFD) to solve fluid flow problems can use a lot of 

computer processing power and simulation time. Artificial neural networks (ANN) can be 

regarded as universal learners that are capable of learning nonlinear patterns or 

relationships among many variables. A very well-known benchmark problem for viscous 

incompressible fluid flow in the lid-driven cavity problem. People have developed different 

numerical procedures to solve it. It is widely regarded as the first problem people usually 

try to solve when they come up with a new approach. This research aims to apply fully 

connected neural networks to learn and predict fluid flow inside a lid-driven cavity. A 

double lid-driven cavity with top and bottom moving walls having some internal square 

objects was selected as a training data to train, test and compare several fully connected 

neural networks having different parameters to predict fluid flow inside it. The results show 

that by training a neural network to recognize fluid velocity patterns around simple square 

objects inside the cavity, it is possible to predict fluid velocities around objects having 

relatively complex geometries with significant accuracy in a fraction of the time required 

by a CFD solver. The results also show the comparison between effects of using different 

mesh sizes in CFD and different learning rates in the neural network model. 

 

Keywords: CFD, ANN, Double lid-driven cavity, Fluid flow prediction



Acknowledgements 
 

 

ii 
 

ACKNOWLEDGEMENTS 

 

 First and foremost, I would like to thank the Almighty for His continuous blessings 

that enabled me to come this far. What started as a prayer has now come to a successful 

ending. 

 

 I would like convey my sincerest gratefulness to my supervisor Professor Dr. Dipak 

Kanti Das and my co-supervisor Professor Dr. Md. Mahbubur Rahman for giving me the 

opportunity and guiding me in every step in performing a collaborative research involving 

computational fluid dynamics and artificial neural networks. Without their continuous 

support, this would have never been possible. It has truly been my honor and privilege to 

work with them. 

 

 I would like to thank the Head of the department of Mechanical Engineering, Brig 

Gen Md Humayun Kabir Bhuiyan for his powerful encouragements throughout the whole 

course. I would also like to thank Professor Dr. G. M. Jahid Hasan for supporting me 

academically and personally. Sincere thanks to Professor Dr A.B.M. Toufique Hasan and 

Lt Col Tahmina Sultana, PhD for helping me to evaluate this research. 

 

 Finally, I would like to thank my parents and my siblings for supporting me and 

taking care of me in every step of my life. I am truly indebted to them for their 

understanding, encouragement and patience that they have shown throughout all my life.



Table of Contents 
 

 

iii 
 

TABLE OF CONTENTS 

 

Page 

SUMMARY i 

ACKNOWLEDGEMENTS ii 

TABLE OF CONTENTS iii 

LIST OF SYMBOLS vi 

LIST OF FIGURES vii 

LIST OF TABLES x 

  

CHAPTER ONE:  INTRODUCTION 1 

 1.1. Background of the Study 1 

 1.2. Objectives 2 

  

CHAPTER TWO:  REVIEW OF LITERATURE 3 

 3.1. Previous Works 3 

 2.2. This Work 5 

  

CHAPTER THREE:  ARTIFICIAL NEURAL NETWORKS 6 

 3.1. Foundation 6 

 3.2. Basic Structure 7 

 3.3. Types of Neural Networks 8 

  3.3.1. Feedforward fully connected neural network 8 

  3.3.2. Convolutional neural network 9 

  3.3.3. Recurrent neural network 10 



Table of Contents 
 

 

iv 
 

 3.4. Activation Functions 10 

  3.4.1. Sigmoid function 10 

  3.4.2. Hyperbolic tan function 12 

  3.4.2. Rectified linear unit (ReLU) function 12 

 3.5. Neural Network Learning 13 

 3.5. Learning Rate 14 

 3.6. Neural Network Testing 14 

  

CHAPTER FOUR:  LID-DRIVEN CAVITY 15 

 4.1 Foundation 15 

 4.2. Single Lid-driven Cavity 16 

  4.2.1. Basics 16 

  4.2.2. Staggered grids 17 

  4.2.3. Solution using a C# code 22 

 4.3. Double Lid-driven Cavity 24 

 4.4. Double Lid-driven Cavity with an Internal Square Obstacle 26 

  

CHAPTER FIVE:  CFD DATASET GENERATION 29 

 5.1. Grid Setup 29 

 5.2. Dataset Generation using 24 × 24 Grid System 30 

 5.3. Dataset Generation using 32 × 32 Grid System 31 

 5.4. Dataset Generation using 40 × 40 Grid System 31 

  

CHAPTER SIX:  ANN MODEL AND TRAINING 33 

 6.1. Network Structure 33 

 6.2. Neural Network Training 34 



Table of Contents 
 

 

v 
 

CHAPTER SEVEN:  RESULTS: CFD VS ANN 38 

 7.1. Preface 38 

 7.2. First Test Setup 39 

  7.2.1. Environment 39 

  7.2.2. X-directional (U) velocity prediction 40 

  7.2.3. Y-directional (V) velocity prediction 46 

 7.3. Second Test Setup 52 

  7.3.1. Environment 52 

  7.3.2. X-directional (U) velocity prediction 53 

  7.3.3. Y-directional (V) velocity prediction 59 

 7.4. Time Comparison 65 

 7.5. Two More Results 67 

  

CHAPTER EIGHT:  CONCLUSION 69 

 8.1. Concluding Remarks 69 

 8.2. Future Work 70 

  8.2.1. Changing the neural network model 70 

  8.2.2. Changing the training data and environment 70 

  

REFERENCES 71 

APPENDIX 73 



List of Symbols 
 

 

vi 
 

LIST OF SYBMOLS 

 

w Neural network weights 

b Neural network biases 

U, u Velocity in x-direction 

V, v Velocity in y-direction 

P, p Pressure 

ρ Density 

μ Dynamic Viscosity 

t Time 

Re Reynolds number 

∇ Divergence operator 

δ Artificial compressibility 

L Characteristic Linear Dimension 

  

  



List of Figures 
 

 

vii 
 

LIST OF FIGURES 

 

 Page 

Figure 3.1 Biological neuron 6 

Figure 3.2 Neuron in neural network 8 

Figure 3.3 Sigmoid function 11 

Figure 3.4 Hyperbolic tan function 12 

Figure 3.5 ReLU function 13 

Figure 4.1 Single lid-driven cavity 16 

Figure 4.2 Staggered grid system with U and V velocities 18 

Figure 4.3 Staggered grid system with pressure points (P) and combination of 

U, V and P 

 

18 

Figure 4.4 Continuity equation terms expansion  19 

Figure 4.5 Navier-Stokes x-momentum equation terms expansion 20 

Figure 4.6 Navier-Stokes y-momentum equation terms expansion 21 

Figure 4.7 Single lid-driven cavity flow with C# CFD code and ANSYS 23 

Figure 4.8 Double lid-driven cavity 24 

Figure 4.9 Double lid-driven cavity flow with C# CFD code and ANSYS 25 

Figure 4.10 Double lid-driven cavity with an obstacle 27 

Figure 4.11 Double lid-driven cavity flow having a square obstacle with C# 

CFD code and ANSYS 

 

28 

Figure 5.1 Environment segmentation for 24 × 24 grid system 30 

Figure 5.2 Environment segmentation for 32 × 32 grid system 31 

Figure 5.3 Environment segmentation for 40 × 40 grid system 32 

Figure 6.1 Neural network structure 33 

Figure 6.2 Neural network for 24 × 24 grid system 34 



List of Figures 
 

 

viii 
 

Figure 6.3 Neural network for 32 × 32 grid system 35 

Figure 6.4 Neural network for 40 × 40 grid system 35 

Figure 6.5 MSE comparison between GF and LS learning rates in all three grid 

systems 

 

37 

Figure 7.1 Double lid-driven cavity with two obstacles 39 

Figure 7.2 Test setup 1 - 24 × 24 grid system ANN GF comparison (U velocity) 40 

Figure 7.3 Test setup 1 - 24 × 24 grid system ANN LS comparison (U velocity) 41 

Figure 7.4 Test setup 1 - 32 × 32 grid system ANN GF comparison (U velocity) 42 

Figure 7.5 Test setup 1 - 32 × 32 grid system ANN LS comparison (U velocity) 43 

Figure 7.6 Test setup 1 - 40 × 40 grid system ANN GF comparison (U velocity) 44 

Figure 7.7 Test setup 1 - 40 × 40 grid system ANN LS comparison (U velocity) 45 

Figure 7.8 Test setup 1 - 24 × 24 grid system ANN GF comparison (V velocity) 46 

Figure 7.9 Test setup 1 - 24 × 24 grid system ANN LS comparison (V velocity) 47 

Figure 7.10 Test setup 1 - 32 × 32 grid system ANN GF comparison (V velocity) 48 

Figure 7.11 Test setup 1 - 32 × 32 grid system ANN LS comparison (V velocity) 49 

Figure 7.12 Test setup 1 - 40 × 40 grid system ANN GF comparison (V velocity) 50 

Figure 7.13 Test setup 1 - 40 × 40 grid system ANN LS comparison (V velocity) 51 

Figure 7.14 Double lid-driven cavity with three obstacles making a relatively 

complex shape 

 

52 

Figure 7.15 Test setup 2 - 24 × 24 grid system ANN GF comparison (U velocity) 53 

Figure 7.16 Test setup 2 - 24 × 24 grid system ANN LS comparison (U velocity) 54 

Figure 7.17 Test setup 2 - 32 × 32 grid system ANN GF comparison (U velocity) 55 

Figure 7.18 Test setup 2 - 32 × 32 grid system ANN LS comparison (U velocity) 56 

Figure 7.19 Test setup 2 - 40 × 40 grid system ANN GF comparison (U velocity) 57 

Figure 7.20 Test setup 2 - 40 × 40 grid system ANN LS comparison (U velocity) 58 

Figure 7.21 Test setup 2 - 24 × 24 grid system ANN GF comparison (V velocity) 59 

Figure 7.22 Test setup 2 - 24 × 24 grid system ANN LS comparison (V velocity) 60 



List of Figures 
 

 

ix 
 

Figure 7.23 Test setup 2 - 32 × 32 grid system ANN GF comparison (V velocity) 61 

Figure 7.24 Test setup 2 - 32 × 32 grid system ANN LS comparison (V velocity) 62 

Figure 7.25 Test setup 2 - 40 × 40 grid system ANN GF comparison (V velocity) 63 

Figure 7.26 Test setup 2 - 40 × 40 grid system ANN LS comparison (V velocity) 64 

Figure 7.27 Test setup 3 - 40x40 grid system and LS learning method 67 

Figure 7.28 Test setup 4 - 40x40 grid system and LS learning method 68 



List of Tables 
 

 

x 
 

LIST OF TABLES 

 

 Page 

Table 6.1 Terminologies used in figure 6.5 36 

Table 7.1 Terminologies used in results 38 

Table 7.2 Time comparison between CFD solver and ANN solver 65 

 



Chapter One: Introduction 
 

 

1 | P a g e  

 

CHAPTER ONE 

INTRODUCTION 

 

1.1. Background of the Study 

Computational fluid dynamics (CFD) is a subset of fluid mechanics that uses 

numerical simulation and data structures to study and solve problems concerning fluid 

flows. Computers are used to perform the calculations used to model the free-stream flow 

of the fluid and the interaction of the fluid (liquids and gases) with surfaces defined by 

boundary conditions. Better solutions can be found with high-speed supercomputers, which 

are often used to solve the biggest and most difficult problems. Current research is yielding 

software that increases the accuracy and speed of complex simulation scenarios like 

transonic or turbulent flows. Usually, experimental apparatus such as wind tunnels are used 

to conduct initial validation of such applications. Furthermore, a recently completed 

analytical or scientific study of a particular problem may be compared. Full-scale 

simulation, such as flight simulations, is often used for final confirmation. Aerodynamics 

and aerospace analysis, weather modeling, natural science and environmental engineering, 

manufacturing device architecture and analysis, biological engineering, fluid flows and 

heat transfer, and engine and combustion analysis are only a few of the scientific and 

engineering issues that CFD is used to solve in a variety of fields and industries. 

 

Software programs like ANSYS, SimScale, OpenFOAM can accurately create such 

simulations and using these simulations, engineers can modify or redesign according to 

their needs. These software programs use iterative algorithms to calculate fluid velocity, 

pressure and temperature from initial and boundary values. The iterative approaches are 

time-consuming and often take days to complete. A new possible approach can be to use 
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Artificial Intelligence (AI) to simulate the fluid flow. It is modeled after our brain in a way 

which enables it to learn from examples just like how we learn from the very day we are 

born. In case of fluid mechanics or fluid flow predictions, an AI can be trained using 

thousands of previously generated data with Artificial Neural Network (ANN) 

architectures, which can be used to predict the solution to an unknown set of problems in a 

fraction of time. This approach differs from the traditional CFD algorithms, which do not 

have the capabilities to “remember” how fluid behaves around several shapes of objects. 

This can, for example, be a lot helpful for airplane manufacturers who have to spend a great 

deal of time trying to make a more efficient wing design. Instead of using CFD software to 

simulate fluid flow around the wings, they can use AI to predict fluid flow around them in 

a reduced amount of time. 

 

1.2. Objectives 

 This research has the following three objectives: 

i. To use the Navier-Stokes equations to calculate fluid velocities inside a double lid-

driven cavity with different grid sizes having a square object inside it in different 

positions. 

ii. To train several fully connected neural networks incorporating these velocities 

generated using different grid sizes with globally fixed learning rates for all the 

layers and layer-specific different learning rates. 

iii. To test all the neural networks with objects placed in different locations and 

compare their accuracies with the CFD results in terms of grid sizes, learning rates 

and computational times.
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CHAPTER TWO 

REVIEW OF LITERATURE 

 

2.1. Previous Works 

Kutz [1] demonstrated the benefits of combining deep learning and fluid dynamics. 

Deep neural networks (DNNs), he argued in his article, would almost certainly have a 

transformative effect on modeling high-dimensional complex systems like turbulent flows. 

This latest technology would force researchers to use this increasingly evolving data 

analysis method for enhancing predictive capability by integrating multiple diverse data 

sets. DNNs obviously reflect a paradigm shift for the group, who are attempting to come 

up with fresh and creative ways to replace current structures in order to better explain how 

the underlying mechanism operates and how trends can be observed in even the most 

complex and seemingly random systems. Many developments have been influenced by 

expert-in-the-loop insight and mechanically interpretable models, but DNNs have defied 

these common theories by creating prediction engines that clearly outperform competing 

approaches without supplying concrete examples of why. 

 

 Baymani et al. [2] have used a new neural network-based approach for obtaining 

the solution of the Navier–Stokes equations in an analytical function form in their paper. 

The solution protocol was based on the formation of a two-part trial solution. As a result, 

there were no customizable parameters in the first section, which fulfilled the boundary 

conditions directly. The second component was designed to satisfy the governing equation 

within the solution domain while leaving the boundary conditions alone. This part involved 

a feed-forward neural network with adjustable parameters (weights) that had to be 

calculated such that the estimated error function generated was as small as possible. The 



Chapter Two: Review of Literature 
 

 

4 | P a g e  

 

capabilities of the method were shown by solving the Navier–Stokes problem with various 

boundary conditions, and the method's details were discussed. By comparing the method's 

efficiency and the consistency of the results to the existing numerical and analytical 

solutions, the method's performance and accuracy were assessed. 

 

 Mccracken [3] has developed a novel method for solving the Navier-Stokes 

Equations for turbulence by training a neural network to model ionospheric velocity fields 

based on 3-dimensional inputs using Bayesian Cluster and SOM neighbor weighting. The 

velocity, Reynold's number, Prandtl number, and temperature were all used in this issue. 

Data from Johns Hopkins University was used to train the neural network in MATLAB for 

this research. The velocity fields were mapped by the neural network with a 67 percent 

accuracy using the validation results. 

 

 Sabir and Ya [4] have used a novel ANN technique for fluid flow modeling. They 

attempted to obtain instantaneous numerical simulation for fluid flow using artificial neural 

networks in their study. The geometrical boundaries profile was considered a significant 

contribution for the ANN training process in the proposed system. Their research was 

motivated by the need for quick responses, especially in medical situations, surgeon 

diagnoses, engineering crises and when unusual circumstances arise. They were able to 

achieve satisfactory results for 1D-flow equations in terms of both energy and momentum 

equations. Their ANN method was effective in predicting fluid flow with known boundary 

velocity. 

 

 Guo et al. [5] used Convolutional Neural Networks (CNN) for steady flow 

approximation. They suggested a general and scalable approximation model based on 
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convolutional neural networks for real-time prediction of non-uniform steady laminar flow 

in a 2D or 3D domain (CNNs). They looked at different options for CNN geometry 

representation and network architecture. They demonstrated that convolutional neural 

networks could approximate velocity fields two orders of magnitude faster than a GPU-

accelerated CFD solver and four orders of magnitude faster than a CPU-based CFD solver 

while maintaining a low error rate. 

 

 Tsunooka et al. [6] used high-speed CFD simulation to forecast crystal growth. 

They used a neural network to optimize the growth conditions and quickly predict the 

outcomes of computational fluid dynamics (CFD) simulations for SiC solution growth. A 

single CFD simulation was 107 times faster than the prediction speed. As a result of the 

combination of CFD simulation and machine learning, optimal parameters for high-quality 

and large-diameter crystals could be determined. As a result, they predicted such a 

simulation to become the technology used in the design and control of crystal growth 

processes. 

 

2.2. This Work 

 Motivated by these researches, this research aims to apply fully connected neural 

networks to predict fluid flow in order to decrease the time required for calculating the 

velocities while preserving much of the accuracy of a full-fledged CFD solution. A double 

lid-driven cavity with top and bottom moving walls having some internal square objects 

was selected as a training data to train, test and compare several fully connected neural 

networks having different parameters to predict fluid flow inside it.
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CHAPTER THREE 

ARTIFICIAL NEURAL NETWORKS 

 

3.1. Foundation 

Neural networks and deep learning are hot topics in the realm of computer science 

and technology. Since the beginning of this century, the world has seen many developments 

in machine learning algorithms. Such algorithms are extremely complex and are often used 

for doing things that were thought to be impossible even as little as 40 years ago. Things 

like recognizing a face in a stadium full of thousands of people, driving a car through 9am 

traffic, playing chess with renowned grandmasters etc. are some of the accomplishments 

people have achieved with artificial intelligence and machine learning technology. This 

wonderful technology is modeled after probably the most complex object in the world that 

we often take for granted, and that is our brain. The fundamental computational or logical 

unit of the brain is a neuron as shown in Figure 3.1. 

 

 

Figure 3.1: Biological neuron 

 

The entire brain is made up of billions of neurons connected to each other in a never-

ending maze of complexity. These connections are called Synapses and there are 
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approximately 1014 - 1015 of such in a single brain. They enable humans to learn, adapt and 

take control of nature most of the time without even having to think about it. The basic 

structure of a neuron involves a cell body, which has some small branches attached to it 

and they are called dendrites. There is also a long distinctive wire like object attached to 

the cell body and it is called the axon. The axon carries information from the cell body and 

passes it to the next neuron through the dendrites. This connection between the two neurons 

is called a synapse. After we are born, we start to learn both consciously and 

subconsciously. Our brain takes in signals from our nerve endings and processes them or 

remembers them by making connections between the neurons. When we walk, we usually 

do not have to concentrate too much on walking. We do not calculate every step and take 

necessary actions. Our brain has learned the method of walking through many failed 

attempts when we were taught to walk in our childhood days. The synapses in our brain 

“remembers” these failed attempts and adjusts our leg muscles in a way that enables them 

to keep us walking without falling. It is no wonder that Artificial Intelligence, being the 

driving force of modern technology is modeled after what is thought to be the most complex 

system ever known to mankind, our brain. 

 

3.2. Basic Structure 

The basic structure of a neural network also involves neurons just like the brain. It 

receives information from the previous neurons, processes it and sends it to the next neuron. 

Information from the previous neurons are received as numerical values (x0, x1, x2 etc.) as 

show in Figure 3.2. These are multiplied with the "weights" (w0, w1, w2 etc.), which are 

another set of numerical values assigned to the connections. The multiplied values of these 

weights (w0, w1, w2 etc.) and input values (x0, x1, x2 etc.), along with another numerical 

value assigned to each neuron, called the bias (b), are then added up and processed by the 
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cell body using an activation function. The processed value is then passed to the next 

neuron. 

 

 

Figure 3.2: Neuron in neural network 

 

Several activation functions are used to get output from each neuron. Sigmoid 

function, hyperbolic tan (tanh), rectified linear unit (ReLU) are some of the most widely 

used activation functions in neural networks. Sigmoid and ReLU functions have been used 

as activation functions in this research. 

 

3.3. Types of Neural Networks 

There are many types of neural networks and each of them have their own 

applications along with a set of advantages and disadvantages. The models that are mostly 

used include: 

 

3.3.1. Feedforward fully connected neural network 

A feedforward fully connected neural network is an artificial neural network where 

the connections between the neurons do not repeat or in other words, there are no cycles. 

In this network, the information moves through the neurons in a single direction. During 
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the forward stroke or forward movement of data, information flows from the input neurons 

in the input layers, through the hidden nodes in the hidden layer (if any) and to the output 

nodes in the output layer. Output from any neuron does not end up being an input to its 

preceding neuron. Similarly, during training of the network, the network parameters are 

updated sequentially in a reverse direction. This starts from the output layer, goes through 

all the hidden layers and ends with the input layer. The input layer takes input and the 

output layer generates output. Each neuron in each layer is connected to all the neurons in 

the previous layer; hence, the name is “Fully connected neural network”. Feedforward 

neural networks are mainly used in classification, regression and data prediction problems. 

A fully connected feedforward neural network has been used in this research where the 

input nodes represent the structure of the environment in which fluid is flowing and the 

output nodes represent the velocities of the fluid in that specific environment. A four-layer 

neural network model has been used which has one input layer, one output layer and two 

hidden layers. 

 

3.3.2. Convolutional neural network 

 Convolutional neural networks work in a different way. These networks are 

typically used with image classification problems. In contrast with fully connected neural 

networks, the neurons or nodes in convolution neural networks are not fully connected. 

When dealing with image classification problems, the input neurons represent the color 

value of the pixels that make up the image and not all pixels are connected to the next layer 

of the network. Instead, the image is divided into several regions and the inputs of these 

regions are connected separately to the nodes in the succeeding layer. Finally, fully 

connected layers are used as the outer most hidden layers and the output layers. 
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3.3.3. Recurrent neural network 

 Recurrent neural networks have direct connections between neurons or nodes in a 

certain layer and its preceding layer. In contrast with feedforward networks where 

information flows in a single direction only, in recurrent networks, cycles can be seen in 

different stages of the network that enables the network to feed information directly from 

a certain layer to its preceding layer. These networks are typically used in prediction of 

power consumptions in electric grid systems throughout the world. 

 

3.4. Activation Functions 

 Using the idea that a neuron can “fire” inside our brain that represents flow of data 

from one neuron to another, the mathematical modelling of neural networks also have 

functions that mimics the brain and enables a neuron to “fire” or transfer data from one 

neuron to another. Since these neurons are connected to each other, these transfer of data 

from one neuron to another forms a chain of complex network that enables the entire 

network to get modelled in such a way that they can remember what input values can 

recreate which neurons to fire. The functions that make the neurons fire are called activation 

functions. Several types of activation functions are used in neural networks. Some of the 

mostly used activation functions include: 

 

3.4.1. Sigmoid function 

 The sigmoid function is a well-known mathematical function that can take any 

numerical value and output a value ranging from 0 to 1. The sigmoid function can be written 

as: 

 
(1) 

 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
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Figure 3.3: Sigmoid function 

 

 The main advantage of using a sigmoid function as activation function is that it 

always produces an output ranging from 0 to 1. This crunching of data enables all the 

neurons in all the layers of the network to have a controlled and efficient flow of 

information through the network. Sigmoid functions play a major role in classification 

problems where the output neurons simply have to generate a value close to 0 or 1 to 

represent the input data being classified between several classifications. One good example 

of this is a neural network, which is designed to classify between handwritten numbers. 

There are ten numbers in the typical 10-based numbering system and so this network can 

have 10 neurons in the output layer. If only the first neuron produces a value close to 1 and 

other neurons produce values close to 0, the input number can be classified as a “0”. So the 

output from the output layer may look like “1000000000” for “0”. Similarly, for “1”, the 

output layer may look like “0100000000” and for “9”, the output layer may look like 

“0000000001”. 
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3.4.2. Hyperbolic tan function 

 The hyperbolic tan or tanh(x) is closely related to the sigmoid function in terms of 

the output it can generate based on the inputs it receives. Tts output ranges from -1 to 1 as 

opposed to the 0 to 1 range of the sigmoid function. The hyperbolic tan function can be 

written as: 

 
(2) 

 

 

Figure 3.4: Hyperbolic tan function 

 

3.4.2. Rectified linear unit (ReLU) function 

 The ReLU function is one of the mostly used activation functions of a neural 

network. It takes an input and outputs a 0 if the input is 0 or negative and outputs the input 

value unchanged if it is positive. It can be written as: 

 
(3) 

tanh(x) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

𝑅𝑒𝐿𝑈(𝑥) = {
0, 𝑖𝑓 𝑥 ≤ 0
𝑥, 𝑖𝑓 𝑥 > 0
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Figure 3.5: ReLU function 

  

 ReLU function is used quite often in neural network models as it takes less 

computational time and power to calculate. But unlike sigmoid or tanh function, ReLU 

function cannot crunch the data between two numerical values and can generate values 

ranging from 0 to infinity. 

  

 In this research, ReLU function has been used in the inner layers of the network and 

sigmoid function has been used in the outer layers of the network. 

 

3.5. Neural Network Learning 

To make a neural network learn involves setting known inputs and outputs to the 

neural network, assigning random values to the weights and biases and using an algorithm 
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called the back-propagation algorithm to tune the weights in such a way that the known 

inputs can produce the known outputs as accurately as possible. 

3.5. Learning Rate 

 The rate at which the network learns is also another parameter called the "learning 

rate" and it is regarded as the most important hyper-parameter of a neural network 

architecture. A learning rate too small will result in fine-tuning of the weights but will take 

a very long time. A learning rate too high will result in faster training but the results will 

tend to have more errors. The objective is to find an optimum learning rate, which will 

enable the neural network model to learn accurately as fast as possible. In this research, 

two different learning methods were used to compare the outputs that they generated. 

 

3.6. Neural Network Testing 

Neural networks are usually tested with some input values unknown to them to see 

what output they can generate. This determines the accuracy of the neural networks. The 

methodology used in this research involves a similar procedure. Known inputs based on 

the shape and location of simple objects placed inside the lid-driven cavity and known 

output velocities generated using CFD algorithms are used to train the neural networks. 

They are then tested with unknown set of geometries the network never has trained with 

and the accuracies are measured which determines the effectiveness of the neural networks.
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CHAPTER FOUR 

LID-DRIVEN CAVITY 

 

4.1 Foundation 

 The Navier-Stokes equations are a collection of partial differential equations that 

describe how viscous fluids move. They are named after Claude-Louis Navier, a French 

engineer and physicist, and George Gabriel Stokes, an Anglo-Irish physicist and 

mathematician. The Navier–Stokes equations mathematically express conservation of 

momentum and mass in Newtonian fluids. Typically, a state equation relating pressure, 

temperature, and density is used. 

  

 The lid-driven cavity problem is a well-known benchmark CFD problem involving 

incompressible viscous fluid flow. It has a relatively simple two-dimensional geometry 

consisting of unit lengths, widths, and unit velocities that can be altered in many different 

ways to produce different results or different flow patterns. This problem has been solved 

using both laminar flow and turbulent flow. Many different numerical techniques 

developed by many individuals have been used to compute these solutions. This is a nice 

problem for testing for several reasons. First, as mentioned above, there is a good amount 

of literature to compare with. Second, the laminar solution is steady. Third, the boundary 

conditions are simple and compatible with most numerical approaches. A double lid-driven 

cavity with some internal square obstacles has been used as the environment for this 

research. Starting with a single lid-driven cavity and no internal obstacles, the following 

section will give a brief illustration of the chosen environment and the mathematical model 

behind its solution using the Navier-Stokes equations. 
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4.2. Single Lid-driven Cavity 

4.2.1. Basics 

The single-lid driven cavity problem has been used for a long time to test or validate 

new codes incorporating new solution methods. The geometry is a simple two-dimensional 

square cavity having unit lengths. The top side is moving with a unit velocity (in +X 

direction) and all other sides are stationary. The boundary conditions are showed in Figure 

4.1. Fluid exists inside the cavity and the fluid particles are given motion due to the one 

directional movement of the top lid. Keeping the velocities and the size of the cavity fixed 

and by using different Reynolds numbers, it is possible to use just the Navier-Stokes 

equation and a simple computer program to visualize fluid flow inside it. 

 

Figure 4.1: Single lid-driven cavity 
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Using Reynolds Number (Re) 100, 400 and 1000, Marchi et al. [7] provided 

numerical solutions with a 1024 × 1024 grid system. For this research, Reynolds number 

has been kept constant at 100 and using three staggered grid systems (24 × 24, 32 × 32 and 

40 × 40) and incorporating the Navier-Stokes equation of x-momentum, y-momentum and 

continuity equation as shown by Chorin [8], x-directional velocity (U) and y-directional 

velocity (V) have been calculated. Since this is an iterative approach involving time 

derivative and the continuity equation does not contain a parameter for time, artificial 

compressibility method was employed, which incorporates a fictitious time derivative of 

pressure by adding it to the continuity equation and enables the set of equations modified 

from the incompressible Navier-Stokes equations to be solved implicitly by marching in 

pseudo time. However, the original equations are recovered when a steady-state solution is 

reached. 

 

4.2.2. Staggered grids 

Staggering of grids involves calculating the velocities and pressures around actual 

nodal points of the grid. This is a common practice when dealing with calculating the nodal 

velocities using a grid system and the Navier-Stokes equations. To explain how this works, 

figure 4.2 and 4.3 shows a 4 × 4 grid system. In figure 4.2, the x-directional (U) velocities 

(blue arrows) and y-directional (V) velocities (orange arrows) are initialized and calculated 

around actual nodal points. In figure 4.3, pressure values (yellow boxes) are also initialized 

and calculated around actual nodal points. The combination of these three node variables 

are shown in figure 4.3. This is done so that the x and y-directional flows can be treated as 

purely pressure driven flows as each nodal point of U or V is surrounded by two pressure 

points. 
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Figure 4.2: Staggered grid system with U and V velocities 

 

Figure 4.3: Staggered grid system with pressure points (P) and combination of U, V and P 

 

The equation for Reynolds number can be written as: 

 

(4) 

Since this study involves the lid-driven cavity having unit lid velocity, in order to keep 

computations simple, 100 was used as the Reynolds number, which can be derived from 

𝑅𝑒 =
𝜌𝑢𝐿

𝜇
 



Chapter Four: Lid-driven Cavity 
 

 

19 | P a g e  

 

the aforementioned equation having set the values of ρ, u, L and μ to be equal to 1, 1, 1 and 

0.01 respectively. This simplifies the model. 

The continuity equation can be written as: 

 
(5) 

Assuming the fluid having unit density, the continuity equation involving the artificial 

compressibility method can be written as: 

 

(6) 

The terms can be expanded with a finite difference method as follows using a magnified 

image (figure 4.4) of the region highlighted in gray in Figure 4.3. 

 

Figure 4.4: Continuity equation terms expansion 
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The Navier-Stokes equations control fluid motion and can be thought of as Newton's second 

law of fluid motion. They were derived by Navier, Poisson, Saint-Venant, and Stokes 

between 1827 and 1845. The equations can be written as: 

 
(7) 

(i) (ii) (iii)  (iv)   

 

Here, U is the fluid velocity, p is the fluid pressure, ρ is the fluid density, and μ is the fluid 

dynamic viscosity. The different terms correspond to the inertial forces (i), pressure forces 

(ii), viscous forces (iii), and the external forces applied to the fluid (iv). For an 

incompressible flow with the fluid having unit density, the Navier-Stokes x-momentum 

equation can be written as: 

 

(8) 

The terms can be expanded with a finite difference method as follows using a magnified 

image (figure 4.5) of the region highlighted in blue in figure 4.3. 

 

Figure 4.5: Navier-Stokes x-momentum equation terms expansion 
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(8a) 

 

(8b) 

 

(8c) 

 
(8d) 

 

(8e) 

 

Similarly, for an incompressible flow with the fluid having unit density, the Navier-Stokes 

y-momentum equation can be written as: 

 

(9) 

The terms can be expanded with a finite difference method as follows using a magnified 

image (figure 4.6) of the region highlighted in orange in figure 4.3. 

 

Figure 4.6: Navier-Stokes y-momentum equation terms expansion 
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(9a) 

 

(9b) 

 

(9c) 

 

(9d) 

 

(9e) 

 

4.2.3. Solution using a C# code 

 By entering appropriate initial and boundary conditions and using these equations, 

values of unew, vnew and pnew were calculated for this research with a C# code by an iterative 

approach employing the values of dt and δ as 0.001 and 4.5 respectively. Computations 

were terminated when summation of absolute relative errors between the adjacent x and y-

directional velocities dropped below 0.00001. Average of two adjacent U velocities were 

taken and actual nodal U velocities were calculated. The same was done with V velocities. 

For calculating pressure values, average of four values were taken and actual nodal pressure 

values were calculated. Tecplot software was used to view the results obtained from the 

CFD code. Commercially used ANSYS software was used to validate the results obtained 

from the CFD code. Figure 4.7 compares U and V velocities obtained from the C# code 

and ANSYS software. It is clear that the output from the C# code is almost the same as the 

output obtained from ANSYS software. Some minor variations can be seen here and there 

but these are mainly because of small differences in the color profiles set by Tecplot and 
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ANSYS. C# code was used instead of ANSYS software to generate fluid data because the 

neural network algorithms were integrated into the same C# code and a single C# program 

did the entire dataset generation, training and testing for this research. 

 

 

Figure 4.7: Single lid-driven cavity flow with C# CFD code and ANSYS 
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4.3. Double Lid-driven Cavity 

 In a similar way, using the same set of equations as mentioned earlier, the C# code 

was used to simulate fluid flow inside a double lid driven cavity where the top and bottom 

sides are moving with a unit velocity (in +X direction) and all other sides are stationary. In 

this setup, the fluid inside the cavity is moved by two moving lids instead of only one as 

seen in the previous single lid-driven cavity. The two moving lids adds a bit more 

complexity to the way how fluid flows inside it. The boundary conditions are showed in 

Figure 4.8. Mawarsih et al. [9] have used top and bottom moving lids to simulate fluid flow 

inside it using staggered grids. Saha [10] used a double lid-driven cavity with walls moving 

in different directions to predict fluid flow inside it. 

 

Figure 4.8: Double lid-driven cavity 
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 Figure 4.9 compares U and V velocities obtained from the C# code and ANSYS 

software. It is again clear that the output from the C# code is almost the same as the output 

obtained from ANSYS software. Some minor variations can also be seen here and there but 

these are mainly because of small differences in the color profiles set by Tecplot and 

ANSYS. 

 

 

Figure 4.9: Double lid-driven cavity flow with C# CFD code and ANSYS 
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4.4. Double Lid-driven Cavity with an Internal Square Obstacle 

 This research involves making a neural network learn fluid flow patterns. In order 

to achieve such a thing, different data generated using different setups are needed, which 

have some similarities between them and patterns can be found among them.  A single lid 

driven cavity is just a plain tool for assessing newly discovered numerical methods to 

simulate fluid flow inside it. A double lid-driven cavity is an updated version of the single 

lid-driven cavity as it makes the environment a little bit more complex. To keep the 

environment simple but still get different datasets for the neural network to learn, a double 

lid-driven cavity with some internal square objects can be used as a training data because 

it adds a lot more complexity to the simple single lid-driven cavity problem as well as the 

double lid-driven cavity problem and it also enables different datasets to be generated by 

placing the square objects in different positions inside the cavity allowing the neural 

network to actually learn what effects the placement of the square object will have on the 

fluid flow patterns generated by the two moving top and bottom lids. 

  

 Again in a similar way, the same C# code was used to simulate fluid flow inside a 

double lid driven cavity with an obstacle occupying 1/64th of the total cavity area placed 

inside the cavity where the top and bottom sides of the cavity were moving with a unit 

velocity (in +X direction) and all other sides were stationary. The obstacle placed inside 

the cavity acted as a resistance to the flow generated by the moving lids as no slip conditions 

exists on the sides of the square obstacle. The whole purpose of this was to see if it is 

possible to achieve prediction of fluid flow around shapes created by stacking together 

multiple square objects, therefore creating a relatively complex object. Huang and Lim [11] 

performed simulation of lid-driven cavity flow with internal circular obstacles. Circular 
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objects were not selected, as they can be stacked together without leaving behind empty 

spaces between them. Figure 4.10 show how the cavity can be divided into 64 segments 

and how the square object can be placed inside it in different positions as illustrated by the 

horizontal and vertical lines that make up the segmentations. The figure also shows the 

boundary conditions for this setup. The reason the environment was chosen to be divided 

into 64 segments is because of the different grid sizes used in this research. The three 

different grid sizes that had been used had a common factor of 8. And so, (8 × 8) or 64 is 

the number of segments that is needed in order to be able to place the object uniformly in 

the different grid setups allowing them to have the exact same placement of the object that 

coincided perfectly with the grid points of the separate grid systems.  

 

Figure 4.10: Double lid-driven cavity with an obstacle 
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 Figure 4.11 compares U and V velocities obtained from the C# code and ANSYS 

software. In addition, it is again clear that the output from the C# code is almost the same 

as the output obtained from ANSYS software. Again, some minor variations can be seen 

here and there but these are mainly because of small differences in the color profiles set by 

Tecplot and ANSYS. 

 

 

Figure 4.11: Double lid-driven cavity flow having a square obstacle with C# CFD code 

and ANSYS
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CHAPTER FIVE 

CFD DATASET GENERATION 

 

5.1. Grid Setup 

 The chosen double lid-driven cavity environment was divided into three different 

grid systems to see if the neural networks remains consistent in predicting accurate values 

and if a denser grid system can help the neural network in learning more accurately as 

denser grid systems have more nodal points in the same area thus improving the accuracy 

of the output from the CFD iterations which are directly used to train the neural networks. 

To keep the computational efforts relatively low, the following grid systems were used in 

this research: 

1. 24 × 24 grid resulting in 25 × 25 grid points 

2. 32 × 32 grid resulting in 33 × 33 grid points 

3. 40 × 40 grid resulting in 41 × 41 grid points 

 

 As mentioned earlier, the square object was placed inside the cavity such that it 

occupied 1/64th of the total cavity area. By dividing the cavity area into 64 segments, it 

was possible to place the square object in 36 different places, which covered most of the 

cavity region. The plan was to place the square object in these places and train the neural 

network with only these 36 input-output datasets so that complex shapes made up with 

these square objects could be used to test the neural network. Using three different grid 

sizes, 3 CFD datasets each having 36 input-output pairs were generated for the neural 

networks to train. 
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5.2. Dataset Generation using 24 × 24 Grid System 

 24 × 24 grids can be divided into 64 segments (8 × 8), each made up of 3 grids as 

shown in figure 5.1. The square object occupying 3 × 3 grids can be uniformly placed at 36 

different positions. This resulted in the input data for the neural network, which has 36 

datasets each consisting of 81 0’s and 1’s reflecting the position of the square object inside 

the cavity. Figure 5.1 shows how placing the object in the middle of the cavity can be 

interpreted by these 0’s and 1’s. Figure 5.1 also shows the placement of the object in 36 

different locations. Using the C# code, as shown earlier, fluid velocities can be calculated 

for each of the 36 setups. The corresponding output data for the neural network consisted 

of 625 (252) pairs of nodal U and V velocities obtained from the C# CFD code. This enabled 

the neural network to establish a relation between the placement of the object inside the 

cavity and the flow pattern associated with it. So the input datasets for each of the two 

directional velocities of this grid system for the neural network had 36 lines, where each 

line had 91 0’s and 1’s. The target datasets each also had 36 lines having 91 velocities in 

each line. 

 

Figure 5.1: Environment segmentation for 24 × 24 grid system 
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5.3. Dataset Generation using 32 × 32 Grid System 

 In a similar way, 32 × 32 grids can be divided into 64 segments (8 × 8), each made 

up of 4 grids as shown in figure 5.2. The square object occupying 4 × 4 grids can be 

uniformly placed at 36 different positions. Similar to the previous setup, this resulted in the 

input data for the neural network, which has 36 datasets each consisting of 81 0’s and 1’s 

reflecting the position of the square object inside the cavity. The corresponding output data 

for the neural network consisted of 1089 (332) pairs of nodal U and V velocities obtained 

from the C# CFD code. 

 

Figure 5.2: Environment segmentation for 32 × 32 grid system 

 

5.4. Dataset Generation using 40 × 40 Grid System 

 Again, in a similar way, 40 × 40 grids can be divided into 64 segments (8 × 8), each 

made up of 5 grids as shown in figure 5.3.  The square object occupying 5 × 5 grids can be 

uniformly placed at 36 different positions. Again, identical to the previous two setups, this 

resulted in the input data for the neural network, which has 36 datasets each consisting of 
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81 0’s and 1’s reflecting the position of the square object inside the cavity. The 

corresponding output data for the neural network consisted of 1681 (412) pairs of nodal U 

and V velocities obtained from the C# CFD code. 

 

Figure 5.3: Environment segmentation for 40 × 40 grid system 
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CHAPTER SIX 

ANN MODEL AND TRAINING 

 

6.1. Network Structure 

 Figure 6.1 shows the schematic of the neural network model that has been used in 

this research. ReLU activation function has been used in the first and second hidden layer 

and Sigmoid activation function has been used in the output layer. ReLU is used because it 

is fast and easier to calculate. Sigmoid is used in the output layer because it generates an 

output that lies in between 0 and 1 which perfectly matches the lid-driven cavity’s unit lid 

velocity as nothing inside the cavity will have a velocity more than 1. 

 

Figure 6.1: Neural network structure 

 

 Two different learning methods are also used in this research independently. The 

first one involves setting a globally fixed (GF) learning rate throughout the entire network. 

The second one involves using different learning rates in different layers or in other words, 

layer specific (LS) learning rates. 
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6.2. Neural Network Training 

 Separate neural networks have been used for each grid systems. Each neural 

network has two segments. One for the U velocity and one for the V velocity. There are no 

connections between the two segments of the neural network. It may be possible to use a 

single neural network to for all the two directional velocities, but the number of network 

parameters, (weights and biases) will be increased by an order of a couple magnitudes and 

thus will lead to unnecessary complications in the overall target of this research. To keep 

calculations simple and yet achieve a two-dimensional flow prediction, two different 

networks were used which were trained and tested separately. In each segment of the 

network, there are 81 input nodes in the input layer, 500 hidden nodes in the next hidden 

layer (#1) and another 1000 hidden nodes in the next hidden layer (#2). 

  

 For 24 × 24 grid system, there are 625 (252) output nodes in each of the output layer 

corresponding to 625 pairs of nodal U and V velocities as shown in figure 6.2. 

 

Figure 6.2: Neural network for 24 × 24 grid system 
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 For 32 × 32 grid system, there are 1089 (332) output nodes in each of the output 

layer corresponding to 1089 pairs of nodal U and V velocities as shown in figure 6.3. 

 

Figure 6.3: Neural network for 32 × 32 grid system 

 

 For 40 × 40 grid system, there are 1681 (412) output nodes in each of the output 

layer corresponding to 1681 pairs of nodal U and V velocities as shown in figure 6.4. 

 

Figure 6.4: Neural network for 40 × 40 grid system 
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 For the 36 different setups in each of the three different grid systems, the neural 

networks were trained with 10000 epochs and a globally fixed learning rate (GF) of 0.02 

for all the layers. The networks were again trained with layer specific learning rates (LS) 

of 0.002 for the second layer, 0.02 for the third layer and 0.2 for the output layer. Smaller 

learning rates were used in the input layers because they have to learn more accurately as 

opposed to the outer layers where they have to cope with the expected output from the 

input-output training dataset and so they have to be changed a lot quite frequently. In other 

words, the output layers need to learn faster than the input layers, and so the learning rates 

have been kept large there. This is perfectly reflected in figure 6.5 where mean squared 

errors (MSE) obtained from these two learning methods are shown for the 10000 epochs. 

Table 6.1 shows the terminologies used in figure 6.5. 

 

Table 6.1: Terminologies used in figure 6.5 

Term Meaning 

MSE 24 × 24 GF Mean squared error in 24 × 24 grid system incorporating globally 

fixed learning rates 

MSE 24 × 24 LS Mean squared error in 24 × 24 grid system incorporating layer 

specific learning rates 

MSE 32 × 32 GF Mean squared error in 32 × 32 grid system incorporating globally 

fixed learning rates 

MSE 32 × 32 LS Mean squared error in 32 × 32 grid system incorporating layer 

specific learning rates 

MSE 40 × 40 GF Mean squared error in 40 × 40 grid system incorporating globally 

fixed learning rates 

MSE 40 × 40 LS Mean squared error in 40 × 40 grid system incorporating layer 

specific learning rates 
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Figure 6.5: MSE comparison between GF and LS learning rates in all three grid systems 

 

 To sum it all up, a total number of six neural networks have been trained by 

incorporating the three different grid sizes and the two different learning approaches used. 

As each neural network had two segments for the U and V velocities, they generated 

different mean squared errors. However, they propagated with the number of epochs in a 

similar fashion. This is why each of the six sets of MSEs shown in figure 6.5 is actually a 

set of errors calculated by taking the average of the errors generated at each epoch by the 

two segments of the neural network. 

  

 It is clearly observed that the neural network models using LS learning rates were 

better optimized than GF learning rate, which resulted in the same accuracy achieved by 

the LS models just after 1000 epochs compared to the GF models’ 10000 epochs.
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CHAPTER SEVEN 

RESULTS: CFD VS ANN 

 

7.1. Preface 

 During training, only one obstacle was placed at a time inside the double lid-driven 

cavity. During testing, all trained networks for the three different grid systems each using 

two different learning methods were tested with all the training data as well as some new 

setups. New setups were made by putting together several square objects and placing 

multiple square objects in different places at the same time. The networks were never 

trained with such complex setups and were tasked to predict fluid flow around them. A 

good number of tests have been performed and it has been seen that the more complex the 

shape appeared to get, the more errors the neural network had in predicting the fluid flow. 

Results of two such test for each of the three different grid setups are shown in detail. 

Terminologies as mentioned in table 7.1 are used: 

 

Table 7.1: Terminologies used in results 

Term Meaning 

CFD Results from CFD simulation using NS equations 

ANN LS Results from ANN using Layer Specific learning rates 

ANN LS Differences Absolute differences between CFD results and ANN LS results 

ANN GF Results from ANN using Globally Fixed learning rates 

ANN GF Differences Absolute differences between CFD results and ANN GF results 

Time (ms) Approximate time (in milliseconds) required by the computer 

to generate results (using a 7th generation core i5 with 8GBs of 

onboard memory) 
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7.2. First Test Setup 

7.2.1. Environment 

 Two square objects were placed diagonally inside the double lid-driven cavity at 

the same time. The network was tested with CFD data for a single object placed at a time 

but how the fluid is going to behave when two objects were placed at the same time was a 

new challenge for the neural network. The boundary conditions in the cavity was the same 

as the training phase. The top and bottom walls were kept moving at unit velocities and the 

cavity had unit length and width. Figure 7.1 shows the arrangement of the square objects 

inside the cavity. The following pages compares the results of the U and V velocities 

generated using the three different grid systems incorporating the two different learning 

rates that have been used. 

 

Figure 7.1: Double lid-driven cavity with two obstacles 
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7.2.2. X-directional (U) velocity prediction 

 The placement of the two square objects resulted in the following output of U 

velocity as shown in figure 7.2 from the neural network incorporating GF learning method 

in 24 × 24 grid system. The first flow field is from the CFD code, the second flow field is 

from the neural network, the third flow field shows the absolute differences between the 

two flow fields and the fourth graph shows a quantitative representation of the absolute 

differences. Some relative errors can be seen along the edges of the square objects. The 

CFD solution took 5380 milliseconds where the ANN prediction took only 15 milliseconds. 

 

 

Figure 7.2: Test setup 1 - 24 × 24 grid system ANN GF comparison (U velocity) 
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 The following output of U velocity as shown in figure 7.3 is from the neural network 

incorporating LS learning method in 24 × 24 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. Relative errors in this case are less than that of 

the GF learning method. Some errors are seen in the central part of the cavity. The CFD 

solution took 5380 milliseconds where the ANN prediction took only 16 milliseconds. 

 

 

Figure 7.3: Test setup 1 - 24 × 24 grid system ANN LS comparison (U velocity) 
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 The following output of U velocity as shown in figure 7.4 is from the neural network 

incorporating GF learning method in 32 × 32 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. Some relative errors can be seen along the edges 

of the square objects. The CFD solution took 10774 milliseconds where the ANN 

prediction took only 15 milliseconds. 

 

 

Figure 7.4: Test setup 1 - 32 × 32 grid system ANN GF comparison (U velocity) 
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 The following output of U velocity as shown in figure 7.5 is from the neural network 

incorporating LS learning method in 32 × 32 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. Relative errors in this case are less than that of 

the GF learning method. Some errors are seen in the central part of the cavity. The CFD 

solution took 10774 milliseconds where the ANN prediction took only 31 milliseconds. 

 

 

Figure 7.5: Test setup 1 - 32 × 32 grid system ANN LS comparison (U velocity) 
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 The following output of U velocity as shown in figure 7.6 is from the neural network 

incorporating GF learning method in 40 × 40 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. The CFD solution took 16261 milliseconds 

where the ANN prediction took only 31 milliseconds. 

 

 

Figure 7.6: Test setup 1 - 40 × 40 grid system ANN GF comparison (U velocity) 
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 The following output of U velocity as shown in figure 7.7 is from the neural network 

incorporating LS learning method in 40 × 40 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. The CFD solution took 16261 milliseconds 

where the ANN prediction took only 31 milliseconds. 

 

 

Figure 7.7: Test setup 1 - 40 × 40 grid system ANN LS comparison (U velocity) 

 



Chapter Seven: Results: CFD vs ANN 
 

 

46 | P a g e  

 

7.2.3. Y-directional (V) velocity prediction 

 The following output of V velocity as shown in figure 7.8 is from the neural network 

incorporating GF learning method in 24 × 24 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. Some relative errors can be seen along the edges 

of the square objects. The CFD solution took 5380 milliseconds where the ANN prediction 

took only 14 milliseconds. 

 

 

Figure 7.8: Test setup 1 - 24 × 24 grid system ANN GF comparison (V velocity) 
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 The following output of V velocity as shown in figure 7.9 is from the neural network 

incorporating LS learning method in 24 × 24 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. Relative errors in this case are significantly less 

than that of the GF learning method. The CFD solution took 5380 milliseconds where the 

ANN prediction took only 16 milliseconds. 

 

 

Figure 7.9: Test setup 1 - 24 × 24 grid system ANN LS comparison (V velocity) 
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 The following output of V velocity as shown in figure 7.10 is from the neural 

network incorporating GF learning method in 32 × 32 grid system. The first flow field is 

from the CFD code, the second flow field is from the neural network, the third flow field 

shows the absolute differences between the two flow fields and the fourth graph shows a 

quantitative representation of the absolute differences. Some relative errors can be seen 

along the edges of the square objects. The CFD solution took 10774 milliseconds where 

the ANN prediction took only 15 milliseconds. 

 

 

Figure 7.10: Test setup 1 - 32 × 32 grid system ANN GF comparison (V velocity) 
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 The following output of V velocity as shown in figure 7.11 is from the neural 

network incorporating LS learning method in 32 × 32 grid system. The first flow field is 

from the CFD code, the second flow field is from the neural network, the third flow field 

shows the absolute differences between the two flow fields and the fourth graph shows a 

quantitative representation of the absolute differences. Relative errors in this case are 

significantly less than that of the GF learning method. The CFD solution took 10774 

milliseconds where the ANN prediction took only 31 milliseconds. 

 

 

Figure 7.11: Test setup 1 - 32 × 32 grid system ANN LS comparison (V velocity) 
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 The following output of V velocity as shown in figure 7.12 is from the neural 

network incorporating GF learning method in 40 × 40 grid system. The first flow field is 

from the CFD code, the second flow field is from the neural network, the third flow field 

shows the absolute differences between the two flow fields and the fourth graph shows a 

quantitative representation of the absolute differences. The CFD solution took 16261 

milliseconds where the ANN prediction took only 31 milliseconds. 

 

 

Figure 7.12: Test setup 1 - 40 × 40 grid system ANN GF comparison (V velocity) 
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 The following output of V velocity as shown in figure 7.13 is from the neural 

network incorporating LS learning method in 40 × 40 grid system. The first flow field is 

from the CFD code, the second flow field is from the neural network, the third flow field 

shows the absolute differences between the two flow fields and the fourth graph shows a 

quantitative representation of the absolute differences. The CFD solution took 16261 

milliseconds where the ANN prediction took only 31 milliseconds. 

 

 

Figure 7.13: Test setup 1 - 40 × 40 grid system ANN LS comparison (V velocity) 
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7.3. Second Test Setup 

7.3.1. Environment 

 Three square objects were placed together as shown in figure 7.14, inside the double 

lid-driven cavity in a way that they make up a relatively complex shape. Again, the 

boundary conditions in the cavity was the same as the training phase. Figure 7.14 shows 

the arrangement of the square objects inside the cavity. The following pages compares the 

results of the U and V velocities generated using the three different grid systems 

incorporating the two different learning rates that have been used. 

 

Figure 7.14: Double lid-driven cavity with three obstacles making a relatively complex 

shape 
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7.3.2. X-directional (U) velocity prediction 

 The placement of the three square objects resulted in the output of U velocity as 

shown in figure 7.15 from the neural network incorporating GF learning method in 24 × 24 

grid system. The first flow field is from the CFD code, the second flow field is from the 

neural network, the third flow field shows the absolute differences between the two flow 

fields and the fourth graph shows a quantitative representation of the absolute differences. 

Some relative errors can be seen along the edges of the square objects. The CFD solution 

took 5023 milliseconds where the ANN prediction took only 20 milliseconds. 

 

 

Figure 7.15: Test setup 2 - 24 × 24 grid system ANN GF comparison (U velocity) 



Chapter Seven: Results: CFD vs ANN 
 

 

54 | P a g e  

 

 The output of U velocity as shown in figure 7.16 is from the neural network 

incorporating LS learning method in 24 × 24 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. Relative errors in this case are less than that of 

the GF learning method. Some errors are seen in the central part of the cavity. The CFD 

solution took 5023 milliseconds where the ANN prediction took only 15 milliseconds. 

 

 

Figure 7.16: Test setup 2 - 24 × 24 grid system ANN LS comparison (U velocity) 
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 The output of U velocity as shown in figure 7.17 is from the neural network 

incorporating GF learning method in 32 × 32 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. Some relative errors can be seen along the edges 

of the square objects. The CFD solution took 8776 milliseconds where the ANN prediction 

took only 21 milliseconds. 

 

 

Figure 7.17: Test setup 2 - 32 × 32 grid system ANN GF comparison (U velocity) 
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 The output of U velocity as shown in figure 7.18 is from the neural network 

incorporating LS learning method in 32 × 32 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. Relative errors in this case are less than that of 

the GF learning method. Some errors are seen in the central part of the cavity. The CFD 

solution took 8776 milliseconds where the ANN prediction took only 23 milliseconds. 

 

 

 

Figure 7.18: Test setup 2 - 32 × 32 grid system ANN LS comparison (U velocity) 
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 The output of U velocity as shown in figure 7.19 is from the neural network 

incorporating GF learning method in 40 × 40 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. Some relative errors can be seen along the edges 

of the square objects. The CFD solution took 26605 milliseconds where the ANN 

prediction took only 57 milliseconds. 

 

 

Figure 7.19: Test setup 2 - 40 × 40 grid system ANN GF comparison (U velocity) 
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 The output of U velocity as shown in figure 7.20 is from the neural network 

incorporating LS learning method in 40 × 40 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. Relative errors in this case are less than that of 

the GF learning method. The CFD solution took 26605 milliseconds where the ANN 

prediction took only 53 milliseconds. 

 

 

Figure 7.20: Test setup 2 - 40 × 40 grid system ANN LS comparison (U velocity) 
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7.3.3. Y-directional (V) velocity prediction 

 The output of V velocity as shown in figure 7.21 is from the neural network 

incorporating GF learning method in 24 × 24 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. Some relative errors can be seen along the edges 

of the square objects. The CFD solution took 5023 milliseconds where the ANN prediction 

took only 20 milliseconds. 

 

 

Figure 7.21: Test setup 2 - 24 × 24 grid system ANN GF comparison (V velocity) 
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 The output of V velocity as shown in figure 7.22 is from the neural network 

incorporating LS learning method in 24 × 24 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. Relative errors in this case are approximately the 

same as of the GF learning method. The CFD solution took 5023 milliseconds where the 

ANN prediction took only 15 milliseconds. 

 

 

Figure 7.22: Test setup 2 - 24 × 24 grid system ANN LS comparison (V velocity) 
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 The output of V velocity as shown in figure 7.23 is from the neural network 

incorporating GF learning method in 32 × 32 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. Some relative errors can be seen along the edges 

of the square objects. The CFD solution took 8776 milliseconds where the ANN prediction 

took only 21 milliseconds. 

 

 

Figure 7.23: Test setup 2 - 32 × 32 grid system ANN GF comparison (V velocity) 
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 The output of V velocity as shown in figure 7.24 is from the neural network 

incorporating LS learning method in 32 × 32 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. Relative errors in this case are a little less than 

that of the GF learning method. The CFD solution took 8776 milliseconds where the ANN 

prediction took only 23 milliseconds. 

 

 

Figure 7.24: Test setup 2 - 32 × 32 grid system ANN LS comparison (V velocity) 
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 The output of V velocity as shown in figure 7.25 is from the neural network 

incorporating GF learning method in 40 × 40 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. Some relative errors can be seen along the edges 

of the square objects. The CFD solution took 26605 milliseconds where the ANN 

prediction took only 57 milliseconds. 

 

 

Figure 7.25: Test setup 2 - 40 × 40 grid system ANN GF comparison (V velocity) 
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 The output of V velocity as shown in figure 7.26 is from the neural network 

incorporating LS learning method in 40 × 40 grid system. The first flow field is from the 

CFD code, the second flow field is from the neural network, the third flow field shows the 

absolute differences between the two flow fields and the fourth graph shows a quantitative 

representation of the absolute differences. Relative errors in this case are a little less than 

that of the GF learning method. The CFD solution took 26605 milliseconds where the ANN 

prediction took only 53 milliseconds. 

 

 

Figure 7.26: Test setup 2 - 40 × 40 grid system ANN LS comparison (V velocity) 
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7.4. Time Comparison 

 Table 7.2 compares the time required for the CFD solver vs the two different ANN 

solvers using 5 different setups. 

 

Table 7.2: Time comparison between CFD solver and ANN solver 

Setup Time (milliseconds) 

24 × 24 grid system 

Setup 1 CFD 6227 

Setup 1 ANN GF 31 

Setup 1 ANN LS 15 

Setup 2 CFD 4156 

Setup 2 ANN GF 15 

Setup 2 ANN LS 15 

Setup 3 CFD 4670 

Setup 3 ANN GF 14 

Setup 3 ANN LS 18 

Setup 4 CFD 4578 

Setup 4 ANN GF 18 

Setup 4 ANN LS 23 

Setup 5 CFD 5116 

Setup 5 ANN GF 14 

Setup 5 ANN LS 15 

32 × 32 grid system 

Setup 1 CFD 10250 

Setup 1 ANN GF 31 

Setup 1 ANN LS 31 

Setup 2 CFD 6547 
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Setup Time (milliseconds) 

Setup 2 ANN GF 15 

Setup 2 ANN LS 31 

Setup 3 CFD 7214 

Setup 3 ANN GF 19 

Setup 3 ANN LS 28 

Setup 4 CFD 7874 

Setup 4 ANN GF 20 

Setup 4 ANN LS 31 

Setup 5 CFD 8107 

Setup 5 ANN GF 20 

Setup 5 ANN LS 26 

40 × 40 grid system 

Setup 1 CFD 16094 

Setup 1 ANN GF 31 

Setup 1 ANN LS 15 

Setup 2 CFD 9570 

Setup 2 ANN GF 27 

Setup 2 ANN LS 28 

Setup 3 CFD 10874 

Setup 3 ANN GF 29 

Setup 3 ANN LS 32 

Setup 4 CFD 13605 

Setup 4 ANN GF 28 

Setup 4 ANN LS 31 

Setup 5 CFD 11619 

Setup 5 ANN GF 29 

Setup 5 ANN LS 29 
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7.5. Two More Results 

 Two more test results are shown using 40 × 40 grid system and layer specific 

learning method. The left images are generated by the CFD C# code and right images are 

generated by the neural networks. The first one, as shown in figure 7.27, involves a 

geometry involving five obstacles placed together forming an “L” shaped object. It is 

clearly evident that the more complex the geometry becomes, the more erroneous the neural 

network’s output becomes. However, by using deeper neural networks or by reduced order 

modelling of the system, it may be possible by future researches to refine the output of the 

network. 

 

Figure 7.27: Test setup 3 - 40 × 40 grid system and LS learning method 
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 The second test result, as shown in figure 7.28, involves six obstacles placed 

together in such a way that they make up a rectangle. 

 

Figure 7.28: Test setup 4 - 40 × 40 grid system and LS learning method 

 

 It is observed that the neural networks are able to predict fluid velocities with a fair 

amount of accuracy in all of the cases in a fraction of the time taken by the CFD solver. 

Both GF and LS methods did a good job in predicting the fluid flow. However, LS method 

was better in predicting fluid flow near the obstacles as it had less errors near the obstacles 

when compared to the GF method. Furthermore, the velocities obtained from the neural 

networks can be used as initial values in CFD solvers to make them even more accurate.
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CHAPTER EIGHT 

CONCLUSION 

 

8.1. Concluding Remarks 

 The results obtained from this research clearly shows that it is indeed possible to 

predict fluid flow patterns using neural networks. Researches often have to come up with 

quick solutions or a snapshot of what the actual flow field will look like in order to get an 

idea of what they are working with before generating a full-fledged CFD solution. In this 

case, trained neural networks may provide a faster alternative to traditional CFD 

approaches. Although this requires training the neural networks with vast amount of data, 

which takes a lot of time, training has to be done only once. If a community driven platform 

for practicing and implementing data driven fluid dynamics is established, where people 

will share their trained neural networks with other people, it is quite possible to develop a 

general artificial intelligence which can tackle even the most complex fluid mechanics 

problems. Although different flow fields may appear to be unique and random, nature likes 

to keep things simple. This is why patterns and similarities exists in how fluid behaves in 

different situations under different physical constraints. It is the very nature of how neural 

networks work that enables them to recognize these patterns and perform predictions. 

Neural networks, albeit not as dynamic and capable as industrial CFD software at this very 

moment, so was not facial recognition back in the early 2000s. Therefore, at the current 

pace at which researchers are looking into developments in machine learning, it is quite 

likely that artificial intelligence will play a major role in every aspect of peoples’ lives in 

the days to come. This research may contribute to bridge the gap between fluid mechanics 

and machine learning. The comparisons may help future researchers to come up with a 
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better way of integrating machine learning into fluid mechanics. The ultimate goal is to 

establish a data driven approach to solve fluid mechanics problems in real life. 

 

8.2. Future Work 

 In this work, several parameters were kept constant. Future works can be done to 

improve the output by treating these parameters as variables. 

 

8.2.1. Changing the neural network model 

 The model can be changed to add more hidden layers and neurons in each hidden 

layer. Alternatively, the activation functions can be changed to see what effects they have 

on the model. 

 

8.2.2. Changing the training data and environment 

 Training can be done with smaller square obstacles so that any shape can be 

generated using a number of these smaller square obstacles. The lid velocities can be 

changed and different Reynolds numbers can be used to make the model learn more.
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;
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+
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d
t
 
*
 
(
(
(
(
v
[
i
 
+
 
1
,
 
j
]
 
*
 
v
[
i
 
+
 
1
,
 
j
]
)
 
-
 
(
v
[
i
 
-
 
1
,
 
j
]
 
*
 
v
[
i
 
-
 
1
,
 
j
]
)
)
 
/
 
(
2
.
0
 
*
 
d
y
)
)
 
+
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
(
1
.
0
 
/
 
(
4
.
0
 
*
 
d
x
)
)
 
*
 
(
(
(
v
[
i
,
 
j
]
 
+
 
v
[
i
,
 
j
 
+
 
1
]
)
 
*
 
(
u
[
i
 
+
 
1
,
 
j
]
 
+
 
u
[
i
,
 
j
]
)
)
 
-
 
(
(
v
[
i
,
 
j
]
 
+
 
v
[
i
,
 
j
 
-
 
1
]
)
 
*
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
u
[
i
 
+
 
1
,
 
j
 
-
 
1
]
 
+
 
u
[
i
,
 
j
 
-
 
1
]
)
)
)
)
 
+
 
(
(
p
[
i
 
+
 
1
,
 
j
]
 
-
 
p
[
i
,
 
j
]
)
 
/
 
d
y
)
 
-
 
(
(
1
.
0
 
/
 
R
e
)
 
*
 
(
(
(
v
[
i
,
 
j
 
+
 
1
]
 
-
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
2
.
0
 
*
 
v
[
i
,
 
j
]
)
 
+
 
v
[
i
,
 
j
 
-
 
1
]
)
 
/
 
(
(
d
x
 
*
 
d
x
)
)
)
 
+
 
(
(
v
[
i
 
+
 
1
,
 
j
]
 
-
 
(
2
.
0
 
*
 
v
[
i
,
 
j
]
)
 
+
 
v
[
i
 
-
 
1
,
 
j
]
)
 
/
 
(
(
d
y
 
*
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
y
)
)
)
)
)
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)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
/
 
B
o
u
n
d
a
r
y
 
c
o
n
d
i
t
i
o
n
s
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
 
=
 
1
;
 
i
 
<
=
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
-
 
2
)
;
 
i
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v
n
[
i
,
 
0
]
 
=
 
-
v
n
[
i
,
 
1
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v
n
[
i
,
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
 
=
 
-
v
n
[
i
,
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
 
-
 
1
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
 
=
 
0
;
 
i
 
<
=
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
-
 
1
)
;
 
i
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v
n
[
i
,
 
0
]
 
=
 
0
.
0
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v
n
[
i
,
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
 
=
 
0
.
0
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
 
=
 
o
b
j
e
c
t
_
y
;
 
i
 
<
=
 
(
o
b
j
e
c
t
_
w
i
d
t
h
 
+
 
o
b
j
e
c
t
_
y
)
;
 
i
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
j
 
=
 
o
b
j
e
c
t
_
x
 
-
 
1
;
 
j
 
<
=
 
(
o
b
j
e
c
t
_
l
e
n
g
t
h
 
+
 
o
b
j
e
c
t
_
x
 
+
 
1
)
;
 
j
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v
n
[
i
,
 
j
]
 
=
 
0
.
0
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
/
 
S
o
l
v
e
s
 
c
o
n
t
i
n
u
i
t
y
 
e
q
u
a
t
i
o
n
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
 
=
 
1
;
 
i
 
<
=
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
-
 
1
)
;
 
i
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
j
 
=
 
1
;
 
j
 
<
=
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
 
-
 
1
)
;
 
j
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
p
n
[
i
,
 
j
]
 
=
 
p
[
i
,
 
j
]
 
-
 
d
t
 
*
 
d
e
l
t
a
 
*
 
(
(
u
n
[
i
,
 
j
]
 
-
 
u
n
[
i
,
 
j
 
-
 
1
]
)
 
/
 
d
x
 
+
 
(
v
n
[
i
,
 
j
]
 
-
 
v
n
[
i
 
-
 
1
,
 
j
]
)
 
/
 
d
y
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
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/
/
 
D
i
s
p
l
a
y
i
n
g
 
e
r
r
o
r
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
r
r
o
r
 
=
 
0
.
0
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
 
=
 
1
;
 
i
 
<
=
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
-
 
1
)
;
 
i
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
j
 
=
 
1
;
 
j
 
<
=
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
 
-
 
1
)
;
 
j
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
m
[
i
,
 
j
]
 
=
 
(
(
u
n
[
i
,
 
j
]
 
-
 
u
n
[
i
,
 
j
 
-
 
1
]
)
 
/
 
d
x
 
+
 
(
v
n
[
i
,
 
j
]
 
-
 
v
n
[
i
 
-
 
1
,
 
j
]
)
 
/
 
d
y
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
r
r
o
r
 
=
 
e
r
r
o
r
 
+
 
M
a
t
h
.
A
b
s
(
m
[
i
,
 
j
]
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
f
 
(
s
t
e
p
 
%
 
1
0
0
0
 
=
=
 
1
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
E
r
r
o
r
 
i
s
 
"
 
+
 
e
r
r
o
r
 
+
 
"
 
f
o
r
 
t
h
e
 
s
t
e
p
 
"
 
+
 
s
t
e
p
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
/
 
I
t
e
r
a
t
i
n
g
 
u
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
 
=
 
0
;
 
i
 
<
=
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;
 
i
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
j
 
=
 
0
;
 
j
 
<
=
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
 
-
 
1
)
;
 
j
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
u
[
i
,
 
j
]
 
=
 
u
n
[
i
,
 
j
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
/
 
I
t
e
r
a
t
i
n
g
 
v
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
 
=
 
0
;
 
i
 
<
=
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
-
 
1
)
;
 
i
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
j
 
=
 
0
;
 
j
 
<
=
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;
 
j
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v
[
i
,
 
j
]
 
=
 
v
n
[
i
,
 
j
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
/
 
I
t
e
r
a
t
i
n
g
 
p
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f
o
r
 
(
i
 
=
 
0
;
 
i
 
<
=
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;
 
i
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
j
 
=
 
0
;
 
j
 
<
=
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;
 
j
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
p
[
i
,
 
j
]
 
=
 
p
n
[
i
,
 
j
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
s
t
e
p
 
=
 
s
t
e
p
 
+
 
1
;
 

  
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
 
=
 
0
;
 
i
 
<
=
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
-
 
1
)
;
 
i
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
j
 
=
 
0
;
 
j
 
<
=
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
 
-
 
1
)
;
 
j
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
u
c
[
i
,
 
j
]
 
=
 
0
.
5
 
*
 
(
u
[
i
,
 
j
]
 
+
 
u
[
i
 
+
 
1
,
 
j
]
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v
c
[
i
,
 
j
]
 
=
 
0
.
5
 
*
 
(
v
[
i
,
 
j
]
 
+
 
v
[
i
,
 
j
 
+
 
1
]
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
p
c
[
i
,
 
j
]
 
=
 
0
.
2
5
 
*
 
(
p
[
i
,
 
j
]
 
+
 
p
[
i
 
+
 
1
,
 
j
]
 
+
 
p
[
i
,
 
j
 
+
 
1
]
 
+
 
p
[
i
 
+
 
1
,
 
j
 
+
 
1
]
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

   
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
 
=
 
0
;
 
i
 
<
=
 
8
;
 
i
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
j
 
=
 
0
;
 
j
 
<
=
 
8
;
 
j
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
t
r
a
i
n
_
d
a
t
a
.
A
d
d
(
b
n
[
i
,
 
j
]
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

   
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
 
=
 
0
;
 
i
 
<
=
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
-
 
1
)
;
 
i
+
=
V
a
r
i
a
b
l
e
s
.
m
u
l
t
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
j
 
=
 
0
;
 
j
 
<
=
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
 
-
 
1
)
;
 
j
+
=
V
a
r
i
a
b
l
e
s
.
m
u
l
t
)
 



  

 

Appendix 

82 | P a g e  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
t
r
a
i
n
_
l
a
b
e
l
_
x
.
A
d
d
(
V
a
r
i
a
b
l
e
s
.
n
o
r
m
(
u
c
[
i
,
 
j
]
,
 
-
1
.
0
,
 
1
.
0
)
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
t
r
a
i
n
_
l
a
b
e
l
_
y
.
A
d
d
(
V
a
r
i
a
b
l
e
s
.
n
o
r
m
(
v
c
[
i
,
 
j
]
,
 
-
1
.
0
,
 
1
.
0
)
)
;
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

   
 
 
 
 
 
 
 
 
 
 
 
/
/
 
O
U
T
P
U
T
 
D
A
T
A
 

 
 
 
 
 
 
 
 
 
 
 
 
s
t
r
i
n
g
 
d
a
t
a
1
 
=
 
"
V
A
R
I
A
B
L
E
S
=
\
"
X
\
"
,
\
"
Y
\
"
,
\
"
U
\
"
,
\
"
V
\
"
,
\
"
P
\
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
1
 
+
=
 
"
Z
O
N
E
 
 
F
=
P
O
I
N
T
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
1
 
+
=
 
"
I
=
"
 
+
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
 
+
 
"
,
 
J
=
"
 
+
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
+
 
"
\
n
"
;
 

    
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
 
=
 
0
;
 
i
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;
 
i
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
j
 
=
 
0
;
 
j
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;
 
j
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
 
x
p
o
s
,
 
y
p
o
s
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x
p
o
s
 
=
 
j
 
*
 
d
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
y
p
o
s
 
=
 
i
 
*
 
d
y
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
1
 
+
=
 
x
p
o
s
 
+
 
"
\
t
"
 
+
 
y
p
o
s
 
+
 
"
\
t
"
 
+
 
u
c
[
i
,
 
j
]
 
+
 
"
\
t
"
 
+
 
v
c
[
i
,
 
j
]
 
+
 
"
\
t
"
 
+
 
p
c
[
i
,
 
j
]
 
+
 
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e
 
+
 
"
.
p
l
t
"
,
 
d
a
t
a
1
)
;
 

   
 
 
 
 
 
 
 
 
 
 
 
/
/
D
U
M
P
I
N
G
 
S
I
M
 
V
A
L
U
E
S
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
u
s
i
n
g
 
(
S
t
r
e
a
m
W
r
i
t
e
r
 
w
r
i
t
e
r
1
 
=
 
F
i
l
e
.
A
p
p
e
n
d
T
e
x
t
(
"
t
r
a
i
n
i
n
g
_
d
a
t
a
.
t
x
t
"
)
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
w
r
i
t
e
r
1
.
W
r
i
t
e
L
i
n
e
(
S
t
r
i
n
g
.
J
o
i
n
(
"
,
"
,
 
t
r
a
i
n
_
d
a
t
a
)
)
;
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}
 

  
 
 
 
 
 
 
 
 
 
 
 
u
s
i
n
g
 
(
S
t
r
e
a
m
W
r
i
t
e
r
 
w
r
i
t
e
r
2
 
=
 
F
i
l
e
.
A
p
p
e
n
d
T
e
x
t
(
"
t
r
a
i
n
i
n
g
_
l
a
b
e
l
_
x
_
g
r
i
d
_
s
i
z
e
.
t
x
t
"
)
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
w
r
i
t
e
r
2
.
W
r
i
t
e
L
i
n
e
(
S
t
r
i
n
g
.
J
o
i
n
(
"
,
"
,
 
t
r
a
i
n
_
l
a
b
e
l
_
x
)
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

   
 
 
 
 
 
 
 
 
 
 
 
u
s
i
n
g
 
(
S
t
r
e
a
m
W
r
i
t
e
r
 
w
r
i
t
e
r
2
 
=
 
F
i
l
e
.
A
p
p
e
n
d
T
e
x
t
(
"
t
r
a
i
n
i
n
g
_
l
a
b
e
l
_
y
_
g
r
i
d
_
s
i
z
e
.
t
x
t
"
)
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
w
r
i
t
e
r
2
.
W
r
i
t
e
L
i
n
e
(
S
t
r
i
n
g
.
J
o
i
n
(
"
,
"
,
 
t
r
a
i
n
_
l
a
b
e
l
_
y
)
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

   
 
 
 
 
 
 
 
 
 
 
 
t
r
a
i
n
_
d
a
t
a
 
=
 
n
e
w
 
L
i
s
t
<
d
o
u
b
l
e
>
(
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
t
r
a
i
n
_
l
a
b
e
l
_
x
 
=
 
n
e
w
 
L
i
s
t
<
d
o
u
b
l
e
>
(
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
t
r
a
i
n
_
l
a
b
e
l
_
y
 
=
 
n
e
w
 
L
i
s
t
<
d
o
u
b
l
e
>
(
)
;
 

  
 
 
 
 
 
 
 
}
 

  
 
 
 
}
 

}
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C
#

 C
o

d
e 

fo
r 

A
N

N
 T

ra
in

in
g

 

u
s
i
n
g
 
S
y
s
t
e
m
;
 

u
s
i
n
g
 
S
y
s
t
e
m
.
C
o
l
l
e
c
t
i
o
n
s
.
G
e
n
e
r
i
c
;
 

u
s
i
n
g
 
S
y
s
t
e
m
.
L
i
n
q
;
 

u
s
i
n
g
 
S
y
s
t
e
m
.
T
e
x
t
;
 

u
s
i
n
g
 
S
y
s
t
e
m
.
T
h
r
e
a
d
i
n
g
.
T
a
s
k
s
;
 

 n
a
m
e
s
p
a
c
e
 
C
S
C
F
D
 

{
 

 
 
 
 
c
l
a
s
s
 
N
e
u
r
a
l
N
e
t
w
o
r
k
 

 
 
 
 
{
 

  
 
 
 
 
 
 
 
p
u
b
l
i
c
 
d
o
u
b
l
e
 
T
r
a
i
n
N
o
w
(
i
n
t
 
n
)
 

 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
 
c
o
s
t
 
=
 
0
;
 

   
 
 
 
 
 
 
 
 
 
 
 
L
i
s
t
<
d
o
u
b
l
e
>
 
p
i
x
e
l
s
 
=
 
V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
d
a
t
a
[
n
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
L
i
s
t
<
d
o
u
b
l
e
>
 
t
a
r
g
e
t
s
 
=
 
V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
l
a
b
e
l
[
n
]
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
L
i
s
t
<
d
o
u
b
l
e
>
 
h
d
l
 
=
 
n
e
w
 
L
i
s
t
<
d
o
u
b
l
e
>
(
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
L
i
s
t
<
d
o
u
b
l
e
>
 
o
p
l
 
=
 
n
e
w
 
L
i
s
t
<
d
o
u
b
l
e
>
(
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
L
i
s
t
<
d
o
u
b
l
e
>
 
t
g
l
 
=
 
n
e
w
 
L
i
s
t
<
d
o
u
b
l
e
>
(
)
;
 

   
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
s
 
=
 
0
;
 
s
 
<
 
V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
l
a
b
e
l
_
c
o
u
n
t
;
 
s
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
 
t
a
r
g
e
t
 
=
 
t
a
r
g
e
t
s
[
s
]
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
t
g
l
.
A
d
d
(
t
a
r
g
e
t
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
d
 
=
 
0
;
 
d
 
<
 
V
a
r
i
a
b
l
e
s
.
n
e
u
r
o
n
s
_
i
n
_
h
i
d
d
e
n
_
l
a
y
e
r
;
 
d
+
+
)
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{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
 
h
d
n
 
=
 
0
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
k
 
=
 
0
;
 
k
 
<
 
V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
d
a
t
a
_
c
o
u
n
t
;
 
k
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
h
d
n
 
+
=
 
p
i
x
e
l
s
[
k
]
 
*
 
V
a
r
i
a
b
l
e
s
.
w
1
[
d
]
[
k
]
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
h
d
n
 
=
 
V
a
r
i
a
b
l
e
s
.
s
i
g
m
o
i
d
(
h
d
n
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
h
d
l
.
A
d
d
(
h
d
n
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
s
 
=
 
0
;
 
s
 
<
 
V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
l
a
b
e
l
_
c
o
u
n
t
;
 
s
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
 
o
p
n
 
=
 
0
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
d
 
=
 
0
;
 
d
 
<
 
V
a
r
i
a
b
l
e
s
.
n
e
u
r
o
n
s
_
i
n
_
h
i
d
d
e
n
_
l
a
y
e
r
;
 
d
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
o
p
n
 
+
=
 
h
d
l
[
d
]
 
*
 
V
a
r
i
a
b
l
e
s
.
w
2
[
s
]
[
d
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
o
p
n
 
=
 
V
a
r
i
a
b
l
e
s
.
s
i
g
m
o
i
d
(
o
p
n
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
o
p
l
.
A
d
d
(
o
p
n
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c
o
s
t
 
+
=
 
0
.
5
 
*
 
M
a
t
h
.
P
o
w
(
(
o
p
n
 
-
 
t
g
l
[
s
]
)
,
 
2
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 
}
 

     
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
d
 
=
 
0
;
 
d
 
<
 
V
a
r
i
a
b
l
e
s
.
n
e
u
r
o
n
s
_
i
n
_
h
i
d
d
e
n
_
l
a
y
e
r
;
 
d
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
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d
o
u
b
l
e
 
i
n
t
e
r
_
v
a
l
u
e
 
=
 
0
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
s
 
=
 
0
;
 
s
 
<
 
V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
l
a
b
e
l
_
c
o
u
n
t
;
 
s
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
n
t
e
r
_
v
a
l
u
e
 
+
=
 
(
o
p
l
[
s
]
 
-
 
t
g
l
[
s
]
)
 
*
 
o
p
l
[
s
]
 
*
 
(
1
 
-
 
o
p
l
[
s
]
)
 
*
 
V
a
r
i
a
b
l
e
s
.
w
2
[
s
]
[
d
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
k
 
=
 
0
;
 
k
 
<
 
V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
d
a
t
a
_
c
o
u
n
t
;
 
k
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
V
a
r
i
a
b
l
e
s
.
w
1
[
d
]
[
k
]
 
-
=
 
V
a
r
i
a
b
l
e
s
.
l
e
a
r
n
i
n
g
_
r
a
t
e
 
*
 
i
n
t
e
r
_
v
a
l
u
e
 
*
 
h
d
l
[
d
]
 
*
 
(
1
 
-
 
h
d
l
[
d
]
)
 
*
 
p
i
x
e
l
s
[
k
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

    
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
s
 
=
 
0
;
 
s
 
<
 
V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
l
a
b
e
l
_
c
o
u
n
t
;
 
s
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
d
 
=
 
0
;
 
d
 
<
 
V
a
r
i
a
b
l
e
s
.
n
e
u
r
o
n
s
_
i
n
_
h
i
d
d
e
n
_
l
a
y
e
r
;
 
d
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
V
a
r
i
a
b
l
e
s
.
w
2
[
s
]
[
d
]
 
-
=
 
V
a
r
i
a
b
l
e
s
.
l
e
a
r
n
i
n
g
_
r
a
t
e
 
*
 
(
o
p
l
[
s
]
 
-
 
t
g
l
[
s
]
)
 
*
 
o
p
l
[
s
]
 
*
 
(
1
 
-
 
o
p
l
[
s
]
)
 
*
 
h
d
l
[
d
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
c
o
s
t
 
/
=
 
V
a
r
i
a
b
l
e
s
.
t
r
a
i
n
_
l
a
b
e
l
_
c
o
u
n
t
;
 

  
 
 
 
 
 
 
 
 
 
 
 
r
e
t
u
r
n
 
c
o
s
t
;
 

  
 
 
 
 
 
 
 
}
 

 
 
 
 
}
 

}
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C
#

 C
o

d
e 

fo
r 

A
N

N
 T

es
ti

n
g

 

u
s
i
n
g
 
S
y
s
t
e
m
;
 

u
s
i
n
g
 
S
y
s
t
e
m
.
C
o
l
l
e
c
t
i
o
n
s
;
 

u
s
i
n
g
 
S
y
s
t
e
m
.
C
o
l
l
e
c
t
i
o
n
s
.
G
e
n
e
r
i
c
;
 

u
s
i
n
g
 
S
y
s
t
e
m
.
L
i
n
q
;
 

u
s
i
n
g
 
S
y
s
t
e
m
.
T
e
x
t
;
 

u
s
i
n
g
 
S
y
s
t
e
m
.
T
h
r
e
a
d
i
n
g
.
T
a
s
k
s
;
 

u
s
i
n
g
 
S
y
s
t
e
m
.
I
O
;
 

 n
a
m
e
s
p
a
c
e
 
C
S
C
F
D
 

{
 

 
 
 
 
c
l
a
s
s
 
T
e
s
t
 

 
 
 
 
{
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
p
u
b
l
i
c
 
v
o
i
d
 
T
e
s
t
N
o
w
(
L
i
s
t
<
i
n
t
[
]
>
 
o
b
j
e
c
t
s
,
 
s
t
r
i
n
g
 
t
p
,
 
s
t
r
i
n
g
 
f
)
 

 
 
 
 
 
 
 
 
{
 

  
 
 
 
 
 
 
 
 
 
 
 
i
n
t
[
]
 
l
a
y
e
r
s
 
=
 
n
e
w
 
i
n
t
[
]
 
{
 
8
1
,
 
5
0
0
,
 
1
0
0
0
,
 
V
a
r
i
a
b
l
e
s
.
n
n
o
u
t
p
u
t
 
}
;
 

 
 
 
 
 
 
 
 
 
 
 
 
s
t
r
i
n
g
[
]
 
a
c
t
i
v
a
t
i
o
n
 
=
 
n
e
w
 
s
t
r
i
n
g
[
]
 
{
 
"
r
e
l
u
"
,
 
"
r
e
l
u
"
,
 
"
s
i
g
m
o
i
d
"
 
}
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
[
]
 
l
e
a
r
n
i
n
g
_
r
a
t
e
s
x
 
=
 
n
e
w
 
d
o
u
b
l
e
[
]
 
{
 
0
,
 
0
,
 
0
 
}
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
[
]
 
l
e
a
r
n
i
n
g
_
r
a
t
e
s
y
 
=
 
n
e
w
 
d
o
u
b
l
e
[
]
 
{
 
0
,
 
0
,
 
0
 
}
;
 

  
 
 
 
 
 
 
 
 
 
 
 
N
e
u
r
a
l
N
e
t
w
o
r
k
 
n
e
t
x
G
F
 
=
 
n
e
w
 
N
e
u
r
a
l
N
e
t
w
o
r
k
(
l
a
y
e
r
s
,
 
a
c
t
i
v
a
t
i
o
n
,
 
l
e
a
r
n
i
n
g
_
r
a
t
e
s
x
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
N
e
u
r
a
l
N
e
t
w
o
r
k
 
n
e
t
y
G
F
 
=
 
n
e
w
 
N
e
u
r
a
l
N
e
t
w
o
r
k
(
l
a
y
e
r
s
,
 
a
c
t
i
v
a
t
i
o
n
,
 
l
e
a
r
n
i
n
g
_
r
a
t
e
s
y
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 
N
e
u
r
a
l
N
e
t
w
o
r
k
 
n
e
t
x
L
S
 
=
 
n
e
w
 
N
e
u
r
a
l
N
e
t
w
o
r
k
(
l
a
y
e
r
s
,
 
a
c
t
i
v
a
t
i
o
n
,
 
l
e
a
r
n
i
n
g
_
r
a
t
e
s
x
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
N
e
u
r
a
l
N
e
t
w
o
r
k
 
n
e
t
y
L
S
 
=
 
n
e
w
 
N
e
u
r
a
l
N
e
t
w
o
r
k
(
l
a
y
e
r
s
,
 
a
c
t
i
v
a
t
i
o
n
,
 
l
e
a
r
n
i
n
g
_
r
a
t
e
s
y
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 
n
e
t
x
G
F
.
L
o
a
d
(
"
w
b
_
x
v
e
l
_
"
 
+
 
t
y
p
e
 
+
 
"
_
G
F
"
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
n
e
t
y
G
F
.
L
o
a
d
(
"
w
b
_
y
v
e
l
_
"
 
+
 
t
y
p
e
 
+
 
"
_
G
F
"
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 
n
e
t
x
L
S
.
L
o
a
d
(
"
w
b
_
x
v
e
l
_
"
 
+
 
t
y
p
e
 
+
 
"
_
L
S
"
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
n
e
t
y
L
S
.
L
o
a
d
(
"
w
b
_
y
v
e
l
_
"
 
+
 
t
y
p
e
 
+
 
"
_
L
S
"
)
;
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C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
L
o
a
d
i
n
g
 
d
o
n
e
.
"
)
;
 

   
 
 
 
 
 
 
 
 
 
 
 
d
t
1
 
=
 
D
a
t
e
T
i
m
e
.
N
o
w
;
 

  
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
[
]
 
v
l
x
G
F
 
=
 
n
e
t
x
G
F
.
F
e
e
d
F
o
r
w
a
r
d
(
t
r
a
i
n
_
d
a
t
a
.
T
o
A
r
r
a
y
(
)
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
[
]
 
v
l
y
G
F
 
=
 
n
e
t
y
G
F
.
F
e
e
d
F
o
r
w
a
r
d
(
t
r
a
i
n
_
d
a
t
a
.
T
o
A
r
r
a
y
(
)
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 
d
t
2
 
=
 
D
a
t
e
T
i
m
e
.
N
o
w
;
 

  
 
 
 
 
 
 
 
 
 
 
 
s
p
a
n
 
=
 
d
t
2
 
-
 
d
t
1
;
 

  
 
 
 
 
 
 
 
 
 
 
 
m
s
 
=
 
(
i
n
t
)
s
p
a
n
.
T
o
t
a
l
M
i
l
l
i
s
e
c
o
n
d
s
;
 

  
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
[
,
]
 
u
t
 
=
 
n
e
w
 
d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
[
,
]
 
v
t
 
=
 
n
e
w
 
d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;
 

   
 
 
 
 
 
 
 
 
 
 
 
i
n
t
 
c
o
u
n
t
e
r
 
=
 
0
;
 

  
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
p
 
=
 
0
;
 
p
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;
 
p
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
q
 
=
 
0
;
 
q
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;
 
q
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
u
t
[
p
,
 
q
]
 
=
 
V
a
r
i
a
b
l
e
s
.
d
n
o
r
m
(
v
l
x
G
F
[
c
o
u
n
t
e
r
]
,
 
-
1
.
0
,
 
1
.
0
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v
t
[
p
,
 
q
]
 
=
 
V
a
r
i
a
b
l
e
s
.
d
n
o
r
m
(
v
l
y
G
F
[
c
o
u
n
t
e
r
]
,
 
-
1
.
0
,
 
1
.
0
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c
o
u
n
t
e
r
+
+
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
s
t
r
i
n
g
 
d
a
t
a
4
 
=
 
"
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
s
t
r
i
n
g
 
d
a
t
a
5
 
=
 
"
"
;
 

  
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
 
t
o
t
a
l
_
g
f
_
e
r
r
o
r
U
 
=
 
0
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
 
t
o
t
a
l
_
g
f
_
e
r
r
o
r
V
 
=
 
0
;
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d
o
u
b
l
e
 
t
o
t
a
l
_
l
s
_
e
r
r
o
r
U
 
=
 
0
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
 
t
o
t
a
l
_
l
s
_
e
r
r
o
r
V
 
=
 
0
;
 

  
 
 
 
 
 
 
 
 
 
 
 
/
/
A
N
N
 
G
F
 
O
U
T
P
U
T
 

  
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
 
=
 
"
V
A
R
I
A
B
L
E
S
=
\
"
X
\
"
,
\
"
Y
\
"
,
\
"
U
\
"
,
\
"
V
\
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
 
+
=
 
"
Z
O
N
E
 
 
F
=
P
O
I
N
T
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
 
+
=
 
"
I
=
"
 
+
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
 
+
 
"
,
 
J
=
"
 
+
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
+
 
"
\
n
"
;
 

  
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
2
 
=
 
"
V
A
R
I
A
B
L
E
S
=
\
"
X
\
"
,
\
"
Y
\
"
,
\
"
U
 
(
D
i
f
f
)
\
"
,
\
"
V
 
(
D
i
f
f
)
\
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
2
 
+
=
 
"
Z
O
N
E
 
 
F
=
P
O
I
N
T
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
2
 
+
=
 
"
I
=
"
 
+
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
 
+
 
"
,
 
J
=
"
 
+
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
+
 
"
\
n
"
;
 

  
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
4
 
=
 
"
V
A
R
I
A
B
L
E
S
=
\
"
G
r
i
d
 
P
o
i
n
t
s
\
"
,
\
"
U
 
(
D
i
f
f
)
\
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
4
 
+
=
 
"
Z
O
N
E
 
 
F
=
P
O
I
N
T
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
4
 
+
=
 
"
I
=
"
 
+
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
 
*
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
+
 
"
\
n
"
;
 

  
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
5
 
=
 
"
V
A
R
I
A
B
L
E
S
=
\
"
G
r
i
d
 
P
o
i
n
t
s
\
"
,
\
"
V
 
(
D
i
f
f
)
\
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
5
 
+
=
 
"
Z
O
N
E
 
 
F
=
P
O
I
N
T
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
5
 
+
=
 
"
I
=
"
 
+
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
 
*
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
+
 
"
\
n
"
;
 

  
 
 
 
 
 
 
 
 
 
 
 
i
n
t
 
e
c
o
u
n
t
e
r
 
=
 
1
;
 

  
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
p
 
=
 
0
;
 
p
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;
 
p
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
q
 
=
 
0
;
 
q
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;
 
q
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
 
x
p
o
s
,
 
y
p
o
s
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x
p
o
s
 
=
 
q
 
*
 
d
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
y
p
o
s
 
=
 
p
 
*
 
d
y
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
4
 
+
=
 
e
c
o
u
n
t
e
r
 
+
 
"
\
t
"
 
+
 
r
e
l
_
c
h
a
n
g
e
(
u
t
[
p
,
 
q
]
,
 
u
c
[
p
,
 
q
]
)
 
+
 
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
5
 
+
=
 
e
c
o
u
n
t
e
r
 
+
 
"
\
t
"
 
+
 
r
e
l
_
c
h
a
n
g
e
(
v
t
[
p
,
 
q
]
,
 
v
c
[
p
,
 
q
]
)
 
+
 
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
c
o
u
n
t
e
r
+
+
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
t
o
t
a
l
_
g
f
_
e
r
r
o
r
U
 
+
=
 
r
e
l
_
c
h
a
n
g
e
(
u
t
[
p
,
 
q
]
,
 
u
c
[
p
,
 
q
]
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
t
o
t
a
l
_
g
f
_
e
r
r
o
r
V
 
+
=
 
r
e
l
_
c
h
a
n
g
e
(
v
t
[
p
,
 
q
]
,
 
v
c
[
p
,
 
q
]
)
;
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}
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
t
o
t
a
l
_
g
f
_
e
r
r
o
r
U
 
=
 
t
o
t
a
l
_
g
f
_
e
r
r
o
r
U
 
/
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
*
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
t
o
t
a
l
_
g
f
_
e
r
r
o
r
V
 
=
 
t
o
t
a
l
_
g
f
_
e
r
r
o
r
V
 
/
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
*
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;
 

   
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
p
 
=
 
0
;
 
p
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;
 
p
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
q
 
=
 
0
;
 
q
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;
 
q
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
 
x
p
o
s
,
 
y
p
o
s
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x
p
o
s
 
=
 
q
 
*
 
d
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
y
p
o
s
 
=
 
p
 
*
 
d
y
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
 
+
=
 
x
p
o
s
 
+
 
"
\
t
"
 
+
 
y
p
o
s
 
+
 
"
\
t
"
 
+
 
u
t
[
p
,
 
q
]
 
+
 
"
\
t
"
 
+
 
v
t
[
p
,
 
q
]
 
+
 
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
f
o
r
e
a
c
h
 
(
i
n
t
[
]
 
o
b
 
i
n
 
o
b
j
e
c
t
s
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
o
b
j
e
c
t
_
x
 
=
 
o
b
[
0
]
 
*
 
V
a
r
i
a
b
l
e
s
.
d
i
v
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
o
b
j
e
c
t
_
y
 
=
 
o
b
[
1
]
 
*
 
V
a
r
i
a
b
l
e
s
.
d
i
v
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
 
=
 
o
b
j
e
c
t
_
y
 
+
 
1
;
 
i
 
<
=
 
(
o
b
j
e
c
t
_
w
i
d
t
h
 
+
 
o
b
j
e
c
t
_
y
)
 
-
 
1
;
 
i
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
j
 
=
 
o
b
j
e
c
t
_
x
 
+
 
1
;
 
j
 
<
=
 
(
o
b
j
e
c
t
_
l
e
n
g
t
h
 
+
 
o
b
j
e
c
t
_
x
)
 
-
 
1
;
 
j
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
u
t
[
i
,
 
j
]
 
=
 
1
.
0
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v
t
[
i
,
 
j
]
 
=
 
1
.
0
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
p
 
=
 
0
;
 
p
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;
 
p
+
+
)
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{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
q
 
=
 
0
;
 
q
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;
 
q
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
 
x
p
o
s
,
 
y
p
o
s
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x
p
o
s
 
=
 
q
 
*
 
d
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
y
p
o
s
 
=
 
p
 
*
 
d
y
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
2
 
+
=
 
x
p
o
s
 
+
 
"
\
t
"
 
+
 
y
p
o
s
 
+
 
"
\
t
"
 
+
 
r
e
l
_
c
h
a
n
g
e
(
u
t
[
p
,
 
q
]
,
 
u
c
[
p
,
 
q
]
)
 
+
 
"
\
t
"
 
+
 
r
e
l
_
c
h
a
n
g
e
(
v
t
[
p
,
 
q
]
,
 
v
c
[
p
,
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
q
]
)
 
+
 
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
 
+
=
 
"
T
E
X
T
 
X
=
5
 
Y
=
9
3
 
T
=
\
"
"
 
+
 
t
y
p
e
 
+
 
"
 
A
N
N
 
G
F
 
R
e
s
u
l
t
s
 
(
"
 
+
 
m
s
 
+
 
"
 
m
s
)
\
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
2
 
+
=
 
"
T
E
X
T
 
X
=
5
 
Y
=
9
3
 
T
=
\
"
"
 
+
 
t
y
p
e
 
+
 
"
 
A
N
N
 
G
F
 
D
i
f
f
e
r
e
n
c
e
s
\
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
4
 
+
=
 
"
T
E
X
T
 
X
=
5
 
Y
=
9
3
 
T
=
\
"
"
 
+
 
t
y
p
e
 
+
 
"
 
A
N
N
 
G
F
 
D
i
f
f
e
r
e
n
c
e
s
\
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
5
 
+
=
 
"
T
E
X
T
 
X
=
5
 
Y
=
9
3
 
T
=
\
"
"
 
+
 
t
y
p
e
 
+
 
"
 
A
N
N
 
G
F
 
D
i
f
f
e
r
e
n
c
e
s
\
"
\
n
"
;
 

  
 
 
 
 
 
 
 
 
 
 
 
f
o
r
e
a
c
h
 
(
i
n
t
[
]
 
o
b
 
i
n
 
o
b
j
e
c
t
s
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
 
+
=
 
"
G
E
O
M
E
T
R
Y
 
X
=
"
 
+
 
(
1
3
.
2
 
+
 
(
8
.
5
2
 
*
 
o
b
[
0
]
)
)
 
+
 
"
,
 
Y
=
"
 
+
 
(
1
1
 
+
 
(
9
.
6
5
 
*
 
o
b
[
1
]
)
)
 
+
 
"
,
 
T
=
S
Q
U
A
R
E
,
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F
C
=
B
L
A
C
K
\
n
8
.
5
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
2
 
+
=
 
"
G
E
O
M
E
T
R
Y
 
X
=
"
 
+
 
(
1
3
.
2
 
+
 
(
8
.
5
2
 
*
 
o
b
[
0
]
)
)
 
+
 
"
,
 
Y
=
"
 
+
 
(
1
1
 
+
 
(
9
.
6
5
 
*
 
o
b
[
1
]
)
)
 
+
 
"
,
 
T
=
S
Q
U
A
R
E
,
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F
C
=
B
L
A
C
K
\
n
8
.
5
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e
 
+
 
"
_
A
N
N
_
G
F
.
p
l
t
"
,
 
d
a
t
a
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e
 
+
 
"
_
A
N
N
_
G
F
_
E
r
r
o
r
.
p
l
t
"
,
 
d
a
t
a
2
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e
 
+
 
"
_
A
N
N
_
G
F
_
E
r
r
o
r
_
L
i
n
e
U
.
p
l
t
"
,
 
d
a
t
a
4
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e
 
+
 
"
_
A
N
N
_
G
F
_
E
r
r
o
r
_
L
i
n
e
V
.
p
l
t
"
,
 
d
a
t
a
5
)
;
 

   
 
 
 
 
 
 
 
 
 
 
 
C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
G
F
 
A
N
N
 
D
o
n
e
.
"
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 
/
/
A
N
N
 
L
S
 
O
U
T
P
U
T
 

  
 
 
 
 
 
 
 
 
 
 
 
d
t
1
 
=
 
D
a
t
e
T
i
m
e
.
N
o
w
;
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d
o
u
b
l
e
[
]
 
v
l
x
L
S
 
=
 
n
e
t
x
L
S
.
F
e
e
d
F
o
r
w
a
r
d
(
t
r
a
i
n
_
d
a
t
a
.
T
o
A
r
r
a
y
(
)
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
[
]
 
v
l
y
L
S
 
=
 
n
e
t
y
L
S
.
F
e
e
d
F
o
r
w
a
r
d
(
t
r
a
i
n
_
d
a
t
a
.
T
o
A
r
r
a
y
(
)
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 
d
t
2
 
=
 
D
a
t
e
T
i
m
e
.
N
o
w
;
 

  
 
 
 
 
 
 
 
 
 
 
 
s
p
a
n
 
=
 
d
t
2
 
-
 
d
t
1
;
 

  
 
 
 
 
 
 
 
 
 
 
 
m
s
 
=
 
(
i
n
t
)
s
p
a
n
.
T
o
t
a
l
M
i
l
l
i
s
e
c
o
n
d
s
;
 

  
 
 
 
 
 
 
 
 
 
 
 
u
t
 
=
 
n
e
w
 
d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
v
t
 
=
 
n
e
w
 
d
o
u
b
l
e
[
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
,
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
]
;
 

  
 
 
 
 
 
 
 
 
 
 
 
c
o
u
n
t
e
r
 
=
 
0
;
 

  
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
p
 
=
 
0
;
 
p
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;
 
p
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
q
 
=
 
0
;
 
q
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;
 
q
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
u
t
[
p
,
 
q
]
 
=
 
V
a
r
i
a
b
l
e
s
.
d
n
o
r
m
(
v
l
x
L
S
[
c
o
u
n
t
e
r
]
,
 
-
1
.
0
,
 
1
.
0
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v
t
[
p
,
 
q
]
 
=
 
V
a
r
i
a
b
l
e
s
.
d
n
o
r
m
(
v
l
y
L
S
[
c
o
u
n
t
e
r
]
,
 
-
1
.
0
,
 
1
.
0
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c
o
u
n
t
e
r
+
+
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

   
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
 
=
 
"
V
A
R
I
A
B
L
E
S
=
\
"
X
\
"
,
\
"
Y
\
"
,
\
"
U
\
"
,
\
"
V
\
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
 
+
=
 
"
Z
O
N
E
 
 
F
=
P
O
I
N
T
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
 
+
=
 
"
I
=
"
 
+
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
 
+
 
"
,
 
J
=
"
 
+
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
+
 
"
\
n
"
;
 

  
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
2
 
=
 
"
V
A
R
I
A
B
L
E
S
=
\
"
X
\
"
,
\
"
Y
\
"
,
\
"
U
 
(
D
i
f
f
)
\
"
,
\
"
V
 
(
D
i
f
f
)
\
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
2
 
+
=
 
"
Z
O
N
E
 
 
F
=
P
O
I
N
T
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
2
 
+
=
 
"
I
=
"
 
+
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
 
+
 
"
,
 
J
=
"
 
+
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
+
 
"
\
n
"
;
 

  
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
4
 
=
 
"
V
A
R
I
A
B
L
E
S
=
\
"
G
r
i
d
 
P
o
i
n
t
s
\
"
,
\
"
U
 
(
D
i
f
f
)
\
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
4
 
+
=
 
"
Z
O
N
E
 
 
F
=
P
O
I
N
T
\
n
"
;
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d
a
t
a
4
 
+
=
 
"
I
=
"
 
+
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
 
*
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
+
 
"
\
n
"
;
 

  
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
5
 
=
 
"
V
A
R
I
A
B
L
E
S
=
\
"
G
r
i
d
 
P
o
i
n
t
s
\
"
,
\
"
V
 
(
D
i
f
f
)
\
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
5
 
+
=
 
"
Z
O
N
E
 
 
F
=
P
O
I
N
T
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
5
 
+
=
 
"
I
=
"
 
+
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
 
*
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
+
 
"
\
n
"
;
 

  
 
 
 
 
 
 
 
 
 
 
 
e
c
o
u
n
t
e
r
 
=
 
1
;
 

  
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
p
 
=
 
0
;
 
p
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;
 
p
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
q
 
=
 
0
;
 
q
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;
 
q
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
 
x
p
o
s
,
 
y
p
o
s
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x
p
o
s
 
=
 
q
 
*
 
d
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
y
p
o
s
 
=
 
p
 
*
 
d
y
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
4
 
+
=
 
e
c
o
u
n
t
e
r
 
+
 
"
\
t
"
 
+
 
r
e
l
_
c
h
a
n
g
e
(
u
t
[
p
,
 
q
]
,
 
u
c
[
p
,
 
q
]
)
 
+
 
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
5
 
+
=
 
e
c
o
u
n
t
e
r
 
+
 
"
\
t
"
 
+
 
r
e
l
_
c
h
a
n
g
e
(
v
t
[
p
,
 
q
]
,
 
v
c
[
p
,
 
q
]
)
 
+
 
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
c
o
u
n
t
e
r
+
+
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
t
o
t
a
l
_
l
s
_
e
r
r
o
r
U
 
+
=
 
r
e
l
_
c
h
a
n
g
e
(
u
t
[
p
,
 
q
]
,
 
u
c
[
p
,
 
q
]
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
t
o
t
a
l
_
l
s
_
e
r
r
o
r
V
 
+
=
 
r
e
l
_
c
h
a
n
g
e
(
v
t
[
p
,
 
q
]
,
 
v
c
[
p
,
 
q
]
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
t
o
t
a
l
_
l
s
_
e
r
r
o
r
U
 
=
 
t
o
t
a
l
_
l
s
_
e
r
r
o
r
U
 
/
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
*
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
t
o
t
a
l
_
l
s
_
e
r
r
o
r
V
 
=
 
t
o
t
a
l
_
l
s
_
e
r
r
o
r
V
 
/
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
 
*
 
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
p
 
=
 
0
;
 
p
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;
 
p
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
q
 
=
 
0
;
 
q
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;
 
q
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
 
x
p
o
s
,
 
y
p
o
s
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x
p
o
s
 
=
 
q
 
*
 
d
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
y
p
o
s
 
=
 
p
 
*
 
d
y
;
 

 



  

 

Appendix 

94 | P a g e  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
 
+
=
 
x
p
o
s
 
+
 
"
\
t
"
 
+
 
y
p
o
s
 
+
 
"
\
t
"
 
+
 
u
t
[
p
,
 
q
]
 
+
 
"
\
t
"
 
+
 
v
t
[
p
,
 
q
]
 
+
 
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
f
o
r
e
a
c
h
 
(
i
n
t
[
]
 
o
b
 
i
n
 
o
b
j
e
c
t
s
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
o
b
j
e
c
t
_
x
 
=
 
o
b
[
0
]
 
*
 
V
a
r
i
a
b
l
e
s
.
d
i
v
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
o
b
j
e
c
t
_
y
 
=
 
o
b
[
1
]
 
*
 
V
a
r
i
a
b
l
e
s
.
d
i
v
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
 
=
 
o
b
j
e
c
t
_
y
 
+
 
1
;
 
i
 
<
=
 
(
o
b
j
e
c
t
_
w
i
d
t
h
 
+
 
o
b
j
e
c
t
_
y
)
 
-
 
1
;
 
i
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
j
 
=
 
o
b
j
e
c
t
_
x
 
+
 
1
;
 
j
 
<
=
 
(
o
b
j
e
c
t
_
l
e
n
g
t
h
 
+
 
o
b
j
e
c
t
_
x
)
 
-
 
1
;
 
j
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
u
t
[
i
,
 
j
]
 
=
 
1
.
0
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v
t
[
i
,
 
j
]
 
=
 
1
.
0
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
p
 
=
 
0
;
 
p
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
i
)
;
 
p
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f
o
r
 
(
i
n
t
 
q
 
=
 
0
;
 
q
 
<
 
(
V
a
r
i
a
b
l
e
s
.
g
r
i
d
j
)
;
 
q
+
+
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
o
u
b
l
e
 
x
p
o
s
,
 
y
p
o
s
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x
p
o
s
 
=
 
q
 
*
 
d
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
y
p
o
s
 
=
 
p
 
*
 
d
y
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
2
 
+
=
 
x
p
o
s
 
+
 
"
\
t
"
 
+
 
y
p
o
s
 
+
 
"
\
t
"
 
+
 
r
e
l
_
c
h
a
n
g
e
(
u
t
[
p
,
 
q
]
,
 
u
c
[
p
,
 
q
]
)
 
+
 
"
\
t
"
 
+
 
r
e
l
_
c
h
a
n
g
e
(
v
t
[
p
,
 
q
]
,
 
v
c
[
p
,
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
q
]
)
 
+
 
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
 
+
=
 
"
T
E
X
T
 
X
=
5
 
Y
=
9
3
 
T
=
\
"
"
 
+
 
t
y
p
e
 
+
 
"
 
A
N
N
 
L
S
 
R
e
s
u
l
t
s
 
(
"
 
+
 
m
s
 
+
 
"
 
m
s
)
\
"
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
2
 
+
=
 
"
T
E
X
T
 
X
=
5
 
Y
=
9
3
 
T
=
\
"
"
 
+
 
t
y
p
e
 
+
 
"
 
A
N
N
 
L
S
 
D
i
f
f
e
r
e
n
c
e
s
\
"
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
4
 
+
=
 
"
T
E
X
T
 
X
=
5
 
Y
=
9
3
 
T
=
\
"
"
 
+
 
t
y
p
e
 
+
 
"
 
A
N
N
 
L
S
 
D
i
f
f
e
r
e
n
c
e
s
\
"
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
5
 
+
=
 
"
T
E
X
T
 
X
=
5
 
Y
=
9
3
 
T
=
\
"
"
 
+
 
t
y
p
e
 
+
 
"
 
A
N
N
 
L
S
 
D
i
f
f
e
r
e
n
c
e
s
\
"
\
n
"
;
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f
o
r
e
a
c
h
 
(
i
n
t
[
]
 
o
b
 
i
n
 
o
b
j
e
c
t
s
)
 

 
 
 
 
 
 
 
 
 
 
 
 
{
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
 
+
=
 
"
G
E
O
M
E
T
R
Y
 
X
=
"
 
+
 
(
1
3
.
2
 
+
 
(
8
.
5
2
 
*
 
o
b
[
0
]
)
)
 
+
 
"
,
 
Y
=
"
 
+
 
(
1
1
 
+
 
(
9
.
6
5
 
*
 
o
b
[
1
]
)
)
 
+
 
"
,
 
T
=
S
Q
U
A
R
E
,
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F
C
=
B
L
A
C
K
\
n
8
.
5
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
a
t
a
2
 
+
=
 
"
G
E
O
M
E
T
R
Y
 
X
=
"
 
+
 
(
1
3
.
2
 
+
 
(
8
.
5
2
 
*
 
o
b
[
0
]
)
)
 
+
 
"
,
 
Y
=
"
 
+
 
(
1
1
 
+
 
(
9
.
6
5
 
*
 
o
b
[
1
]
)
)
 
+
 
"
,
 
T
=
S
Q
U
A
R
E
,
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F
C
=
B
L
A
C
K
\
n
8
.
5
\
n
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
}
 

  
 
 
 
 
 
 
 
 
 
 
 
F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e
 
+
 
"
_
A
N
N
_
L
S
.
p
l
t
"
,
 
d
a
t
a
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e
 
+
 
"
_
A
N
N
_
L
S
_
E
r
r
o
r
.
p
l
t
"
,
 
d
a
t
a
2
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e
 
+
 
"
_
A
N
N
_
L
S
_
E
r
r
o
r
_
L
i
n
e
U
.
p
l
t
"
,
 
d
a
t
a
4
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
F
i
l
e
.
W
r
i
t
e
A
l
l
T
e
x
t
(
f
i
l
e
_
n
a
m
e
 
+
 
"
_
A
N
N
_
L
S
_
E
r
r
o
r
_
L
i
n
e
V
.
p
l
t
"
,
 
d
a
t
a
5
)
;
 

   
 
 
 
 
 
 
 
 
 
 
 
C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
L
S
 
A
N
N
 
D
o
n
e
.
"
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 
C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
G
F
 
e
r
r
o
r
 
U
 
"
 
+
 
t
o
t
a
l
_
g
f
_
e
r
r
o
r
U
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
G
F
 
e
r
r
o
r
 
V
 
"
 
+
 
t
o
t
a
l
_
g
f
_
e
r
r
o
r
V
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
L
S
 
e
r
r
o
r
 
U
 
"
 
+
 
t
o
t
a
l
_
l
s
_
e
r
r
o
r
U
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
L
S
 
e
r
r
o
r
 
V
 
"
 
+
 
t
o
t
a
l
_
l
s
_
e
r
r
o
r
U
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 
t
r
a
i
n
_
d
a
t
a
 
=
 
n
e
w
 
L
i
s
t
<
d
o
u
b
l
e
>
(
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
t
r
a
i
n
_
l
a
b
e
l
_
x
 
=
 
n
e
w
 
L
i
s
t
<
d
o
u
b
l
e
>
(
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
t
r
a
i
n
_
l
a
b
e
l
_
y
 
=
 
n
e
w
 
L
i
s
t
<
d
o
u
b
l
e
>
(
)
;
 

  
 
 
 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
}
 

  
 
 
 
}
 

}
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