ABSTRACT

Internet of Things (IoT) connected devices will be reaching people seamlessly in future days. The security aspects for the IoT domain have always been open field of research and analysis. Each of the IoT protocols have its own strength and vulnerabilities. The Message Queue Telemetry Transport (MQTT) application layer IoT protocol is widely used in present day's context. Since, MQTT standard has no mandatory requirements regarding the security services; therefore, manipulating the security issues in MQTT platforms seems very easy. This thesis analyzes the security of MQTT protocol. Basing on the analysis, a security enhanced MQTT protocol is proposed. The proposed protocol is based with added cryptographic primitives to offer security services for IoT system. Mutual authentication between subscriber and broker, mutual authentication between publisher and broker, authentication with key distribution, use of only symmetric key cryptography are the few salient features of the proposed enhanced MQTT protocol. This thesis also conducts a formal verification for the proposed MQTT protocol to prove that the proposed protocol satisfies the intended security attributes. The evaluation result validates that the proposed protocol ensures the secrecy property of the cryptographic credentials and hence, operates securely.

ACKNOWLEDGEMENT

All appreciations are for the Almighty Allah for making me such eligible to take the effort and complete this research work.

The author would like to express his sincere gratitude to supervisor *Dr. Mohammed Shafiul Alam Khan, Associate Professor and Director, Institute of Information Technology (IIT) University of Dhaka* for his kind supervision, guidance, encouragement and inspection throughout the entire research period. The author also expresses thankful gratitude to Co-Supervisor Lieutenant Colonel Dr. Muhammad Nazrul Islam, Instr Cl A, *Department of Computer Science and Engineering, Military Institute of Science and Technology, Mirpur Cantonment* for his continuous support from the beginning of this thesis. Their kind cooperation and guidance made this thesis an effective one.

I would like to commend all the board members of Examiners for their valuable time in recognizing my work and their precious observations. I also thank all my friends and colleagues for their inspiration and advice. The author acknowledges Mr Jafor, for support during the field study.

TABLE OF CONTENTS

ABSTRACT	
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	vi
CHAPTER ONE : INTRODUCTION	1
1.1 Background	1
1.2 Problem Statements	2
1.3 Thesis Objectives	2
1.4 Methodological Overview	3
1.5 Thesis Scope	3
1.6 Organization of the Thesis	4
CHAPTER TWO: THEORETICAL BACKGROUND AND RELATED WORKS	5
2.1 Introduction to IoT Protocols	5
2.1.1 Security Aspects of IoT Protocol	7
2.1.2 Characteristics of IoT Protocols	7
2.2 An Overview of MQTT Protocol	8
2.3 Security Aspects of MQTT Protocol	9
2.4 Use of ProVerif	10

2.5 Critical Summary of Theoretical Studies	
2.5 Related Works	12
2.5.1 Token Based Authentication	12
2.5.2 OAuth Approval Standards	14
2.5.3 Attribute Based Encryption (KP/CP ABE)	16
2.5.4 Use of Lightweight Cryptography	17
2.6 Summary of the Related Works	19
CHAPTER THREE : METHODOLOGY	
3.1 Key Phases of Research Methodology	21
3.1.1 Identification of Research Questions	21
3.1.2 Design of modified protocol	22
3.1.3 Analysis of Protocol	22
3.2 Reference Publication Year and Types	23
3. 3. Steps followed in ProVerif	23
CHAPTER FOUR : ROPOSED SECURITY ENHANCED MQTT	
PROTOCOL	
4.1 Authentication Server	24
4.2 Steps and Services	24
4.3 Authentication Pre-Processing Stage	25
4.4 Different Steps of Authentication	25
4.4 Key Features of the Proposed Protocol	28

CHAPTER FIVE : FORMAL MODELING FOR PROPOSED PROTOCOL

APPENDIX A : PROVERIF CODES	A-1
REFERENCES	44
7.2 Limitations and Future Work	43
7.1 Conclusion	42
CHAPTER SEVEN : CONCLUSION AND FUTURE WORKS	
6.2.5 Authentication with Key Distribution	40
6.2.4 Mutual Authentication between Broker and Subscriber	41
6.2.3 Mutual Authentication between Broker and Publisher	41
6.2.2 Inclusion of Broker Authentication	40
6.2.1 Use of Symmetric Key Cryptography	40
6.2 Analysis of the Proposed MQTT Protocol	40
6.1 ProVerif Verification Result	38
CHAPTER SIX : RESULT AND PERFORMANCE EVALUATION	
5.2.3 The Main Process	36
5.2.2 The Process Macros	33
5.2.1 The Declarations	31
5.2 Formal Model of the Proposed MQTT Scheme	30
5.1 Procedure to be followed for using ProVerif Tool	29

LIST OF FIGURES

Figure 2.1:	Framework sequence – JWT	13
Figure 2.2:	Authorization Mechanism in MQTT by OAuth Slandered	14
Figure 2.3:	Sequence Diagram of the System Architecture of ECC	16
Figure 2.4:	System Architecture with Lightweight cryptograph	18
Figure 3.1:	Steps followed in Research Methodology	22
Figure 3.2:	ProVerif Flow Diagram	23
Figure 4.1:	Various Entity of the Proposed Protocol	24
Figure 4.2:	Security Features of Proposed Model	25
Figure 4.3:	Pre-processing Stage	26
Figure 4.4:	Communication to Authentication Server through Broker.	27
Figure 4.5:	Communication to Broker	27
Figure 4.6:	Validating Broker	28
Figure 5.1:	Summary of declaration - Enhanced MQTT Model	32
Figure 5.2:	Client Process - Enhanced MQTT Model	34
Figure 5.3:	Broker Process - Enhanced MQTT Model	35
Figure 5.4:	Authentication Server Process - Enhanced MQTT Model	36
Figure 5.5:	The Main process - Enhanced MQTT Model	37
Figure 6.1:	MQTT protocol verification result - Session key secrecy	38
Figure 6.2:	MQTT protocol verification result -User credential secrecy	39
Figure 6.3:	MQTT verification result - Broker credential secrecy	39