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ABSTRACT

Reversible Data hiding (RDH) is an evolving forensic and covert-communication tech-
nology that embeds data into a cover image (or other media like video or audio) so that
the embedded data later can be extracted for the copyright protection, integrity estab-
lishment or annotation. Developing such a scheme with better rate-distortion perfor-
mance is challenging since a higher embedding rate usually causes more distortion in
the embedded image. Recently, the pixel-value-ordering (PVO) based RDH schemes
have shown better rate-distortion performance so far. However, the existing PVO-
based RDH schemes have not considered a suitable scanning order in a kernel that can
further improve the embedding rate-distortion performance.

This thesis, therefore, contributes to the development of a PVO-based RDH scheme
with a new PVO-kernel and backward embedding technique. Firstly, a new triangu-
lar kernel is proposed that captures the pixels correlated in the horizontal, vertical
and diagonal directions simultaneously. The proposed kernel is employed in a promi-
nent PVO-based RDH scheme and is verified for a better (or occasionally similar)
rate-distortion performance than the existing schemes that rely on only the column-
or row-kernel. Additionally, a new backward embedding technique is introduced to
counterbalance the distortion caused in a forward embedding phase.

Besides, the computational modeling, and the evaluation, analysis, and validation
of the new PVO-based RDH scheme are presented in the thesis. The simulation results
has demonstrated a promising performance of the proposed scheme and its improve-
ment over the popular and state-of-the-art PVO-based RDH schemes. Particularly, a
significantly better rate-distortion performance is obtained at the higher embedding
rate, which means the proposed scheme is more promising to the applications with a
high embedding capacity requirement like electronic patient record hiding in medical
images. Moreover, the proposed RDH scheme developed using the new kernel and
backward-embedding would create a new paradigm of RDH for the future data hiding
research.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Multimedia has a remarkably growing impact on today’s life-hood, society, research,

and industry. A broad spectrum of emerging multimedia applications has been show-

ing new promises in different areas of medical, space, military, security and surveil-

lance. At the same time, with the integration of communication technologies, ex-

change of multimedia information is also simultaneously raising many security con-

cerns including forgery, copyright violation and privacy invasion of multimedia in-

formation. To this end, different Reversible Data Hiding (RDH) schemes are widely

investigated [1, 2].

The RDH is an evolving forensic and covert-communication technology that em-

beds data into a cover media like an image, video or audio so that the embedded data

later can be extracted for the cover media’s authentication, copyright protection, in-

tegrity establishment or annotation. A better data hiding scheme has to offer better

embedding rate-distortion performance. Since a higher data embedding rate naturally

causes higher embedding distortion, achieving better rate-distortion performance is a

challenging task.

Generally, an RDH scheme has three main processes: generation, embedding and

extraction [3, 4]. A general framework of an RDH scheme is illustrated in Fig. 1.1.

In the generation, required secret-data are generated for an intended application such

as content authentication, copyright protection, annotation, etc. The embedding pro-

cess, on the other hand, deals with how and where the data are to be embedded in the

cover media. The extraction process later extracts the embedded data and completely
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1.2 Literature Review

recovers the original media.

Figure 1.1: A general RDH framework.

1.2 Literature Review

The development of an RDH scheme is being steered by a better rate-distortion per-

formance. In other words, the higher embedding capacity with an invertible and min-

imum possible distortion (or better image quality) is an attractive RDH property. For

example, the pioneering difference expansion (DE)-based RDH scheme [5] with in-

vertible distortion was immediately improved for higher capacity with generalized ex-

pansion [6], reduced location map [7, 8], sorting and prediction [9, 10], and adaptive

embedding [11,12]. On the other hand, for minimizing distortion, the histogram shift-

ing (HS)-based scheme [13] was improved using the difference-histogram [14–16] and

multiple histograms [17, 18]. Other potential developments include the RDH schemes

with prediction error expansion (PEE) [19–38], vector quantization [39,40], interpola-

tion [41, 42], encryption [43, 44], and transform techniques [45, 46].

Among the varieties of RDH principle, PEE is much investigated for its efficient

rate-distortion performance. Generally, prediction errors are computed from a set of lo-

cal pixels from a reference pixel. An error histogram is computed from the prediction-

2



1.2 Literature Review

errors as such the high frequency bins can be expanded for embedding data. The other

bins are shifted accordingly to make room for an invertible expansion. Each expanded

prediction-error thus can embed 1 bit without much affecting the original pixels. Such

reversible expansion of prediction errors thus made a significant step forward in re-

versible data hiding research.

Particularly, a PEE-based RDH scheme can better utilize the combined principles

of DE and HS to expand prediction errors for data hiding. Unlike the use of pixel-

histogram in basic HS, it deals with the prediction errors to obtain a much sharper his-

togram with a set of higher peak beans resulting in higher embedding capacity. Addi-

tionally, unlike the direct change of pixels in basic DE, it expands the prediction errors

to offer minimum possible changes in the pixels resulting in higher quality embedded

images. Further developments of the PEE-based schemes can also be tracked with the

context modification [20,21,47], prediction error classification [22–24], adaptive block

size [25,26], two-dimensional histogram modification [28], pair-wise PEE [27,35] and

pixel value ordering [19, 29–34, 36–38].

Pixel value ordering (PVO) has been an easy solution to minimize the prediction

errors in PEE. With PVO, pixel values are ordered in a group or block of a pixels for

better utilization of the local-pixels correlation. Although the pixel value selection,

grouping and sorting principles for prediction were utilized in [9, 19], the principle

of PVO was well established by Li et al. [29]. That scheme predicted the maximum-

minimum pixel pairs to embed with lower distortion. Peng et al. [30] improved the

PVO with a new histogram-modification principle. Ou et al. [31] extended the basic

PVO to PVO-k for adaptive embedding in the blocks according to the numbers of

maximum- and minimum-valued pixels. Unlike the block-wise prediction in the

original PVO, Qu et al. [32] then extended it to be a pixel-wise for a larger capacity

and better image fidelity. Wang et al. [33] introduced a dynamic partitioning of blocks

for PVO according to the block complexity to improve the embedding capacity.

3



1.3 Research Motivation

Other recent developments include multiple histograms modification [48], pair-wise

PEE [34] and multi-pass PVO [38].

For the performance evaluation and validation of the PVO-based RDH schemes, a

conventional approach is generally used. The embedding rate-distortion performance

of an RDH scheme is evaluated in terms of embedding capacity, embedding rate, and

popular visual degradation metric. For example, the embedding capacity is the total

number of bits embedded in an input image. The embedding rate is measured by bit-

per-pixel (bpp), which is a ratio of the embedding capacity and the total number of

pixels in the input image. For quantifying visual degradation in the embedded im-

ages, PSNR–peak signal to noise ratio and SSIM–structural similarity [49] are being

widely used. Overall rate-distortion performance of a new or improved scheme is also

validated for the test image database: USC-SIPI [50] and Kodak [51].

In summary, the PVO-based RDH schemes mentioned above demonstrated a bet-

ter rate-distortion performance for lower embedding capacity requirement. However,

their rate-distortion performances sharply decrease with higher embedding rate. Their

maximum embedding capacity limits are also lower and they mostly rely on the com-

plex and recursive embedding conditions. On any higher requirement of image fidelity

and/or embedding capacity, their computational complexities thus grow significantly.

Therefore, it is necessary and makes sense to investigate a simple, yet effective tech-

nique of utilizing PVO for both the better image quality and higher embedding rate,

which the research presented in this thesis is particularly aimed at.

1.3 Research Motivation

While much development in the area of RDH has been reported in the last few years

as discussed above, there is still need for investigation to further develop a PVO-based

embedding technique for an RDH scheme. Development of an RDH scheme may have

4



1.3 Research Motivation

several considerations, for example, design requirements and performance require-

ments. Design requirements include how a PVO-based embedding technique would

be designed, where the data would be embedded and how it affects the original pixels.

Performance requirements include computational complexity of the processes and the

visual quality of the embedded images and the embedding capacity (i.e. the rate-distor-

tion performance). To be more specific to the research problem, the following research

question can be posed: ‘can a PVO-based RDH scheme be developed to embed more

data with a better image quality?’

The above question leads us to address two main challenges: developing a suit-

able kernel for PVO and utilizing it in developing an embedding. To address these

challenges, a few sub-questions also arise as follows: (i) how can a better kernel be

developed for a PVO-based embedding to obtain the best possible embedded image

quality? and (ii) can the prediction errors in a PVO-based embedding be counterbal-

aced to further minimize the distortion? The first sub-question entails an investigation

among the existing PVO-based embedding techniques aiming at identifying a suitable

kernel for the best possible embedded image quality. Particularly, a kernel that cap-

tures the pixels in the maximum neighborhood context would contribute to maintain a

better embedded image quality.

Moreover, with the second sub-question, improvement of the embedded image

quality is investigated. The distortion introduced in a PVO-based embedding will be

studied in an additional level of embedding as such the distortion can be counterbal-

anced successively. Such an additional embedding would also improve the embedding

capacity. It is also required to verify that the proposed embedding would not introduce

a significant computational overhead.

5



1.4 Research Objectives

1.4 Research Objectives

In light of the identified gap in the area of the RDH, the research presented in this

thesis sets its primary goal to develop a PVO-based embedding technique and utilize

it in modeling a new RDH scheme as mentioned in the previous section. To carry out

the project, the specific objectives of this work are outlined as follows.

a) To investigate the all possible scanning orders and kernel shapes used in lo-

cal image processing, to determine a set of scanning orders and kernel shapes

promising for an RDH scheme.

b) To analyze the embedding rate-distortion performance of existing PVO-based

RDH schemes for the selected scanning orders and kernels to determine a suit-

able scanning order and a kernel that offer higher embedding capacity and better

embedded image quality.

c) To develop algorithms of the PVO, data embedding and extraction processes for

complete formulation of the proposed PVO-based RDH scheme.

d) To develop an experimental setup for the performance evaluation and bench-

marking of the proposed scheme to demonstrate the expected improvement in

embedding rate-distortion performance for different images.

The expected outcome of this work is, therefore, a new PVO-based RDH scheme

to offer better embedding rate-distortion performance for digital image applications.

1.5 Organization of the Thesis

The remainder of this thesis is organized as follows.

Chapter 2 captures the background of the proposed research of this dissertation.

With an overview of the prominent PVO-based RDH schemes, their associ-

ated techniques are reviewed and the key potentials and limitations are studied.

6



1.5 Organization of the Thesis

The scopes of improvement in the PVO-based RDH schemes are investigated.

Thereby, a further study towards developing a new PVO-based embedding tech-

nique and its use in an RDH scheme is incorporated.

Chapter 3 presents the proposed development of an RDH scheme based on a new

kernel of PVO and backward embedding. With specific algorithmic details of the

kernel, and embedding and extraction processes, the new scheme is illustrated

with necessary technical notes, example and figures.

Chapter 4 presents the evaluation of the proposed scheme for its embedding rate -

distortion performance. The performance of the proposed scheme is validated in

this chapter with high capacity and better image quality compared to prominent

RDH schemes. The presented analysis verified the potential of the proposed

scheme leaving it as a promising candidate for different applications.

Chapter 5 presents the conclusion of the thesis with a summary of the original con-

tributions and future work.

7



CHAPTER 2

PVO-BASED RDH SCHEMES

2.1 Introduction

This chapter summarized the recent developments of the RDH schemes related to the

work presented in this thesis. Before describing those schemes, the main focus of

this work is mentioned here. For example, this research presents in this thesis mainly

focuses on the applications of RDH schemes on the natural digital image for the de-

velopment of a PVO-based RDH model. However the developing model of this work

may be extended to other media applications without loss of generality.

Additionally, with conventional trend of improving an RDH scheme, the perfor-

mance development, evaluation, analysis, and validation are mainly concerned with the

embedding capacity and embedded image quality, as conventionally done in the litera-

ture. Any data, images, processes, algorithms, schemes or methods considered in this

thesis either are digital themselves, or deal with digital inputs and outputs. However,

for readability, the word digital is often omitted in writing. For example, digital image

is merely written as image, respectively without change of their meaning and context.

The basic principle of PVO [29] and its other successive developments leading

to the Jung’s minimum block PVO based RDH scheme [36] is now briefly introduced

here and in the following sections. A generalized framework of PVO-based embedding

is first presented below to define the principle of PVO and its improvements in existing

schemes [29–31, 33, 34, 38].

A PVO-based embedding generally starts with partitioning a cover image I of size

M×N into a set of non-overlapping blocks, i.e., I = [Xk]. With each block containing

n pixels, i.e., X = (x1, x2, · · ·xn), total number of blocks is k = M×N
n

. For each block

8



2.2 Li et al.’s PVO-based RDH Scheme

X , its block pixels, (x1, x2, · · ·xn) are now sorted in ascending order using a sort-

ing function σ (·) to output (xσ(1), xσ(2), · · ·xσ(n)). The function, σ : {1, 2, · · ·n} →

{1, 2, · · ·n} is a unique one-to-one mapping such that xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n)

with σ(i) < σ(j) if xσ(i) = xσ(j) and i < j. Once the block pixels are sorted, they

are used for prediction with a suitable PEE-based embedding of data leading to the

development of different PVO-based schemes as follows. Without loss generality, we

illustrate different PEE-based embedding conditions below for a data bit, b ∈ {0, 1}.

2.2 Li et al.’s PVO-based RDH Scheme

Li et al. [29] proposed to use the second maximum block-pixel, i.e., xσ(n−1) to predict

the maximum xσ(n). The prediction error, e is computed using (2.1). PEE-based em-

bedding is then carried out with the histogram of e. Only bin 1 with e = 1 is used for

embedding of a data-bit, b, and other bins are expanded with the condition of higher

values of e in (2.2a). With the modified error, ê, the maximum block-pixel is updated

accordingly as in Eq (2.2c).

e = xσ(n) − xσ(n−1) (2.1)

ê =



e, if e = 0

e+ b, if e = 1

e+ 1, if e > 1

(2.2a)

x̂σ(n) =xσ(n−1) + ê (2.2b)

=



xσ(n), if e = 0

xσ(n) + b, if e = 1

xσ(n) + 1, if e > 1

(2.2c)
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This process of PEE embedding repeats for all the blocks (until the last data-bit

is embedded assuming the embedding capacity requirement is attained) to output an

embedded image, Î . It is apparent that this embedding does not change the pixel value

order after embedding to ensure perfect data extraction and lossless recovery.

Embedded data are extracted with the inverse embedding conditions. Specifically,

with the embedded image, Î , image blocks X̂k are obtained. For each block, X̂ , the

prediction errors are re-generated using (2.3a). The extracted data-bits and the original

pixels are obtained using the reverse PEE conditions in (2.3).

ê = x̂σ(n) − x̂σ(n−1) (2.3a)

if ê ∈ {1, 2} :


b = ê− 1

xσ(n) = x̂σ(n) − b
(2.3b)

if ê > 2 : xσ(n) = x̂σ(n) − 1 (2.3c)

if ê = 0 : xσ(n) = x̂σ(n) (2.3d)

With the maximum possible change to a pixel value by 1, the embedded image

quality also remains high. With the consideration of minimum block-pixels, this basic

PVO-based embedding is further improved in [30, 36].

2.3 Peng et al.’s Improved PVO-based Scheme

Peng et al. [30] extended the principle of Li et al.’s PVO-to utilize both bins 0 and 1 for

embedding. This is achieved by redefining the prediction error with the consideration

of location information, i.e., the spatial order of the maximum and second maximum

10



2.3 Peng et al.’s Improved PVO-based Scheme

block-pixels are used. The prediction error is thus redefined here as:

e = xu − xv (2.4)

where u = min (σ (n) , σ (n− 1)) and v = max (σ (n) , σ (n− 1)). With this

new definition of e in Peng et al.’s scheme, the value of e can no longer be non-

negative, and the bins 0 and 1 are used for embedding as in (2.5a). Finally, the maxi-

mum block-pixel is modified with (2.5b), where xσ(n−1) is always kept unchanged and

xσ(n) is either increased or unchanged after embedding.

ê =



e+ b, if e = 1

e+ 1, if e > 1

e− b, if e = 0

e− 1, if e < 0

(2.5a)

x̂σ(n) =xσ(n−1) + |ê|

=


xσ(n) + b, if e ∈ {0, 1}

xσ(n) + 1, otherwise
(2.5b)

ê = x̂u − x̂v (2.6a)

if ê > 0 : u = σ(n) & v = σ(n− 1) (2.6b)

if ê ∈ {1, 2} : b = ê− 1 & xσ(n) = x̂u − b

else : xσ(n) = x̂u − 1

(2.6c)

else : u = σ(n− 1) & v = σ(n) (2.6d)
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2.4 Jung’s Minimum PVO-based RDH Scheme

if ê ∈ {0,−1} : b = −ê & xσ(n) = x̂v − b

else : xσ(n) = x̂v − 1

(2.6e)

This process continues for embedding all the data bits in a block to output an em-

bedded image, Î . For the extraction of embedded data-bits and recovery of the original

image, the expanded prediction errors are regenerated from the block-pixels for each

block of Î . With that ê in (2.6a), the inverse PEE embedding conditions in (2.6b)

to (2.6e) are followed to extract the data-bit, b and the original block-pixels, xσ(n) from

each block, X̂ . This is detailed in Peng et al.’s scheme [30].

Data embedding in the minimum block-pixels can also be used as the above embed-

ding in the maximum block-pixels as shown in [30]. However, with the computation

of new prediction error and its use to embed in both the bins 0 and 1, Peng et al. im-

proved the embedding capacity of the Li et al.’s original PVO-based RDH scheme with

a reasonably better-embedded image quality.

2.4 Jung’s Minimum PVO-based RDH Scheme

Jung [36] recently proposed a minimal case of the PVO-based RDH scheme to embed

2 bits in an image-block of size 1 × 3. Particularly, an image I is partitioned into a

set blocks of three pixels as such I = [Xk] with k = {1, 2, · · · M×N
3
}. This means

that, with the general PVO framework presented at the beginning of this section,

Jung’s scheme operates on each block X with the number of block-pixels, n = 3.

Thus the sorting function, σ (·) is used to sort the block-pixels (x1, x2, x3) to be

(xσ(1), xσ(2), xσ(3)), where xσ(3) and xσ(1) are the maximum and minimum block-pix-

els, respectively. A pair of prediction errors, emax and emin for each block is calculated

from the middle block-pixel, xσ(2) according to the (2.7a) and (2.7b). These errors are
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2.4 Jung’s Minimum PVO-based RDH Scheme

expanded with the embedding of a data-bit, b or shifting by the value 1 with (2.7c)

and (2.7d). The maximum and minimum block-pixels are then predicted from the

middle block-pixel and the expanded errors with (2.7e) and (2.7f), respectively.

emax = xσ(3) − xσ(2) (2.7a)

emin = xσ(1) − xσ(2) (2.7b)

êmax =



emax, if emax = 0

emax + b, if emax = 1

emax + 1, if emax > 1

(2.7c)

êmin =



emin, if emin = 0

emin − b, if emin = −1

emin − 1, if emin < −1

(2.7d)

x̂σ(3) = xσ(2) + êmax (2.7e)

x̂σ(1) = xσ(2) + êmin (2.7f)

The data extraction and original block-pixels’ recovery follow the inverse PEE em-

bedding principle of the Jung’s scheme in (2.8) like other PVO-based RDH schemes.

With the recovery of the maximum and minimum block-pixels of all expanded pixels,

the original image is recovered. At the same time, the data-bits are extracted from each

embedded blocks and concatenated to get the original data.

With a single reference pixel in a block, Jung’s scheme predicts the maximum

and minimum block-pixels as such in every three pixels of an image, two bits of

data can be embedded. Thus, the embedding capacity is improved with a reasonably

good embedded image quality. However, the overall embedding rate-distortion perfor-
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mance at lower embedding rate is still much lower than the advanced PVO-based RDH

schemes [32, 34, 38]. In this paper, a more effective use of the Jung’s PVO is investi-

gated and thus the development of a higher capacity RDH scheme with a competitive

visual quality of an embedded image is presented in the section below.

b =


êmax − 1, if 1 ≤ êmax ≤ 2

−êmin − 1, if − 2 ≤ êmin ≤ −1
(2.8a)

xσ(3) =



x̂σ(3), if êmax = 0

x̂σ(3) − b, if 1 ≤ êmax ≤ 2

x̂σ(3) − 1, if êmax > 2

(2.8b)

xσ(2) =x̂σ(2) (2.8c)

xσ(1) =



x̂σ(1), if êmin = 0

x̂σ(1) + b, if − 2 ≤ êmin ≤ −1

x̂σ(1) + 1, if êmin < −2

(2.8d)

2.5 Chapter Summary

This chapter presented a generalized computational model of the PVO-based embed-

ding and its development in the popular RDH schemes. In such schemes, while pixel

values are grouped and arranged in a numerical order to better utilize their correlations

for improving the embedded image quality, not much attention has been paid in com-

putation of PG with better pixel correlation. Additionally, no effort has been made to

counterbalance the embedding distortion by an additional level of embedding, which

has been addressed in the next chapter.
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CHAPTER 3

A NEW PVO-BASED DATA HIDING SCHEME

3.1 Introduction

This chapter presents a new scheme with an improved kernel and backward embed-

ding. Particularly, with the mixed neighborhood (i.e., horizontal, vertical and diagonal)

pixels, an image block of size 3×2 (or 2×3) that creates a pair of pixels-trios of trian-

gular shape possesses a greater possible correlation among the pixels. In Section 3.2,

the proposed kernel is used in modeling a new PVO-based RDH scheme for computing

image blocks. The computational model of the PVO-based RDH scheme thus captures

the principle of both the Jung’s scheme [36] and the proposed new kernels.

Additionally, the proposed RDH scheme also introduces a dual pixel value or-

dering (dPVO) with prediction error expansion (PEE) in Section 3.3. The scheme is

modeled with two phases of embedding; namely, (i) forward embedding with PVO and

PEE, and (ii) backward embedding with dPVO and pairwise-PEE. These two phases

of embedding are expected to improve both the embedding rate and visual quality of

the embedded image.

3.2 The Proposed Kernels for PVO

A PVO-based embedding utilizes image correlations for minimum embedding distor-

tion with higher possible embedding capacity as mentioned in the previous section.

Particularly, embedding of the Jung’s scheme computes the unit prediction error in

a non-overlapping block with horizontal neighborhood pixels. This consideration

however restricts the embedding distortion controlled by the inter-pixel correlations

of a block. Thus, the consideration of defining blocks with a better inter-correlated
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3.2 The Proposed Kernels for PVO

pixels may demonstrate a better embedding rate-distortion performance.

To this end, the embedding performance of the proposed PVO-based RDH scheme

is investigated for different orientations of non-overlapping image blocks. Unlike the

consideration of only horizontal neighborhood pixels to constitute image blocks with

the Jung’s RDH scheme [36], in this chapter, a set of kernels are proposed to define

more suitable image blocks. The image blocks of size 1 × 3 for horizontal neighbor-

hood pixels’ correlation and 3 × 1 for vertical neighborhood pixels’ correlation are

shown in Fig. 3.1. These are the simplest possible orientations for a kernel, which has

been used in the existing PVO embedding techniques. However, this is obvious that

these kernels do not capture correlations in the context of nearest neighborhood pixels.
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y

· · ·

...
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y

· · ·

...

f(0, 0)
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y
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f(0, 0)
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y

· · ·
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f(0, 0)
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y

· · ·

...

(a) (b)

Figure 3.1: Kernels for PVO-based RDH scheme: (a) 3× 1 and (b) 1× 3. Jung [36] used the
kernel in (a) for their PVO embedding.

In order to better exploit the nearest neighborhood correlations, an improved kernel

may therefore be developed. We propose here a number of candidates to improve the

existing kernel definition, for example, with the blocks of size 2 × 3 and 3 × 2 for

mixed (e.g., horizontal, vertical and diagonal) neighborhood pixels’ correlations. As

illustrated in Fig. 3.2, these image blocks of size 3 × 2 and 2 × 3 give a pair of pixel-

trios. In other words, each block is constituted of a pair of structures with three pixels

that form two triangular shapes.
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Figure 3.2: The proposed kernels for PVO-based RDH scheme with the possible orientations
of (a,b) 2× 3 and (c,d) 3× 2.

For simplicity, these kernels can also be distinguished with the structures of trios in

the proposed kernels. For example, see the structures in Fig. 3.2 (a and c), where cen-

ters of both the upper trios capture the first pixel of an image at position f(0, 0). With

this convention of structure, the kernels can be classified as the centered kernel. The

other kernels that do not capture the f(0, 0) pixel in the center position of a trio, can

be classified as non-centered as illustrated in Fig. 3.2 (b and d). In a particular kernel,

either 3 × 2 or 2 × 3, such structures may have a trivial variation on the embedding

effectiveness. Thus, we only focus on the performance of our proposed kernels disre-

garding their centered or non-centered classes, for which the proposed scheme would
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3.2 The Proposed Kernels for PVO

better exploit the pixel correlations in an image block.

In the proposed scheme, a suitable kernel, ψ is thus utilized in image blocking and

de-blocking functions, block (·) and de block (·) with an additional input argument ψ

(see Section 3.2.1). That is, for Jung’s scheme, ψ = [1, 3] is defined for a block of size

1 × 3, which has been investigated with ψ = [3, 1], [3, 2] and [2, 3] for a block of size

3 × 1, 3 × 2 and 2 × 3, respectively. Thus, the presented PVO-based embedding and

extraction models are expected to offer better embedding rate-distortion performance

with a suitable ψ.

3.2.1 PVO-based embedding with the proposed kernel

Let an image I of size M × N is to be given as input (or cover) image and used for

embedding of secret-data D. The embedding process follows the following steps to

output the embedded image Î . As in the Algorithm 1, steps of the embedding are

discussed below.

Algorithm 1: PVO Embedding
1: Input: an image I , block-size ψ, and payload D
2: Output: an embedded image Î
3: {Bn} ← block (I, ψ) {n is total no. of blocks}
4: for all Bn do
5: Pn ← sort (Bn)

6: En ← predict (Pn)

7: P̂n ← embed (Pn, En, d)

8: P̂n ← inverse sort
(
P̂n

)
9: end for

10: Î ← de block
(
B̂n

)
11: return Î

Step 1: B ← block (I, ψ)
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3.2 The Proposed Kernels for PVO

. Input image I is divided into a set of non-overlapping blocks B by the func-

tion block (·) with a given block-size ψ (e.g., ψ = 1× 3 in the Jung’s scheme)

such that B = {Bn}, where Bn is a set of three pixels of nth block. That is,

Bn = {bin, bi+1
n , bi+2

n } with i ∈ {1, 2, · · · , M ×N} for n ∈ {1, 2, · · · , M×N
3
}.

Step 2: Pn ← sort (Bn)

. A set of three sorted pixels of n-th block Pn is obtained by the block-wise

sorting function sort (·) for each Bn. That is, Pn = {pin, pi+1
n , pi+2

n }, where

pin ≤ pi+1
n ≤ pi+2

n .

Step 3: En ← predict (Pn)

. For each sorted block Pn, the function predict (·) outputs a set of predicted

errors En. That is, for each Pn, predicted error En = {emaxn , eminn } of n-th

block is obtained as per (3.1).

emaxn = pi+2
n − pi+1

n (3.1a)

eminn = pin − pi+1
n (3.1b)

Step 4: P̂n ← embed (Pn, En, d)

. A pair of predicted errors emaxn and eminn of n-th block gets embedded by

the secret bits d ∈ D or expanded by unit value as in (3.2) and (3.3) to ob-

tain the modified errors, êmaxn and êminn for each n-th block. These modi-

fied errors are then used as per (3.4) to compute the set of estimated pixels

P̂n = {p̂in, pi+1
n , p̂i+2

n }.
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êmaxn =



emaxn , for emaxn = 0

emaxn + d, for emaxn = 1

emaxn + 1, for emaxn > 1

(3.2)

êminn =



eminn , for eminn = 0

eminn − d, for eminn = −1

eminn − 1, for eminn < −1

(3.3)

p̂i+2
n = pi+1

n + êmaxn (3.4a)

p̂in = pi+1
n + êminn (3.4b)

Step 5: B̂n ← inverse sort
(
P̂n

)
. Relocate the sorted embedded pixels of each block to their original locations.

Step 6: Î ← de block
(
B̂n, ψ

)
. Rearrange each of the embedded blocks to return the embedded image.

3.2.2 PVO-based extraction

The PVO-based extraction process follows similar steps with inverse computation of

embedding in Algorithm 2, which are briefly discussed below. The embedded image Î

and block-size ψ are given as inputs to obtain the original image I and extracted dataD.

Step 1: B̂ ← block
(
Î , ψ

)
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Algorithm 2: PVO Extraction

1: Input: an embedded image Î
2: Output: original image I and extracted payload D
3: Initialize: D ← ∅
4: ψ ← blocksize

(
Î
)

5: {B̂n} ← block
(
Î , ψ

)
6: for all B̂n do
7: P̂n ← sort

(
B̂n

)
8: Ên ← predict

(
P̂n

)
9: (Pn, d)← extract

(
P̂n, Ên

)
10: D ← concat (D, d)

11: Bn ← inverse sort (Pn)
12: end for
13: I ← de block (Bn)
14: return I,D

. The embedded image Î is divided into a set of non-overlapping blocks B̂

by the function block (·) with block size of ψ such that B̂ = {B̂n}, where

B̂n is a set of three pixels of n-th block. That is, B̂n = {b̂in, b̂i+1
n , b̂i+2

n } with

i ∈ {1, 2, · · · , M ×N} for n ∈ {1, 2, · · · , M×N
3
}.

Step 2: P̂n ← sort
(
B̂n

)
. A set of three sorted pixels of n-th block P̂n is obtained by the block-wise

sorting function sort (·) for each B̂n. That is, P̂n = {p̂in, p̂i+1
n , p̂i+2

n }, where

p̂in ≤ p̂i+1
n ≤ p̂i+2

n .

Step 3: Ên ← predict
(
P̂n

)
. For all sorted block-pixels {P̂n}, the function predict (·) outputs a set of

predicted errors {Ên}. That is, for each P̂n, a pair of predicted errors Ên =

{êmaxn , êminn } is obtained as per (3.5).
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êmaxn = p̂i+2
n − p̂i+1

n (3.5a)

êminn = p̂in − p̂i+1
n (3.5b)

Step 4: (Pn, d)← extract
(
P̂n, Ên

)
. An embedded secret bit d ∈ D is extracted from the embedded blocks P̂n

and the pair of embedded/expanded predicted errors êmaxn and êminn of Ên as

in (3.6) for each block. These modified errors are also used to compute the set

of original sorted pixels Pn = {pin, pi+1
n , pi+2

n } as per (3.7). It may be noted

that this extraction function is computationally inverse of the embedding func-

tion such that extract (·) = embed−1 (·).

d =


êmaxn − 1, for 1 ≤ êmaxn ≤ 2

−êminn − 1, for − 2 ≤ êminn ≤ −1
(3.6)

pi+2
n =



p̂i+2
n , for êmaxn = 0

p̂i+2
n − d, for 1 ≤ êmaxn ≤ 2

p̂i+2
n − 1, for êmaxn > 2

(3.7a)

pi+1
n = p̂i+1

n (3.7b)

pin =



p̂in, for êminn = 0

p̂in + d, for − 2 ≤ êminn ≤ −1

p̂in + 1, for êminn < −2

(3.7c)
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Step 5: D ← concat (D, d)

. The extracted data, D is initialized as an empty set as in line 3 of the Algo-

rithm 2. A set of extracted bits from an embedded block are then concatenated

with D and this continues with the extraction process until the last embedded

bit is extracted.

Step 6: Bn ← inverse sort (Pn)

. Relocate the sorted embedded pixels of each block to their original loca-

tions.

Step 7: I ← de block (Bn, ψ)

. Rearrange each restored image-blocks to return the original image. Finally,

return I and the extracted data D.

3.3 A New dPVO for the Proposed RDH Scheme

A PVO-based embedding has evolved to utilize image correlations for a better possible

rate-distortion performance. With the classic PVO, pixel values in a block are kept

unchanged or expanded (either for embedding or shifting) centering the reference

pixel(s). This principle of embedding has been better utilized with the adaptive

block size or multilevel embedding in the recent schemes for a better rate-distortion

performance. However, expanded pixels have not been considered yet for a reverse

expansion to restore them to their respective original pixel values partially as men-

tioned in the last chapter. In this chapter, a reverse expansion property is therefore

introduced with the ‘backward embedding’ to demonstrate how it can further improve

the rate-distortion performance.

Embedding of the proposed RDH scheme constitutes two phases: (i) forward

embedding with PVO and PEE, and (ii) backward embedding with dPVO and
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3.3 A New dPVO for the Proposed RDH Scheme

pairwise-PEE. These two phases are explained below and expected to improve both

the visual quality of the embedded image and the embedding rate. With the utilization

of two PVO, the proposed embedding is called here a dual PVO (dPVO) based

embedding. Extraction of the proposed scheme, on the other hand, follows the inverse

processing of this dPVO-based embedding.

3.3.1 Forward embedding

The forward embedding with PEE employs the Jung’s PVO-based embedding that

starts with partitioning an input image, I into a set of non-overlapping blocks of size

1 × 3. This is discussed in Section 2.4. Each block-pixels (x1, x2, x3) are sorted

to obtain (xσ(1), xσ(2), xσ(3)), where xσ(1) and xσ(3) are the minimum and maximum

block-pixels, respectively. With the computation and expansion of the pair of predic-

tion errors, emin and emax using (2.7a) and (2.7d), either a data-bit, b is embedded or

error-value is shifted by 1. The minimum and maximum block-pixels are then pre-

dicted from the middle block-pixel and the expanded errors with (2.7e) and (2.7f).

The overflow and underflow problem is tackled with the conventional process of

recording a location map Mk for the k-th block (for example, see Ref. [37, 38]). The

map is initialized as an empty-set for each k-th block, and for each pixel of the block,

either a ‘1’ for a boundary pixel or ‘0’ for any other pixel is appended to Mk. Con-

tinuing this for all k, a complete location map Mou = {Mk} is obtained, compressed

and appended to the embedding data-bits. With an input image of bit-depth 8-bit, for

example, a boundary pixel, x in a block is then updated using (3.8).

x =



x− 1, if x = 255

x+ 1, if x = 0

x, otherwise

(3.8)
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Given the input image, I and a set of data-bits, Df , with this forward embedding,

the embedded image, Î is thus obtained. For simplicity, the denoting difference be-

tween the original input image and its pre-processed version with modified boundary

pixels is omitted in the presented model without loss of generality.

3.3.2 Backward embedding

This phase of embedding operates on Î and aims to counterbalance the expansion

made in the forward embedding. It is obvious that the maximum and minimum pixels

of a block, i.e. xσ(1) and xσ(3), can experience a maximum expansion of value 1 either

for embedding of a data-bit ‘1’ or for shifting the pixel by the value 1. Thus, all

the predicted pixels that experience this expansion are considered for minimum and

maximum groups, X̂min and X̂max, respectively. Additionally, the predicted pixels

that remain unchanged in the first phase of embedding is located by recording their

location map in LM . Computing of X̂min and X̂max is presented in Algorithm 3.

Particularly, the proposed dPVO first separates two sets of pixels expanded in the

forward embedding. With a classic PVO on a pixel block of size 1× 3, the lowest and

highest pixels remain in the same order after their left-and right-ward expansion. So,

the lowest and highest predicted pixels of all blocks can be separated in two sets as

such applying a pairwise PVO based backward embedding on these two sets individu-

ally can restore their original pixel values. For example, in the forward embedding, an

embedded image, Î is obtained with the Jung’s scheme (see Section 2.4). In the back-

ward embedding with dPVO, a set X̂min is computed with the lowest predicted pixels,

{xσ(1)} of all blocks [X̂k]. Similarly, another set X̂max captures the largest predicted

pixels, {xσ(3)} of all the blocks. All pairs of pixel values in each of these two sets,

X̂min and X̂max then follow a pairwise PVO-based PEE for embedding.

Once X̂min and X̂max are obtained, the pixels of each set in the backward embed-

ding are pairwise expanded. In other words, both X̂min and X̂max are individually
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Algorithm 3: dPV O · encode (·)
Input: Î
Output: X̂max, X̂min, LM

1: X̂min ← empty
2: X̂max ← empty
3: LM ← zeros (2, k)

4: (M,N)← size
(
Î
)

5: for all k = 1 to M×N
3 do

6: [x̂kσ(1), x̂
k
σ(2), x̂

k
σ(3)]← sort

(
[x̂k1, x̂

k
2, x̂

k
3] ∈ Î

)
7: if x̂kσ(2) − x̂kσ(1) > 1 then

8: X̂min ← append
(
X̂min, x̂

k
σ(1)

)
9: else

10: LM (1, k)← 1

11: end if
12: if x̂kσ(3) − x̂kσ(2) > 1 then

13: X̂max ← append
(
X̂max, x̂

k
σ(3)

)
14: else
15: LM (2, k)← 1

16: end if
17: end for
18: return X̂max, X̂min, LM

pairwise partitioned, sorted and used for embedding.

exmin = x̂σ(2) − x̂σ(1)|(x̂σ(1), x̂σ(2)) ∈ X̂min (3.9a)

êxmin =



exmin, if exmin = 0

exmin + b, if exmin = 1

exmin + 1, if exmin > 1

(3.9b)

ˆ̂xσ(2) = x̂σ(1) + êxmin|ˆ̂xσ(2) ∈ ˆ̂
Xmin (3.9c)

exmax = x̂σ(1) − x̂σ(2)|(x̂σ(1), x̂σ(2)) ∈ X̂max (3.10a)
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3.3 A New dPVO for the Proposed RDH Scheme

êxmax =



exmax, if exmax = 0

exmax − b, if exmax = −1

exmax − 1, if exmax > −1

(3.10b)

ˆ̂xσ(1) = x̂σ(2) + êxmax|ˆ̂xσ(1) ∈ ˆ̂
Xmax (3.10c)

For example, a pixel-pair [x̂1, x̂2] ∈ X̂min with sorting becomes [x̂σ(1), x̂σ(2)].

These partitioning and sorting also apply to X̂max. Then, x̂σ(2) is predicted from x̂σ(1)

for X̂min using (3.9), and predict x̂σ(1) from x̂σ(2) for X̂max using (3.10). This pre-

diction will increase the value of x̂σ(2) ∈ X̂min by 0 or 1. Since all the pixel values

in X̂min have already decreased in the forward embedding by the value of 0 or 1, the

backward embedding thus can partially counterbalance the effect of the forward em-

bedding resulting in lower distortion in the embedded image. On the contrary, for

applying the backward embedding to the pixel-pairs in X̂max, the lower pixel value

x̂σ(1) is predicted from x̂σ(2). Thereby, the set of expanded pixels, {ˆ̂xσ(2)} for X̂min

and {ˆ̂xσ(1)} for X̂max are computed to generate the expanded minimum-and maximum

groups, ˆ̂
Xmin and ˆ̂

Xmax, respectively. The final embedded image, ˆ̂
I is obtained by

updating Î with ˆ̂
Xmin and ˆ̂

Xmax.

3.3.3 Data extraction and image recovery

Data extraction and image recovery are inverse of embedding of the proposed RDH

scheme. This means, data is first extracted with the inverse of backward embedding

followed by the inverse of forward embedding. The input image to the decoder is

partitioned into a non-overlapping block of size 1× 3, and each block pixels are sorted

in either ascending or descending order. From the reserved pixels, the location map,

LM is extracted. From the sorted pixels of each block and using LM , the sets of

maximum and minimum expanded pixels, ˆ̂
Xmax and ˆ̂

Xmin, respectively are determined
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3.3 A New dPVO for the Proposed RDH Scheme

using Algorithm 4.

Algorithm 4: dPV O · decode (·)

Input: ˆ̂
I

Output: ˆ̂
Xmax, ˆ̂

Xmin

1: ˆ̂
Xmin ← empty

2: ˆ̂
Xmax ← empty

3: LM ← LMext
(
ˆ̂
I
)

4: (M,N)← size
(
Î
)

5: for all k = 1 to M×N
3 do

6: [ˆ̂xkσ(1),
ˆ̂xkσ(2),

ˆ̂xkσ(3)]← sort
(
[ˆ̂xk1,

ˆ̂xk2,
ˆ̂xk3] ∈

ˆ̂
I
)

7: if ˆ̂xkσ(2) − ˆ̂xkσ(1) > 1 & LM (1, k) = 1 then

8: ˆ̂
Xmin ← append

(
ˆ̂
Xmin, ˆ̂x

k
σ(1)

)
9: end if

10: if ˆ̂xkσ(3) − ˆ̂xkσ(2) > 1 & LM (2, k) = 1 then

11: ˆ̂
Xmax ← append

(
ˆ̂
Xmax, ˆ̂x

k
σ(3)

)
12: end if
13: end for
14: return ˆ̂

Xmax, ˆ̂
Xmin

Extraction of the embedded data bits, and recovery of X̂min and X̂max from ˆ̂
Xmin

and ˆ̂
Xmax, respectively are carried out using (3.11) and (3.12). The errors from each

pixel-pair in ˆ̂
Xmin and ˆ̂

Xmax are first computed using (3.11a) and (3.11b), respec-

tively. Embedded bits are extracted using the error-values and conditions in (3.11c).

The higher pixel, ˆ̂xσ(2) of each pixel-pair in ˆ̂
Xmin are restored to x̂σ(2) using (3.12a).

Similarly, x̂σ(1) ∈ X̂max is restored from ˆ̂xσ(1) ∈ ˆ̂
Xmax using (3.12b). Thereby, X̂max

and X̂min from ˆ̂
Xmax and ˆ̂

Xmin, respectively are obtained to finally compute Î from ˆ̂
I .

ˆ̂exmin = ˆ̂xσ(2) − ˆ̂xσ(1)|(ˆ̂xσ(1), ˆ̂xσ(2)) ∈ ˆ̂
Xmin (3.11a)

ˆ̂exmax = ˆ̂xσ(1) − ˆ̂xσ(2)|(ˆ̂xσ(1), ˆ̂xσ(2)) ∈ ˆ̂
Xmax (3.11b)
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3.3 A New dPVO for the Proposed RDH Scheme

b =


ˆ̂exmin − 1, if 1 ≤ ˆ̂exmin ≤ 2

−ˆ̂exmax − 1, if − 2 ≤ ˆ̂exmax ≤ −1
(3.11c)

For all x̂σ(2) ∈ X̂min & ˆ̂xσ(2) ∈ ˆ̂
Xmin :

x̂σ(2) =



ˆ̂xσ(2), if ˆ̂exmin = 0

ˆ̂xσ(2) − b, if 1 ≤ ˆ̂emin ≤ 2

ˆ̂xσ(2) − 1, if ˆ̂emin > 2

(3.12a)

For all x̂σ(1) ∈ X̂max & ˆ̂xσ(1) ∈ ˆ̂
Xmax :

x̂σ(1) =



ˆ̂xσ(1), if ˆ̂exmax = 0

ˆ̂xσ(1) + b, if − 2 ≤ ˆ̂emax ≤ −1

ˆ̂xσ(1) + 1, if ˆ̂emax < −2

(3.12b)

The original image is finally restored with the inverse of the first phase embedding,

which follows the extraction principle of Jung’s scheme (see Section 2.4). This ex-

traction phase starts with partitioning Î into non-overlapping blocks. For each block,

block pixels [x̂1, x̂2, x̂3] are then sorted to [x̂σ(1), x̂σ(2), x̂σ(3)]. Respective errors, êmax

and êmin are computed using (3.13) followed by the data-bit extraction and pixel re-

covery using (2.8b) to (2.8d). Upon the extraction of all data-bits, they are merged to

the data-bits extracted in earlier phase. Similarly, the original image I is obtained by

updating Î with the restored values of x̂σ(3) and x̂σ(1) of each block.

êmax = x̂σ(3) − x̂σ(2) (3.13a)

êmin = x̂σ(1) − x̂σ(2) (3.13b)
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3.4 Chapter Summary

The technical details of the proposed RDH scheme with new kernels and dPVO based

embedding are presented in this chapter. The proposed scheme has utilized the mixed

neighborhood (i.e., horizontal, vertical and diagonal) pixels to define an image block of

size 3×2 (or 2×3) with a greater possible correlation among the pixels. Additionally,

a dPVO-based embedding is introduced with the prediction error expansion (PEE) and

employed in the proposed RDH scheme to counterbalance the distortion made in the

first phase of embedding. With this two-phase embedding and a more suitable kernel,

the proposed scheme is expected to improve both the embedding rate and visual quality

of the embedded image, which will be presented in the next chapter.
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CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter presents the evaluation of the new RDH scheme presented in Chapter 3

for its efficiency and better embedding rate -distortion performance. The experiment

is carried out for a set of standard USC-SIPI gray scale test-images [50] of size 512×

512× 8, and the Kodak [51] images of sizes 768× 512× 8 and 512× 768× 8.

The performance of the proposed scheme is validated with high capacity and bet-

ter image quality compared to the prominent RDH schemes. In Section 4.3, the

performance improvement due to the new kernels are evaluated, and in Section 4.4,

the overall embedding rate-distortion performance of the proposed RDH scheme is

evaluated and compared with a number of popular and recent RDH schemes: He et

al. (2018) [38], Jung (2017) [36], Ou et al. (2016) [34], Wang et al. (2015) [33], Qu

& Kim (2015) [32], Peng et al. (2014) [30] Li et al. (2013) [29] and Sachnev et

al. (2009) [19].

4.2 Evaluation Metrics

The embedded image quality is evaluated in terms of two popular objective visual qual-

ity metrics, peak signal to noise ratio (PSNR) defined in (4.1) and structural similarity

(SSIM) [49] defined in (4.2). Here, M × N is the image size, and I(i, j) and Î(i, j)

are the pixel values of position (i, j) in an original image and its embedded version,

respectively. In (4.2), µx and µx̂ are the average values of x and x̂, where x ∈ I and

x̂ ∈ Î are the pixels of original and embedded images, respectively. Similarly, σ2
x and

σ2
x̂ are the variance of x and x̂, respectively; σxx̂ is the covariance of x and x̂; c1 and c2
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4.3 Performance of the New Kernels for PVO

are two regularization constants, and L is the dynamic range of the pixel values.

MSE =

∑N
j=1

∑M
i=1

(
Î(i, j)− I(i, j)

)2

MN
(4.1a)

PSNR = 10 log
L2

MSE
(4.1b)

SSIM =
(2µxµx̂ + c1)(2σx,x̂ + c2)

(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)
(4.2)

The proposed RDH scheme and the existing schemes [19, 29, 30, 32–34, 36, 38]

were implemented using MATLAB R2016b with a 1.3 GHz Intel Core i5 CPU, 4 GB

memory. The proposed scheme developed in this research can also be re-implemented

with the technical details given in Chapter 3. However, it is to note that with the

programming skills and platforms, the optimization of the implemented code may

vary without losing the embedding rate-distortion performance reported in this thesis.

4.3 Performance of the New Kernels for PVO

The performance of the proposed PVO embedding has been evaluated and compared

with the Jung’s PVO-based scheme [36]. An example of a set of original test images are

shown in Fig. 4.1. Both the embedding-capacity and embedding-rate are determined in

terms of total embedded bits and bit per pixels (bpp), respectively. The visual quality

of the embedded images is evaluated in terms of the PSNR and SSIM defined in the

previous section. For embedding, a set of pseudo-random bits is generated as data.

A better embedding rate-distortion performance is observed for PVO embedding

with mixed neighborhood pixels. This means that inter-pixel correlations can be better

utilized in PVO embedding with blocks of size 2 × 3 or 3 × 2 resulting in better

embedding rate-distortion performance as illustrated in Table 4.1. For example, the
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(a) Airplane (b) Boat (c) Peppers (d) Goldhill

Figure 4.1: Example of original test images (USC-SIPI database [50]).

total embedding capacity of Jung’s Scheme is 44992 bits (or 0.1716 bpp) for Airplane

image, which is increased to 46547 bits, 46612 bits and 46762 bits (or 0.1776 bpp,

0.1778 bpp and 0.1784 bpp) for 3×1, 2×3 and 3×2 size of image blocks, respectively

for the proposed embedding.

Additionally, visual quality of the embedded images has remained at the similar

level or slightly improved as evident in Table 4.1. For example, the PSNR and SSIM

values of Airplane embedded image are 51.576 dB and 0.9759, respectively. In con-

trast, for the proposed embedding with 3×1, 2×3 and 3×2, respective PSNR and SSIM

values are 51.617 dB and 0.9756, 51.639 dB and 0.9760, and 51.629 dB and 0.9759.

With another example of Peppers image in Table 4.1, embedding capacity is im-

proved from 33.5 kbits to 33.8 kbits by using the kernel of size 3 × 2 over the Jung’s

scheme. The PSNR and SSIM values, however, remained almost similar in this case.

The images have also demonstrated similar results in improving the embedding rate-

distortion performance with the proposed kernels.

The comparison of the rate-distortion performance is summarized in Table 4.2.

Like the performance of the proposed scheme for an individual image, the proposed

kernels demonstrated similarly better embedded image quality for a given embedding

rate and for all the test images and block sizes. In particular, the average embedding

capacity achieved with 3×2 size block is 32191 bits and that with a block of size 2×3

is 32228 bits, whereas the capacity is 31223 bits and 31387 bits for the blocks of size
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4.3 Performance of the New Kernels for PVO

Table 4.1: Comparison of rate-distortion performance

Images Metric Jung [36]
Proposed

(1× 3) (3× 1) (2× 3) (3× 2)

Airfield

Capacity (bits) 27307 29414 30333 30104
bpp 0.1042 0.1122 0.1157 0.1148
PSNR (dB) 50.756 50.842 50.864 50.862
SSIM 0.9941 0.9943 0.9943 0.9943

Airplane

Capacity (bits) 44992 46547 46612 46762
bpp 0.1716 0.1776 0.1778 0.1784
PSNR (dB) 51.576 51.617 51.639 51.629
SSIM 0.9759 0.9756 0.9760 0.9759

Baboon

Capacity (bits) 13226 14046 14090 14087
bpp 0.0505 0.0536 0.0537 0.0537
PSNR (dB) 50.263 50.283 50.282 50.286
SSIM 0.9977 0.9977 0.9977 0.9977

Boat

Capacity (bits) 26588 25521 26224 26338
bpp 0.1014 0.0973 0.1000 0.1005
PSNR (dB) 50.681 50.6485 50.660 50.666
SSIM 0.9926 0.9926 0.9925 0.9925

Couple

Capacity (bits) 34494 34968 34882 34596
bpp 0.1316 0.1334 0.1331 0.1320
PSNR (dB) 51.016 51.008 50.996 50.985
SSIM 0.9916 0.9915 0.9915 0.9915

Elaine

Capacity (bits) 23306 23997 24392 24304
bpp 0.0889 0.0915 0.0930 0.0927
PSNR (dB) 50.595 50.612 50.633 50.629
SSIM 0.9929 0.9926 0.9928 0.9928

Goldhill

Capacity (bits) 27021 29365 28280 28573
bpp 0.1031 0.1120 0.1079 0.1090
PSNR (dB) 50.688 50.759 50.719 50.730
SSIM 0.9922 0.9924 0.9923 0.9923

Peppers

Capacity (bits) 33483 31933 33423 33802
bpp 0.1277 0.1218 0.1275 0.1289
PSNR (dB) 50.923 50.869 50.914 50.916
SSIM 0.9887 0.9885 0.9886 0.9886

Tiffany

Capacity (bits) 41750 38807 41864 41680
bpp 0.1593 0.1480 0.1597 0.1590
PSNR (dB) 51.316 51.183 51.305 51.303
SSIM 0.9829 0.9826 0.9829 0.9829
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1 × 3 and 3 × 1, respectively. This improved embedding capacity also comes with

improved average PSNR and SSIM values in case of 2× 3 block size. This is because,

with these block sizes, all three neighborhood (i.e., horizontal, vertical and diagonal)

pixels are present and more correlated than the other blocks (i.e., proposed 3 × 1 and

Jung’s 1× 3).

Table 4.2: Comparison of average rate-distortion performance

Metric Jung [36]
Proposed

(1× 3) (3× 1) (2× 3) (3× 2)

Capacity (bits) 31223 31387 32228 32191

bpp 0.1191 0.1197 0.1229 0.1228

PSNR (dB) 50.921 50.916 50.948 50.944

SSIM 0.9891 0.9890 0.9891 0.9891

With example of original test images and their embedded versions, the improve-

ment of image quality may also be justified. For example, the Airplane image in

Fig. 4.2 is embedded with the proposed kernels. The images, while appeared in their

full size appearance during experimentation, helped distinguish between their visual

quality for the existing technique and that of the proposed one. However, the Fig. 4.2

captured the images with their shrunk sizes due to the space constraints, where the

visual quality improvements may not be visually inspected as observed in the result

of quantitative performance in Tab. 4.1 and 4.2. Similar observations also hold for the

Fig. 4.3 and Fig. 4.4 that are shown to compare the visual image qualities of the embed-

ded images, Peppers and Goldhill, obtained from the Jung’s scheme and the proposed

scheme, respectively.

A more convincing illustration of the improvement is seen in Fig. 4.5. It is ob-

served that, while performance of the proposed scheme with 3 × 1 block-size slightly

improves over the Jung’s scheme, this improvement becomes more noticeable for the
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(a) (b) (c) (d)

Figure 4.2: Example of embedded images for the test image ‘Airplane’ with blocks of different
neighborhood pixels: (a) 1× 3, (b) 3× 1, (c) 2× 3 and (d) 3× 2.

(a) (b) (c) (d)

Figure 4.3: Example of embedded images for the test image ‘Peppers’ with blocks of different
neighborhood pixels: (a) 1× 3, (b) 3× 1, (c) 2× 3 and (d) 3× 2.

(a) (b) (c) (d)

Figure 4.4: Example of embedded images for the test image ‘Goldhill’ with blocks of different
neighborhood pixels: (a) 1× 3, (b) 3× 1, (c) 2× 3 and (d) 3× 2.

other proposed block-sizes (i.e., 2 × 3 and 3 × 2). For different images including the

Airplane, Baboon, Elaine and Goldhill, all the proposed kernels improve the kernel

used in the Jung’s scheme. Among the proposed kernels, 2 × 3 and 3 × 2 generally

show a better PSNR over the others for a certain embedding capacity. This means that

our proposed embedding scheme with either 2× 3 or 3× 2 can have better embedding
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rate-distortion performance than that of the Jung’s scheme.
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Figure 4.5: Embedding rate-distortion performance comparison

It is also noted that the trend of improvements in rate-distortion performance of

the proposed PVO embedding discussed above for a few test images also holds for the

other test images used for the performance evaluation.

4.4 Performance of the dPVO-based Embedding

The performance of the proposed RDH scheme with dPVO is now presented for its

analysis and validation. For this performance evaluation, both the image databases,

USC-SIPI and Kodak are used. As mentioned in the previous section, both the em-
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bedding-capacity and embedding-rate are determined in terms of total embedded bits

and bit per pixels (bpp), respectively. The visual quality of the embedded images is

assessed in terms of PSNR and SSIM.

Overall embedding rate-distortion performance of the proposed scheme is evalu-

ated and presented in Table 4.3 for the USC-SIPI images. Average PSNR (dB) value

of 53.57 with embedding rate (bpp) of 0.14 is found for USC-SIPI test-images. Addi-

tionally, an image with smoother region like the Airplane, Peppers and Lena offered

higher embedding rate than the other images having much non-smooth regions. This

is due to the PVO based embedding property that only embeds in the pixels which is

closer by only a single bit to the center pixel in a kernel.

Table 4.3: Performance of the proposed scheme for USC-SIPI images

Image
Embedding capacity

PSNR (dB) SSIM
Total (Kbits) Rate (bpp)

Airplane 55.67 0.21 53.99 0.9994

Baboon 17.83 0.07 53.09 0.9998

Barbara 33.88 0.13 53.30 0.9996

Boat 33.62 0.13 53.20 0.9996

Elaine 30.27 0.12 53.26 0.9996

Lake 34.68 0.13 53.30 0.9996

Lena 40.55 0.15 53.48 0.9995

Peppers 38.77 0.15 53.34 0.9995

Tiffany 30.83 0.12 53.40 0.9995

Average 35.12 0.14 53.37 0.9996

Similarly, the overall embedding rate-distortion performance of the proposed

scheme is also evaluated and presented in Table 4.4 for the Kodak image-sets. For

Kodak test-images, an average PSNR (dB) value of 54.40 with embedding rate (bpp)

of 0.21 is obtained. Due to relatively larger image size, Kodak images show higher
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Table 4.4: Performance of the proposed scheme for Kodak images

Image
Embedding capacity

PSNR SSIM
Total (bits) Rate (bpp) (dB)

kodim01 60453 0.15 53.80 0.9996

kodim02 99987 0.25 54.58 0.9992

kodim03 96353 0.25 55.51 0.9995

kodim04 87435 0.22 54.15 0.9993

kodim05 59261 0.15 53.76 0.9997

kodim06 81545 0.21 54.14 0.9995

kodim07 90632 0.23 55.72 0.9996

kodim08 56815 0.14 53.57 0.9997

kodim09 109870 0.28 54.97 0.9994

kodim10 102318 0.26 54.78 0.9994

kodim11 84092 0.21 54.29 0.9995

kodim12 104905 0.27 55.10 0.9994

kodim13 44104 0.11 53.33 0.9996

kodim14 73000 0.19 53.95 0.9995

kodim15 88828 0.23 54.45 0.9994

kodim16 91394 0.23 55.06 0.9995

kodim17 90313 0.23 54.41 0.9995

kodim18 64441 0.16 53.62 0.9995

kodim19 87826 0.22 54.82 0.9995

kodim20 105883 0.27 54.25 0.9993

kodim21 95517 0.24 54.22 0.9995

kodim22 80679 0.21 53.77 0.9993

kodim23 100599 0.26 55.25 0.9994

kodim24 68978 0.18 54.10 0.9996

Average 84384.50 0.21 54.40 0.9995
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embedding rate with a better image quality. This means that with a higher number

of pixels in an input image, the number of counterbalanced pixels with the proposed

dPVO and backward embedding in the second phase of embedding becomes higher,

which can improve embedded image quality and embedding rate.

A case by case analysis has also been carried out for different size of payloads of

10 Kbit and 20 Kbit and for two test image databases: USC-SIPI and Kodak. Firstly,

the embedded image quality for embedding of 10 Kbit in the test-images is evaluated

and compared with the relevant RDH schemes [29–32, 36] with PVO and PEE in Ta-

ble 4.5. Generally, in contrast to those schemes, the PSNR values of the proposed

scheme remain higher for most of the images. In other words, while for some images,

the PSNR values are similar or slightly lower, for the other images, it remains signif-

icantly higher. Considering the average performance of all the USC-SIPI test images,

a better value of PSNR for the proposed scheme is observed than that of the Jung’s

scheme. Particularly, an average PSNR value of the proposed scheme remains about

7.5% higher than the Jung’s scheme as shown in Table 4.5.

Table 4.5: PSNRs (dB) for embedding 10,000 bits in the USC-SIPI images.

Schemes
Li et al. Peng et al. Ou et al. Qu & Kim Jung

Proposed
[29] [30] [31] [32] [36]

Lena 60.3 60.47 60.46 60.31 56.99 60.5

Baboon 53.52 53.55 54.16 54.21 51.62 55.19

Barbara 59.81 60.54 60.15 59.77 55.69 58.96

Airplane 62 62.96 63.14 63.68 58.63 61.65

Peppers 58.87 58.98 59.16 58.78 55.86 59.57

Boat 58.11 58.27 58.06 58.42 54.61 58.9

Elaine 56.81 57.36 57.36 58.72 54.65 58.56

Lake 58.21 58.87 59.23 59.76 55.75 59.11

Average 58.45 58.88 58.97 59.21 55.48 59.6

40



4.4 Performance of the dPVO-based Embedding

In another case of embedding of 20 Kbit of data in the USC-SIPI image-sets is

evaluated and compared with the relevant RDH schemes [29–32, 36] with PVO and

PEE in Table 4.6. Generally, in contrast to those schemes, in both cases of embedding

20 Kbit data, PSNR values of the proposed scheme remain higher. In other words,

while for some images, the PSNR values are similar or slightly lower, for the other

images, it remains significantly higher. This results in a better average value of PSNR

for the proposed scheme than that of the Jung’s scheme, which the proposed scheme is

directly built on. Particularly, an average PSNR value of the proposed scheme remains

about 7% higher than the Jung’s scheme in case of 20 Kbit of embedding for USC-SIPI

image set.

Table 4.6: PSNRs (dB) for embedding 20,000 bits in the USC-SIPI images.

Schemes
Li et al. Peng et al. Ou et al. Qu & Kim Jung

Proposed
[29] [30] [31] [32] [36]

Lena 56.21 56.54 56.6 56.67 53.40 56.92

Baboon – – – – – 49.95

Barbara 54.69 56.2 55.89 55.63 51.99 55.75

Airplane 58.13 59.07 59.26 59.91 56.16 58.97

Peppers 54.72 54.77 54.93 54.98 52.67 56.23

Boat 53.34 53.84 53.72 54.21 51.69 55.11

Elaine 52.41 52.61 52.71 53.71 51.33 54.95

Lake 53.44 53.6 54.28 54.69 52.08 56.17

Average 54.92 55.23 55.34 55.69 52.76 56.30*

*Average value is calculated without Baboon image.

Embedding performance is also evaluated for the Kodak image sets. Firstly, the

embedded image quality for embedding of 10 Kbit is evaluated and compared with

the relevant RDH schemes considered above. For embedding 10 Kbit, the proposed

scheme generally shows an improved image quality in terms of PSNR value over the
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other scheme as illustrated in Table 4.7. While for some images, the PSNR values

are similar or slightly lower, for the other images, it remains significantly higher. An

average PSNR value of the proposed scheme remains about 5% higher than the Jung’s

scheme for all the test images of Kodak set.

Table 4.7: PSNRs (dB) for embedding 10,000 bits in Kodak images.

Image
Li Peng Ou Qu &

Jung [36] Proposed
et al. [29] et al. [30] et al. [31] Kim [32]

kodim01 57.95 61.58 61.45 64.23 58.10 61.38

kodim02 62.83 64.07 61.97 64.49 60.13 63.12

kodim03 63.84 65.39 63.57 65.12 64.70 66.86

kodim04 62.08 63.62 63.46 64.17 57.20 60.45

kodim05 59.64 61.61 54.62 62.51 59.87 63.05

kodim06 61.36 65.02 60.62 66.05 64.93 67.05

kodim07 63.67 65.12 63.07 64.83 64.29 66.48

kodim08 52.73 56.23 63.50 57.83 58.37 61.58

kodim09 62.79 63.72 62.68 63.34 63.20 65.08

kodim10 61.90 63.11 60.32 62.68 60.86 63.45

kodim11 62.46 65.19 62.66 65.43 64.82 66.36

kodim12 63.00 64.51 62.96 64.75 64.06 66.50

kodim13 52.16 54.54 53.96 58.20 57.72 61.44

kodim14 59.51 61.35 62.86 62.62 59.22 62.30

kodim15 62.35 64.46 62.06 62.86 60.92 63.89

kodim16 63.11 64.98 63.42 65.06 65.71 67.71

kodim17 62.06 63.76 60.36 64.52 62.43 64.84

kodim18 59.63 60.74 63.96 61.02 57.48 60.65

kodim19 62.53 63.36 62.57 63.19 62.29 64.83

kodim20 61.14 65.54 60.74 57.76 63.01 65.48

kodim21 62.54 63.72 63.22 63.58 65.65 67.19

kodim22 61.36 62.59 63.74 63.04 63.10 65.53

kodim23 63.21 64.58 56.74 64.35 64.72 67.17

kodim24 58.80 62.20 62.88 62.24 58.09 61.24

Average 60.94 62.96 61.56 63.08 61.70 64.32
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Table 4.8: PSNRs (dB) for embedding 20,000 bits in Kodak images.

Image
Li Peng Ou Qu &

Jung [36] Proposed
et al. [29] et al. [30] et al. [31] Kim [32]

kodim01 53.36 56.37 55.52 60.47 54.32 58.04

kodim02 58.76 60.52 58.57 61.37 57.17 60.26

kodim03 60.16 62.00 59.04 62.42 60.47 62.98

kodim04 58.02 59.99 59.89 60.85 54.62 57.63

kodim05 55.10 57.53 – 58.94 55.76 59.23

kodim06 56.47 61.45 56.27 63.45 61.56 63.88

kodim07 60.05 61.81 59.90 62.03 60.33 62.87

kodim08 – 51.98 59.91 55.10 54.67 58.14

kodim09 59.09 60.23 58.89 60.50 59.95 61.99

kodim10 58.24 59.71 56.24 59.98 57.72 60.38

kodim11 57.38 61.23 58.93 62.23 59.16 61.86

kodim12 58.98 61.03 59.47 61.80 60.18 62.93

kodim13 – – – 53.76 53.74 57.40

kodim14 55.28 57.27 59.09 58.68 56.51 59.67

kodim15 58.30 61.32 58.22 61.99 58.12 61.06

kodim16 58.55 61.52 60.10 62.22 62.48 64.60

kodim17 58.07 59.99 56.87 61.17 58.08 60.96

kodim18 54.82 56.47 60.56 57.48 54.12 57.67

kodim19 58.71 59.82 58.90 60.14 59.33 61.86

kodim20 56.96 62.40 56.42 58.15 59.96 62.41

kodim21 58.66 60.17 58.50 60.87 62.42 64.10

kodim22 57.15 58.66 60.23 59.56 58.76 61.73

kodim23 59.68 61.12 53.06 61.61 61.18 63.71

kodim24 54.81 58.59 59.23 60.49 55.86 58.89

Average 57.57 59.62 58.36 60.22 58.19 61.01

In a case of higher embedding rate, i.e., embedding of 20 Kbit of data, the em-

bedded image quality is also evaluated and compared with the relevant RDH schemes.

This is illustrated in Table 4.8. Similar improvement of embedded image quality is

demonstrated over the other schemes as found in case of the USC-SIPI image sets.
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Particularly, while for some images, the PSNR values are similar or slightly lower,

for the other images, it remains significantly higher. An average PSNR value of the

proposed scheme remains about 5% higher than the Jung’s scheme , respectively.

The above cases of embedding 10 Kbit and 20 Kbit of data in both test-image sets

and respective embedded quality comparison over the relevant schemes suggest that the

proposed scheme can have better image quality for relatively higher embedding rate.

Moreover, an embedding rate-distortion curve is usually more helpful to vi-

sualize the improvement of a new scheme over the existing schemes. To deter-

mine the trend of the overall performance of the proposed scheme, embedding

rate-distortion curve is, therefore, compared with a few recent and popular RDH

schemes [19, 29, 30, 32–34, 36, 38]. For example, Fig. 4.6 illustrates the trends of

PSNR over the increasing embedding capacity for the Boat and Lena images. Over the

existing schemes, our proposed scheme has offered a better image quality, particularly

at the higher embedding rate.

0 1 2 3 4

Embedding capacity (bits) 104

55

60

65

70

P
S

N
R

 (
d
B

)

Ours

He et al. (2018)

Jung (2017)

Ou et al. (2016)

Wang et al. (2015)

Qu & Kim (2015)

Peng et al. (2014)

Sachnev et al. (2009)

(a) Boat

0 1 2 3 4 5

Embedding capacity (bits) 104

55

60

65

70

P
S

N
R

 (
d
B

)

Ours

He et al. (2018)

Jung (2017)

Ou et al. (2016)

Wang et al. (2015)

Qu & Kim (2015)

Peng et al. (2014)

Sachnev et al. (2009)

(b) Lena

Figure 4.6: Overall embedding rate-distortion performance comparison with the Boat and
Lena images over the popular and recent RDH schemes of He et al. (2018) [38],
Jung (2017) [36], Ou et al. (2016) [34], Wang et al. (2015) [33], Qu &
Kim (2015) [32], Peng et al. (2014) [30] and Sachnev et al. (2009) [19] .

With another example of the Lake and Elaine test images in Fig. 4.7, the embedding
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Figure 4.7: Overall embedding rate-distortion performance comparison with the Lake and
Elaine images over the popular and recent RDH schemes of He et al. (2018) [38],
Jung (2017) [36], Ou et al. (2016) [34], Wang et al. (2015) [33], Qu &
Kim (2015) [32], Peng et al. (2014) [30] and Sachnev et al. (2009) [19] .

rate-distortion curve of the proposed scheme is found to improve over the existing

schemes. Particularly, a relatively higher trend of PSNR over the increasing embedding

capacity for the images is evident for our proposed scheme over the other schemes.

The proposed scheme has demonstrated a trend to improve embedded image qual-

ity over the higher embedding rate. This is because a higher rate of embedding requires

a higher number of pixels to be embedded. Once the number of pixels becomes higher,

the sizes of Xmin and Xmax in the second phase of embedding tend to be higher result-

ing in more counterbalanced pixels and beter-embedded image quality. The average

performance in Fig. 4.8 also holds the trend of improvement. This trend of improve-

ments in the rate-distortion performance of the proposed RDH scheme discussed above

and illustrated for a few test images also holds for the other test images.

In addition, no significant visual difference can be noticed in the embedded image

and its decoded image. The decoded image is the same as input image by definition

of the RDH scheme. This means that the distortion in the embedded image may be

acceptable as also verified in the quantitative evaluation mentioned above.
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Figure 4.8: Overall embedding rate-distortion performance comparison with the Peppers im-
age and average values over the popular and recent RDH schemes of He et
al. (2018) [38], Jung (2017) [36], Ou et al. (2016) [34], Wang et al. (2015) [33],
Qu & Kim (2015) [32], Peng et al. (2014) [30] and Sachnev et al. (2009) [19] .

Example of the embedded images and their decoded versions for the USC-SIPI

image sets are shown in Fig. 4.9 and Fig. 4.10. Similarly, the embedded and decoded

images for the Kodak images are shown in Fig. 4.11. The decoded image is found

identical to the input image, which is verified for all the test images and can be roughly

observed with the given examples.

(a) embedded (b) decoded

Figure 4.9: Example of embedded and decoded versions of Boat image of size 512× 512× 8.
(Original test images are from USC-SIPI database [50].)

46



4.4 Performance of the dPVO-based Embedding

(a) embedded (b) decoded

Figure 4.10: Example of embedded and decoded versions of Lake image of size 512×512×8.
(Original test images are from USC-SIPI database [50].)

(a) embedded (b) decoded

(c) embedded (d) decoded

Figure 4.11: Example of embedded and decoded versions of test images (a, b) kodim19 of size
768 × 512 × 8 and (c, d) kodim24 of size 512 × 768 × 8. (Original test images
are from Kodak database [51].)
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On the other hand, the reversibility of the proposed embedding function has been

verified by comparing the difference between the input image of the embedding func-

tion and the output image of the decoding function. A null difference is found, which

establishes that the proposed embedding function is reversible.

Nevertheless, considering the overall rate-distortion performance, the pro-

posed RDH scheme outperforms its baseline schemes: Jung (2017) [36], Peng et

al. (2014) [30] and Li et al. (2013) [29]. The proposed scheme is based on the classic

PVO and uses a simple scenario of image partitions of size 1 × 3, and thus those

schemes for baseline comparison are reasonably considered. However, a promising

performance of the proposed scheme is also observed, while it is compared to the

state-of-the-art PVO based RDH schemes [32–34, 38].

4.5 Chapter Summary

The performance of the proposed RDH scheme is evaluated and validated for USC-

SIPI and Kodak test images. The embedding capacity and rate are evaluated in terms

of total bits embedded and bpp, respectively. The image quality is expressed in terms

of PSNR and SSIM. The performance improvement due to the new kernels are evalu-

ated as well as the overall embedding rate-distortion performance of the proposed RDH

scheme is evaluated and compared with a number of popular and recent RDH schemes.

Improvements in terms of visual quality and embedding rate are explained and analyt-

ical notes are given. Based on the observations presented in this chapter, concluding

remarks and future works of the research are presented in the following chapter.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

The research presented in this thesis aimed to develop a PVO-based RDH scheme for

digital image applications. Development of a new data hiding scheme is steered by

its better embedding rate-distortion performance. Since a higher data embedding rate

naturally causes higher embedding distortion, achieving better rate-distortion perfor-

mance is a challenging task. Existing PVO-based RDH schemes have demonstrated

impressive performance. However, none of them has considered a more correlated

pixel blocks and counterbalancing the distortion in an additional embedding, which

can improve both the embedding rate and embedded image quality. The research pre-

sented in this thesis therefore contributes to the development of a new RDH scheme.

Research contributions and its significance are summarized in the sections below.

5.1.1 Research outcomes

This thesis contributes to the development of a new PVO-based RDH scheme with a

new PVO-kernel and backward embedding. Firstly, a new triangular kernel is proposed

that captures the pixels correlated in the horizontal, vertical and diagonal directions

simultaneously. The proposed kernel is employed in a prominent PVO-based RDH

scheme and is verified for a better (or occasionally similar) rate-distortion performance

than the existing schemes that rely on only the column- or row-kernel.

Additionally, an improved PVO-based RDH scheme is reported in this thesis with

a new backward embedding technique to counterbalance the distortion caused in a

forward embedding phase. Particularly, the proposed scheme embeds in two phases:

(i) forward embedding, and (ii) backward embedding. In the forward embedding, PEE
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is applied with PVO to every non-overlapping image block of size 1× 3. In the back-

ward embedding, minimum-set and maximum-set of pixels are determined from the

pixels predicted in the first phase. The pixels predicted in the first phase is investigated

to partially restore them to their original values resulting in both a higher embedding

rate and a better-embedded image quality.

The computational modeling, evaluation, analysis and validation of the new

PVO-based RDH scheme are presented in the thesis. Given experimental results has

demonstrated a promising performance of the proposed scheme and its improvement

over the popular and state-of-the-art PVO-based RDH schemes. A significantly better

rate-distortion performance is obtained at the higher embedding rate, which means

the proposed scheme is more promising to the applications that usually require high

embedding capacity like electronic patient record hiding in medical images.

The contributions and findings that are discussed in this thesis have been presented

in several reputable conferences, published in the IEEE conference proceedings and

submitted for possible publications in two reputable journals (see the list of publi-

cations in Page 53). The PVO-based embedding approach has also been appreciated

with a best paper award in EICT 2017.

5.1.2 Research significance

This thesis dissertation advances knowledge in the area of reversible data hiding and

its application to digital images. Particularly, the proposed new kernel for PVO can ef-

fectively use the pixels’ correlation resulting in lower possible embedding distortion in

the embedded images. The proposed backward-embedding introduces a new approach

of counterbalancing the prediction errors. More data, therefore, can be embedded with

an improved image quality than the existing RDH schemes.

Moreover, the new RDH scheme developed using the proposed new kernel and

backward-embedding would create a new paradigm of RDH and open several oppor-
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tunities for data hiding research. The presented experimental results demonstrated the

effectiveness of the proposed scheme for better visual quality with higher embedding

capacity compared to the prominent RDH schemes.

5.2 Future Works

Some possible avenues for future research have been identified. In addition to the

study of its specific application scenarios, future investigation on the proposed dPVO

based principle of backward embedding may be worthwhile, for example, in the

following areas: (i) its information theoretic analysis, (ii) optimization of its compu-

tational requirements for multi-level embedding, and (iii) developing its generalized

framework for multi-level embedding and dynamic image-block partitioning.

A further development of computational efficiency with more concrete founda-

tion of the proposed PVO-based embedding may be studied with information theoretic

analysis. Both the new kernels and dPVO techniques presented in this thesis may be

investigated further for their combined employment to further develop an RDH scheme

in future. Additionally, multilevel embedding with the proposed scheme may require

higher resources. The forward and backward embedding may be streamlined using

their equivalent simultaneous operations to optimize their efficiency in terms of both

the computational resources and their rate-distortion performance.

For the attainment of reasonably higher embedding rate, an interpolation based em-

bedding may be combined with the proposed embedding approach. Study of a proper

sequence of application of the embedding techniques to determine the embedding ca-

pacity and respective distortion may also open up a new scope for making a positive

research contribution in this area.

Moreover, extension of the application of the proposed scheme to other specialized

images like medical and military images can be an interesting area of investigation.
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Determining the requirements of those applications and study of the suitability of the

proposed scheme may create another avenue for further development of the proposed

scheme. Development of a generalized framework of the proposed PVO-based scheme

may therefore also be investigated.
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APPENDIX A
MATLAB CODES

A.1 The Proposed dPVO-based Embedding

1 clc

2 clear all

3 close all

4

5 %% Define the path of the test image for batch run

6 path = strcat(cd, '\TestImage\');

7 pathresult = strcat(cd, '\sResult\SIPIfull\');

8 contents = dir(path);

9

10 Method = [];

11

12 for F=1:numel(contents)-2

13 filename = contents(F+2).name;

14 I= imread(filename);

15

16 load eqdata % the data bits to be embedded

17 Io= double(I(:,:)); % original test input image

18 Io(Io==0)=1;

19 Io(Io==255)=254;

20

21 [M, N] = size(Io);

22 pxs =0;

23 pdx =1;

24

25 tic

26 Iw = Io;

27 x=1;

28 for i=1:1:M

29 for j=1:3:N-2

30 if pdx +1 ≤ numel(eqdata)

31 [ Iw(i,j:j+2), Iems(x:x+2, :), unusedbit, pshifted] = ...

jungembnew(Io(i,j:j+2), eqdata, pdx);

32 pxs = pxs + pshifted;

33 pdx = pdx+2-unusedbit;

34 x=x+3;

35 end

36 end

37 end

38

39 Cjung=pdx-1

40 x=1;

41 y=1;

42 minset=[];
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43 maxset=[];

44 LM =[];

45 for i=1:3:numel(Iems(:,1))

46 if Iems(i+1,1)-Iems(i,1)>1

47 minset(x,1) = Iems(i,1);

48 minset(x,2) = Iems(i,2);

49 minset(x,3) = i;

50 x=x+1;

51 else LM= [LM, i];

52 end

53 if Iems(i+2,1)-Iems(i+1,1)>1

54 maxset(y,1) = Iems(i+2,1);

55 maxset(y,2) = Iems(i+2,2);

56 maxset(y,3) = i+2;

57 y=y+1;

58 else LM= [LM, i+2];

59 end

60 end

61

62 Iemse = Iems;

63 %% MIN embedding

64 if numel(minset(:,1))>1

65 dminset = minset;

66 for i = 1:2:numel(minset(:,1))-1

67 temp = minset(i:i+1, 1)';

68 [dminset(i:i+1, 1), unusedbit, pshifted] = dminemb(temp, eqdata, pdx);

69 pxs = pxs + pshifted;

70 pdx = pdx+1-unusedbit;

71 end

72

73 x=1;

74 for i=1:3:numel(Iems(:,1))

75 if x < length(dminset)+1

76 if dminset(x,3)==i

77 Iemse(i,1) = dminset(x, 1);

78 x=x+1;

79 end

80 end

81 end

82 end

83

84

85 %% MAX embedding

86 if numel(maxset(:,1))>1

87 dmaxset = maxset;

88 for i = 1:2:numel(maxset(:,1))-1

89 temp = maxset(i:i+1, 1)';

90 [dmaxset(i:i+1, 1), unusedbit, pshifted] = dmaxemb(temp, eqdata, pdx);

91 pxs = pxs + pshifted;

92 pdx = pdx+1-unusedbit;

93 end
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94

95 x=1;

96 for i=3:3:numel(Iems(:,1))

97 if x < length(dmaxset)+1

98 if dmaxset(x,3)==i

99 Iemse(i,1) = dmaxset(x, 1);

100 x=x+1;

101 end

102 end

103 end

104 end

105

106

107 %% Reshaping embedded image

108 x=1;

109 Inew= Iw;

110 for i=1:1:M

111 for j=1:3:N-2

112 temp = Iemse(x:x+2,:);

113 temp = sortrows(temp, 2);

114 Inew(i,j:j+2) = temp(:,1)';

115 x=x+3;

116 end

117 end

118 Ctot = pdx-1

119 Pjung= PSNR(Io, Iw)

120 Pimp= PSNR(Io, Inew)

121

122 embtime(F) = toc;

123 Ctot(F)= pdx-2+unusedbit-1;

124 bpp(F)= Ctot(F)/(M*N);

125 psnrval(F)= PSNR(Iw,Io);

126 ssimval(F)= ssim(Iw,Io);

127

128 [pathx, fname, extx]=fileparts(strcat(path, filename));

129

130 imwrite(uint8(Io),strcat(pathresult, fname,'_orig','.tif'));

131 imwrite(uint8(Iw),strcat(pathresult, fname,'_sPVO_1x3','.tif'));

132 Temp = string(strcat(fname,'_sPVO_1x3'));

133

134 % mat file writing

135 mfname = [pathresult, fname,'sPVO_1x3','.mat' ];

136 save(mfname)

137

138 if F==1

139 Method = Temp;

140 else

141 Method = [Method;Temp];

142 end

143 end

144
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145 psnrval = psnrval';

146 ssimval = ssimval';

147 Ctot = Ctot';

148 bpp = bpp';

149 embtime = embtime';

150

151 % xl file writing

152 xlfname = [pathresult, 'sPVO_1x3','.csv' ];

153 Tprop = table(Method, Ctot, bpp, psnrval,ssimval, embtime);

154 writetable(Tprop, xlfname, 'WriteVariableNames', 1);

155

156 fprintf('%s completed \n', fname);

A.1.1 jungembnew (·)

1 function [Iwfull, Ctot] = jungembfull(Io, eqdata)

2 Io = double(Io);

3

4 depth = ceil(log2(double(max(Io(:)+1))));

5 MAX = 2ˆdepth -1;

6 Io(Io==0) = Io(Io==0)+1;

7 Io(Io==MAX) = Io(Io==MAX)-1;

8 k=mod(size(Io),3);

9 Iop = Io(1:end-k(1), 1:end-k(2));

10 pdx =1;

11 [M, N] = size(Iop);

12

13 Idx = double(reshape(1:M*N, [M,N]));

14 %Block-wise zigzag scanning

15 Izdx = im2col(Idx,[3 1],'distinct');

16 Iopz = Iop(Izdx);

17

18 pdx =1;

19 [R, C] = size(Iopz);

20 Iw = double(zeros(R, C));

21 for j = 1:C

22 pix(1:3) = Iopz(:,j);

23 [Iw(:,j), unusedbit] = jungemb(pix, eqdata, pdx);

24 pdx = pdx+2-unusedbit;

25 end

26

27 temp=sortrows([Iw(:), Izdx(:)],2);

28 Iwnew= reshape(temp(:,1), [M, N]);

29

30 Iwfull = uint8(Io);

31 Iwfull(1:end-k(1), 1:end-k(2))=Iwnew(:,:);

32 Ctot= pdx-2+unusedbit-1; %new line

33 end
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A.1.2 dminemb (·)

1 function [wpixnew, k, pxs] = dminemb(pix, payloadData, pdx)

2 %pix is an input array containing three pixels

3 %idx is an input array containing indeces of the input three pixels

4 %bits is an array of embedding bits.

5

6 pxs=0;

7 idx = [1,2];

8 pd= [pix;idx]'; % two columns, 1st for pix and 2nd for its idx

9 spd = sortrows(pd,1); % sorting pix with idx. For example, 1st row contain ...

the lowest pix and its location in an image

10 emax = spd(2,1)-spd(1,1);

11 k=1;

12 if emax == 0

13 nemax = emax;

14 elseif emax == 1 && (spd(1,1)+emax+payloadData(pdx))<256

15 nemax = emax + payloadData(pdx);

16 pdx = pdx+1;

17 k = k-1;

18 elseif emax > 1 && (spd(1,1)+emax+1)<256

19 pxs = pxs+1;

20 nemax = emax+1;

21 else

22 nemax = emax;

23 end

24

25 wpix = spd;

26 wpix(2,1) = spd(1,1)+ nemax;

27

28 %de-sorting using original indeces of input pixels

29 temp = sortrows(wpix, 2);

30 wpixnew = temp(:,1)';

31 end

A.1.3 dmaxemb (·)

1 function [wpixnew, k, pxs] = dmaxemb(pix, payloadData, pdx)

2 %pix is an input array containing three pixels

3 %idx is an input array containing indeces of the input three pixels

4 %bits is an array of embedding bits.

5

6 pxs=0;

7 idx = [1,2];

8 pd= [pix;idx]'; % two columns, 1st for pix and 2nd for its idx

9 spd = sortrows(pd,1); % sorting pix with idx. For example, 1st row contain ...

the lowest pix and its location in an image
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10 emin = spd(1,1)-spd(2,1);

11 k=1;

12 if emin == 0

13 nemin = emin;

14 elseif emin == -1 && (spd(2,1)+emin-payloadData(pdx))>-1

15 nemin = emin - payloadData(pdx);

16 k = k-1;

17 elseif (emin < -1) && (spd(2,1)+emin-1)> -1

18 nemin = emin - 1;

19 pxs = pxs+1;

20 else

21 nemin = emin;

22 end

23

24 %embedded pixels

25 wpix = spd;

26 wpix(1,1) = spd(2,1)+ nemin;

27

28 %de-sorting using original indeces of input pixels

29 temp = sortrows(wpix, 2);

30 wpixnew = temp(:,1)';

31 end

64



A.2 The Jung’s PVO-based Embedding

A.2 The Jung’s PVO-based Embedding

1 clc

2 clear all

3 close all

4

5 % define the directory for test images

6 path = strcat(cd, '\TestImage\');

7 pathresult = strcat(cd, '\Result\');

8 contents = dir(path);

9 path = strcat(cd, '/SipiImg/');

10 pathresult = strcat(cd, '/Result/');

11 contents = dir(path);

12

13 load eqdata

14

15 Method = [];

16

17 for F=1:numel(contents)-2

18 filename = contents(F+2).name;

19 I= imread(filename);

20 Io= double(I); %Original Test input image

21

22 [M, N] = size(Io);

23 pxs =0;

24 pdx =1;

25

26 % eqdata = eqdata(1:20000);

27 tic

28 Iw = Io;

29

30 for i=1:1:M

31 for j=1:3:N-2

32 if pdx +2 ≤ numel(eqdata)

33 [ Iw(i,j:j+2), unusedbit, pshifted] = jungemb( Io(i,j:j+2), ...

eqdata, pdx);

34 pxs = pxs + pshifted;

35 pdx = pdx+2-unusedbit;

36 end

37 end

38 end

39 embtime(F) = toc;

40

41 Ctot(F)= pdx-1; %new line

42 bpp(F)= Ctot(F)/(512*512);

43 psnrval(F)= PSNR(Iw,Io); %****

44 ssimval(F)= ssim(Iw,Io); %****

45

46

47 [pathx, fname, extx]=fileparts(strcat(path, filename));
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48

49 imwrite(uint8(Io),strcat(pathresult, fname,'_orig','.tif'));

50 imwrite(uint8(Iw),strcat(pathresult, fname,'_PVO_1x3','.tif'));

51 Temp = string(strcat(fname,'_PVO_1x3'));

52

53 % mat file writing

54 mfname = [pathresult, fname,'_PVO_1x3','.mat' ];

55 save(mfname)

56

57 if F==1

58 Method = Temp;

59 else

60 Method = [Method;Temp];

61 end

62

63 end

64

65 psnrval = psnrval';

66 ssimval = ssimval';

67 Ctot = Ctot';

68 bpp = bpp';

69 embtime = embtime';

70

71 % xl file writing

72 xlfname = [pathresult, 'jungPVO','.xlsx' ];

73 Tprop = table(Method, Ctot, bpp, psnrval,ssimval, embtime);

74 writetable(Tprop, xlfname, 'WriteVariableNames', 1);

75

76 fprintf('%s completed \n', fname);

A.2.1 jungemb (·)

1 function [wpixnew, k, pxs] = jungemb(pix, payloadData, pdx)

2 %pix is an input array containing three pixels

3 %idx is an input array containing indeces of the input three pixels

4 %bits is an array of embedding bits.

5

6 pxs=0;

7 idx = [1,2,3];

8 pd= [pix;idx]'; % two columns, 1st for pix and 2nd for its idx

9 spd = sortrows(pd,1); % sorting pix with idx. For example, 1st row contain ...

the lowest pix and its location in an image

10

11 emax = spd(3,1)-spd(2,1);

12 emin = spd(1,1)-spd(2,1);

13 k=2;

14 if emax == 0

15 nemax = emax;
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16 elseif emax == 1 && (spd(2,1)+emax+payloadData(pdx))<256

17 nemax = emax + payloadData(pdx);

18 pdx = pdx+1;

19 k = k-1;

20 elseif emax > 1 && (spd(2,1)+emax+1)<256

21 pxs = pxs+1;

22 nemax = emax+1;

23 else

24 nemax = emax;

25 end

26

27 if emin == 0

28 nemin = emin;

29

30 elseif emin == -1 && (spd(2,1)+emin-payloadData(pdx))>-1

31 nemin = emin - payloadData(pdx);

32 k = k-1;

33 elseif (emin < -1) && (spd(2,1)+emin-1)> -1

34 nemin = emin - 1;

35 pxs = pxs+1;

36 else

37 nemin = emin;

38 end

39

40 %embedded pixels

41 wpix = spd;

42 wpix(3,1) = spd(2,1)+ nemax;

43 wpix(1,1) = spd(2,1) + nemin;

44

45 %de-sorting using original indeces of input pixels

46 temp = sortrows(wpix, 2);

47 wpixnew = temp(:,1)';

48 end
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A.3 Generating Curves of Rate-Distortion Performance

1 clc

2 clear all

3 close all

4

5 %% for windows

6 path = strcat(cd, '\selected plot data\');

7 pathresult = strcat(cd, '\Plot_EC\');

8 contents = dir(path);

9

10 %% for unix

11 %path = strcat(cd, '/sPlot/');

12 %pathresult = strcat(cd, '/FiguresPlot/');

13 %contents = dir(path);

14

15 allnames = {'Peppers', 'Airplane', 'Baboon', 'Lena', 'Barbara', 'Boat', ...

'Elaine','Lake', 'Peppers'};

16 lmt = [500, 55000];

17

18 for i=1:numel(allnames)

19 imname = allnames{i}

20

21 %load data of other schemes

22 fname = strcat(imname, '-data.mat');

23 load(fname)

24

25 %sPVO

26 fname1 = strcat(imname, '_sPVO_1x3.csv');

27 temp1 = csvread(fname1);

28 cts= temp1(:,1)/10000;

29 pts = temp1(:, 2);

30 cs = 0.1:0.2:max(cts);

31 ps=smooth(interp1(cts, pts, cs,'linear', 'extrap'));

32

33 %PVO by Jung 2016

34 fname2 = strcat(imname, '_PVO_1x3.csv');

35 temp2 = csvread(fname2);

36 ctj= temp2(:,1)/10000;

37 ptj = temp2(:, 2);

38 cj = 0.1:0.2:max(ctj);

39 pj=smooth(interp1(ctj, ptj, cj, 'linear', 'extrap'));

40

41 % He et al. (2018) InfoSc

42 fname3 = strcat('He18', imname);

43 temp3 = eval(fname3);

44 cth = temp3(:,1);

45 pth = temp3(:, 2);

46 ch = 0.1:0.2:max(cth);

47 ph=smooth(interp1(cth, pth, ch, 'linear', 'extrap'));

68



A.3 Generating Curves of Rate-Distortion Performance

48

49 % Ou et al. (2016) JVCI

50 fname4 = strcat('Ou22', imname);

51 temp4 = eval(fname4);

52 cto = temp4(:,1);

53 pto = temp4(:, 2);

54 co = 0.1:0.2:max(cto);

55 po=smooth(interp1(cto, pto, co, 'linear', 'extrap'));

56

57 % Wang et al. (2015) InfoSc

58 fname5 = strcat('Wang15', imname);

59 temp5 = eval(fname5);

60 ctw = temp5(:,1);

61 ptw = temp5(:, 2);

62 cw = 0.1:0.2:max(ctw);

63 pw=smooth(interp1(ctw, ptw, cw, 'linear', 'extrap'));

64

65 % Qu and Kim (2015) SigProc

66 fname6 = strcat('Qu', imname);

67 temp6 = eval(fname6);

68 ctq = temp6(:,1);

69 ptq = temp6(:, 2);

70 cq = 0.1:0.2:max(ctq);

71 pq=smooth(interp1(ctq, ptq, cq, 'linear', 'extrap'));

72

73 % Peng (2015) SigProc

74 fname7 = strcat('Qu', imname);

75 temp7 = eval(fname7);

76 ctp = temp7(:,1);

77 ptp = temp7(:, 2);

78 cp = 0.1:0.2:max(ctp);

79 pp=smooth(interp1(ctp, ptp, cp, 'linear', 'extrap'));

80

81 % Sachnev (2009) IEEE CSVT

82 fname8 = strcat('Sachnev', imname);

83 temp8 = eval(fname8);

84 ctsv = temp8(:,1);

85 ptsv = temp8(:, 2);

86 csv = 0.1:0.2:max(ctsv);

87 psv=smooth(interp1(ctsv, ptsv, csv, 'linear', 'extrap'));

88

89 % Ou et al (2014) SPIC

90 fname9 = strcat('Ou20', imname);

91 temp9 = eval(fname9);

92 cto2 = temp9(:,1);

93 pto2 = temp9(:, 2);

94 co2 = 0.1:0.2:max(cto2);

95 po2=smooth(interp1(cto2, pto2, co2, 'linear', 'extrap'));

96

97 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

98 %% plot for imname
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99 figure('pos',[1 1 900 1200])

100 h=plot(...

101 cs*10000, ps, '*:r',...

102 ch*10000, ph, 's:b',...

103 cj*10000, pj, 'x:k',...

104 co*10000, po, 'o:g',...

105 cw*10000, pw, 'd:m',...

106 cq*10000, pq, 'd:m',...

107 cp*10000, pp, 'p:c',...

108 csv*10000, psv, '>:k',...

109 'LineWidth', 2, 'MarkerSize', 8); grid on,

110 legend({'Ours', 'He et al. (2018)', 'Jung (2017)', 'Ou et al. (2016)', ...

111 'Wang et al. (2015)', 'Qu & Kim (2015)', 'Peng et al. (2014)', ....

112 'Sachnev et al. (2009)'},'FontSize',13);

113 ylabel('PSNR (dB)','fontsize',16); xlabel('Embedding capacity (bits)', ...

'fontsize',16); title(imname, 'fontsize',16)

114 ylim([min(pp(:)) max(max(ps(:)), max(ph(:)))]);

115 set(gca,'fontsize',14)

116 print (strcat('ec',imname, '.eps'), '-depsc')

117 end
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