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 Application of fuzzy logic is a powerful approach that could be applied in a large 
number of disciplines, starting with engineering control systems, as shown here, 
but also in other business areas. After a short introduction to fuzzy logic, its 
application for adaptive cruise control (ACC) is presented. ACC is a driver 
assistance feature that deals with the problem of speed control, while keeping 
the safe distance from the vehicle ahead. In the hierarchy of autonomous 
vehicles autonomy levels, as defined by Society of Automotive Engineers (SAE) 
International, adaptive cruise control appears in the vehicles at the level 1 and 
above. We developed a fuzzy logic controller where controlled variables are 
speed and distance. Input variables include weather conditions, style or mode of 
driving, vehicle speed and steering angle. A large number of input variables 
improve control but lead to a large fuzzy rules table. Because of that, in the 
design presented here, a tree of connected fuzzy inference systems (FIS) is 
applied. Fuzzy inference systems with a smaller number of variables are 
developed, algorithms explained, rule base defined, and obtained control 
surfaces presented. This approach requires less processing time enabling real 
time applications. Since the rules are defined based on drivers’ experiences, 
fuzzy logic control systems make decisions in the same way as humans do, i.e., 
as experience drivers. This paper gives a comprehensive presentation of a novel 
cascaded fuzzy system development. This novel design also involves algebraic 
subtraction performed through a FIS subsystem.   
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1. INTRODUCTION 

Fuzzy logic is a relatively new way of thinking and 
application development compared to well-known Boolean 
logic. It is established in the last century, by Lotfi A. 
Zadeh (Zadeh, 1965). That is 118 years after George Boole 
published, for the first time, his book The Mathematical 
Analyses of Logic, reprinted later (Boole, 2009). Boolean 
algebra is used to express and analyse operations of logic 
gates. Claude Shannon first applied Boolean algebra to 
analyse and design logic circuits (Shannon, 1938).  

While in Boolean algebra, the values of variables could be 
just true, or false, expressed as integer values of 1 or 0, in 
fuzzy logic, values of variables are real numbers ranging 
between 0 and 1, including them. This enables fuzzy logic 
to be applied in control system design when input 
information is unreliable, or there is lack of certainty.  

We could say that Boolean algebra deals with symbol 
manipulations and exact reasoning, leading to probability. 
We can quantify probability, i.e., assign a value. Further to 

that, Shannon has defined information as negative log of 
probability as given by Equation (1). 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = –  𝑙𝑙𝐼𝐼𝑙𝑙(𝑝𝑝) (1) 

There is a difference between probability and possibility. 
Probability of an event, p, means that something may 
happen, and we believe that it is more likely than not. It 
can be quantified like p=0, 0.2, 0.5, …, 1. If we look at the 
system that can generate just 2 events, then in Equation (1) 
base of the log is 2. If events have the same probability of 
appearance, i.e., p=0.5, then the information carried by a 
single event is equal to 1bit.  

On the other side, possibility means that something may 
happen, but we do not know how likely. Fuzzy logic 
applies symbol manipulations and numerical computations 
to come to approximate reasoning. It essentially deals with 
possibilities. Everything is a matter of degree. Fuzzy logic 
variables are represented by sets of values. That can be 
represented by mathematical formulations which give a 
degree of membership within the set. We can have unions 
and intersections of fuzzy sets. As humans, we make fuzzy 
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logic decisions. Artificial Intelligence (AI) is effectively an 
application of fuzzy logic. Fuzzy logic is applied in many 
control engineering systems, when other strategies are not 
powerful enough to deal with uncertainties and unreliable 
data (Carter, Chiclana, Khuman, & Chen, 2021; Matía, 
Marichal, & Jiménez, 2014). It is also applied in business 
decision making, as shown in numerous references, like 
here (Bezděk, 2014) and here (M. Todorovic & M. Simic, 
2019) in the process of Transition to Electrical Vehicles 
Based on Multi-Attribute Decision Making. Managing 
Transition to Autonomous Vehicles Using Bayesian Fuzzy 
Logic is also investigated and reported (Todorovic & 
Simic, 2019b).  

At RMIT University, School of Engineering, research in 
autonomous vehicles (Elbanhawai, Simic, & Jazar, 2015; 
Elbanhawi & Simic, 2014; Elbanhawi, Simic, & Jazar, 
2015a, 2015b; Elbanhawi, Simic, & Jazar, 2015; 
Elbanhawi, Simic, & Jazar, 2016; Elbanhawi, Simic, & 
Jazar, 2018), as well as, research in the process of new 
technology introduction (Aldakkhelallah, Todorovic, & 
Simic, 2021; Todorovic & Simic, 2019a, 2019b; Todorovic 
& Simic, 2019; Todorovic, Simic, & Kumar, 2017), are 
conducted concurrently.  

Driving a car is a good example of fuzzy logic decisions 
that we make as drivers. We must take care of the speed, 
acceleration, path conditions and curvatures, visibility, our 
vehicle performances, especially available power in critical 
situations and many other. When we design a fully 
autonomous vehicle (AV), knowledge and skills of the best 
drivers should be embedded into the vehicle control 
system. On the road, AV decisions must be made in the 
real time. All of this was the motivation for the research 
conducted and presented here. The main contribution of 
this paper is a comprehensive report of an original 
cascaded fuzzy system development. Other publications 
available (Emmanuel, 2017), (Panse, Singh, & Satsangi, 
2015), (Basjaruddin, Kuspriyanto, Saefudin, & Nugraha, 
2014), although very valuable, do not give details and 
algorithms on defining safe distance and speed or speed 
error. This original design also involves algebraic 
subtraction performed through a FIS subsystem.   

2. RELATED WORKS  

Adaptive cruise control is one of the driver assistance 
features introduced on level 1 and 2 of SAE AV ranking. 
This can be achieved by various methods of control such 
as using Proportional-Integral-Derivative (PID) controller, 
state-space controller, fuzzy logic, (Osman, Rahmat, & 
Ahmad, 2009), Internal Model Control (IMC), neural 
networks or other, like coordinated throttle and brake 
control for ACC (Bala, Sadiq, Aibinu, & Folorunso, 2021). 
PID and IMC are not suitable for nonlinear operations on 
the road, such as aerodynamic drag and friction (Bala et 
al., 2021), or slippery road. All of those are effected by 
weather conditions. Further to that, it is shown that the 
fuzzy logic controller has faster response than neural 
network solutions and is less complex to implement (Panse 
et al., 2015).  

Another recent publication, (Nchena, 2020) considers type 
of the road, i.e., downhill, and uphill driving. In this report 

on fuzzy logic controller (FLC) application in AV control, 
two types of controllers were investigated. It is shown that 
FLC outperforms a Proportional Integral (PI) controller. 
Since fuzzy logic can easily handle nonlinear conditions 
and shows superiority compared to other controller 
approaches, our investigation has proceeded in that 
direction. Large number of input variables are included in 
our novel design to enable better control. All stages and 
algorithms of the controller design are presented, what 
cannot be found so comprehensively given in existing 
works. The presented controller covers all road types and 
weather conditions.  

Example of a generic fuzzy logic controller is shown in 
Figure 1.  

 
Figure 1: Generic fuzzy logic controller for cruise control  

Basic components of this control approach, i.e., of fuzzy 
inference system, are presented. Fuzzifier block is 
converting an input variable into fuzzy sets through 
membership functions as shown later by Equations (5) and 
(6). Transfer of input variable values to outputs is 
performed using rules. Rule base, or database of rules, is 
defined based on human operator expertise, or drivers 
experience. It has numerous if then statements, as 
following  

𝑰𝑰𝑰𝑰 𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 𝐼𝐼𝑠𝑠 𝑏𝑏𝑠𝑠𝑙𝑙𝐼𝐼𝑏𝑏 𝐼𝐼ℎ𝑠𝑠 𝑠𝑠𝑠𝑠𝐼𝐼 𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠, 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 𝑢𝑢𝑝𝑝 

Inference engine is applying fuzzy rules to the input 
variables, to generate fuzzy output. In the next step, 
defuzzification, output fuzzy set is converted to a crisp set. 
Center of gravity method is often used defuzzification 
method. When plain cruise control is implemented, the 
driver is responsible for maintaining the safe distance 
behind the car ahead. In our case, that function is 
performed by the fuzzy controller, which is now becoming 
more comprehensive.  

3. ADAPTIVE CRUISE CONTROL SYSTEM   

An adaptive cruise control, as a driver assistance feature, is 
monitoring and controlling the speed of our Cruise Car 
(CC) while simultaneously keeping the safe distance from 
the Car Ahead (CA). The speed of the CC is labeled as SCC 
and the Speed of CA is SCA. Safe distance is defined by the 
traffic authorities. In addition to that, it also depends on the 
vehicle speed, traffic, weather conditions and the driver, or 
driving mode. An additional variable, Distance Error 
(DE), is introduced as the difference between Measured 
Distance and Safe Distance, as given by Equation (2).  

𝐷𝐷𝐷𝐷 =  𝐷𝐷𝐼𝐼𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝑠𝑠 –  𝑆𝑆𝐼𝐼𝐼𝐼𝑠𝑠 𝐷𝐷𝐼𝐼𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝑠𝑠 (2) 

Different scenarios on the road are given in Figure 2.  
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Figure 2: Defining distance error (DE) cases 

We also need to define speed error, which is calculated as 
given by Equation (3). 

𝑆𝑆𝐷𝐷 =  𝑆𝑆𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆  –  𝑆𝑆𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶  (3) 

Considering distance error and speed error we can define a 
new rule such as the following: 

If distance error is positive and speed error is positive, 
then accelerate 

The rule base consists of all possible rules, i.e., has 
responses for all scenarios that could appear on the road.  

4. FUZZY LOGIC VARIABLES 

According to SAE defined levels of driving automation, if 
adaptive cruise control, or lane centering, appears as driver 
support feature, the vehicle is level 1 automated. If both 
features are included, that vehicle is categorized as level 2. 
Manufacturers have different names for ACC and different 
control strategies are applied. For any control system we 
need to define input variables, control strategy, controller, 
and output variables. In this project, a cascaded fuzzy logic 
approach is applied in controller design.  

In 1965 Zadeh has introduced fuzzy set as a class of objects 
with a continuum of membership grades (Zadeh, 1965). 
They are foundation of any logic regardless of truth levels 
assumed. For fuzzy variables we have continuum of logic 
levels between 0, associated to false, to 1 for completely 
true. We can label a space of points as X. Equation (4) 
defines an x as a generic element of space X. 

𝑥𝑥 ∈ 𝑋𝑋  (4) 

A fuzzy set A in the universe X is defined by a membership 
function μA(x), which associates point x to a real number in 
the interval [0, 1]. Value μA(x) represents grade of 
membership of x in A. As an illustration, membership 
functions’ plots for the measured Speed input variable are 
shown in Figure 3.  

 
Figure 3: Membership functions’ plots for the Measured 

Speed input variable 

The most popular membership functions are Triangular, 
Trapezoidal, Piecewise linear, Gaussian and Singleton. 
Triangular membership function labeled as 𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇 is given by 
Equation (5).  

𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇[𝐼𝐼, 𝑏𝑏, 𝐷𝐷](𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 0          𝑥𝑥 < 𝐼𝐼
𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎

        𝐼𝐼 ≤ 𝑥𝑥 ≤ 𝑏𝑏
𝑐𝑐−𝑥𝑥
𝑐𝑐−𝑏𝑏

        𝑏𝑏 < 𝑥𝑥 ≤ 𝐷𝐷
0          𝑥𝑥 > 𝐷𝐷

  (5) 

As shown in Figure 3, our membership function OK is a 
triangular type, where braking points are 𝐼𝐼 = 60𝑘𝑘𝐼𝐼/ℎ , 
𝑏𝑏 = 80𝑘𝑘𝐼𝐼/ℎ and 𝐷𝐷 = 100𝑘𝑘𝐼𝐼/ℎ.   

Functions Slow and Fast are trapezoidal type 𝜇𝜇𝑇𝑇𝑇𝑇𝑎𝑎𝑇𝑇  and 
they are defined as given by Equation (6). In our case, both 
are particular cases of a generic trapezoidal function. For 
membership function Slow, we have 𝐼𝐼 = 𝑏𝑏 = 0 , 𝐷𝐷 =
60𝑘𝑘𝐼𝐼/ℎ  and 𝑠𝑠 = 80𝑘𝑘𝐼𝐼/ℎ . For membership function 
Fast, 𝐼𝐼 = 80𝑘𝑘𝐼𝐼/ℎ, 𝑏𝑏 = 100𝑘𝑘𝐼𝐼/ℎ, and 𝐷𝐷 = 𝑠𝑠 →  ∞.  

𝜇𝜇𝑇𝑇𝑇𝑇𝑎𝑎𝑇𝑇[𝐼𝐼, 𝑏𝑏, 𝐷𝐷,𝑠𝑠](𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

0          𝑥𝑥 < 𝐼𝐼
𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎

        𝐼𝐼 ≤ 𝑥𝑥 < 𝑏𝑏
1          𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝐷𝐷
𝑑𝑑−𝑥𝑥
𝑑𝑑−𝑐𝑐

        𝐷𝐷 < 𝑥𝑥 ≤ 𝑠𝑠
0          𝑥𝑥 > 𝑠𝑠

  (6) 

Our control system has six input variables and two outputs. 
Inputs, with associated membership functions in brackets, 
are given here:  

• Driving mode (Eco, Comfort, Sport),  
• Weather conditions (Good, Bad),  
• Measured speed (Slow, OK, High), 
• Distance from the vehicle ahead (Big, OK, Too 

close)  
• Speed error (ranges from very negative to very 

positive, i.e., NN, N, Z, P, PP)  
• Steering angle (ranging from very high, to moderate 

and zero, PP, P, Z).  

Outputs of our control system, with associated membership 
functions in brackets, are as following:  

• Corrected acceleration (from negative to zero and 
positive NN, N, Z, P, PP)  

• Braking (from hard braking, BB, braking, B, to no 
braking, Z).  

When the number of inputs to a fuzzy system is large than 
that requires large number of rules. In our case it is 3 ∗ 2 ∗
3 ∗ 3 ∗ 5 ∗ 3 = 810 per output, i.e., 1620 in total for two 
outputs. Because of that complexity, controller is designed 
as a cascaded fuzzy inference system (FIS), i.e., it has four 
interconnected FIS subsystems inside.  

5. FUZZY CONTROL SYSTEM STRUCTURE 

In order to overcome the need for a large number of rules, 
fuzzy inference system is implemented as a hierarchical 
tree of smaller interconnected subsystems. Following that, 
block diagram of the fuzzy logic based adaptive cruise 
control is shown in Figure 4. It is an incremental structure.  
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Figure 4: Incremental structure of the fuzzy control system. 
Number of membership functions for each input is given and 

all input / output variables are labelled 

Each FIS has its own inputs and outputs, where outputs of 
the lower-level fuzzy systems are used as inputs to the 
higher-level fuzzy systems.  

As shown, there are four interconnected levels. Fuzzy tree 
structure approach is more computationally efficient and 
easier to follow than a single FIS with the same number of 
inputs.  

Level 1 in the tree has 3 inputs with 3 + 2 + 3 = 8 
membership functions in total. This gives number of rules 
3 ∗ 2 ∗ 3 = 18.  

In level 2 we have 2 inputs, both with 3 membership 
functions. It creates 9 fuzzy rules.  

On level 3 we have 2 inputs with 5 membership functions 
each, which leads to 25 rules.  

Finally, on the level 4 we have 2 inputs, with 5 and 3 
functions, creating 15 rules, for each output, i.e., 30 rules 
for the final, output level FIS.  

The total number of rules is now (18 + 9 + 25 + 2 ∗
15) = 82, compared with 1620 which we would have if 
we did not use hierarchical tree structure.  

6. FIS SYBSYSTEMS DESIGN  

The following section presents design steps for each of the 
FIS subsystems included in the cascaded controller.  

A. Level One FIS Design 
Inputs at the first level in the tree, with associated 
membership functions in brackets, are given here:  

• Driving Mode (Eco, Comfort, Sport)  
• Weather conditions (Good, Bad)  
• Measured Speed (Slow, OK, High) 

Membership functions for variable Speed are already 
shown in Figure 3. Membership functions for Weather 
variable are given in Figure 5. It is a dimensionless 
variable displayed in the range 0 to 10, on x axes. Value 0 
corresponds to bad weather, while 10 corresponds to good 
weather. In this initial stage we have defined just two 
membership functions, but later, if needed, we could 
include more to better cover the real weather conditions on 
the road.  

 
Figure 5: Membership functions for input variable Weather 

Our Weather, as an input variable here, could be an output 
variable from another fuzzy inference system that should 
consider onboard sensors’ readings of temperature and 
detections of snow, rain, fog, and strong winds. This could 
also be a task for onboard Artificial Intelligence (AI).  

Inference engine is using the rule base to define output, 
i.e., Safe Distance in this case. Rule base is shown in 
Figure 6 – which is a screen capture from the MATLAB 
Rule Editor. There are 18 rules because there are 3 
membership functions for Driving Mode, 2 for Weather 
and 3 for the measured Speed.  

FIS responses can be seen through the control surface. 
Since we have 3 input variables and one output, it makes 4 
dimensions. That could not be presented on a single 3D 
graph. Following that, MATLAB can visualize three 
control surfaces  

• S1 = Safe Distance (Speed, Weather) 
• S2 = Safe Distance (Driving mode, Speed) 
• S3 = Safe Distance (Weather, Driving mode) 

We are presenting here just one, but all of them are 
available for investigation. The first one is selected 
because drivers are usually selecting driving mode and do 
not change it that often. At the same time Speed and 
Weather are extremely important inputs, i.e., variables for 
real time processing and autonomous driving.  

 
Figure 6: Fuzzy rules for variable Safe Distance as seen in 

MATLAB Rule Editor 

Figure 7 shows S1 control surface. We can see that the Safe 
distance is larger when the Speed is greater, and the 
Weather is Bad.  
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Figure 7: S1 control surface for Safe Distance 

B. Level Two FIS Design 
Inputs for the second FIS level in the tree, with associated 
membership functions in brackets, are given here:  

• Safe Distance (P(Low), Z(OK), N(Higher)),  
• Measured Distance (Big, OK, Too Close) 

Safe Distance comes out of the FIS at the level 1, as just 
shown. Measured Distance comes from the distance sensor 
readings (Radar or LIDAR). Control surface is shown in 
Figure 8. Output variable is Distance Error (DE), which 
has 5 membership functions. Visual presentation of the DE 
meaning is already given in the Figure 2. Distance error 
and Speed error, with five membership functions as well, 
are two key control variables in the feedback control loop. 
This, the most important logic, is realized on the next FIS 
level.  

As an illustration of the functionality for this stage, let us 
analyze a scenario when the safe distance if 70m and our 
measurement shows 70m as well. Distance error is 0 as it 
can be seen from the location of the red point P on the 
surface.  

 
Figure 8: Control surface for FIS 2 i.e., Distance Error  

Because FIS 2 output variable Distance Error is input 
variable for next level FIS 3, in order to follow the logic, 
this variable is shown in Figure 9 with its 5 membership 
functions.  

 
Figure 9: Distance Error variable membership functions  

C. Level Three FIS Design 
Inputs at the third level in the tree have five membership 
functions each. They are given here with associated 
membership functions in brackets:  

• Distance Error (ranges from very negative to very 
positive, i.e., NN, N, Z, P, PP), as shown in Figure 9  

• Speed error (ranges from very negative to very 
positive, i.e., NN, N, Z, P, PP)  

Speed Error is calculated by Equation (3), as a difference 
between set speed and instant cruising speed, outside of 
this controller structure, and then fuzzified. These variable 
membership functions are shown in the Figure 10.  

 
Figure 10: Input variable Speed Error membership functions 

Since we have 5 functions for each variable, the total 
number of rules is 25. For easier tracking of rule base 
design, it is initially created in Excel and then transferred 
to MATLAB by Rule Editor. Excel rule base is given in 
Figure 11.  

 
Figure 11: Whole rule base for FIS 3 Acceleration 

For example, from the rule base shown in Figure 11 we 
crate rules as following.  

If SE is NN, and DE is NN then Acceleration is NN, …,  
If SE is P, and DE is Z then Acceleration is Z, 

When the rules are in the system, using MATLAB Rule 
Viewer, we could see and verify all of them. Rule View for 
FIS 3 is shown in the Figure 12. 

 
Figure 12: Rule View for all FIS 3 i.e., for output variable 

Acceleration 



 Simic:  
 Cascaded Fuzzy Logic for Adaptive Cruise Control  

MIJST, Vol. 10, June 2022 38 

When this is all set up properly, we can see the control 
surface for Acceleration as shown in Figure 13.  

 
Figure 13: Control surface for Acceleration 

Both input variables for FIS3, could be positive, zero or 
negative. As we can see from the Figure 13, Acceleration, 
as output, also could be positive, to speed up, and negative, 
when needed to slow down. For higher distance error or 
higher speed error we have higher acceleration. There 
should be a limit to acceleration and that is defined by the 
steering angle. The correction of the acceleration, as well 
as braking, is introduced by the last FIS4 in the tree 
structure.  

D. Level Four FIS Design 
Inputs to the fourth level FIS in the tree, are given here 
with associated membership functions in brackets:  

• Acceleration (ranges from very negative to very 
positive, i.e., NN, N, Z, P, PP)  

• Steering Angle (ranges from zero, positive, to very 
positive, i.e., Z, P, PP)  

From this FIS we have two output functions:  

• Corrected Acceleration (ranges from very negative 
to very positive, i.e., NN, N, Z, P, PP)  

• Braking (ranges from zero to very positive, i.e., Z, 
P, PP)  

Acceleration is output variable from FIS 3 and input for 
FIS 4. Its values, as FIS output, can be seen in the Figure 
13. Membership functions are shown in the Figure 14.  

 
Figure 14: FIS 4 Input variable Acceleration membership 

functions 

When defining the range for this variable we have taken 
values that could be found for a relatively powerful 
vehicles available to the market, like up to 5m/sec2. For the 
Steering Angle vales are also relatively widely used, in the 
range of -300 to +300, expressed in degrees. In defining the 
rule base, we have considered absolute values because 

from the point of vehicle dynamics constraints, it does not 
matter if we have to turn left, or right.  

 
Figure 15: FIS 4 Input variable Steering Angle membership 

functions, shown as absolute value of real angle 

Total number of rules is 2 ∗ (3 ∗ 5) = 30, or 15 integrated 
rules, for two outputs, as in MATLAB Rule Editor. All 
rules, i.e., whole rule base, are shown in Figure 16. Based 
on that, we have control surfaces as shown in Figure 17 
and Figure 18. Comparing Figure 13 and Figure 17 we can 
see the difference, i.e., acceleration corrections.  If the path 
curvature is too large, we, as drivers, must adjust 
acceleration, or deceleration, accordingly.  

 
Figure 16: FIS 4 rule base for output variables Corrected 

Acceleration and Braking 

For example, if the angle is extreme, such as 300, 
Corrected Acceleration is 0. If Steering Angle is 0 then 
there is no correction as shown clearly in Figure 17.  

From Figure 18 we can see that there is no braking while 
Acceleration is positive, and that it increases as 
deceleration increases.  

 
Figure 17: FIS 4 control surface for output variable Corrected 

Acceleration  

Intensity of braking is defined in the range from 0 to 10, 
but for the particular car it will be converted to the braking 
force intensity in the range of 0 to xx N.  
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Figure 18: FIS 4 control surface for output variable Braking 

In summary, membership functions, fuzzy rules and 
control surfaces for all control levels are presented. The 
system has 6 inputs, with 19 membership functions and 
two outputs with a total of 8 functions. When the number 
of inputs, and membership functions increase the number 
of rules increase as a product of the number of functions 
per input.  

Compared to single fuzzy inference system, not cascaded, 
which must have 1620 rules, the presented design has just 
82 rules. With 6 input variables, through 3 cascaded levels, 
the presented design enables better control, more akin to 
human operator’s actions. Other publications do not give 
as much detail in the FIS subsystem design. Additionally, 
instead of calculating Distance Error with Boolean logic, 
as shown in other research reports (Basjaruddin et al., 
2014), (Chen, Zhang, & Liu, 2016), in our controller, the 
output variable from FIS 2, derived through fuzzy logic, is 
further appearing as input variable on level 3 FIS. The 
same could be conducted for the Speed Error but was not 
presented here for the simplicity of design and 
presentation.  

7. CONCLUSIONS  

Design of a cascaded, incremental fuzzy control system is 
presented. At the beginning, the basics of two logic 
systems are explained: Boolean and Zadeh’s Fuzzy logic. 
They both have their application areas and deal with 
uncertainties through handling probability, or possibility in 
the systems’ design and control. Fuzzy logic and Artificial 
Intelligence are now widely used in all types of 
engineering systems, in business, medicine and other areas.  

Adaptive cruise control is one of the driver assistance 
features. Car manufacturers have different controller 
solutions and names for this active safety system. The 
presented cascaded, incremental fuzzy logic controller uses 
data collected from all available vehicle onboard sensors. 
Membership functions, fuzzy rules and control surfaces for 
all control levels are presented. When the number of 
inputs, and membership functions increase, the number of 
rules increases as a product of functions per input. A large 
number of rules increase computation time and is not 
suitable for real time processing. The presented approach 
using a fuzzy tree is simplified and uses an order of 
magnitude less fuzzy rules.  

In the further research, both distance and speed errors will 
be derived through fuzzy logic, and then the complete 

vehicle dynamic system modeling will be conducted. 
Through the model testing, fine tuning of the fuzzy logic 
controller will be conducted, the same as we improve our 
driving through experience.   

The final step is to go from MATLAB code, to hardware 
description language (HDL) code, and then to field-
programmable gate array (FPGA) that could be used for 
field testing.  
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