
 MIJST
 MIST International Journal of Science and Technology

MIJST, Vol. 10, June 2022 | https://doi.org/10.47981/j.mijst.10(01)2022.349(25-32) 25

Logical analysis of built-in DBSCAN Functions in Popular
Data Science Programming Languages

Md Amiruzzaman1*, Rashik Rahman2, Md. Rajibul Islam3, and Rizal Mohd Nor4
1West Chester University, West Chester, PA, USA
2,3University of Asia Pacific, Dhaka, Bangladesh
4International Islamic University Malaysia, Kuala Lumpur, Malaysia

emails: 1m.amiruzzaman@gmail.com; 217201012@uap-bd.edu; 3md.rajibul.islam@uap-bd.edu; and 4rizalmohdnor@iium.edu.my

A R T I C L E I N F O

A B S T R A C T

Article History:

Received: 21st March 2022
Revised: 21st May 2022
Accepted: 23rd May 2022
Published online: 26th June 2022

DBSCAN algorithm is a location-based clustering approach; it is used to find
relationships and patterns in geographical data. Because of its widespread
application, several data science-based programming languages include the
DBSCAN method as a built-in function. Researchers and data scientists have
been clustering and analyzing their study data using the built-in DBSCAN
functions. All implementations of the DBSCAN functions require user input for
radius distance (i.e., eps) and a minimum number of samples for a cluster (i.e.,
min_sample). As a result, the result of all built-in DBSCAN functions is believed
to be the same. However, the DBSCAN Python built-in function yields different
results than the other programming languages those are analyzed in this study.
We propose a scientific way to assess the results of DBSCAN built-in function, as
well as output inconsistencies. This study reveals various differences and
advises caution when working with built-in functionality.

Keywords:

Clustering
DBSCAN
Geo-coordinates
Machine learning
Spatial

 © 2022 MIJST. All rights reserved.

1. INTRODUCTION

Identifying and classifying classes in the spatial domain is
a common practice in many investigations. For example,
research such as Rizvee et al., (2021) for locating accident-
prone locations and Islam et al., (2021) for locating
densely populated areas. The Density-Based Spatial
Clustering of Applications with Noise (i.e., DBSCAN) is a
clustering approach for location-based data. The DBSCAN
clustering method locates the neighboring points of a given
spatial point and groups the neighbors if they meet
multiple clustering requirements within the given adjacent
distance (Amiruzzaman, et al., 2021).

Clustering in the spatial realm can be useful in a variety of
applications. DBSCAN is commonly used for clustering in
planar space. It can produce reasonable results when used
to map the impact of natural catastrophes or to plot the
position of weather stations in a city. It can also be utilized
when the data is made up of non-discrete points and has
outliers. DBSCAN is used by many systems nowadays that
provide recommendation services, such as a Recommender
engine, to propose goods or things to its clients. It is also
utilized to identify typical events, such as finding areas
where frequent road accidents occurred, in other
applications (Rizvee et al., 2021; Amiruzzaman et al.,
2018).

Clustering techniques is one of the most renowned,
powerful, and widely used unsupervised learning
approaches in data mining (Berry et al., 2019). This is a
way of classifying comparable or similar data members
into a set or group based on some preset resemblance
(Fischer et al., 2003). Some real-world uses of clustering
include book sorting in a library, consumer segmentation
in marketing, and fraud detection in insurance (Mahmoudi
et al., 2020). Larger challenges, such as seismic analysis or
perhaps urbanization analysis, may benefit from clustering
as well. According to (Limwattanapibool et al., 2017),
clustering algorithms are classified into seven types: (i)
hierarchical clustering algorithms, (ii) graph-based
algorithms, (iii) density-based clustering algorithms, (iv)
partitioning clustering algorithms, (v) model-based
clustering algorithms, (vi) combinational clustering
algorithms, and (vii) grid-based algorithms. Among them,
the DBSCAN method is widely used as an unsupervised
machine learning techniques, that is taken into account for
this study (i.e., in the spatial domain).

Although, the most clustering approaches in the literature,
for example, k-means (Macqueen et al., 1967; Islam et al.,
2021), Single-Linkage clustering (SLINK) (Sibson et al.,
1973), and other centroid-based clustering approaches,
share computational similarities, they are not powerful or

 Amiruzzaman et al.:
Logical analysis of built-in DBSCAN Functions in Popular Data Science Programming Languages

MIJST, Vol. 10, June 2022 26

adaptable enough to be considered in a wide range of
clustering use. These are recognized for their capacity to
recognize clusters of any form (Wu et al. 2014). They are,
however, susceptible to noise and have the major limitation
of recognizing groups based on only density and data
points spherical-shaped clusters (Jain et al., 2010).

In this case, DBSCAN appears to be a promising solution
to several clustering issues. It contrasts in a number of
ways (Amiruzzaman, et al., 2021). It classifies clusters
based on the density of data members in their feature space
as a substitute of the position of the computed centroids
like k-means does (Dudik et al., 2015). These provide
more exact evidence of identification and segregation of
clusters of varying sizes and forms, particularly when they
form a shape of a convex clusters of data. DBSCAN’s
ability to extract noisy data members or outliers make them
stand out from other algorithms (Luchi et al., 2019).
Importantly, rather than arbitrarily selecting the first
positions of the cluster centroids, the DBSCAN method
employs a deterministic approach (Handra et al., 2011).
This paper's contributions are as follows:

● Present a methodology as to how a built-in function
can be compared among different programming
languages.

● Provide comparable results obtained from the
experiment.

● Provide visual output as evidence for easier
exploration.

● Provide implications and detailed discussion on the
evidence.

A. Motivation
The DBSCAN method is a well-known technique for
grouping geographical data. Nevertheless, there are several
programming languages, and virtually almost all of the
languages provide built-in functions that can help with user
data clustering. Often, programmers utilize these built-in
functions in good faith in order to avoid inventing difficult
procedures or algorithms on their own (Cranor et al., 1994;
Ramalho et al., 2015).

Commonly Java implementation of DBSCAN can be
found in Apache Common Math and Environment for
DeveLoping KDD-Applications Supported by Index-
Structures (ELKI). C++ implementation can be found in
mlpack and pyclustering. In python, DBSCAN is included
in the scikit-learn or sklearn library and R contains a
package for DBSCAN. There are applications like Weka
and SPMF that provide their implementation of DBSCAN.

There are few studies that demonstrate a systematic review
of such built-in functions to offer a technique to identify
similarities and variations in the outcomes produced by the
accessible libraries (Amiruzzaman, et al., 2021). This study
aims to address a necessity in evaluation-based studies by
demonstrating a methodical approach of evaluating built-in
functionalities.

B. Objective
The goal of this study was to explore how the built-in
DBSCAN algorithm provides output, and if the obtained
outputs from different programming languages are

comparable. We wanted to see where similarities and
differences lies in the output obtained from different
implementations of DBSCAN. We focused on following
research questions for this study:

● Are there any differences in clustering results
produced by DBSCAN built-in clustering among
data science based programming languages, when
the same parameter values are used?

● If there are any differences in results and
similarities, then which ones are providing pairing
results?

2. RELATED WORK AND USE OF DBSCAN IN
EXISTING STUDIES

In computer science, there are different cluster methods for
class identification (Amiruzzaman, et al., 2021). Since we
have more than one algorithm, hence we must select the
one that fits the dataset and offers most optimal result.
Performance analysis allows us to select the best algorithm
from a set of algorithms to solve a problem. There is
indeed a large number of study in the literature on the
comparative investigation of DBSCAN. In one study,
authors examined the performance of DBSCAN and
concluded that the DBSCAN clustering technique does not
scale well for big datasets (Gan & Tao, 2015). While
studying deep learning clustering approaches for
bioinformatics, Karim et al. (2020) utilized DBSCAN to
compare several clustering methods in a different study.
Particularly, Karim compared machine learning approaches
in clustering algorithms such as K-means, DBSCAN,
OPTICS which is an extension of DBSCAN, GMM, AC
and the Partial Mix Model (PMM). For each algorithm,
Karim describes the parameters being used, scalability of
sample sizes, geometry used for calculating distances, its
use cases in bioinformatics and its limitations. Among its
notable limitations for DBSCAN is the difficulty of
separating nearby clusters and the quadratic computational
complexity. However, he also noted that it is a good
algorithm for uneven cluster size with non-flat geometry
and hence used in many bioinformatics analysis.

Many essential criteria, for example, the accuracy of the
result, precision, recall values, the complexity of the
algorithm, and others, can be found in the existing works
that have been used to appraise the DBSCAN clustering
algorithm’s performance (Zhou et al., 2000). Schubert et
al. (2017) presented a strong argument about why we
should still use DBSCAN as a rebuttal to a previous paper
misrepresenting DBSCAN of having poor performance. In
Schuberts argument, he explains that choosing the right
parameters is important to achieve both meaningful results
and good performance. Schubert conducted experiments to
show that other suggested methods do not appear to offer
practical benefits if the DBSCAN parameters are well
chosen and thus they are primarily of theoretical interest.
Schubert concluded that the original DBSCAN algorithm
with effective indexes and reasonably chosen parameter
values performs competitively compared to the method
proposed by others claiming to achieve better results.
Clearly, DBSCAN remains relevant in many scientific

 Amiruzzaman et al.:
Logical analysis of built-in DBSCAN Functions in Popular Data Science Programming Languages

MIJST, Vol. 10, June 2022 27

research work and requires constant revision on how we
use DBSCAN to achieve meaningful results.

There are several software libraries or tools available, and
most of those provide built-in functions that aid with
consumer data clustering. Authors of an existing study
described several clustering techniques as well as the
software packages/tools associated with such approaches
(Oyelade et al., 2016).

Often, data technologists, programmers, and academics
rely on these built-in clustering functions and avoid
constructing difficult algorithms (Amiruzzaman, et al.,
2021). Nevertheless, there is a scarcity of research that
compares the built-in functionalities offered by various
software packages/tools' libraries. This research sought to
address a gap in evaluation-based studies by demonstrating
a systematic approach to evaluating built-in functionalities.
Figure 1 depicts how many articles in the last 7 years
employed the DBSCAN technique in their study. The data
shown in Figure 1 was collected in May of 2022.

Figure 1. The DBSCAN algorithm used in studies

over the last 7 years

For example, 3830 papers published in 2016 used
DBSCAN as an analysis or as a clustering tool.
Subsequently, in 2017, 4,200 papers were published that
somehow used DBSCAN in their work. Furthermore, there
were 5,470 papers in 2018, 6,760 papers in 2019, 7,880
papers in 2020, and 9,600 papers in 2021. Most
interestingly, in 2022 (up to mid-May 2022), 2,870 papers
used the DBSCAN algorithm. These results are based on a
search in Google scholar using the keywords “BDSCAN as
an analysis tool”. Perhaps, in reality, these numbers may
change slightly, however, these numbers give us an idea
about how popular the DBSCAN algorithm is in data-
science-related studies or clustering in general. From
Figure 1, it is evident that the popularity of the DBSCAN
algorithm is experiencing an upward trend. As shown in
Figure 1, by the end of the year 2022, the search quantity
may exceed that of the previous year. Research related to
DBSCAN is showing an increasing trend, so it is very
important to justify various approaches to the DBSCAN
algorithm.

3. METHOD

A. Opening discussion
DBSCAN clustering algorithm helps in computing
distances in between points of data given and outputs high
density cluster areas. The focus for DBSCAN clustering is
highly dependent on neighborhood computation.
Generally, the computations as follows: a point p1 is said to
be the neighbor of another point p2, iff p1 and p2 are located
less than or equal to the radius distance of eps distance.
This computational process continues discovering other
points, p1 and p2 which are neighbors and these points form
a cluster if they meet the goal of min_sample or minPts
(see Figure 2).

Figure 2. Working procedure of DBSCAN algorithm

Based on the above discussion the DBSCAN algorithm
depends on two basic parameters:

● minPts (min_sample): The minimum number of
points to form a cluster.

● eps (ε): The minimum distance to form a
neighboring relationship among points.

Throughout this study of DBSCAN clustering algorithms,
numerous programming languages were utilized to
compare the accuracy, consistency and reliability of the
DBSCAN clustering algorithm implemented. Particularly,
we were interested in producing the same results despite
the programming language given, hence a similar approach

to Ester et al, 1996 was taken to discover clusters in large
spatial databases with noise. In doing so, we also took the
approach of Davies-Bouldin (Davies et al., 1979) and
Silhouette Coefficient (Rousseeuw et al., 1987) by first
calculating the appropriate number of clusters.
Consequently, we employed seven distinct geo-coordinate
location coordinates from Lexington, North Carolina,
United States (refer to Table 1) with the use of four
different computer languages, which includes the Python
programming language. Also, we considered other
languages, such as the, R programming language,
Javascript, and Postgres with the postgis library.

 Amiruzzaman et al.:
Logical analysis of built-in DBSCAN Functions in Popular Data Science Programming Languages

MIJST, Vol. 10, June 2022 28

As for the selection of geo-coordinates, points were
selected using a pseudo-random generator as suggested by
most researchers in literature to enhance the validity of the
research (Niemierko et al., 1990). As a recall to what was
mentioned, the DBSCAN clustering algorithm attempts to
group data points together provided that they are neighbors
and within a certain distance (ε). It can best be described
mathematically in the equation below (see Equation (1))
that determines if two data points are within the same
neighborhood.

𝑁𝑁𝜖𝜖(𝑝𝑝1): {𝑝𝑝2|𝑑𝑑(𝑝𝑝1, 𝑝𝑝2) ≤ 𝜖𝜖} (1)

Using the spatial distance denoted as d, and the provided
distance ε, the function Nε(.) attempts to identify whether
coordinate point p1 and coordinate point p2 are considered
to be neighbors. If coordinate point p1 and coordinate point
p2 is less than ε, then p1 and p2 are considered as neighbors.
It is common that the DBSCAN method requires at least 2
parameters, such as epsilon and MinPts. To be consistent
with our study, we employed identical parameters for all of
the above-mentioned programming languages for our
experiments. Therefore, for brevity, it is enough to say that
all epsilon and MinPts, for all programming languages
studied, are identical.

To determine the 2D space distance, it is pretty common
practice to use Euclidean distance as a method for
measurement. The Euclidean distance between two points
can be calculated as such, consider point (x1, y1) denoted as
p1 and point (x2, y2) denoted as p2, then the Euclidean
distance may be calculated as follows:

𝑑𝑑 = �((𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2) (2)

where d denotes the distance between two points, which is
p1 and p2.

In some other occasions, Haversine distance is largely
preferred. This is usually the case when it is necessary to
take into consideration the distance between two geo-
coordinates that are intersecting with the circumference
line of the circle or the circumference of the sphere. While
Haversine is particularly more accurate for distances
between two points on earth, it is not always used since
planar distances may not have any curvatures, or it is too
small of a distance to provide significant differences. It is
for this reason that the Haversine formula is frequently
utilized in spatial distance calculations as opposed to
Euclidean distances. The Haversine distance may be
calculated as follows:

𝑑𝑑 = 𝑟𝑟 𝑠𝑠𝑠𝑠𝑛𝑛−1 ��sin2 �𝑦𝑦2−𝑦𝑦1
2

�+ cos(𝑦𝑦1) cos(𝑦𝑦2) sin2 �𝑥𝑥2−𝑥𝑥1
2

�� (3)

where, the notation d represents the distance between two
geo-locations, such as point p1 and point p2, here note that
r represents the radius of the earth, which is approximately
6371 km, x1, x2 are longitude, and y1, y2 are latitude values
in spatial coordinates. It is important to note that the
Haversine distance calculation approach is inconsequential
when geo-locations are not spacious enough with each
other (Prasetya et al., 2020). This means that when
distances between the data points in terms of their geo-
coordinates are not spacious enough from each other, then
the consequence of the great-circle effect can be forgiven.

Table 1
Data used in experiment, detail of the data

presented in section 4(A)

Position latitude longitude
0 44.9438 -76.1083
1 44.9414 -76.1073
2 44.9427 -76.0940
3 44.9396 -76.0897
4 44.9383 -76.0850
5 44.9384 -76.0817
6 44.9549 -76.0814

In this study, we conducted our first experimental
observation with grouped data from Table 1. The
programming languages Python, Postgis, R, and JavaScript
were used as tools for our experiment. Firstly, we
calculated the matrix of distances between all seven
coordinates (see Table 1) and revealed that the
geolocations were in the middle for index 4 and index 5,
which was exactly 284 meters or 0.284 kilometers as in
Table 2. As a result, we selected eps = 0.00548 and min
sample = 2 as configuration 1 and eps = 0.00548, min
samples = 5 is selected as configuration 2. Figure 3(A) and
Figure 3(B) shows a map visualization of clusters with
configuration 1 and 2 respectively. The mapview
visualization was used to cross-check the obtained results.
The corresponding mapview was then transformed to the
eps value to match the eps with meter space as the circle’s
radius. The circles indicate which surrounding points are
within its eps range and should be treated as a cluster
neighbor (see Equation (1)). It should be noted that eps is
the ε as specified in Equation (1).

Table 2
Obtained distance matrix based on the data presented in Table 1

Index 0 1 2 3 4 5 6
0 0.000000 0.282715 1.128214 1.537755 1.935583 2.180580 2.450144
1 0.282715 0.000000 1.053958 1.399959 1.790722 2.044759 2.534211
2 1.128214 1.053958 0.000000 0.488360 0.866289 1.085500 1.682116
3 1.537755 1.399959 0.488360 0.000000 0.398247 0.645561 1.825003
4 1.935583 1.790722 0.866289 0.398247 0.000000 0.260446 1.866630
5 2.180580 2.044759 1.085500 0.645561 0.260446 0.000000 1.833376
6 2.450144 2.534211 1.682116 1.825003 1.866630 1.833376 0.000000

 Amiruzzaman et al.:
Logical analysis of built-in DBSCAN Functions in Popular Data Science Programming Languages

MIJST, Vol. 10, June 2022 29

Figure 3. Two different results: (a) results obtained by

configuration 1 with other languages, (b) results obtained
by configuration 1 and 2 with python’s DBSCAN.

4. RESULTS

A. Investigation 1
i. Analysis using Python

The “sklearn” package of the Python programming
language has a built-in DBSCAN function. In general,
there are several parameters used in this function.
However, often the majority of the settings are not set by
the users, which means those are set to the default system
values and so no user input is required. However, the
parameters eps (the distance between two points),
minimum number of samples (i.e., number of samples
required to be classified as a cluster), and the standard
metric scale (the metric scale used for distance calculation)
were changed for this study. Data used in this experiment
is presented in Table 1. We noticed one cluster and an
outlier using both configurations. However, according to
the other programming languages, they consider all the
data points as outliers for configuration 2 and only make
two clusters and an outlier for configuration 1 as shown in
Figures 5(a) and 5(b). Only the built-in function of Python
demonstrates the same outcome for both configurations.

ii. Analysis using Postgis
The experimental data used in this study is presented in
Table 1, where we used eps = .00548, and then the
min_sample = 2. The clustering results we discovered were
two clusters and an irregular that is an outlier data point.

iii. Analysis using JavaScript
Data used in this experiment presented in Table 1, we used
eps = 0.00548, and as for min_sample = 2.0. The obtained
result indicated that there are two clusters and an outlier
(see Figure 4).

Figure 4. Clustering results obtained from JavaScript’s
DBSCAN function

iv. Analysis using R
Using the given data from Table 1, with the same
configuration of eps = 0.00548, and parameter min_sample
= 2.0, we discovered two clusters and an irregular outlier.
Later on, we repeated our configuration with eps = 0.00548
and the parameter min sample = 5 and discovered that if
the cluster needs at least 5 minimum points to form, then it
decides to label all the data points as outliers.

Figure 5. Results were obtained from all the other programming languages except python considering
(a) configuration 1 and (b) configuration 2

B. Investigation 2
We conducted a second experimental observation to
acquire further evidence. In contrast to previous
experiments, in the second experiment, we used all four
programming languages to evaluate the results of the
DBSCAN clustering function. In the second trial, the
settings were eps = 0.00548 and min sample = 2.0. Table 3
displays the obtained results. Table 3 shows the cluster
findings based on the experimental data shown in Table 1.

C. Investigation 3
In the third experimental observation, the built-in function
of sklearn was reevaluated, and the intention was to find
the reason why the function was not providing the same
results as other languages. For spatial data, often degree
and radian concepts are used, so, for the sake of analysis,
the longitude and latitude values were converted to radians
and then passed in the built-in function of sklearn.

 Amiruzzaman et al.:
Logical analysis of built-in DBSCAN Functions in Popular Data Science Programming Languages

MIJST, Vol. 10, June 2022 30

Table 3
Experimental results from different programming languages

(data used in this experiment is presented in Table 1)

Language
name

Results with
configuration 1

Results with
configuration 2

Python Two clusters with
an outlier

Two clusters with
an outlier

Postgis Two clusters with
an outlier

All data points are
outliers.

Javascript Two clusters with
an outlier

All data points are
outliers.

R Two clusters with
an outlier

All data points are
outliers

This time, the built-in function provided the same result as
other languages. So, the evidence from this study suggests
that sklearn’s DBSCAN function requires radians as input,
unlike other languages. So, despite the similar parameter
settings, sklearn’s built-in function requires different types
of input than the rest of the languages (see Figure 6).

Figure 6. Clustering results from Sklearn’s DBSCAN
function. (a) Shows results before converting to radians,

and (b) shows the results after converting to radians

5. EVALUATION

Further, publicly accessible data was utilized to evaluate
the built-in functions. The locations of all countries' names,
as well as the associated latitude and longitude numbers,
were contained in the publicly available data. The data was
obtained from Google data (Google: Dataset publishing
language). The specifications utilized in the assessment
study were eps = 0.9000009 and min_sample = 4 which is
considered configuration 3. Figure 7 depicts the obtained
results. According to the evidence, JavaScript, R, and
Postgis produced identical outcomes. The programming
language Python, on the other hand, produced a different
outcome (see Figure 8). In Python, the findings shown in
Figure 4 exhibited just a cluster but no outliers. However,
the aesthetic map in Figure 3 demonstrates that there
seemed to be just four geospatial information in a cluster,
with the remainder being outliers. To validate the
countries' records, we created a distance matrix among all
geospatial data, and the findings showed that only four
geospatial data might as well have produced a cluster, as
seen in Figure 7.

Figure 7. Clustering result: A single cluster formed using four
geo-locations (i.e., red markings) and the rest geolocations

did not form any cluster (i.e., those are considered as outliers)

Figure 8. Clustering results on the world map, center

of each countries and territories are used in the
experiment to cluster them

Figure 7 and Figure 8 uses configuration 3 to form clusters
where the clusters illustrated in Figure 7 is the output of
PostGis, R, and JavaScript implementations of DBSCAN,
and Figure 8 is the output of Python’s implementation of
DBSCAN. This variation may be caused due to Python’s
built-in function requiring a different type of input, namely
radian input as the eps than the rest of the languages (see
Figure 6).

6. DISCUSSION

Numerous software engineers and specialists have faith in
using the functions of the integrated library and regularly
use them to acquire research results and take care of issues
(Hao et al., 2019). Applications of such built-in library
functions (e.g. DBSCAN algorithm) can be found in
several exploration studies. DBSCAN is one of the well-
known spatial data algorithms (Hahsler et al., 2019).
However, as far as we know, no such research exists that
compares and evaluates DBSCAN's implementation across
all platforms. Usually, researchers rely solely on the built-
in DBSCAN function (Hao et al., 2019). Hence, research
to assess DBSCAN algorithms integrated into numerous
programming languages or platforms was long overdue.
This analysis looks at how the DBSCAN algorithm
performed in several languages, for example, R, Python, R,
JavaScript, and PostGis. And the identical hyper-
parameters, for example, eps, and min_points were used to
accomplish this.

Built-in DBSCAN functions in three computer languages,
including R, Postgis, JavaScript, and R, appear to provide
the same findings. Conversely, the Python language’s
built-in function appears to produce results that differ from
those of other languages. As a result, the study advises
researchers to exercise caution while using the built-in
DBSCAN tool. Perhaps researchers should experiment
with different languages for spatial clustering. The
implementation of Python’s built-in DBSCAN function
was not covered by this study. DBSCAN implementations
in other programming languages should be compared in a
future study.

The Python programming language's dissimilarity might be
attributed to the unit of the eps value (Starczewski et al.,
2019). Evidence reveals that the eps value is used in degree
distance by three programming languages: JavaScript,

 Amiruzzaman et al.:
Logical analysis of built-in DBSCAN Functions in Popular Data Science Programming Languages

MIJST, Vol. 10, June 2022 31

Postgis, and R. As a result, in Python, the eps value is not
in degrees. One possible cause is that Python's eps unit is
measured in radians (Boeing et al., 2018). According to the
authors of research (Boeing et al., 2018), the Python
language library use the eps value in radian distance. This,
on the other hand, should not have happened. As a result,
the Python implementation will be distinct from other
implementations.

7. CONCLUSIONS

In this paper, we assessed the built-in DBSCAN function
in a variety of computer languages, including R, Python,
Javascript, and PostGIS. The input numbers and
parameters used to perform these comparisons were
identical in each case. Our results reveal that the Python
scikit-learn DBSCAN implementation generates
conflicting outcomes than the other implementations. As
demonstrated in the benchmark section, DBSCAN of
scikit-learn prefers to group all of the geospatial data from
publicly accessible countries csv into one cluster, whereas
built-in DBSCAN of PostGis only groups four geospatial
data from all data points into one cluster.

This inexplicable response of DBSCAN's Python
implementation verifies our assumption that “we should
not simply entrust the results of built-in functions
undoubtedly,” and this investigation backs this up.
According to our study, scikit-learn's DBSCAN
implementation has a high level of abnormality, whereas
all other platforms produce similar results when the same
parameters are used. DBSCAN is used to cluster geospatial
data, so the clustering should be the same across all
platforms. Despite the fact that all of the other platforms
clusters identically and properly, scikit-learn's DBSCAN
performs completely differently as well as turns as an
outlier when equated to the other programming languages.
The next step will be to identify the elements that influence
Python’s Scikit-learn outcomes.

According to the findings from this investigation, the eps
(i.e., ε) value in DBSCAN functions across many
programming languages is in degree; particularly the ones
investigated in this study. Apparently, it appears to be
ineffective for Python's installed DBSCAN algorithm.
Furthermore, there is no clear information on the Python
official website regarding the unit of eps [32]. In the
integrated DBSCAN function, a deeper analysis may look
at how many past researches utilized degree as an eps unit
against how many utilized radian as an eps unit.

ACKNOWLEDGEMENTS

The part of this research was supported by the Institute of
Energy, Environment, Research, and Development
(IEERD, UAP), the University of Asia Pacific. Md
Amiruzzaman was supported by West Chester University
tenure-track faculty start-up grand.

REFERENCES
Amiruzzaman, M. (2018, November). Prediction of traffic-

violation using data mining techniques. In Proceedings of
the Future Technologies Conference (pp. 283-297).
Springer, Cham.

Amiruzzaman, M., Rahman, R., Islam, M. R., & Nor, R. M.
(2021, November). Evaluation of DBSCAN algorithm on
different programming languages: An exploratory study. In
2021 5th International Conference on Electrical
Engineering and Information & Communication Technology
(ICEEICT) (pp. 1-6). IEEE.

Berry, M. W., Mohamed, A., & Yap, B. W. (Eds.).
(2019). Supervised and unsupervised learning for data
science. Springer Nature.

Boeing, G. (2018). Clustering to reduce spatial data set
size. arXiv preprint arXiv:1803.08101.

Cranor, L. F. (1994). Programming perl: an interview with larry
wall. XRDS: Crossroads, The ACM Magazine for
Students, 1(2), 10-11.

Clustering algorithms: their application to gene expression
data. Bioinformatics and Biology insights, 10, BBI-S38316.

Dudik, J. M., Kurosu, A., Coyle, J. L., & Sejdić, E. (2015). A
comparative analysis of DBSCAN, K-means, and quadratic
variation algorithms for automatic identification of swallows
from swallowing accelerometry signals. Computers in
biology and medicine, 59, 10-18.

Davies, D., & Bouldin, D. (1979). A cluster separation measure,
IEEE transactions on patter analysis and machine
intelligence. vol.

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A
density-based algorithm for discovering clusters in large
spatial databases with noise. In kdd (Vol. 96, No. 34, pp.
226-231).

Fischer, B., & Buhmann, J. M. (2003). Path-based clustering for
grouping of smooth curves and texture segmentation. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 25(4), 513-518.

Gan, J., & Tao, Y. (2015, May). DBSCAN revisited: Mis-claim,
un-fixability, and approximation. In Proceedings of the 2015
ACM SIGMOD international conference on management of
data (pp. 519-530).

Google: Dataset publishing language.
https://developers.google.com/public-
data/docs/canonical/countriescsv, accessed: 2021-01-12.

Handra, S. I., & Ciocârlie, H. (2011, May). Anomaly detection in
data mining. Hybrid approach between filtering-and-
refinement and DBSCAN. In 2011 6th IEEE International
Symposium on Applied Computational Intelligence and
Informatics (SACI) (pp. 75-83). IEEE.

Hao, J., & Ho, T. K. (2019). Machine learning made easy: a
review of scikit-learn package in python programming
language. Journal of Educational and Behavioral
Statistics, 44(3), 348-361.

Hahsler, M., Piekenbrock, M., & Doran, D. (2019). dbscan: Fast
density-based clustering with R. Journal of Statistical
Software, 91(1), 1-30.

Islam, M. R., Jenny, I. J., Nayon, M., Islam, M. R.,
Amiruzzaman, M., & Abdullah-Al-Wadud, M. (2021,
August). Clustering Algorithms to Analyze the Road Traffic
Crashes. In 2021 International Conference on Science &
Contemporary Technologies (ICSCT) (pp. 1-6). IEEE.

Jain, A. K. (2010). Data clustering: 50 years beyond K-
means. Pattern recognition letters, 31(8), 651-666.

Karim, M. R., Beyan, O., Zappa, A., Costa, I. G., Rebholz-
Schuhmann, D., Cochez, M., & Decker, S. (2021). Deep
learning-based clustering approaches for
bioinformatics. Briefings in Bioinformatics, 22(1), 393-415.

Limwattanapibool, O., & Arch‐int, S. (2017). Determination of
the appropriate parameters for K‐means clustering using
selection of region clusters based on density DBSCAN
(SRCD‐DBSCAN). Expert Systems, 34(3), e12204.

 Amiruzzaman et al.:
Logical analysis of built-in DBSCAN Functions in Popular Data Science Programming Languages

MIJST, Vol. 10, June 2022 32

Luchi, D., Rodrigues, A. L., & Varejão, F. M. (2019). Sampling
approaches for applying DBSCAN to large datasets. Pattern
Recognition Letters, 117, 90-96.

Mahmoudi, M. R., Baleanu, D., Mansor, Z., Tuan, B. A., & Pho,
K. H. (2020). Fuzzy clustering method to compare the
spread rate of Covid-19 in the high risks countries. Chaos,
Solitons & Fractals, 140, 110230.

MacQueen, J. (1967, June). Some methods for classification and
analysis of multivariate observations. In Proceedings of the
fifth Berkeley symposium on mathematical statistics and
probability (Vol. 1, No. 14, pp. 281-297).

Niemierko, A., & Goitein, M. (1990). Random sampling for
evaluating treatment plans. Medical physics, 17(5), 753-762.

Oyelade, J., Isewon, I., Oladipupo, F., Aromolaran, O.,
Uwoghiren, E., Ameh, F., ... & Adebiyi, E. (2016).

Prasetya, D. A., Nguyen, P. T., Faizullin, R., Iswanto, I., &
Armay, E. F. (2020). Resolving the shortest path problem
using the haversine algorithm. J. Crit. Rev, 7(1), 62-64.

Rizvee, M. M., Amiruzzaman, M., & Islam, M. R. (2021). Data
Mining and Visualization to Understand Accident-Prone
Areas. In Proceedings of International Joint Conference on
Advances in Computational Intelligence (pp. 143-154).
Springer, Singapore.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis. Journal of
computational and applied mathematics, 20, 53-65.

Ramalho, L. (2015). Fluent Python: Clear, concise, and effective
programming. " O'Reilly Media, Inc.".

Sibson, R. (1973). SLINK: an optimally efficient algorithm for
the single-link cluster method. The computer journal, 16(1),
30-34.

Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X.
(2017). DBSCAN revisited, revisited: why and how you
should (still) use DBSCAN. ACM Transactions on Database
Systems (TODS), 42(3), 1-21.

Starczewski, A., & Cader, A. (2019, June). Determining the EPS
parameter of the DBSCAN algorithm. In International
Conference on Artificial Intelligence and Soft
Computing (pp. 420-430). Springer, Cham.

sklearn.cluster.dbscan,”https://scikit-
learn.org/stable/modules/generated/sklearn.cluster.DBSCAN
.html, accessed: 2021-01-22.

Wu, C. H., Ouyang, C. S., Chen, L. W., & Lu, L. W. (2014). A
new fuzzy clustering validity index with a median factor for
centroid-based clustering. IEEE Transactions on Fuzzy
Systems, 23(3), 701-718.

Zhou, A., Zhou, S., Cao, J., Fan, Y., & Hu, Y. (2000).
Approaches for scaling DBSCAN algorithm to large spatial
databases. Journal of computer science and
technology, 15(6), 509-526.

