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DBSCAN algorithm is a location-based clustering approach; it is used to find 
relationships and patterns in geographical data.  Because of its widespread 
application, several data science-based programming languages include the 
DBSCAN method as a built-in function. Researchers and data scientists have 
been clustering and analyzing their study data using the built-in DBSCAN 
functions. All implementations of the DBSCAN functions require user input for 
radius distance (i.e., eps) and a minimum number of samples for a cluster (i.e., 
min_sample). As a result, the result of all built-in DBSCAN functions is believed 
to be the same. However, the DBSCAN Python built-in function yields different 
results than the other programming languages those are analyzed in this study. 
We propose a scientific way to assess the results of DBSCAN built-in function, as 
well as output inconsistencies. This study reveals various differences and 
advises caution when working with built-in functionality. 
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1. INTRODUCTION 

Identifying and classifying classes in the spatial domain is 
a common practice in many investigations. For example, 
research such as Rizvee et al., (2021) for locating accident-
prone locations and Islam et al., (2021) for locating 
densely populated areas. The Density-Based Spatial 
Clustering of Applications with Noise (i.e., DBSCAN) is a 
clustering approach for location-based data. The DBSCAN 
clustering method locates the neighboring points of a given 
spatial point and groups the neighbors if they meet 
multiple clustering requirements within the given adjacent 
distance (Amiruzzaman, et al., 2021).  

Clustering in the spatial realm can be useful in a variety of 
applications. DBSCAN is commonly used for clustering in 
planar space. It can produce reasonable results when used 
to map the impact of natural catastrophes or to plot the 
position of weather stations in a city. It can also be utilized 
when the data is made up of non-discrete points and has 
outliers. DBSCAN is used by many systems nowadays that 
provide recommendation services, such as a Recommender 
engine, to propose goods or things to its clients. It is also 
utilized to identify typical events, such as finding areas 
where frequent road accidents occurred, in other 
applications (Rizvee et al., 2021; Amiruzzaman et al., 
2018). 

Clustering techniques is one of the most renowned, 
powerful, and widely used unsupervised learning 
approaches in data mining (Berry et al., 2019). This is a 
way of classifying comparable or similar data members 
into a set or group based on some preset resemblance 
(Fischer et al., 2003). Some real-world uses of clustering 
include book sorting in a library, consumer segmentation 
in marketing, and fraud detection in insurance (Mahmoudi 
et al., 2020). Larger challenges, such as seismic analysis or 
perhaps urbanization analysis, may benefit from clustering 
as well. According to (Limwattanapibool et al., 2017), 
clustering algorithms are classified into seven types: (i) 
hierarchical clustering algorithms, (ii) graph-based 
algorithms, (iii) density-based clustering algorithms, (iv) 
partitioning clustering algorithms, (v) model-based 
clustering algorithms, (vi) combinational clustering 
algorithms, and (vii) grid-based algorithms. Among them, 
the DBSCAN method is widely used as an unsupervised 
machine learning techniques, that is taken into account for 
this study (i.e., in the spatial domain). 

Although, the most clustering approaches in the literature, 
for example, k-means (Macqueen et al., 1967; Islam et al., 
2021), Single-Linkage clustering (SLINK) (Sibson et al., 
1973), and other centroid-based clustering approaches, 
share computational similarities, they are not powerful or 
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adaptable enough to be considered in a wide range of 
clustering use. These are recognized for their capacity to 
recognize clusters of any form (Wu et al. 2014). They are, 
however, susceptible to noise and have the major limitation 
of recognizing groups based on only density and data 
points spherical-shaped clusters (Jain et al., 2010).  

In this case, DBSCAN appears to be a promising solution 
to several clustering issues. It contrasts in a number of 
ways (Amiruzzaman, et al., 2021). It classifies clusters 
based on the density of data members in their feature space 
as a substitute of the position of the computed centroids 
like k-means does (Dudik et al., 2015). These provide 
more exact evidence of identification and segregation of 
clusters of varying sizes and forms, particularly when they 
form a shape of a convex clusters of data. DBSCAN’s 
ability to extract noisy data members or outliers make them 
stand out from other algorithms (Luchi et al., 2019). 
Importantly, rather than arbitrarily selecting the first 
positions of the cluster centroids, the DBSCAN method 
employs a deterministic approach (Handra et al., 2011). 
This paper's contributions are as follows: 

● Present a methodology as to how a built-in function 
can be compared among different programming 
languages. 

● Provide comparable results obtained from the 
experiment. 

● Provide visual output as evidence for easier 
exploration.  

● Provide implications and detailed discussion on the 
evidence.  

A. Motivation 
The DBSCAN method is a well-known technique for 
grouping geographical data. Nevertheless, there are several 
programming languages, and virtually almost all of the 
languages provide built-in functions that can help with user 
data clustering. Often, programmers utilize these built-in 
functions in good faith in order to avoid inventing difficult 
procedures or algorithms on their own (Cranor et al., 1994; 
Ramalho et al., 2015).  

Commonly Java implementation of DBSCAN can be 
found in Apache Common Math and Environment for 
DeveLoping KDD-Applications Supported by Index-
Structures (ELKI). C++ implementation can be found in 
mlpack and pyclustering. In python, DBSCAN is included 
in the scikit-learn or sklearn library and R contains a 
package for DBSCAN. There are applications like Weka 
and SPMF that provide their implementation of DBSCAN.  

There are few studies that demonstrate a systematic review 
of such built-in functions to offer a technique to identify 
similarities and variations in the outcomes produced by the 
accessible libraries (Amiruzzaman, et al., 2021). This study 
aims to address a necessity in evaluation-based studies by 
demonstrating a methodical approach of evaluating built-in 
functionalities.   

B. Objective 
The goal of this study was to explore how the built-in 
DBSCAN algorithm provides output, and if the obtained 
outputs from different programming languages are 

comparable. We wanted to see where similarities and 
differences lies in the output obtained from different 
implementations of DBSCAN. We focused on following 
research questions for this study: 

● Are there any differences in clustering results 
produced by DBSCAN built-in clustering among 
data science based programming languages, when 
the same parameter values are used?  

● If there are any differences in results and 
similarities, then which ones are providing pairing 
results?  

2. RELATED WORK AND USE OF DBSCAN IN 
EXISTING STUDIES 

In computer science, there are different cluster methods for 
class identification (Amiruzzaman, et al., 2021). Since we 
have more than one algorithm, hence we must select the 
one that fits the dataset and offers most optimal result. 
Performance analysis allows us to select the best algorithm 
from a set of algorithms to solve a problem. There is 
indeed a large number of study in the literature on the 
comparative investigation of DBSCAN. In one study, 
authors examined the performance of DBSCAN and 
concluded that the DBSCAN clustering technique does not 
scale well for big datasets (Gan & Tao, 2015). While 
studying deep learning clustering approaches for 
bioinformatics, Karim et al. (2020) utilized DBSCAN to 
compare several clustering methods in a different study. 
Particularly, Karim compared machine learning approaches 
in clustering algorithms such as K-means, DBSCAN, 
OPTICS which is an extension of DBSCAN, GMM, AC 
and the Partial Mix Model (PMM). For each algorithm, 
Karim describes the parameters being used, scalability of 
sample sizes, geometry used for calculating distances, its 
use cases in bioinformatics and its limitations. Among its 
notable limitations for DBSCAN is the difficulty of 
separating nearby clusters and the quadratic computational 
complexity. However, he also noted that it is a good 
algorithm for uneven cluster size with non-flat geometry 
and hence used in many bioinformatics analysis.  

Many essential criteria, for example, the accuracy of the 
result, precision, recall values, the complexity of the 
algorithm, and others, can be found in the existing works 
that have been used to appraise the DBSCAN clustering 
algorithm’s performance (Zhou et al., 2000).  Schubert et 
al. (2017) presented a strong argument about why we 
should still use DBSCAN as a rebuttal to a previous paper 
misrepresenting DBSCAN of having poor performance. In 
Schuberts argument, he explains that choosing the right 
parameters is important to achieve both meaningful results 
and good performance. Schubert conducted experiments to 
show that other suggested methods do not appear to offer 
practical benefits if the DBSCAN parameters are well 
chosen and thus they are primarily of theoretical interest. 
Schubert concluded that the original DBSCAN algorithm 
with effective indexes and reasonably chosen parameter 
values performs competitively compared to the method 
proposed by others claiming to achieve better results. 
Clearly, DBSCAN remains relevant in many scientific 
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research work and requires constant revision on how we 
use DBSCAN to achieve meaningful results. 

There are several software libraries or tools available, and 
most of those provide built-in functions that aid with 
consumer data clustering. Authors of an existing study 
described several clustering techniques as well as the 
software packages/tools associated with such approaches 
(Oyelade et al., 2016). 

Often, data technologists, programmers, and academics 
rely on these built-in clustering functions and avoid 
constructing difficult algorithms (Amiruzzaman, et al., 
2021). Nevertheless, there is a scarcity of research that 
compares the built-in functionalities offered by various 
software packages/tools' libraries. This research sought to 
address a gap in evaluation-based studies by demonstrating 
a systematic approach to evaluating built-in functionalities. 
Figure 1 depicts how many articles in the last 7 years 
employed the DBSCAN technique in their study. The data 
shown in Figure 1 was collected in May of 2022.  

 
Figure 1. The DBSCAN algorithm used in studies  

over the last 7 years 

For example, 3830 papers published in 2016 used 
DBSCAN as an analysis or as a clustering tool. 
Subsequently, in 2017, 4,200 papers were published that 
somehow used DBSCAN in their work. Furthermore, there 
were 5,470 papers in 2018, 6,760 papers in 2019, 7,880 
papers in 2020, and 9,600 papers in 2021. Most 
interestingly, in 2022 (up to mid-May 2022), 2,870 papers 
used the DBSCAN algorithm. These results are based on a 
search in Google scholar using the keywords “BDSCAN as 
an analysis tool”. Perhaps, in reality, these numbers may 
change slightly, however, these numbers give us an idea 
about how popular the DBSCAN algorithm is in data-
science-related studies or clustering in general. From 
Figure 1, it is evident that the popularity of the DBSCAN 
algorithm is experiencing an upward trend. As shown in 
Figure 1, by the end of the year 2022, the search quantity 
may exceed that of the previous year. Research related to 
DBSCAN is showing an increasing trend, so it is very 
important to justify various approaches to the DBSCAN 
algorithm. 

3. METHOD 

A. Opening discussion 
DBSCAN clustering algorithm helps in computing 
distances in between points of data given and outputs high 
density cluster areas. The focus for DBSCAN clustering is 
highly dependent on neighborhood computation. 
Generally, the computations as follows: a point p1 is said to 
be the neighbor of another point p2, iff p1 and p2 are located 
less than or equal to the radius distance of eps distance. 
This computational process continues discovering other 
points, p1 and p2 which are neighbors and these points form 
a cluster if they meet the goal of min_sample or minPts 
(see Figure 2). 

 

Figure 2. Working procedure of DBSCAN algorithm 

Based on the above discussion the DBSCAN algorithm 
depends on two basic parameters: 

● minPts (min_sample): The minimum number of 
points to form a cluster.  

● eps (ε): The minimum distance to form a 
neighboring relationship among points.  

Throughout this study of DBSCAN clustering algorithms, 
numerous programming languages were utilized to 
compare the accuracy, consistency and reliability of the 
DBSCAN clustering algorithm implemented. Particularly, 
we were interested in producing the same results despite 
the programming language given, hence a similar approach 

to Ester et al, 1996 was taken to discover clusters in large 
spatial databases with noise. In doing so, we also took the 
approach of Davies-Bouldin (Davies et al., 1979) and 
Silhouette Coefficient (Rousseeuw et al., 1987) by first 
calculating the appropriate number of clusters. 
Consequently, we employed seven distinct geo-coordinate 
location coordinates from Lexington, North Carolina, 
United States (refer to Table 1) with the use of four 
different computer languages, which includes the Python 
programming language. Also, we considered other 
languages, such as the, R programming language, 
Javascript, and Postgres with the postgis library. 
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As for the selection of geo-coordinates, points were 
selected using a pseudo-random generator as suggested by 
most researchers in literature to enhance the validity of the 
research (Niemierko et al., 1990). As a recall to what was 
mentioned, the DBSCAN clustering algorithm attempts to 
group data points together provided that they are neighbors 
and within a certain distance (ε). It can best be described 
mathematically in the equation below (see Equation (1)) 
that determines if two data points are within the same 
neighborhood. 

𝑁𝑁𝜖𝜖(𝑝𝑝1): {𝑝𝑝2|𝑑𝑑(𝑝𝑝1, 𝑝𝑝2) ≤ 𝜖𝜖} (1) 

Using the spatial distance denoted as d, and the provided 
distance ε, the function Nε(.) attempts to identify whether 
coordinate point p1 and coordinate point p2 are considered 
to be neighbors. If coordinate point p1 and coordinate point 
p2 is less than ε, then p1 and p2 are considered as neighbors. 
It is common that the DBSCAN method requires at least 2 
parameters, such as epsilon and MinPts. To be consistent 
with our study, we employed identical parameters for all of 
the above-mentioned programming languages for our 
experiments. Therefore, for brevity, it is enough to say that 
all epsilon and MinPts, for all programming languages 
studied, are identical. 

To determine the 2D space distance, it is pretty common 
practice to use Euclidean distance as a method for 
measurement. The Euclidean distance between two points 
can be calculated as such, consider point (x1, y1) denoted as 
p1 and point (x2, y2) denoted as p2, then the Euclidean 
distance may be calculated as follows: 

𝑑𝑑 = �((𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2) (2) 

where d denotes the distance between two points, which is 
p1 and p2.  

In some other occasions, Haversine distance is largely 
preferred. This is usually the case when it is necessary to 
take into consideration the distance between two geo-
coordinates that are intersecting with the circumference 
line of the circle or the circumference of the sphere. While 
Haversine is particularly more accurate for distances 
between two points on earth, it is not always used since 
planar distances may not have any curvatures, or it is too 
small of a distance to provide significant differences. It is 
for this reason that the Haversine formula is frequently 
utilized in spatial distance calculations as opposed to 
Euclidean distances. The Haversine distance may be 
calculated as follows: 

𝑑𝑑 = 𝑟𝑟 𝑠𝑠𝑠𝑠𝑛𝑛−1 ��sin2 �𝑦𝑦2−𝑦𝑦1
2

�+ cos(𝑦𝑦1) cos(𝑦𝑦2) sin2 �𝑥𝑥2−𝑥𝑥1
2

�� (3) 

where, the notation d represents the distance between two 
geo-locations, such as point p1 and point p2, here note that 
r represents the radius of the earth, which is approximately 
6371 km, x1, x2 are longitude, and y1, y2 are latitude values 
in spatial coordinates. It is important to note that the 
Haversine distance calculation approach is inconsequential 
when geo-locations are not spacious enough with each 
other (Prasetya et al., 2020). This means that when 
distances between the data points in terms of their geo-
coordinates are not spacious enough from each other, then 
the consequence of the great-circle effect can be forgiven.  

Table 1 
Data used in experiment, detail of the data  

presented in section 4(A) 

Position latitude longitude 
0 44.9438 -76.1083 
1 44.9414 -76.1073 
2 44.9427 -76.0940 
3 44.9396 -76.0897 
4 44.9383 -76.0850 
5 44.9384 -76.0817 
6 44.9549 -76.0814 

 
In this study, we conducted our first experimental 
observation with grouped data from Table 1. The 
programming languages Python, Postgis, R, and JavaScript 
were used as tools for our experiment. Firstly, we 
calculated the matrix of distances between all seven 
coordinates (see Table 1) and revealed that the 
geolocations were in the middle for index 4 and index 5, 
which was exactly 284 meters or 0.284 kilometers as in 
Table 2. As a result, we selected eps = 0.00548 and min 
sample = 2 as configuration 1 and eps = 0.00548, min 
samples = 5 is selected as configuration 2. Figure 3(A) and 
Figure 3(B) shows a map visualization of clusters with 
configuration 1 and 2 respectively. The mapview 
visualization was used to cross-check the obtained results. 
The corresponding mapview was then transformed to the 
eps value to match the eps with meter space as the circle’s 
radius. The circles indicate which surrounding points are 
within its eps range and should be treated as a cluster 
neighbor (see Equation (1)). It should be noted that eps is 
the ε as specified in Equation (1).  

Table 2 
Obtained distance matrix based on the data presented in Table 1 

Index 0 1 2 3 4 5 6 
0 0.000000 0.282715 1.128214 1.537755 1.935583 2.180580 2.450144 
1 0.282715 0.000000 1.053958 1.399959 1.790722 2.044759 2.534211 
2 1.128214 1.053958 0.000000 0.488360 0.866289 1.085500 1.682116 
3 1.537755 1.399959 0.488360 0.000000 0.398247 0.645561 1.825003 
4 1.935583 1.790722 0.866289 0.398247 0.000000 0.260446 1.866630 
5 2.180580 2.044759 1.085500 0.645561 0.260446 0.000000 1.833376 
6 2.450144 2.534211 1.682116 1.825003 1.866630 1.833376 0.000000 
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Figure 3. Two different results: (a) results obtained by 

configuration 1 with other languages, (b) results obtained 
by configuration 1 and 2 with python’s DBSCAN. 

4. RESULTS 

A. Investigation 1 
i. Analysis using Python 

The “sklearn” package of the Python programming 
language has a built-in DBSCAN function. In general, 
there are several parameters used in this function. 
However, often the majority of the settings are not set by 
the users, which means those are set to the default system 
values and so no user input is required. However, the 
parameters eps (the distance between two points), 
minimum number of samples (i.e., number of samples 
required to be classified as a cluster), and the standard 
metric scale (the metric scale used for distance calculation) 
were changed for this study. Data used in this experiment 
is presented in Table 1. We noticed one cluster and an 
outlier using both configurations. However, according to 
the other programming languages, they consider all the 
data points as outliers for configuration 2 and only make 
two clusters and an outlier for configuration 1 as shown in 
Figures 5(a) and 5(b). Only the built-in function of Python 
demonstrates the same outcome for both configurations. 

ii. Analysis using Postgis 
The experimental data used in this study is presented in 
Table 1, where we used eps = .00548, and then the 
min_sample = 2. The clustering results we discovered were 
two clusters and an irregular that is an outlier data point.  

iii. Analysis using JavaScript 
Data used in this experiment presented in Table 1, we used 
eps = 0.00548, and as for min_sample = 2.0. The obtained 
result indicated that there are two clusters and an outlier 
(see Figure 4). 

 

Figure 4. Clustering results obtained from JavaScript’s 
DBSCAN function 

iv. Analysis using R  
Using the given data from Table 1, with the same 
configuration of eps = 0.00548, and parameter min_sample 
= 2.0, we discovered two clusters and an irregular outlier.  
Later on, we repeated our configuration with eps = 0.00548 
and the parameter min sample = 5 and discovered that if 
the cluster needs at least 5 minimum points to form, then it 
decides to label all the data points as outliers.  
  

 

Figure 5. Results were obtained from all the other programming languages except python considering  
(a) configuration 1 and (b) configuration 2 

B. Investigation 2 
We conducted a second experimental observation to 
acquire further evidence. In contrast to previous 
experiments, in the second experiment, we used all four 
programming languages to evaluate the results of the 
DBSCAN clustering function. In the second trial, the 
settings were eps = 0.00548 and min sample = 2.0. Table 3 
displays the obtained results. Table 3 shows the cluster 
findings based on the experimental data shown in Table 1.  

C. Investigation 3 
In the third experimental observation, the built-in function 
of sklearn was reevaluated, and the intention was to find 
the reason why the function was not providing the same 
results as other languages. For spatial data, often degree 
and radian concepts are used, so, for the sake of analysis, 
the longitude and latitude values were converted to radians 
and then passed in the built-in function of sklearn. 
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Table 3 
Experimental results from different programming languages 

(data used in this experiment is presented in Table 1) 

Language 
name 

Results with 
configuration 1 

Results with 
configuration 2 

Python Two clusters with 
an outlier 

Two clusters with 
an outlier 

Postgis Two clusters with 
an outlier 

All data points are 
outliers. 

Javascript Two clusters with 
an outlier 

All data points are 
outliers. 

R Two clusters with 
an outlier 

All data points are 
outliers 

 
This time, the built-in function provided the same result as 
other languages. So, the evidence from this study suggests 
that sklearn’s DBSCAN function requires radians as input, 
unlike other languages. So, despite the similar parameter 
settings, sklearn’s built-in function requires different types 
of input than the rest of the languages (see Figure 6). 

 

Figure 6. Clustering results from Sklearn’s DBSCAN 
function. (a) Shows results before converting to radians, 

and (b) shows the results after converting to radians 

5. EVALUATION 

Further, publicly accessible data was utilized to evaluate 
the built-in functions. The locations of all countries' names, 
as well as the associated latitude and longitude numbers, 
were contained in the publicly available data. The data was 
obtained from Google data (Google: Dataset publishing 
language). The specifications utilized in the assessment 
study were eps = 0.9000009 and min_sample = 4 which is 
considered configuration 3. Figure 7 depicts the obtained 
results. According to the evidence, JavaScript, R, and 
Postgis produced identical outcomes. The programming 
language Python, on the other hand, produced a different 
outcome (see Figure 8). In Python, the findings shown in 
Figure 4 exhibited just a cluster but no outliers. However, 
the aesthetic map in Figure 3 demonstrates that there 
seemed to be just four geospatial information in a cluster, 
with the remainder being outliers. To validate the 
countries' records, we created a distance matrix among all 
geospatial data, and the findings showed that only four 
geospatial data might as well have produced a cluster, as 
seen in Figure 7. 

 

Figure 7. Clustering result: A single cluster formed using four 
geo-locations (i.e., red markings) and the rest geolocations 

did not form any cluster (i.e., those are considered as outliers) 

 
Figure 8. Clustering results on the world map, center  

of each countries and territories are used in the  
experiment to cluster them 

Figure 7 and Figure 8 uses configuration 3 to form clusters 
where the clusters illustrated in Figure 7 is the output of 
PostGis, R, and JavaScript implementations of DBSCAN, 
and Figure 8 is the output of Python’s implementation of 
DBSCAN. This variation may be caused due to Python’s 
built-in function requiring a different type of input, namely 
radian input as the eps than the rest of the languages (see 
Figure 6). 

6. DISCUSSION 

Numerous software engineers and specialists have faith in 
using the functions of the integrated library and regularly 
use them to acquire research results and take care of issues 
(Hao et al., 2019). Applications of such built-in library 
functions (e.g. DBSCAN algorithm) can be found in 
several exploration studies. DBSCAN is one of the well-
known spatial data algorithms (Hahsler et al., 2019). 
However, as far as we know, no such research exists that 
compares and evaluates DBSCAN's implementation across 
all platforms. Usually, researchers rely solely on the built-
in DBSCAN function (Hao et al., 2019). Hence, research 
to assess DBSCAN algorithms integrated into numerous 
programming languages or platforms was long overdue. 
This analysis looks at how the DBSCAN algorithm 
performed in several languages, for example, R, Python, R, 
JavaScript, and PostGis. And the identical hyper-
parameters, for example, eps, and min_points were used to 
accomplish this.  

Built-in DBSCAN functions in three computer languages, 
including R, Postgis, JavaScript, and R, appear to provide 
the same findings. Conversely, the Python language’s 
built-in function appears to produce results that differ from 
those of other languages. As a result, the study advises 
researchers to exercise caution while using the built-in 
DBSCAN tool. Perhaps researchers should experiment 
with different languages for spatial clustering. The 
implementation of Python’s built-in DBSCAN function 
was not covered by this study. DBSCAN implementations 
in other programming languages should be compared in a 
future study. 

The Python programming language's dissimilarity might be 
attributed to the unit of the eps value (Starczewski et al., 
2019). Evidence reveals that the eps value is used in degree 
distance by three programming languages: JavaScript, 
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Postgis, and R. As a result, in Python, the eps value is not 
in degrees. One possible cause is that Python's eps unit is 
measured in radians (Boeing et al., 2018). According to the 
authors of research (Boeing et al., 2018), the Python 
language library use the eps value in radian distance. This, 
on the other hand, should not have happened. As a result, 
the Python implementation will be distinct from other 
implementations. 

7. CONCLUSIONS  

In this paper, we assessed the built-in DBSCAN function 
in a variety of computer languages, including R, Python, 
Javascript, and PostGIS. The input numbers and 
parameters used to perform these comparisons were 
identical in each case. Our results reveal that the Python 
scikit-learn DBSCAN implementation generates 
conflicting outcomes than the other implementations. As 
demonstrated in the benchmark section, DBSCAN of 
scikit-learn prefers to group all of the geospatial data from 
publicly accessible countries csv into one cluster, whereas 
built-in DBSCAN of PostGis only groups four geospatial 
data from all data points into one cluster. 

This inexplicable response of DBSCAN's Python 
implementation verifies our assumption that “we should 
not simply entrust the results of built-in functions 
undoubtedly,” and this investigation backs this up. 
According to our study, scikit-learn's DBSCAN 
implementation has a high level of abnormality, whereas 
all other platforms produce similar results when the same 
parameters are used. DBSCAN is used to cluster geospatial 
data, so the clustering should be the same across all 
platforms. Despite the fact that all of the other platforms 
clusters identically and properly, scikit-learn's DBSCAN 
performs completely differently as well as turns as an 
outlier when equated to the other programming languages. 
The next step will be to identify the elements that influence 
Python’s Scikit-learn outcomes. 

According to the findings from this investigation, the eps 
(i.e., ε) value in DBSCAN functions across many 
programming languages is in degree; particularly the ones 
investigated in this study. Apparently, it appears to be 
ineffective for Python's installed DBSCAN algorithm. 
Furthermore, there is no clear information on the Python 
official website regarding the unit of eps [32]. In the 
integrated DBSCAN function, a deeper analysis may look 
at how many past researches utilized degree as an eps unit 
against how many utilized radian as an eps unit. 
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