
 

 

ASSESSMENT OF EUTROPHICATION STATUS OF 

SELECTED LAKES OF DHAKA CITY USING GIS 

AND MACHINE LEARNING ALGORITHM 

 

 

 

 

MD MUNTASIR MAMUN 

 

 

 

 

M.Sc. ENGINEERING THESIS 

 

 

 

 

 

 
 

DEPARTMENT OF CIVIL ENGINEERING 

MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY 

DHAKA, BANGLADESH 

 

MARCH 2022 



 

 

 

 

ASSESSMENT OF EUTROPHICATION STATUS OF 

SELECTED LAKES OF DHAKA CITY USING GIS 

AND MACHINE LEARNING ALGORITHM 

 

 

 

 

MD MUNTASIR MAMUN (SN. 1016110003) 

 

 

 

 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Civil Engineering 

 

 

 

 

 

 

 
 

 

DEPARTMENT OF CIVIL ENGINEERING 

MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY 

DHAKA, BANGLADESH 

 

 

MARCH 2022 



ASSESSMENT OF EUTROPHICATION STATUS OF 

SELECTED LAKES OF DHAKA CITY USING GIS 

AND MACHINE LEARNING ALGORITHM 

 

 

M.Sc. Engineering Thesis 

 

By 

 

MD MUNTASIR MAMUN (SN. 1016110003) 

 

Approved as to style and content by the Examiners in 28 March 2022: 

 

 

 

____________________________   

Dr. Md Tauhid Ur Rahman     Chairman (Supervisor) 

Professor of Civil Engineering    Board of Examination 

MIST, Dhaka 

 

 

_____________________________   

Colonel Nasir Uddin Ahmed     Dean of the Faculty 

Dean, Faculty of Civil Engineering    Member (Ex-officio) 

MIST, Dhaka 

 

 

__________________________________   

Major Mohammad Shafiul Azam, PhD   Member (Internal)  

Assistant Professor of Environment,    Board of Examination 

Water Resources and Coastal Engineering 

MIST, Dhaka 

 

 

___________________________ 

Dr. M Ashraf Ali      Member (External) 

Professor of Civil Engineering    Board of Examination 

BUET, Dhaka 

 

 

 

Department of Civil Engineering, MIST, Dhaka 



ASSESSMENT OF EUTROPHICATION STATUS OF 

SELECTED LAKES OF DHAKA CITY USING GIS 

AND MACHINE LEARNING ALGORITHM 
 

 

DECLARATION 

 

 

I hereby declare that the study reported in this thesis entitled as above is my own original 

work and has not been submitted before anywhere for any degree or other purposes. 

Further I certify that the intellectual content of this thesis is the product of my own work 

and that all the assistance received in preparing this thesis and sources have been 

acknowledged and/or cited in the reference section. 

 

 

 

________________________ 

Md Muntasir Mamun 

Student No. 1016110003 

 

 

 

 

 

 

 

 

 

Department of Civil Engineering, MIST, Dhaka 

 



ASSESSMENT OF EUTROPHICATION STATUS OF 

SELECTED LAKES OF DHAKA CITY USING GIS 

AND MACHINE LEARNING ALGORITHM 
 

 

A Thesis 

 

By 

 

Md Muntasir Mamun 

 

 

 

DEDICATION 

 

Dedicated to my all family members 

 



 
 

ACKNOWLEDGEMENT 

At first, I express my sincere acknowledgement to Almighty Allah who has given me 

enough strength to complete the thesis work successfully. I am grateful to my thesis 

supervisor Professor Dr Md Tauhid Ur Rahman, Department of Civil Engineering, 

Military Institute of Science and Technology (MIST) for advising and guiding me in the 

right track. I am also thankful to all faculty members and staffs of Civil Engineering 

Department, MIST for expressing their continuous support in all aspect. My family 

members have sacrificed their valuable time to complete my thesis work. I also sincerely 

acknowledge to all of my senior officers and members of Bangladesh Army who all have 

allowed and helped me to continue and complete this work successfully. 

In the process of thesis work, Professor Dr. Mohammad Azmal Hossain Bhuiyan, 

Department of Botany and his team of the same department have extended their 

continuous support to use departmental testing facilities.  

I am thankful to all the authors of research papers which I have consulted and referred in 

my paper. All the information helped me a lot to write successfully. My wholehearted and 

sincere effort was always to accumulate all the error free data. I will be grateful to all 

readers for any kind of comments and suggestions. 

 

 

 

 

 

 

 

 

 

i 



 
 

ABSTRACT 

Eutrophication in Lakes are caused by the confluence of numerous nutrients (nitrogen, 

phosphorus etc), temperature, sunshine, dissolved oxygen, land use/land cover, socio-

economic condition, and other biophysical processes. Excess nutrients lead to algal 

blooms, which in turn cause fish mortality, abnormal lake conditions, and an overall 

disruption of the aquatic ecosystem. Dhaka city's lakes were seen decline in water quality 

because of excessive urbanization, uncontrolled sewerage disposal that led to 

Eutrophication. This research set out to evaluate the current and prospective 

eutrophication levels in five selected lakes in Dhaka city, Bangladesh namely Uttara, 

Mirpur, Baridhara, Gulshan and Hatirjheel areas. Primary water quality data were 

measured form collected water samples and secondary satellite imagery data were used to 

evaluate Trophic State Index (TSI). Calculated TSI from water quality parameters (Chl-a 

test & TN test) were used to compare and validate the TSI value computed from NDCI. 

Subsequently, Artificial Neural Network (ANN) model of machine learning algorithm 

was developed incorporating land use land cover (LULC) and different normalized 

satellite indices using 1990, 2000 and 2010 imagery that predicted the NDCI of 2021. 

Predicted NDCI of 2021 was validated using TSI calculated from primary data. ANN 

model was trained to predict the NDCI value for 2030 and 2040 to evaluate the TSI.       

From Carlson’s trophic state equation, TSI for Chl-a were calculated as 81.64, 82, 88.61, 

88.44 and 90.99, and TSI for TN were found to be 98.53, 94.46, 102.19, 92.42 and 98.39 

indicating “Hypertrophic” state for all five lakes. Calculated NDCI and corresponding 

TSI value from satellite imagery showed 84 to 95 percent similarity with the field 

measurement TSI values for 2021. Individual calculated TSI from NDCI of 1990 and 

2000 imagery revealed “Supertrophic” and 2010 and 2021 imagery showed 

“Hypertrophic” state for all five lakes indicating lakes are in declined condition. Trained 

ANN model from 1990, 2000 and 2010 predicted TSI value of 2021 with 81 percent 

accuracy. This calibrated model further predicted NDCI and corresponding TSI for 2030 

as 82.85, 82.28, 84.11, 76.38 & 79.22 and for 2040 as 87, 85.85, 88.07, 79.92 & 84.56 for 

all five lakes. These predicted results indicate all lakes are “Hypertrophic” condition with 

higher TSI values. Therefore, these lake water quality monitoring and subsequently 

proper management should be ensured immediately. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Water is necessary for life and plays an important role in the ecosystem of the earth. It is 

one of the most important, scarce, valuable, and nonrenewable natural resources on the 

planet (Jayalakshmi and Velappan, 2015). The growing demand for fresh water and limits 

on the development of water resources emphasize the significance of protecting current 

water resources now more than ever (McIntosh and Pontius, 2017). Bangladesh, one of 

the world's most densely populated countries, has significant water pollution and scarcity 

(Hasan et al. 2019). Biochemical compounds and heavy metals have increased in water as 

a result of both industrial and human waste, posing a serious hazard to the aquatic system 

and public health (Zhou et al. 2018). Fertilizers and pesticides used in agriculture damage 

groundwater aquifers and contribute to the deterioration of surface water quality (Rahman 

and Hossain, 2008). Clean water and sanitation, one of the Sustainable Development 

Goals (SDGs) has been set for implementing integrated water resource management by 

2030. Eutrophication is one of the most important problems that impact the quality of 

water in reservoirs in the global management of surface water resources such as ponds, 

lakes, canals or even rivers (Sechi and Sulis, 2009). 

Lakes are very important for any city. Proper lake function can ease the impact of floods 

and droughts by storing large amounts of water and releasing it during shortages.  Lakes 

also work to replenish groundwater, positively influence water quality of downstream 

watercourses, and preserve the biodiversity and habitat of the area.  Lakes can provide 

prime opportunities for recreation, tourism, and residential living. Lakes have historical 

and traditional values. Lakes of a city can balance aquatic ecosystem and help to support 

social economic needs. Therefore, preserving lakes inside any city would ensure 

sustainable development. 

By 2030, Dhaka, the capital of Bangladesh, is expected to be the sixth-largest megacity in 

the world. Due to the unplanned expansion of Dhaka city, this has resulted in 

deterioration of water quality over the time (Bashar and Fung, 2020). Dhaka is situated in 

the country's geographic center. It is located in the Ganges and Brahmaputra rivers' large 

deltaic zone. Lake water usage and quality deterioration have increased rapidly in Dhaka 
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City. Unplanned urbanization and industrialization are contributing to major 

environmental degradation. The lake must be developed with care in order to support 

ecological processes that replenish the groundwater, preserve aquatic life, maintain 

ecological balance, and create recreational areas around the lake. For the sake of the 

ecosystem, protecting the lake from pollution should be a top priority (Jan-E-Alam et al. 

2017). Out of 360 sqkm land area of Dhaka city, major lakes like Dhanmondi (0.39 

sqkm), Ramna (0.25 sqkm), Crescent (0.31 sqkm), Baridhara-Gulshan (2.02 sqkm), 

Gulshan-Banani (1.61 sqkm) and Uttara (1.86 sqkm) cover around 6.44 sqkm only (Islam, 

et al. 2012). Whereas a city should have at least 10% (which is 36 sqkm for Dhaka city) 

water bodies of its land area (Karim et al. 2015).  

Physical, chemical, and biological qualities of water are affected by industrial and 

domestic pollution. The urban run-off, sewage discharge, waste disposal contribute much 

to water contamination, which will eventually affect humanity. These lakes flow through 

the heart of Dhaka, getting contaminated by industrial effluents, municipal wastes, 

sewage, and other toxic substances, posing several health and economic concerns, 

particularly for the poor and slum inhabitants. Therefore water quality of various lakes of 

Dhaka city is deteriorating due to the unplanned and excessive urbanization, unauthorized 

sewerage connection etc. The water of Gulshan Lake has been contaminated by sewage 

from the Badda, Baridhara, Gulshan, and Banani residential districts, as well as harmful 

discharges from neighboring enterprises. Lake water chemistry varies seasonally due to 

pollution and water level, affecting biodiversity (flora and fauna) and ecological stability 

(Razzak et al. 2013). Water quality of Dhanmondi, Gulshan and other lakes are not 

suitable for aquatic lives due to the unfavorable environmental condition. To restore the 

health of both lakes, strict rules must be implemented; illegal encroachment and garbage 

dumping must be stopped by enforcing existing laws and regulations (Islam et al. 2014). 
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Figure 1.1: Fish Mortality in Baridhara-Gulshan Lake Area (September 2021) 

Dhanmondi Lake's trophic status was recently assessed to be hypertrophic with rapidly 

declining water quality. Many pollutants enter the Banani lake from residential areas, 

including human excreta, cow manure, and waste from shops and restaurants, as well as 

dust from aerial sources (Khondaker et al. 1994). Illegal connections of domestic and 

industrial wastewaters to the storm sewer network are common in Dhaka, and this has a 

negative impact on Hatirjheel Lake pollution. Hatirjheel has always been a virtual 

wasteland, contributing to the decline of water quality in the Begunbari Khal-Balu-

Sitalakhya river system (Alam, 2011). Total nitrogen (TN) and total phosphorus (TP) 

concentration in lake water is a powerful predictor of a variety of measures of lake water 

quality and ecosystem composition. As lakes age and sediment fills in, eutrophication 

occurs gradually over decades (Siddika et al. 2015). Excess nitrogen can hasten the 

eutrophication process, which is the gradual enrichment of natural nutrients in streams, 

and lakes that causes algae blooms in ponds, lakes, and reservoirs. Algae deplete the DO 

in the water as they grow and decay. Nutrient overproduction can result in a range of 

issues, ranging from anoxic waters (due to decomposition) to toxic algal blooms 

(eutrophication), all of which reduce aquatic diversity and cause habitat damage (Rahman 

and Hossain, 2008).  

Systematic water quality monitoring, risk assessment and preventative measures are very 

important to address Lake Eutrophication (Liu et al. 2019). Outbreak of algae depends on 

the interaction of a wide range of biophysical processes and socio-economic factors 



 
 

 

4 
 

including nutrients, temperature, sunlight, dissolved oxygen, land use changes etc (Rafiee 

and Jahangiri-Rad, 2015). Algal blooms are caused by excessive nutrients which cause 

fish mortality, unusual lake condition and finally aquatic ecosystem imbalance 

(Srisuksomwong and Pekkoh, 2020). Trophic State Index (TSI), Trophic Level Index 

(TLI), Eutrophication Index (EI) etc can be derived from the Water Quality Indicators 

(WQIs) such as Chlorophyll-a concentration (main indicator), Total Nitrogen (TN) which 

are widely used to assess and predict lake eutrophication status (Xu, Tao, Dawson and Li, 

2001). Water quality monitoring in surface waters is critical for obtaining quantitative 

data on the water's features. The cost and time involved in testing and monitoring water 

quality in situ might be excessively expensive and time consuming. Satellite photography 

is an alternate way for monitoring water quality. Several water quality measures have 

been monitored using remote sensing techniques and capabilities throughout the last few 

decades. Different satellite sensors have been utilized for water body monitoring 

depending on the study region (Yigit et al. 2019). No single variable is representative of 

the lake eutrophication status due to their multidimensional nature. GIS can integrate the 

lake eutrophication assessment process with multidimensional spatial analysis with the 

help of satellite/drone images and thematic maps (Huo et al. 2013). GIS is the most 

appropriate tool for such a geo-spatial assessment and visualization, as it is for many 

other environmental management tasks. Maps built with sampling water quality data and 

associated GIS tools can aid decision makers and the general public in comprehending the 

current situation (Rahman and Hossain, 2008). Future prediction of eutrophication is 

complex because of the spatial and temporal distributions of lakes that are affected by 

various climatic, geographical and ecological factors. Machine Learning is able to predict 

effectively the non-linear relationships among variables that are characteristics of 

ecosystem. This is also capable of simulating trends of algal growth dynamics and 

predicting chlorophyll status based on water quality monitoring data (Xu et al. 2001). 

Over the last few decades, eutrophication has become a severe problem for aquatic 

ecosystems, owing to excess nutrients connected with industrial activity. Lake restoration 

programs strive to return lakes' water quality to, or close to, its natural state (Rabalais et 

al. 2002). Lake trophic status has become a significant tool for lake managers and 

researchers. The trophic condition of a lake serves as a proxy for its production, water 

quality, biological integrity, and compliance with designated usage criteria. Lake water 
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quality affects recreation, habitat and species richness, as well as property and ecological 

benefits. As a result, monitoring water quality is critical for managing eutrophication and 

lake productivity (Nojavan et al. 2019). Lake's transition from oligotrophy to 

eutrophication is a gradual process. The transition from one life stage to the next is based 

on variations in the amount of nutrient influx and the lake's productivity. The rate of 

natural processes can be greatly altered by cultural eutrophication, and the life expectancy 

of the afflicted aquatic body can be significantly reduced. This can be avoided if 

appropriate conservation measures are implemented (Devi Prasad and Siddaraju, 2012). 

In the current study, trophic status of the reservoir and its temporal and spatial variations 

through physic-chemical analysis of water were determined along with the calculation of 

indices (Esfandi et al. 2018). Different species have the potential to live in water bodies 

with varying levels of dissolved oxygen. Eutrophication is a phenomenon in which excess 

nutrients (nitrogen and phosphorus compounds) in a water body induce algae to bloom, 

lowering the water quality of the water body (Viet et al. 2016). Cyanobacteria are 

responsible for a variety of problems with water quality, including the possible generation 

of toxins and taste-and-odor compounds. A "bloom" is defined as high concentrations of 

algal cells with a "pea soup" appearance when dense algae populations form, turning 

water a green or greenish brown tint. Near the surface, dense blooms may resemble a 

layer of green paint. Algal blooms in the dam environment pose a threat to both 

recreational and economic activities. Algal blooms arise when a set of favorable 

environmental conditions exist. These blooms frequently cause dam water to discolor, as 

well as dissolved oxygen loss, fish mortality, and possibly shellfish poisoning. Dam 

ecosystems are highly dynamic and complicated systems (Rafiee and Jahangiri-Rad, 

2015). When a body of water becomes eutrophicated, it loses its fundamental functions 

and, as a result, has an impact on the economy and society's long-term sustainability. As a 

result, solving water eutrophication and restoring the diverse functions of the water 

system have become major concerns for environmental biologists in recent years (Yang et 

al. 2008). 
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1.2 Objectives 

This study targeted lakes of Dhaka city to asses and predict eutrophication status in order 

to achieve ―clean water and sanitation‖, one of the 17 sustainable development goals. In 

doing so, specific objectives were set to meet the overall objective. 

The specific objectives are as follows: 

i) To assess eutrophication status of five selected lakes of Dhaka city using remote 

sensing and GIS.  

ii) To predict the future eutrophication status of those lakes using Machine 

Learning algorithm. 

 

1.3 Scope 

Eutrophication is one the major problems of the surface water which is identified by the 

many researchers around the world. Many studies and researches have been carried out in 

many developed countries. Very few researches have been found in Bangladesh, but 

eutrophication is a slow process which is affecting aquatic ecosystem. As a result, it is a 

less focused area of environmental engineering which should be taken care soon. 

Therefore, this research focus on to assess eutrophication status from past to present and 

predict future status. 

In doing so, five major lakes of Dhaka city including Uttara, Mirpur, Baridhara, Gulshan 

and Hatirjheel areas were selected as study area for this research. Initially, satellite 

images of Landsat data series TM 4-5/OLI-8 (30 meters spatial resolution) of 1990, 2000, 

2010 and 2021 were downloaded. These image data were analyzed and Land Use/Land 

Cover (LU/LC) was classified, and NDVI (vegetation index), NDBI (built-up index), 

NDWI (water index) and NDCI (chlorophyll index) have been developed of the five 

selected lakes using RS (remote sensing) and GIS software (ArcGIS). TSI was developed 

using NDCI values of the lakes. 

Chlorophyll-a concentration (main indicator of eutrophication), TN (another indicator of 

eutrophication), phosphate, dissolved oxygen (DO), Biological Oxygen Demand (BOD), 
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Chemical Oxygen Demand (COD), pH, Turbidity, Colour, TDS test have been carried out 

for the five selected lakes with seasonal variations (September to December 2021). TSI 

was calculated using chlorophyll and TN test data. TSI for Chlorophyll and TN test data 

(2021) were calibrated with the TSI for NDCI data (2021). 

Finally, prediction model was developed to simulate with the help of Artificial Neural 

Network (ANN) of machine learning using MOLUSCE plug-in of Q-GIS software. 

LU/LC, NDVI, NDBI, NDWI, NDCI, Water Body were used as input data. Prediction 

maps of eutrophication status of 2030 and 2040 for the five selected lakes of the Dhaka 

city were developed. 

 

1.4 Limiting Factors 

Limiting factors in this study are given below: 

i) Only five lakes of Dhaka city were selected for this study. 

ii) Satellite images have been downloaded from landsat-5 TM and Landsat-8 OLI 

which are 30m resolution.  

 

1.5 Thesis Structure 

This paper is structured into following chapters: 

Chapter 1: This is the introductory chapter of the thesis paper. 

Chapter 2: This chapter summarized the related literatures starting from the history of 

lakes of Dhaka city followed by water quality parameters and present lake condition. 

Thereafter lake eutrophication and trophic state index (TSI) followed by RS & GIS 

technique to identify Chlorophyll-a concentration in the lake water. Finally, adopt 

machine learning algorithm (Artificial Neural Network-ANN) to predict future 

eutrophication state of the selected lakes of Dhaka city. 
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Chapter 3: This chapter discussed about the detail methodology of the thesis.  

Chapter 4: This chapter discussed about the data collection. Satellite images were 

downloaded from the Landsat 4-5 TM and OLI-8 for the image analysis using ArcGIS 

software. Water samples were collected from the selected lakes for chlorophyll-a 

concentration calculation to develop TSI. Finally, ANN model was applied to predict 

eutrophication status in 2030 and 2040. 

Chapter 5: This chapter showed and discussed all results found after testing water sample 

data, different indices of image analysis and predicted eutrophication status of 2030 and 

2040. 

Chapter 6: Concluding remarks and few recommendations were suggested in this chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

This chapter will discuss elaborately literatures related to eutrophication, water quality, 

estimation of chlorophyll concentration using remote sensing and geographic information 

system (RS & GIS), trophic state index (TSI) and finally prediction method using 

machine learning algorithm (Artificial Neural Network-ANN). 

 

2.2 Eutrophication 

Eutrophication is currently recognized by the whole scientific community as the greatest 

threat to water quality (Opiyo et al. 2019). Eutrophication is currently the largest threat to 

the world's water bodies, and this scenario is expected to persist for at least the next 

decade (Downing, 2014). The Greek term "Trophi" means "food" or "nutrition," whereas 

the phrases "oligo," "meso," "eu," and "hyper" denote "rare," "moderate," "abundant," and 

"excessive," respectively. As a result, biologists have coined the terms oligotrophic, 

mesotrophic, eutrophic, and hypertrophic to represent the varied nutritional levels of a 

marine or freshwater habitat. "Eutrophication" is defined as "the accelerated growth of 

algae on higher forms of plant life caused by the enrichment of water with nutrients, 

particularly nitrogen and/or phosphorus compounds, causing an undesirable disturbance 

to the balance of organisms present in the water as well as the water's quality" (Klein and 

Perera, 2002). 

The most common cause of eutrophication is anthropogenic pollution of water with 

excessive nutrients. This has the effect of rapidly increasing biomass, which can have 

both beneficial and bad consequences (Davis and Shaw, 2009). Excessive plant and algal 

growth indicate eutrophication, which is caused by increased availability of one or more 

limiting growth sources for photosynthesis, such as sunshine, carbon dioxide, and 

nitrogen fertilizers (Schindler, 2006). Eutrophication occurs naturally over centuries 

which are known as natural eutrophication. Human activities have accelerated the rate 

and extent of eutrophication, which is known as cultural eutrophication (Walter et al. 
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2001). The most visible consequence of cultural eutrophication is the formation of dense 

blooms of toxic, foul-smelling phytoplankton, which lower water clarity and degrade 

water quality (Lehtiniemi et al. 2005). When dense algal blooms die, microbial 

breakdown depletes dissolved oxygen, resulting in a hypoxic or anoxic 'dead zone' where 

most species are unable to survive. During the summer, dead zones can be observed in 

many freshwater lakes (Arend et al. 2011). 

Bloom is a greenish floating waste produced by cyanobacteria on the surface of a water 

body that pollutes the water and is linked to respiratory and skin irritation issues (Morris 

and Monier, 2003). When algae and zooplankton die and descend to the bottom of a water 

body, bacteria decompose them, lowering the concentration of dissolved oxygen in the 

water body to levels that may not be enough to support fish existence (Nishimura et al. 

2002). Algae can produce poisons and cause organic substances in water to degrade into 

poisonous fumes, poisoning fish and seashells (Carmichael, 2001). Furthermore, 

eutrophication-related high rates of photosynthesis can deplete dissolved inorganic carbon 

and elevate pH to dangerously high levels during the day (Turner and Chislock, 2010). 

Eutrophication is the sum of the effects of excessive phytoplankton growth leading to 

imbalanced primary and secondary productivity and a faster rate of succession from 

existence to higher serial stage (Khan and Ansari, 2005). 

Water is not a commodity like any other, but rather a cultural property that must be 

defended and preserved, especially in the face of a global shortage of drinking water and 

a rise in demand. The eutrophication process is a complex subject that will necessitate the 

collaboration of scientists, policymakers, and citizens (Scannone, 2016). Eutrophication 

was recognized as a pollution problem in many European and North American lakes and 

reservoirs in the mid-nineteenth century (Davis and Shaw, 2009). Comprehensive 

guidelines for assessing eutrophication should be developed by taking into account a 

variety of factors in conjunction with the development of the economy and society (Yang 

et al. 2008). Controlling and managing cultural eutrophication is a difficult task that will 

involve the collaboration of scientists, policymakers, and citizens to limit nutrient inputs, 

create effective, long-term biomanipulation techniques, and restore aquatic communities 

(Chislock et al. 2013).
 
Non-linear mathematical model can be utilized to investigate 

eutrophication of a lake caused by an excessive supply of nutrients (Misra, 2007). 
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2.3 Water Quality (WQ) Assessment Using RS & GIS 

Water quality is described in terms of its physical, chemical, and biological aspects and 

assessed as a water quality index (WQI) to determine whether or not it is potable. The 

Water Quality Index (WQI) is a single number that indicates the total water quality at a 

given place based on a number of water quality criteria (Jayalakshmi and Velappan, 

2015). For any intended purpose, the WQI specifies the quality of water in terms of an 

index number. Chlorophyll-a, water clarity, turbidity, and suspended particle matter 

(SPM) are the most important markers of water quality (Kabbara et al. 2008). Researchers 

identified that in eutrophicated water bodies, DO concentration is unstable.
 
Generally, the 

physical and chemical evaluation parameters were used to assess water eutrophication, 

mainly nutrient concentration (N and P), algal chlorophyll, water transparency and 

dissolved oxygen (Cheng and Li, 2006). Detailed water quality metrics such as suspended 

sediments, water clarity, chlorophyll-a, and turbidity can be assessed using Landsat data 

series (Buhan et al. 2016). 

Globally, Remote Sensing (RS) and Geographic Information Systems (GIS) are 

extensively employed to monitor water quality. The advancement of GIS and spatial 

analysis allows us to integrate laboratory data with geographic data, as well as simulate 

the geographical distributions of water quality parameters with more rigor and accuracy 

(Mouna et al. 2011). Reflectance spectroscopy is a rapidly developing technology that can 

be used to extract valuable information about surface materials with only a few in-situ 

measurements. Hyperspectral images, on the other hand, enable for better detection of 

chlorophyll and thus algae due to the narrow spectral bands collected between 450 and 

600 nm which is time saving technology (Rostom et al. 2017). 

Optical RS technologies have proven to be beneficial and successful in estimating and 

mapping water quality elements such as dissolved organic matter, chlorophyll, and total 

suspended matter concentrations (Fichot et al. 2016). Suspended sediments boost the 

brightness emitted by surface water in the visible and near infrared (NIR) portions of the 

electromagnetic spectrum, making spectral fingerprints in the visible and NIR bands 

promising and practicable for detecting water contaminants (Wen and Yang, 2011). 

Because of the significant absorption of the red and blue wavelengths and the reflection 

of the green wavelengths, the human eye perceives healthy vegetation as green. There is 
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less adsorption in the red and blue regions, and the quantity of reflection in the red wave 

band increases when the plant is stressed, which inhibits normal growth and chlorophyll 

production (Abou El-Magd and El-Zeiny, 2014). Many researchers use the visible and 

near infrared bands of the solar spectrum (mostly from blue to near infrared region) in 

their studies to obtain robust correlations between water column reflection (in some cases 

emission) and physical and biogeochemical constituents, such as transparency, 

chlorophyll concentration (phytoplankton), organic matters, and mineral suspended 

sediments in various waterbodies (El-Din et al. 2013). 

Although in-situ measurement of water quality indicators, including physical, chemical, 

and biological qualities; provides excellent accuracy, but it is a labor-intensive and time-

consuming operation (Duan et al. 2013). Laboratory examination, in order to determine 

reservoir eutrophic conditions, can be used for assessment of current year. The reservoir's 

eutrophication zone maps can be created using ArcGIS and the traditional Kriging 

method (Esfandi et al. 2018). One of the most prominent supervised classification 

methods for remote sensing image data is maximum likelihood. This approach is based on 

the likelihood of a pixel belonging to a specific class. The basic idea implies that all 

classes have the same probabilities and that the input bands have normal distributions. 

The ArcGIS program is an effective tool for mapping the spatial distribution of 

physicochemical characteristics (Al-Dahhan et al. 2019). Several researchers used remote 

sensing technology to classify and analyze the trophic status of lakes. A geographic 

information system (GIS) can be used to execute a variety of basic spatial analysis 

functions (Xu et al. 2001). 
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2.4 Eutrophication Estimation Using RS & GIS 

Chlorophyll-a is the most important indication of trophic status. It mostly reflects green; it 

absorbs the majority of energy from violet-blue and orange-red light wavelengths, which 

cause chlorophyll to appear green. Obviously, adding chl-b to the mix in addition to chl-a 

increases spectrum absorption. Low light circumstances favor the synthesis of chl-b to 

chl-a molecules in a higher ratio, boosting photosynthetic output. The absorption 

spectrum of both the Chlorophyll-a and Chlorophyll-b pigments are shown in Figure 2.1 

(Schlichter et al. 1997). 

 

Figure 2.1: Absorption Spectrum of Chl-a and Chl-b Pigment (Schlichter et al. 1997) 

Plants use chlorophyll pigments (chlorophyll a and chlorophyll b) to absorb light energy 

for photosynthesis, and these vital pigments are present in the highest concentrations in 

healthy leaf material (Croft et al. 2017). The use of chlorophyll as an eutrophication 

indicator should be seen in the context of a more comprehensive understanding of 

eutrophication (Doering et al. 2006). Planktonic algae proliferation is a major cause of 

aquatic life loss and harm to aquatic ecosystems and water functioning in lakes (Li et al. 

2017). The radiometric and limnological data collected after each field campaign was 

combined into a single dataset that was used to calibrate the methods (Augusto-Silva et 

al. 2014). Moderate resolution data from Sentinel-1, Landsat-8 and Sentinel-2 can be used 

for water body extraction and water quality monitoring, and MODIS (Moderate 

Resolution Imaging Spectroradiometer) can be employed for water quality evaluation 

(Politi and Prairie, 2018). 
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The use of remote sensing techniques in the estimation and development of maps of chl-a 

levels are found to be a useful tool for monitoring and assessing water quality in both 

marine and fresh waterways (Buditama et al. 2017). Several techniques for chl-a mapping 

have been devised and tested in marine environments, estuaries, and freshwater masses 

(Kaymaz, 2018). Currently, satellite photos are being employed in the field of research. 

The accuracy of the results obtained from satellite photos should be checked by 

comparing them to the laboratory results (Şeyma and Ersin, 2018). Many satellite borne 

sensors have improved capabilities with respect to spectral, radiometric, temporal, and 

spatial resolutions, data from satellite sensors may provide better information on chl-a 

variability than conventional field monitoring (Tyler et al. 2016). Before employing 

satellite datasets, it is necessary to do a detailed examination of the local correlations 

between in situ-measured chl-a and spectral bands of airborne or handheld sensors for a 

geographic and/or seasonal region (Xie et al. 2015). Researcher examined the 

performance of several algorithms based on spectral bands to estimate chl-a in a shallow, 

turbid, productive tropical estuarine-lagoon system using in situ reflectance spectra (Lins 

et al. 2017). 

Water remote sensing is based on the observation of the water colour from a distance, 

without taking water samples (Hussein and Assaf, 2020). As a result, the use of satellite 

remote sensing techniques, defined as a technique for estimating geophysical parameters 

from electromagnetic energy reflected or emitted from the earth, based on water's optical 

properties (Pielke Sr, 2013). Remote sensing techniques have been widely used to 

measure the qualitative parameters of water bodies. There can be eleven water-quality 

parameters (WQP) measured by remote sensing techniques. These parameters are 

chlorophyll-a (chl-a), coloured dissolved organic matters (CDOM), Secchi disk depth 

(SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total 

phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen 

demand (BOD), and chemical oxygen demand (COD). Chlorophyll absorbs most of 

violet-blue and orange-red wavelengths, reflects green, and decreases short wavelengths’ 

response (particularly blue band wavelengths) (Gholizadeh et al. 2016). In order to 

validate satellite imagery analysis, evenly distributed in situ data collections over the lake 

should be calibrated (Zhang et al. 2009). 
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Chlorophyll a (chl a) is a pigment found in phytoplankton and is one of the Water 

Framework Directive (WFD)'s primary metrics for determining the trophic state of water 

(Matthews, 2011). Furthermore, chlorophyll is a key indication of phytoplankton biomass 

and can be used to assess water clarity (Salem et al. 2017). Phytoplankton blooms are 

natural occurrences in the water environment that demonstrate how a water ecosystem 

functions normally (Carstensen et al. 2015). Toxic cyanobacteria blooms or excessive 

blooms produced by human impact, on the other hand, cause environmental issues that 

affect inland waters directly by lowering water quality and indirectly by restricting the 

use of drinking water, fishing, and swimming (Ansper and Alikas, 2018). 

RS is increasingly being employed to monitor and map Harmful Algal Blooms (HABs) in 

aquatic systems, because it can collect synoptic data over many spatial and temporal 

dimensions (Kutser et al. 2020). It has been demonstrated that satellite and airborne 

optical remote sensing can estimate concentrations of, and changes in, parameters such as 

chlorophyll-a (Chl-a), phycocyanin, and turbidity, which are common indicators used to 

estimate the presence and intensity of HABs (Kudela et al. 2015). Satellite and airborne 

optical remote sensing have been shown to estimate concentrations and changes in 

parameters such as chlorophyll-a (Chl-a), phycocyanin, and turbidity, which are 

commonly employed to measure the presence and intensity of HABs (Mchau et al. 2019). 

Ideally, the water quality sampling can be planned in advance to take place on a cloud-

free day coincident with satellite overpass. However, in reality, many water quality 

samples do not exactly match cloud-free satellite observations in time due to survey 

logistics constraints and the uncertainty of weather conditions (Wang et al. 2020). Blue to 

green spectral bands are favorable for determining Chl-a concentrations in clear 

(oligotrophic) water conditions, whereas red and near-infrared bands are preferred in 

high-biomass and turbid coastal and inland waters (Moses et al. 2009). 

Algal blooms, which are frequently triggered by eutrophication in freshwater, are linked 

to chl-a concentrations since it is required for photosynthesis (Lim and Choi, 2015). 

Increasing chl-a concentration produces a decrease in spectral sensitivity at short 

wavelengths, especially in the blue band, according to many studies (Brivio et al. 2001). 

To quantify chl-a, various visual spectral bands and their ratios are commonly used. In the 

remotely detected signal, spectral band ratios can diminish irradiance, atmospheric, and 
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air-water surface impacts (Lillesand, et al. 2014). The spectral areas 630–645 nm, 660–

670 nm, 680–687 nm, and 700–735 nm were discovered to be prospective regions where 

the first derivatives might be utilized to estimate chlorophyll content (Han and Jordan, 

2005). Researcher discovered that the reflectance curve and baseline from 672 to 742 nm 

(CHRIS spectral Bands 8–12) have the strongest correlation and sensitivity to chl-a 

concentration fluctuations (Mannheim et al. 2004). 

Landsat-8 OLI bands to assess chl-a concentration and used Band 2, Band 5, and a ratio 

of Band 2/Band 4 can be used (Kim et al. 2014). Researcher also introduced the 

Normalized Difference Chlorophyll Index (NDCI) to forecast chl-a concentration (Mishra 

and Mishra, 2012). Maximum chlorophyll index (MCI) was used to exploit the height of 

the measurements in a certain spectral band above a baseline which passes through three 

bands B4 (665 nm), B5 (705 nm), and B6 (740 nm) (Alikas et al. 2010). Three different 

remotely sensed indices can be used to represent three different water quality parameters; 

maximum chlorophyll index (MCI), green normalized difference vegetation index 

(GNDVI), and normalized difference turbidity index (NDTI) (Elhag et al. 2019). While 

satellite data allows for repeated land surface measurements, NDVI is known to be 

saturated at high biomass and is not sensitive enough to leaf chlorophyll content to give 

an early warning of chlorophyll loss in broadleaf species (Morley et al. 2020). 

Normalized Difference Water Index (NDWI) has been widely used for water bodies 

extraction (McFeeters, 1996). Normalized Difference Chlorophyll Index (NDCI), but 

instead of red, uses the red-edge band. Normalized Difference Turbidity Index (NDTI) 

uses red and green reflectance for estimating the turbidity in water bodies. However, the 

same index has been used for chlorophyll-a estimation (Watanabe et al. 2017). 

 

 

 

 

 

 



 
 

 

17 
 

2.5 Calculation of Trophic State Index (TSI) 

The higher the concentration of chlorophyll-a, the worse the water quality, and hence it 

can be used as a primary indication of water body trophic state (Hosmani, 2010). The 

trophic status of aquatic ecosystems is determined by nutrient dynamics (Jekatierynczuk-

Rudczyk et al. 2014). The trophic condition must be assessed before conservation and 

management measures can be developed (Sharma et al. 2010). Various researchers have 

classified lakes using a variety of approaches and indexes. The Trophic Status Index 

(TSI) is a widely used metric for determining the trophic state or overall health of a lake. 

As Carlson’s Trophic State index needs minimum data and easy to understand, it is ideal 

for volunteer water conservation program and to educate the common man regarding the 

threats to the water bodies like lakes and conservation strategies that can be adopted 

(Devi Prasad and Siddaraju, 2012). Trophic state can be utilized as a public 

communication tool as well as a management tool to give scientific agreement on 

eutrophication and lake character. Given its wide relevance and extensive history, it's 

critical to examine and update the methods for calculating trophic state on a regular basis 

(Farnaz et al. 2019). It is debatable whether production refers to the rate of phytoplankton 

growth (productivity) or algal weight or biomass (production), but because biomass is 

easier to quantify and can be immediately translated into many of the lake management 

issues, researchers focus on biomass (Carlson and Simpson, 1996). 

Many research focused on predicting Chl-a concentrations and identifying key factors 

that support their production, such as temperature, water retention time, water level, 

photoperiod, macrophyte presence, and zooplankton herbivory (Yang et al. 2008). 

Researchers have used the equation of TSI of Carlson to estimate and classify the degree 

of eutrophication uses three limnological parameters, such as Chl a (µg/L) (Cuevas 

Madrid et al. 2020). The TSI model was created by Carlson for lakes with few rooted 

aquatic plants and low non-algal turbidity which is useful for the researchers. At the same 

time, landsat satellite imagery with 30-meter spatial resolution (freely available) is cost 

effective and available throughout the late summer season, allowing for TSI calculation 

(Fuller and Jodoin, 2016). TSI is a numeric index of lake trophic state on a scale from 1 to 

100, where a higher number indicates greater nutrient enrichment (Vollenweider et al. 

1998). 
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There are many types of TSI mentioned as follows: 

i) TRIX Index: This index represents the linear combination of the logarithm 

of four state variables such as Chl-a, DO, N, TP. 

ii) Carlson's Trophic State Index (TSI): The concept of trophic status is based 

on the fact that changes in nutrient levels. 

iii) Trophic Diatom Indices: The diatom trophic indices describe diatom 

distribution in relationship to either ―dissolved‖ ( orthophosphate) or ―total‖ 

phosphorus, that are mostly closely correlated with the nitrogen concentration in 

the water. 

iv) Benthic Trophic State Index: The benthic TSI is determined by comparing 

the rates of sediment–water oxygen exchange in opaque (dark) and transparent 

(light) chambers incubated at or near room temperature. 

v) Oligochaete Trophic Index: The association of oligochaetes with organic 

enrichment of water was used to develop the ―oligochaete trophic index.‖ 

vi) Trophic Level Index (TLI): Four parameters are combined to construct the 

TLI. These are concentrations of total nitrogen, total phosphorus, and chlorophyll 

a, and transparency. 

vii) Trophic Index of Macrophytes: Concentrations of soluble reactive 

phosphorus in both the water body and sediment pore water were assigned to 

macrophyte species and related to their phosphorus demand. 

viii) Infaunal Trophic Index: The method is based on categorizing 

macroinvertebrate species into one of four groups based on the sort of food they 

consume and where they get it. 

ix) Marine Trophic Index: The trophic level of a consumer is calculated by 

adding one level to the mean trophic level of its prey. 

x) Index of Trophic Completeness: The ITC is a trophic completeness 

measure based on freshwater macroinvertebrate communities. 
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Above indices were used by many researchers many a times in different studies (Pavluk 

and Bij, 2013). 

Trophic Level Index (TLI) can be calculated using following equations: 

TLI (Chl-a) = 10 [2.5 + 1.086 ln(Chla)]  

TLI (TP) = 10 [9.436 + 1.624 ln(TP)] 

TLI (TN) = 10 [5.453 + 1.694 ln(TN)] 

TLI (SD) = 10 [5.118 − 1.94 ln(SD)] 

TLI (COD) = 10 [0.109 + 2.661 ln(COD)] 

Researchers used Chl-a, TP, TN, SD and COD, and identified high levels of TN and TP 

resulted in noticeable eutrophication of the lakes during the summer (Liu, Zhang, Sun, 

Wu and Chen, 2019). 

Carlson developed Trophic State Indices as follows: 

TSI(SD) = 60 - 14.41 ln(SD) 

TSI(Chl-a) = 9.81 ln(Chl) + 30.6 

TSI(TP) = 14.42 ln(TP) + 4.15 

TSI(TN) = 54.45 + 14.43 ln(TN) 

Chlorophyll can be utilized as the major index because it is a direct estimator of algal 

weight. Total phosphorus and Secchi depth should only be used to estimate trophic state 

if chlorophyll readings are unavailable since they have interferences and are not 

completely related to algal biomass. Trophic state categorization is the classification of a 

waterbody's current status along a trophic state axis (Carlson, 2007). 
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2.6 Machine Learning Algorithm-Artificial Neural Network (ANN) 

Different ANNs have been investigated for water quality prediction because of their 

capacity to learn the temporal dynamics of a system with less input data and efficiency in 

handling nonlinear problems (He et al. 2014). Various methodologies, ranging from 

regression-based methods such as linear and multilinear regression to watershed models, 

can be used to investigate the effects of LULC on water quality and quantity. Several 

researches have been conducted to better understand the relationship between LULC and 

river water quality (Ouma et al. 2020). ANN, one of the branches of Machine Learning 

Algorithm, is a type of information processing model inspired by organic nerve systems. 

The paradigm's structure is the most important factor. It consists of a huge number of 

highly interconnected processing neurons that work together to solve problems. In ANN 

applications, back-propagation is a typical learning algorithm (i.e., BP-ANN). The 

weights in the network are determined using a gradient descent approach. There are three 

or more layers in an ANN: an input layer, hidden layer(s), and output layer. The input 

layer contains input nodes (neurons), which are the network's input variables. The hidden 

layer normally contains a series of nodes associated with a transfer function, while the 

output layer contains the system's desired output. Weights connect each layer of the 

network, which must be determined using a learning method (Huo et al. 2014). 

ANN can use known input data without making any assumptions. The ANN creates a 

mapping of input and output variables that can then be used to anticipate desired 

outcomes based on appropriate inputs. By selecting a sufficient set of linking weights and 

transfer functions, a multi-layer neural network may approximate any smooth, measurable 

function between input and output vectors. The back propagation neural network (BPNN) 

can be utilized for prediction based on the classification results (Fu et al. 2010). One of 

the most important responsibilities of an ANN is to identify the model input variables that 

have a substantial impact on the output variable (s). In general, input variables are chosen 

based on priority knowledge of causal variables, time series plot inspections, and 

statistical analysis of probable inputs and outputs (Palani et al. 2008). The ANN model 

incorporates a number of extremely flexible function approximations that can be applied 

to a variety of water resource applications. The ANN model has been validated in 

limnological, river, and coastal systems by many researchers (Zhang et al. 2015).  
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Where domain knowledge of ecosystem processes is insufficient, ANNs have the ability 

to identify helpful models. A typical neural network is made up of several pieces known 

as neurons or nodes. Direct communication links connect each neuron to other neurons, 

and each link has a weight associated with it. (Mozejko and Gniot, 2008). Because of the 

training to learn the association with data, a back-propagation neural network is suitable 

for predicting. There were three layers in the model: input, hidden, and output. Iteration 

was used to determine the number of hidden layers, which took into account a mean 

squared error value and a correlation coefficient (Srisuksomwong and Pekkoh, 2020). The 

use of water quality indicators (WQIs) to anticipate eutrophication levels in lake waters is 

common. However, there are two factors that make prediction problematic. On the one 

hand, diverse climatic, geographical, and ecological factors have influenced the spatial 

and temporal distributions. The indications, on the other hand, are interdependent and 

linked, adding to the complexity of prediction (Huo et al. 2013). 

Environmental monitoring, ecological sustainability, and human health all rely on 

accurate water quality predictions. Furthermore, for early control of intelligent 

aquaculture in the future, forecasting future changes in water quality is a requirement 

(Fijani et al. 2019). Traditional methodologies are unable to match the demands of 

researchers as data volume grows. ANN models, often known as data-driven models, 

have progressed as computing capacity has increased (Chen et al. 2020). ANN models 

work even when the underlying relationships of the collected data are difficult to 

articulate. Furthermore, as compared to traditional techniques, ANN requires fewer prior 

assumptions and can achieve higher accuracy (Li et al. 2019). In addition, because of 

their similarities to the brain nervous system, ANN is well suited to handling non-linear 

and unpredictable issues and become a hotspot in water quality research (Zhang et al. 

2017). Water quality is crucial in any aquatic system because it can influence aquatic 

creature growth and represent the extent of pollution (Han et al. 2012). Water quality 

prediction is the process of predicting how water quality will change over time (Chen et 

al. 2018). ANN can be used to predict Chlorophyll-a (Chl-a) levels in the environment of 

dams. In terms of minimizing the effects of dam algal blooms, this predictive technology 

allows for proactive rather than reactive management regimens (Rafiee and Jahangiri-

Rad, 2015). 
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2.7 Important Findings from Literature Review 

Different types of eutrophication status were identified in lakes along with causes, effects 

and future consequences. Various types of water quality parameters and trophic status 

with their relation were also found. Trophic State Index (TSI), Eutrophication Index (EI), 

and Trophic Level Index (TLI) are used to classify lake trophic status and TSI is selected 

by many researchers. Carlson’s TSI equations were found to calculate trophic status. 

Using different RS sensors, algal bloom is identified and Chl-a concentration is 

calculated. It was mentioned in many papers that Chl-a concentration is a prime indicator 

and TN is also an indicator to get an idea on the algal bloom quantity. From the satellite 

imagery, different type of indices such as NDVI, NDBI, NDWI and NDCI are calculayed 

and LU/LC is classified. GIS can integrate all field and satellite data effectively for better 

analysis. ANN model is widely used in all over the globe for future prediction. In this 

area of study, many research papers found in developed countries whereas very few 

research papers found in Bangladesh. Therefore, eutrophication is less focused in 

Bangladesh. Due to the less priority, water bodies in Bangladesh are not taken care 

properly. As a result, aquatic ecosystem of Dhaka city is already in danger as population 

density and all kind of pollution are highest here. It is now time demanding matter to 

focus on this issue in Bangladesh especially in Dhaka. 
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2.7.1 There are many sensors available around the globe. Researchers use limited 

sensors for the specific purpose. For the water quality assessment, available satellite 

sensors are as shown in Table 2.1. 

Table 2.1: Sensors Used in Water Quality Assessment (Gholizadeh et al. 2016).  

Category Satellite-Sensor Spatial Resolution 

(meter) 

Revisit Interval 

(day) 

 

 

High 

Resolution 

Digital Globe World View-1 0.5 m 1.7 

Digital Globe World View-2 1.85-0.46 m 1.1 

NOAA World View-3 1.24-3.7-0.31 m 1-1.45 

Digital Globe Quickbird 2.62-0.65 m 2.5 

GeoEye-1 1.65-0.41 m 3 

SPOT-5 HRG 2.5-5-10-20 m 2-3 

 

Moderate 

Resolution 

Landsat-8 OLI/TIRS 30-15-100 m 16 

Landsat-7 ETM+ 30-15-60 m 16 

Landsat-5 TM 30-120 m 16 

Landsat-5 MSS 80 m 18 

Regional 

Global 

Resolution 

Terra MODIS 250-500-1000 m 1-2 

Envisat-1 MERIS 300-1200 m Daily 

 

2.7.2 Spectral bands and their ratio are utilized for measuring specific index to identify 

desired signature. Different combinations of bands indicate various type of ground and 

water body condition. To calculate various indices, available band combination are shown 

in Table 2.2  

Table 2.2: Spectral Bands with Ratio to measure Chl-a (Gholizadeh et al. 2016). 

Band Combination Sensor 

Ration between Green and Red Landsat 5-TM, Landsat 5-MSS, Landsat 7-ETM+, 

SPOT, IRS-LISS-III 

Ration between Near Infrared 

(NIR) and Red 

Landsat 5-TM, HICO, PROBA-CHRIS, 

MODIS, MERIS, AISA 

Ration between Green and Blue Landsat 5-TM, Landsat 7-ETM+, MERIS, 

PROBA-CHRIS, EO-1 Hyperin 

Ration between Blue and Red Landsat 5-TM, Landsat 7-ETM+ 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

3.1 Introduction 

 
This chapter explains in details the methodology and the key issues in implementation of 

the research including study area. Two types of data have been collected namely water 

sample from the selected lakes as primary data and satellite imagery downloaded from the 

freely available website as secondary data. 

 

3.2 Selection of Study Area  

Dhaka is the capital of Bangladesh. Dhaka City is densely populated in the world (8
th

 

largest megacity).  Geographically Dhaka is located between 23˚40´ and 23˚54´ North 

latitudes and 90˚20´ and 90˚28´ East longitudes (as shown in Figure 3.1). 

 

Figure 3.1: Basic Topographic Features of the Dhaka City (Ishtiaque et al. 2014) 
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Five major lakes of Dhaka City Corporation including Uttara, Mirpur Gulshan, Baridhara 

and Hatirjheel area were selected as study area of this research. All five lakes fall under 

Dhaka North City Corporation (DNCC). These areas were selected because of varying 

urbanization pattern and locations. Average length and width of the Uttara, Mirpur 

Baridhara, Gulshan and Hatirjheel lakes are 6100 feet by 300 feet, 4600 feet by 700 feet, 

5995 feet by 400 feet, 7100 feet by 500 feet and 11,850 feet by 550 feet respectively. 

  

 

Figure 3.2: Five Selected Lakes of Dhaka City 
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3.3 Research Conceptual Design 

Research is conceptualized as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Research Flow Chart 
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3.4 Testing of Water Quality Parameters 

Spectrophotometry was used to test Chlorophyl-a concentration, TN, Phosphate, COD 

and water colour. DO meter used to test DO and BOD.  pH meter was used to test pH. 

Turbidity meter was used to test turbidity. EC meter was used to test TDS 

 

3.5 Calculation of Trophic State Index (TSI) for Chl-a and TN 

Trophic State Index (TSI) was calculated from Chlorophyll-a concentration and Total 

Nitrogen (TN) which are obtained from water sample data of 2021 using widely used and 

recommended Carlson’s equation (Carlson, 2007). 

TSI (Chl-a)=9.81xLn(Chl-a)+30.6----------------------------------(3.1) 

Where Chl-a is measured in micro-gram per litre and corresponding value of TSI denote 

whether eutrophic or not. 

TSI (TN) = 54.45 + 14.43 ln(TN)------------------------------------( 3.2) 

Where TN is measured in mg/L and corresponding value of TSI denote whether eutrophic 

or not. 

The final value obtained from the equation indicates the Trophic Status with an index 

ranging from 0-100. TSI value 0-40 indicates Oligotrophic aquatic ecosystem (Low 

ecological productivity), 40-50 indicates mesotrophic (Moderate ecological productivity), 

50-70 indicates eutrophic (High ecological productivity) and 70-100 indicates 

hypereutrophic (highest ecological productivity). Chlorophyll-a is reflective of high 

phytoplankton abundance in the water (Opiyo et al. 2019). 

Water sample test data were calculated by using equation 3.1 and 3.2 to find out TSI 

values. These values were plotted in the following table 3.1 to identify trophic status. 
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Table 3.1: Carlson’s Trophic State Index (TSI) 

TSI Trophic Status Remarks 

0-40 Oligotrophic Less nutrients 

40-50 Mesotrophic Moderate nutrients 

50-70 Eutrophic Abundant of nutrients 

70-100 Hypertrophic Excess of nutrients 

 

3.6 Calculation of Various Indices 

Four indices were calculated using following formulas: 

NDVI:  The formula of estimating NDVI from Landsat images is stated below (Yuan and 

Bauer, 2007): 

      
         

         
  ------------------------(3.3) 

Where RNIR and Rred denote the spectral reflectances in the red and near-infrared bands of 

the TM and OLI, respectively. This NDVI equation produces values between 1 and 1, 

with positive values representing vegetated areas and negative values representing non-

vegetated surface features such as water, barren, clouds, built-up area, and snow. 

NDBI:  NDBI can be calculated by following formula (He et al. 2010). 

      
          

          
  ------------------------(3.4) 

Where, RNIR is the near Infrared band of Landsat TM and OLI and RSWIR is the short-

wave Infrared (SWIR) for Landsat TM and short-wave Infrared (SWIR) 1 for Landsat 

OLI.  

Additionally, the NDBI value ranges from -1 to +1. The negative number of NDBI 

corresponds to water bodies, whereas the positive value corresponds to built-up regions. 

Vegetation has a low NDBI value (Macarof and Statescu, 2017). 
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NDWI: Gao (1996) developed the NDWI and the generic formula for estimating the 

NDWI is specified below (Jackson et al., 2004): 

         
          

          
  ------------------------(3.5) 

Where, RNIR is the near Infrared band of Landsat TM and OLI and RSWIR is the short-

wave Infrared (SWIR) for Landsat TM and short-wave Infrared (SWIR) 1 for Landsat 

OLI.  

NDCI: The formula of extracting NDCI for the water is stated below (Buma and Lee, 

2020).  

      
                    

                    
  ------------------------(3.6) 

Hence, BandT4 or BandO5 are the NIR bands, and BandT3 and BandO4 are the red bands of 

Landsat TM and OLI correspondingly.  

 

3.7 Calculation of TSI for NDCI 

TSI was calculated from NDCI values using graphical representation (box method) as 

shown figure 3.4. Basing on the NDCI values, corresponding TSI values as follows: 

TSI (Oligophic)= 00 to 40 and Equivalent NDCI= -0.2 to -0.17 

TSI (Mesotrophic)= 40 to 50 and Equivalent NDCI= -0.17 to -0.10 

TSI (Eutrophic)= 50 to 70 and Equivalent NDCI= -0.10 to 0.0 

TSI (Supertrophic)= 70 to 100 and Equivalent NDCI= -0.9 to 0.12 

TSI (Hypertrophic)= 70 to 100 and Equivalent NDCI=0.12 and above 
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Figure 3.4: Eutrophication Status and Corresponding NDCI (Lobo et al. 2021) 

 

3.8 Calibration and Validation: Water Sampling and Satellite Data 

TSI calculated by Chl-a and TN of water sample data were calibrated and validated with 

the same time (November 2021) TSI calculated by NDCI values which were analyzed 

using satellite imagery.  

 

3.9 Prediction of Eutrophication Status 

ANN Model was developed using six input data (LU/LC, NDVI, NDCI, NDBI, NDWI, 

and Area of Water Body). To run this prediction model, Q-GIS 2.18 (Molusc Plugin) was 

used. Training model was developed using the year of 1990, 2000 and 2010 datasets. 

Thereafter, test output of 2021 was developed to validate training model. Finally, 

Prediction of eutrophication status was developed in 2030 and 2040. 
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Figure 3.5: ANN Model Developed for Future Prediction of Eutrophication 

 

 

Figure 3.6: QGIS Molusce Plug-in Interface 
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CHAPTER 4 

DATA COLLECTION 
 

4.1 Water Sampling Locations 

Water sampling locations were selected in three different points for better results from the 

same lake as shown in figure 4.1. 

p    

  

Figure 4.1: Water Sampling Points of Five Selected Lakes 
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4.2 Water Sample Collection 

For this study, water samples were collected from five selected lakes of Dhaka city 

namely Uttara, Mirpur, Baridhara, Gulshan and Hatirjheel areas. Water samples were 

collected in three different date (25 September, 13 November and 19 December 2021) 

considering the date of satellite imagery data. Satellite imagery download was planned on 

1
st
 week of November of 1990, 2000, 2010 and 2021. Therefore, before and after satellite 

imagery download dates were selected for water sampling to find out average values. 

Water samples have been collected in between 08:00 am to 12:30 pm from the top layer 

(maximum 0.20 metre) of the lakes (Queensland, 2019). All samples were tested on the 

same day at Botany Lab of University of Dhaka and Environment lab of MIST. 

  

Figure 4.2: Collection of Water Sample from the Five Selected Lakes 

Botany Lab of University of Dhaka was used to test Chlorophyll-a concentration (prime 

indicator of eutrophication) of the collected water samples.  

  

Figure 4.3: Chlorophyll-a Test at Botany Lab, University of Dhaka 
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Environment Lab of MIST was used to test various water quality parameters such as 

Total Nitrogen-TN (one of the main indicators of eutrophication), phosphate, DO, BOD, 

COD, Turbidity, Colour, pH and TDS of the collected water samples to identify any 

variation of water quality due to the eutrophication. 

  

4.3 Identification of Sources of Pollution 

Sources of pollution were identified by conducting physical survey using handheld 

Global Positioning System (GPS). Many points were found where different types of 

sewerage connection coming from residential areas, hospitals/clinics, restaurants etc. 

  

Figure 4.4: Identification of Sources of Pollution Using Handheld GPS 

 

4.4 Satellite Imagery Collection 

For this study, satellite imagery was downloaded from USGS website (freely available) 

with cloud cover less than 10%, temporal resolution 16 days and spatial resolution 30m. 

1
st
 week of November 1990, 2000, 20210 and 2021 were selected and downloaded for 

this analysis to get better image quality. In doing so, Landsat 4-5 TM image data were 

downloaded for the year of 1990, 2000 and 2010, and Landsat 8 OLI image data was 

downloaded for the year of 2021. 
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Figure 4.5: USGS Website Interface 

Technical specification of Landsat 4-5 TM bands is shown in table 4.1 (Gholizadeh et al. 

2016). 

Table 4.1: Technical Specification of Landsat 4-5 TM Bands 

Band Wavelength Useful for mapping 

Band 1 – blue 0.45-0.52 Bathymetric mapping, distinguishing soil 

from vegetation and deciduous from 

coniferous vegetation 

Band 2 – green 0.52-0.60 Emphasizes peak vegetation, which is 

useful for assessing plant vigor 

Band 3 – red 0.63-0.69 Discriminates vegetation slopes 

Band 4 - Near Infrared 0.77-0.90 Emphasizes biomass content and shorelines 

Band 5 - Short-wave 

Infrared 

1.55-1.75 Discriminates moisture content of soil and 

vegetation; penetrates thin clouds 

Band 6 - Thermal 

Infrared 

10.40-12.50 Thermal mapping and estimated soil 

moisture 

Band 7 - Short-wave 

Infrared 

2.09-2.35 Hydrothermally altered rocks associated 

with mineral deposits 
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Technical specification of Landsat 8 OLI bands is shown in table 4.2 (Gholizadeh et al. 

2016). 

Table 4.2: Technical Specification of Landsat-8 OLI Bands 

Band Wavelength Useful for mapping 

Band 1 - coastal 

aerosol 

0.43-0.45 Coastal and aerosol studies 

Band 2 – blue 0.45-0.51 Bathymetric mapping, distinguishing soil from 

vegetation and deciduous from coniferous 

vegetation 

Band 3 – green 0.53-0.59 Emphasizes peak vegetation, which is useful for 

assessing plant vigor 

Band 4 – red 0.64-0.67 Discriminates vegetation slopes 

Band 5 - Near 

Infrared (NIR) 

0.85-0.88 Emphasizes biomass content and shorelines 

Band 6 - Short-wave 

Infrared (SWIR) 1 

1.57-1.65 Discriminates moisture content of soil and 

vegetation; penetrates thin clouds 

Band 7 - Short-wave 

Infrared (SWIR) 2 

2.11-2.29 Improved moisture content of soil and vegetation; 

penetrates thin clouds 

Band 8 – 

Panchromatic 

0.50-0.68 15 meter resolution, sharper image definition 

Band 9 – Cirrus 1.36-1.38 Improved detection of cirrus cloud contamination 

Band 10 - TIRS 1 10.60-11.19 100 meter resolution, thermal mapping and 

estimated soil moisture 

Band 11 - TIRS 2 11.50-12.51 100 meter resolution, improved thermal mapping 

and estimated soil moisture 
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4.5 Satellite Imagery Processing 

Raw images were processed using ArcGIS 10.3. Image pre-processing (radiometric 

correction) and multispectral band combination were applied. 

 

Figure 4.6: Image Processing Using ArcGIS Software 

Area of interest was extracted for analysis. Considering influenced areas around the five 

selected lakes, latitude 23˚43´ to 23˚54´ and longitude 90˚20´ to 90˚27´ was extracted 

from the downloaded satellite imagery. Extracted area (as shown in figure 3.7) is 

approximately 82 sqkm around the five selected lakes 

 

Figure 4.7: Satellite Imagery Coverage Areas of Five Selected Lakes 
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Water bodies, built-up areas, vegetation cover and barren lands were categorized for 

LU/LC. In doing so, Maximum Likelihood Supervised Classification (MLSC) of ArcGIS 

was applied. 

  

Figure 4.8: Image Classification Using ArcGIS Software 
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

 

5.1 Introduction 

This chapter provides the outcomes of water sampling (2021) results, identification of 

sources of pollution, satellite imagery analysis in the year of 1990, 2000, 2010 and 2021, 

and finally prediction of eutrophication in the year of 2030 and 2040 were shown here 

chronologically. 

5.2 Eutrophication Status: Basing on Water Quality Parameters 

Chl-a concentration test results in different dates are shown in table 5.1. Average chl-a 

concentration were calculated from three samples of each lake, TSI were calculated using 

equation 3.1, and results are shown in table 5.1. 

Table 5.1: TSI for Chlorophyll-a (Chl-a) Concentration 

Lake 

  

Chl-a: 1st 

Sampling Average 

 (µg/L) 

TSI 

Chl-a  

Chl-a: 2nd 

Sampling Average 

 (µg/L) 

TSI 

 Chl-a 

Chl-a: 3rd 

Sampling Average 

(µg/L)  

TSI 

 Chl-a 25/09/21 13/11/21 19/12/21 

Uttara-1 288.89 

209.17 

  

83.02 

  

322.04 

162.6 

  

80.55 

  

239.16 

176.81 

  

81.36 

  

Uttara-2 134.38 76.96 105.37 

Uttara-3 204.24 88.8 185.89 

Mirpur-1 139.7 

154.68 

  

80.06 

  

132.61 

206.01 

  

82.87 

  

271.14 

210.78 

  

83.09 

  

Mirpur-2 130.2 339.8 172.9 

Mirpur-3 194.15 145.63 188.3 

Baridhara-1 420.32 

487.08 

  

91.31 

  

200.1 

340.18 

  

87.79 

  

254.56 

306.26 

  

86.75 

  

Baridhara-2 670.33 368.22 329.15 

Baridhara-3 370.59 452.23 335.07 

Gulshan-1 631.64 

581.3 

  

 93.04 

  

394.27 

257.32 

  

85.05 

  

301.92 

322.06 

  

87.25 

  

Gulshan-2 542.27 284.16 344.54 

Gulshan-3 570 93.54 319.68 

Hatirjheel-1 548.75   510.21   468.59   

Hatirjheel-2 480.55 508.94 91.74 450.15 478.85 91.14 410.43 431.45 90.11 

Hatirjheel-3 497.52   476.2   415.33   
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TN test results in different dates are shown in table 5.2. Average TN was calculated from 

three samples of each lake, TSI were calculated using equation 3.2, and results are shown 

in table 5.2. 

Table 5.2: TSI for Total Nitrogen (TN) 

Lake 

  

TN: 1st 

Sampling Average 

 (mg/L) 

TSI 

 (TN) 

 

TN: 2nd 

Sampling Average 

(mg/L)  

TSI 

 (TN) 

 

TN: 3rd 

Sampling Average 

 (mg/L) 

TSI  

(TN) 

 25/09/21 13/11/21 19/12/21 

Uttara-1 15.2 

17.2 

 

95.50 

 

16.9 

19.5 

 

97.31 

 

24.7 

28.5 

 

102.78 

 

Uttara-2 18.6 20.5 28.8 

Uttara-3 17.8 21.1 32 

Mirpur-1 13.1 

13.63 

 

 

92.14 

14.3  

15.06 

 

93.58 

20.7 20.0  

97.68 Mirpur-2 13.9 14.4 18.9 

Mirpur-3 13.9 16.5 20.4 

Baridhara-1 19.7 

21.23 

 

98.54 

 

24.4 

26.7 

 

101.84 

 

27.1 

36.13 

 

106.21 

 

Baridhara-2 22.7 28.6 36.3 

Baridhara-3 21.3 27.1 45 

Gulshan-1 10.8 

10.9 

 

88.91 

 

12.4 

12.43 

 

90.81 

 

19.7 

19.83 

 

97.55 

 

Gulshan-2 9.9 11.3 22.2 

Gulshan-3 12 13.6 17.6 

Hatirjheel-1 18.3   19.5   22.77   

Hatirjheel-2 19.1 19.2 97.08 21.8 21.44 98.68 23.34 22.55 99.41 

Hatirjheel-3 20.2   23.02   21.56   

 

According to the Carlson’s Trophic State Index (table 3.1), all the values of TSI (Chl-a) 

and TSI (TN) fall within the range of 70-100 which indicate “Hypertrophic” condition 

for five selected lakes (Uttara, Mirpur, Baridhara, Gulshan and Hatirjheel areas) in the 

year of 2021 (September to December). 
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Figure 5.1 is showing, TSI (Chl-a) values of 1
st
, 2

nd
 and 3

rd
 sampling were found almost 

same pattern. Average TSI (Chl-a) values of Hatirjheel and Baridhara-Gulshan lakes are 

higher than the Mirpur and Uttara lakes. 

 

Figure 5.1: TSI (Chl-a) in Different Lakes 

Figure 5.2 is showing, TSI (TN) values 1
st
, 2

nd
 and 3

rd
 sampling were found almost same 

pattern. Average TSI (TN) values of Uttara and Baridhara lakes are higher than the 

Mirpur, Gulshan and Hatirjheel lakes. 

 

Figure 5.2: TSI (TN) in Different Lakes 
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Water quality parameters (phosphate, dissolved oxygen, BOD, COD, pH, colour, 

turbidity and TDS) were tested during 1
st
 sampling on 25 September 2021. Average 

values were calculated from the results of three sample data. Test results are summarized 

in table 5.3. 

Table 5.3: Water Quality (WQ) Parameters-1
st
 Sampling 

Lake PO₄³⁻ 

mg/L 

DO 

mg/L 

BOD 

mg/L 

COD 

mg/L 

pH Colour 

Pt/Co  

Turbidity 

NTU 

TDS 

mg/L 

Uttara-1 3.1 4.39 12.9 46 7.11 95 27.3 238 

Uttara-2 3.2 3.91 12 40 7.26 83 21.5 168 

Uttara-3 3.6 4.31 13.8 39 7.36 88 23.6 157.9 

Average 3.3 4.20 12.9 41.66 7.24 88.67 24.13 187.97 

Mirpur-1 2.7 1.72 19.5 70 7.4 99 20.1 158.1 

Mirpur-2 3.2 1.21 18.6 69 7.56 92 17.5 138.4 

Mirpur-3 2.9 4.5 18 76 7.43 115 18.6 176.8 

Average 2.93 2.47 18.7 71.66 7.46 102 18.73 157.77 

Baridhara-1 3.7 4.45 11.7 52 7.09 130 23.6 232 

Baridhara-2 3.3 2.03 10.5 47 7.16 125 21.5 242 

Baridhara-3 3.1 3.21 9.6 46 7.21 120 25.5 229 

Average 3.36 3.23 10.6 48.33 7.15 125 23.53 234.33 

Gulshan-1 2.4 3.1 15.9 56 7.09 84 21.6 220 

Gulshan-2 2.2 2.49 16.8 60 7.13 97 18.3 223 

Gulshan-3 2.6 2.56 15 52 7.08 122 22.6 251 

Average 2.4 2.71 15.9 56 7.1 101 20.83 231.33 

Hatirjheel-1 2.8 2.99 13.9 51 7.13 90 20.5 218 

Hatirjheel-2 3.0 2.78 14.8 57 7.07 96 19.4 223 

Hatirjheel-3 2.9 3.2 13.1 49 7.11 123 21.9 246 

Average 2.9 2.99 13.93 52.33 7.10 104 21.34 220.45 
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Water quality parameters (phosphate, dissolved oxygen, BOD, COD, pH, colour, 

turbidity and TDS) were tested during 2
nd

 sampling on 13 November 2021. Average 

values were calculated from the results of three sample data. Test results are summarized 

in table 5.4. 

Table 5.4: Water Quality (WQ) Parameters-2
nd

 Sampling 

Lake 

  

PO₄³⁻ 

mg/L 

DO 

mg/L 

BOD 

mg/L 

COD 

mg/L 

pH Colour 

Pt/Co 

Turbidity 

NTU 

TDS 

mg/L 

Uttara-1 7.9 3.18 17.4 56 6.68 88 37.5 242 

Uttara-2 10.5 3.23 16.8 62 6.72 78 23.1 209 

Uttara-3 9.6 3.94 17.4 71 6.75 86 26.3 185 

Average 9.33 3.45 17.2 63 6.72 84  28.96 212 

Mirpur-1 5.3 1.62 24.6 83 6.64 92 21.9 157.7 

Mirpur-2 5.1 1.26 25.8 80 6.69 88 23.6 150.7 

Mirpur-3 5.6 3.12 23.4 89 6.6 120 22.2 201 

Average 5.33 2 24.6 84 6.64  100 22.56 169.8 

Baridhara-1 8.9 1.1 29.4 84 6.5 121 26.3 277 

Baridhara-2 11.2 1.92 30.6 71 6.54 126 24.6 264 

Baridhara-3 9 2.33 28.8 85 6.62 111 31.5 255 

Average 9.7 1.78 29.6 80 6.55  119.3 27.46 265.33 

Gulshan-1 4.2 2.21 22.8 72 6.36 78 23.1 268 

Gulshan-2 5.1 2.11 20.4 70 6.22 92 22.6 336 

Gulshan-3 4.6 2.12 25.2 65 6.48 112 26.3 265 

Average 4.63 2.14 22.8 69 6.35  94 24 289.67 

Hatirjheel-1 6.55 2.82 25.34 74 6.66 95 25.97 257.7 

Hatirjheel-2 6.76 2.29 26.96 75 6.48 115 25.87 250.7 

Hatirjheel-3 6.89 2.45 25.78 78 6.83 97 24.42 217 

Average 6.73 2.52 26.02 75.67 6.65 102.33 25.42 241.8 

 

 



 
 

 

44 
 

Water quality parameters (phosphate, dissolved oxygen, BOD, COD, pH, colour, 

turbidity and TDS) were tested during 3
rd

 sampling on 19 December 2021. Average 

values were calculated from the results of three sample data. Test results are summarized 

in table 5.5. 

Table 5.5: Water Quality (WQ) Parameters-3
rd

 Sampling (19 December 2021) 

Lake 

  

PO₄³⁻ 

mg/L 

DO 

mg/L 

BOD 

mg/L 

COD 

mg/L 

pH Colour 

Pt/Co 

Turbidity 

NTU 

TDS 

mg/L 

Uttara-1 8.6 2.18 23 61 7.44 99 33.5 198.5 

Uttara-2 9.9 2.92 28 72 7.36 81 22.2 174.4 

Uttara-3 9.2 2.65 18 80 7.3 75 24.44 170.7 

Average 9.23 2.58 23 71 7.37  85 26.7133 181.2 

Mirpur-1 7.2 1.51 31 81 8.13 89 18.5 103.8 

Mirpur-2 8.5 1.15 33 96 7.82 100 21.44 124.6 

Mirpur-3 6.2 2.16 29 101 7.65 110 20.87 145.8 

Average 7.3 1.60 31 92.67 7.87 99.67  20.27 124.73 

Baridhara-1 12.2 1.11 34 101 7.11 130 24.77 181.2 

Baridhara-2 13.1 1.65 39 96 7.08 142 21.56 200 

Baridhara-3 9.6 1.82 32 105 7.15 156 27.34 243 

Average 11.63 1.52 35 100.6 7.11  142.7 24.5567 208.07 

Gulshan-1 9.2 2.01 25 76 7.85 70 21.22 206 

Gulshan-2 8.5 2.05 23 83 7.25 83 19.76 222 

Gulshan-3 8.1 1.92 26 78 7.3 116 23.41 203 

Average 8.6 1.99 24.67 79 7.47  89.67 21.4633 210.33 

Hatirjheel-1 9.82 1.71 35 89 7.09 105 22.45 183.42 

Hatirjheel-2 8.44 1.85 32 102 7.67 120 22.15 164.17 

Hatirjheel-3 9.02 1.68 31 92 7.32 115 21.94 195.35 

Average 9.09 1.74 32.66 94.33 7.36 113.33 22.18 180.98 
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Phosphate values (PO₄³⁻) of five selected lakes were found 3.3, 2.93, 3.36, 2.4 and 2.9 (1
st
 

sampling), 9.33, 5.33, 9.7, 4.63 and 6.73 (2
nd

 sampling), and 9.23, 7.3, 11.63, 8.6 & 9.09 

(3
rd

 sampling) respectively as shown in figure 5.3. Baridhara lake was found highest. 

  

Figure 5.3: Phosphate Values in Different Lakes 

 

DO values of five selected lakes were found 4.20, 2.47, 3.23, 2.71 and 2.99 (1
st
 

sampling), 3.45, 2, 1.78, 2.14 and 2.52 (2
nd

 sampling), and 2.58, 1.6, 1.52, 1.99 and 1.74 

(3
rd

 sampling) respectively as shown in figure 5.4. Uttara lake was found highest. 

 

Figure 5.4: DO Values in Different Lakes 
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BOD values of five selected lakes were found 12.9, 18.7, 10.6, 15.9 and 13.93 (1
st
 

sampling), 17.2, 24.6, 29.6, 22.8 and 26.02 (2
nd

 sampling), and 23, 31, 35, 24.67 and 

32.66 (3
rd

 sampling) respectively as shown in figure 5.5. Baridhara lake found highest. 

 

Figure 5.5: BOD Values in Different Lakes 

 

COD values of five selected lakes were found 41.67, 71.67, 48.33, 56 and 52.33 (1
st
 

sampling), 63, 84, 80, 69 and 75.67 (2
nd

 sampling), and 71, 92.67, 100.6, 79 and 95.33 

(3
rd

 sampling) respectively as shown in figure 5.6. Mirpur lake was found highest. 

 

Figure 5.6: COD Values in Different Lakes 
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pH values of five selected lakes were found 7.24, 7.46, 7.15, 7.1 and 7.1 (1
st
 sampling), 

6.72, 6.64, 6.5, 6.35 and 6.65 (2
nd

 sampling), and 7.37, 7.87, 7.11, 7.47 and 7.36 (3
rd

 

sampling) respectively as shown in figure 5.7. Mirpur lake was found highest. 

 

Figure 5.7: pH Values in Different Lakes 

 

Water colour values of five selected lakes were found 88.67, 102, 125, 101 and 104 (1
st
 

sampling), 84, 100, 119.3, 94 and 102.33 (2
nd

 sampling), and 85, 99.67, 142.7, 89.67 and 

113.33 (3
rd

 sampling) respectively as shown in figure 5.8. Baridhara lake was found 

highest. 

 

Figure 5.8: Water Colour Values in Different Lakes 
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Turbidity of five selected lakes were found 24.13, 18.73, 23.53, 20.83 and 21.34 (1
st
 

sampling), 28.97, 22.57, 27.47, 24 and 25.42 (2
nd

 sampling), and 26.71, 20.27, 24.55, 

21.46 and 22.18 (3
rd

 sampling) respectively as shown in figure 5.9. Uttara lake was found 

highest. 

 

Figure 5.9: Turbidity Values in Different Lakes 

 

TDS values of five selected lakes were found 187.97, 157.77, 234.33, 234.33 and 220.45 

(1
st
 sampling), 212, 169.8, 265.33, 289.67 and 241.8 (2

nd
 sampling), and 181.2, 124.73, 

208.07, 210.33 and 180.98 (3
rd

 sampling) respectively as shown in figure 5.10. Gulshan 

lake was found highest. 

 

Figure 5.10: TDS Values in Different Lakes 
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5.3 Sources of Pollution 

Ground survey was carried out along the both sides of the five selected lakes using 

handheld GPS to identify sources of pollution. Many point sources were found around the 

lakes. Sources of pollution are shown in figure 5.11. Uttara, Gulshan-Baridhara and 

Hatirjheel areas were found more sources of pollution than Mirpur area due to the 

urbanization development. 

  

     

Figure 5.11: Sources of Pollution in Different Lakes (Red Dots) 
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5.4 Eutrophication Status: Basing on Satellite Imagery Analysis 

Satellite images were downloaded in the year of 1990, 2000, 2010, and 2021 and 

processed using ArcGIS software. Land use/land cover (LU/LC) was analyzed using 

Maximum Likelihood Supervised Classification (MLSC) tool. Calculated areas are shown 

in table 5.6. Total area in every year was found almost similar. 

Table 5.6: LU/LC Change Pattern in Different Year (areas in sqkm) 

LU/LC 1990 2000 2010 2021 

Urban Area 22.17 26.72 35.35 38.81 

Vegetation  24.78 22.46 20.84 17.34 

Barren Land  12.46 18.39 13.28 19.67 

Water Body 22.59 14.53 12.54 6.28 

Total area 82 82.1 82.01 82.1 

 

Here to be mentioned that urban areas were increased from 22.17 to 38.81 sqkm (75% 

increased). Vegetation covers were reduced from 24.78 to 17.34 sqkm (30% reduced). 

Barren lands were increased from 12.46 to 19.67 sqkm (57.86% increased). Change in 

water bodies of the influenced area were reduced significantly from 22.59 to 6.28 sqkm 

(72.2% reduced) as shown in figure 5.6. These changes of LU/LC pattern directly 

influencing/affecting algal content in lake. Specifically, increased numbers of urban areas 

are main sources of sewerage discharge (mainly nitrogen) in to the lakes. 

Figure 5.12 and 5.13 are showing LU/LC and water bodies change pattern respectively. 

LU/LC changed in respect to reduced water body. LU/LC and water body pattern 

changed significantly over the time (1990 to 2021). NDVI, NDBI, NDWI and NDCI were 

calculated using equation 3.3 to 3.6 respectively and shown in figure 5.14 to 5.17 

respectively. NDVI, NDBI, NDWI and NDCI pattern changed due to the change of 

LU/LC and water body pattern. 
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Figure 5.12: LU/LC Change Pattern in the Year of 1990, 2000, 2010 and 2021 
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Figure 5.13: Water Body Change Pattern in the Year of 1990, 2000, 2010 and 2021 
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Figure 5.14: NDVI Change Pattern in the Year of 1990, 2000, 2010 and 2021 
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Figure 5.15: NDBI Change Pattern in the Year of 1990, 2000, 2010 and 2021 



 
 

 

55 
 

  

  

Figure 5.16: NDWI Change Pattern in the Year of 1990, 2000, 2010 and 2021 
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Figure 5.17: NDCI Change Pattern in the Year of 1990, 2000, 2010 and 2021 

 



 
 

 

57 
 

5.5 NDCI Values and Corresponding Trophic Status 

Table 5.7 summarized and compared average TSI for NDCI which was calculated using 

figure 3.4 (box method) and figure 5.17 (satellite imagery analysis). Average TSI for Chl-

a derived from table 5.1 and average TSI for TN derived from table 5.2. 

Table 5.7: Comparison Between TSI (NDCI) Vs TSI (Chl-a) Vs TSI (TN) 

Lake 
Average TSI (NDCI) 

November 2021 

Average TSI (Chl-a) 

November 2021 

Average TSI (TN) 

November 2021 

Uttara 78.28 81.64 98.53 

Mirpur 77.42 82.01 94.46 

Baridhara 79.57 88.61 102.19 

Gulshan 72.71 88.44 92.42 

Hatirjheel 76.71 90.99 98.39 

 

According to the Carlson’s Trophic State Index (table 3.1), all TSI values were found 

within the range of Hypertrophic state (TSI 70 to 100) for all five selected lakes in the 

year of 2021. All results are shown in figure 5.18 and found nearly similar. 

 

Figure 5.18: Comparison Between TSI 
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NDCI change pattern for the five selected lakes were developed by analyzing satellite 

imagery of different years and shown in figure 5.17. Average NDCI values were 

calculated and derived from the figure 5.17 and shown in table 5.8. 

Table 5.8: Average NDCI Values of Different Lakes 

Lake Year-1990 Year-2000 Year-2010 Year-2021 

Uttara 0.088 0.105 0.153 0.178 

Mirpur 0.086 0.108 0.150 0.172 

Baridhara 0.102 0.112 0.166 0.187 

Gulshan 0.066 0.082 0.117 0.139 

Hatirjheel 0.076 0.093 0.148 0.167 

 

Using figure 3.4 and table 5.8, it can be summarized that in the year of 1990, average 

NDCI value indicates TSI value within the range of “Supertrophic” for all the lakes. In 

the year of 2000, average NDCI value indicates TSI value within the range of 

“Supertrophic” for all the lakes too. In in the year of 2010, average NDCI value 

indicates TSI value within the range of “Hypertrophic” for all the lakes except Gulshan 

lake which is “Supertrophic”. In the year of 2021, average NDCI value indicates TSI 

value within the range of “Hypertrophic” for all the five lakes. These are shown in 

figure 5.18 to 5.21. 
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Figure 5.19: NDCI Maps of Uttara Lake in 1990, 2000, 2010 and 2021 
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Figure 5.20: NDCI Maps of Mipur Lake in 1990, 2000, 2010 and 2021 
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Figure 5.21: NDCI Maps of Baridhara-Gulshan Lake in 1990, 2000, 2010 and 2021 
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Figure 5.22: NDCI Maps of Hatirjheel in 1990, 2000, 2010 and 2021 
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5.6 ANN Model Validation 

Using ANN model (figure 3.6), trained NDCI values were derived for the year of 2021. 

Model was found 81% accurate as shown in table 5.9. Trained vs expected NDCI values 

are shown in figure 5.22. 

Table 5.9: Chi-Square Test for Goodness of Model Fitting 

Lake 
1990 

(NDCI) 

2000 

(NDCI) 

2010 

(NDCI) 

2021 

(NDCI) 

Expected 

2021 

(NDCI) 

Trained 

χ2 p 

Uttara 0.088 0.105 0.153 0.178 0.185 

0.97 81% 

Mirpur 0.086 0.108 0.150 0.172 0.182 

Baridhara 0.102 0.112 0.166 0.187 0.196 

Gulshan 0.066 0.082 0.117 0.139 0.143 

Hatirjheel 0.076 0.093 0.148 0.167 0.171 

 

 

Figure 5.23: Trained Vs Expected NDCI Values 
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5.7 Prediction Maps in the Year of 2030 and 2040 

After training model validation, prediction of NDCI values were developed using ANN 

model (figure 3.6) for the year of 2030 and 2040. Table 5.10 is showing predicted NDCI 

values and figure 5.23 to 5.26 are showing predicted NDCI maps for five selected lakes 

of 2030 and 2040. 

Table 5.10: NDCI Prediction for the Year of 2030 and 2040 

Lake 1990 2000 2010 2021 2030 2040 

Uttara 0.088 0.105 0.153 0.178 

0.21 

(TSI=82.85) 

Hypertrophic 

0.239 

(TSI=87) 

Hypertrophic 

Mirpur 0.086 0.108 0.15 0.172 

0.20 

(TSI=82.28) 

Hypertrophic 

0.231 

(TSI=85.85) 

Hypertrophic 

Baridhara 0.102 0.112 0.166 0.187 

0.218 

(TSI=84.11) 

Hypertrophic 

0.246 

(TSI=88.07) 

Hypertrophic 

Gulshan 0.066 0.082 0.117 0.139 

0.164 

(TSI=76.38) 

Hypertrophic 

0.189 

(TSI=79.92) 

Hypertrophic 

Hatirjheel 0.084 0.098 0.143 0.157 

0.183 

(TSI=79.22) 

Hypertrophic 

0.217 

(TSI=84.56) 

Hypertrophic 
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Figure 5.24: Predicted NDCI Maps of 2030 and 2040 of Uttara Lake 

  

Figure 5.25: Predicted NDCI Maps of 2030 and 2040 of Mirpur Lake 
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Figure 5.26: Predicted NDCI Maps of 2030 and 2040 of Baridhara-Gulshan Lake 

  

Figure 5.27: Predicted NDCI Maps of 2030 and 2040 of Hatirjheel 
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5.8 Discussions 

Chl-a concentration for Uttara lake was found 162.6 to 209.17 ug/L and corresponding 

TSI values 80.55 to 83.02. On the other hand, TN for Uttara lake was found 17.2 to 28.5 

mg/L and corresponding TSI values 95.5 to 102.78. Chl-a concentration for Mirpur lake 

was found 154.68 to 210.78 ug/L and corresponding TSI values 80.06 to 83.09. On the 

other hand, TN for Mirpur lake was found 13.63 to 20 mg/L and corresponding TSI 

values 92.14 to 97.68. Chl-a concentration for Baridhara lake was found 306.26 to 487.08 

ug/L and corresponding TSI values 88.75 to 91.31. On the other hand, TN for Baridhara 

lake was found 21.23 to 36.13 mg/L and corresponding TSI values 98.54 to 106.21. Chl-a 

concentration for Gulshan lake was found 257.32 to 581.3 ug/L and corresponding TSI 

values 85.05 to 93.04. On the other hand, TN for Gulshan lake was found 10.9 to 19.83 

mg/L and corresponding TSI values 88.91 to 97.55. Chl-a concentration for Hatirjheel 

was found 431.45 to 508.94 ug/L and corresponding TSI values 90.11 to 91.74. On the 

other hand, TN for Hatirjheel was found 19.2 to 22.55 mg/L and corresponding TSI 

values 97.08 to 99.41. 

Waters with high levels of nutrients from fertilizers, septic systems, sewage treatment 

plants and urban runoff may have high concentrations of chlorophyll a and excess 

amounts of algae. Chlorophyll-a is considered a direct effect or primary symptom of 

eutrophication. Monitoring chlorophyll levels is a direct way of tracking algal growth. 

Surface waters that have high chlorophyll conditions are typically high in nutrients, 

generally phosphorus and nitrogen. These nutrients cause the algae to grow or bloom. 

Chlorophyll-a is the pigment that makes plants and algae green.  This pigment allows 

plants and algae to photosynthesize.  In photosynthesis, plants use the sun’s energy to 

convert carbon dioxide and water into oxygen and cellular material. 

As all the water samples were tested after summer and rainy seasons, algae grow to 

higher concentrations. Due to the raining more nutrients get washed into the lake and 

fueling an algal bloom. As the algal concentration increases the water transparency 

decreases. This means that less light can penetrate through the water so the algae are only 

at the very top of the lake where there is enough light for photosynthesis. 
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According to the Chl-a concentration test results, all lakes have significant amount of 

chlorophyll. However, Baridhara-Gulshan lakes and Hatirjheel were found higher TSI 

values than Uttara and Mirpur lakes. According to the TN test results, all lakes have 

significant amount of TN. However, Uttara lake, Baridhara lake and Hatirjheel were 

found higher TSI values than Mirpur and Gulshan lakes. According to the Carlson’s 

Trophic State Index, TSI value 70-100 indicates “Hypertrophic” condition (Carlson, 

2007). It was found that TSI values are higher than 70 which indicate “Hypertrophic” 

condition for all five selected lakes. 

Phosphate values for Uttara lake, Mirpur lake, Baridhara lake, Gulshan lake and 

Hatirjheel were found 3.3 to 9.3 mg/L, 2.93 to 7.3 mg/L, 3.36 to 11.63 mg/L, 2.4 to 8.6 

mg/L and 2.9 to 9.09 mg/L respectively. Uttara lake was found higher phosphate value 

than the other lakes. Too much phosphorus can cause increased growth of algae and 

large aquatic plants, which can result in decreased levels of dissolved oxygen which is 

indicator of eutrophication. High levels of phosphorus can also lead to algae blooms that 

produce algal toxins which can be harmful to human and animal health. High 

concentrations of phosphorus result from surface runoff of urban areas and lawns, leaking 

septic systems or discharges from sewage treatment plants. Phosphorus is an essential 

element for plant life, but when there is too much of it in water, it can speed up 

eutrophication (a reduction in dissolved oxygen in water bodies caused by an increase of 

mineral and organic nutrients) of rivers and lakes. 

DO values for Uttara lake, Mirpur lake, Baridhara lake, Gulshan lake and Hatirjheel were 

found 2.58 to 4.2 mg/L, 1.6 to 2.47 mg/L, 1.52 to 3.23 mg/L, 1.99 to 2.71 mg/L and 1.74 

to 2.99 mg/L respectively. Baridhara lake was found higher DO value than the other 

lakes. When dissolved oxygen becomes too low, fish and other aquatic organisms cannot 

survive. The colder water is the more oxygen it can hold. As the water becomes warmer, 

less oxygen can be dissolved in the water. Dissolved oxygen (DO) is a measure of how 

much oxygen is dissolved in the water - the amount of oxygen available to living aquatic 

organisms. Low dissolved oxygen (DO) primarily results from excessive algae growth 

caused by phosphorus. Nitrogen is another nutrient that can contribute to algae growth. 

As the algae die and decompose, the process consumes dissolved oxygen. 
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BOD values for Uttara lake, Mirpur lake, Baridhara lake, Gulshan lake and Hatirjheel 

were found 12.9 to 23 mg/L, 18.7 to 31 mg/L, 10.6 to 35 mg/L, 15.9 to 24.67 mg/L and 

13.93 to 32.66 mg/L respectively. Baridhara lake was found higher BOD value than 

the other lakes. The BOD is an important parameter for assessing water quality. It deals 

with the amount of oxygen consumption (mg O2 L− 1) by aerobic biological organisms 

to oxidize organic compounds. Sewage with high BOD can cause a decrease in oxygen of 

receiving waters, which in turn can cause the death of some organism. BOD directly 

affects the amount of dissolved oxygen in rivers and streams. The greater the BOD, the 

more rapidly oxygen is depleted in the stream. This means less oxygen is available to 

higher forms of aquatic life. High BOD is harmful to ecosystems as fish and other aquatic 

life may suffocate in oxygen-depleted waters. Furthermore, it is important that 

wastewater treatment processes are designed to handle the high organic matter loading 

present in wastewaters. 

COD values for Uttara lake, Mirpur lake, Baridhara lake, Gulshan lake and Hatirjheel 

were found 41.67 to 71 mg/L, 71.67 to 92.67 mg/L, 48.33 to 100.6 mg/L, 56 to 79 mg/L 

and 52.33 to 95.33 mg/L respectively. Baridhara lake was found higher COD value 

than the other lakes. High COD indicates presence of all forms of organic matter, both 

biodegradable and non-biodegradable and hence the degree of pollution in waters. This 

makes COD useful as an indicator of organic pollution in surface waters. High levels of 

wastewater COD indicate concentrations of organics that can deplete dissolved oxygen in 

the water, leading to negative environmental and regulatory consequences. To help 

determine the impact and ultimately limit the amount of organic pollution in water, 

oxygen demand is an essential measurement. When the COD levels are higher, there is a 

greater demand for oxygen. This means that there is likely more oxidizable organic 

material in water with high COD levels. This also means that there are reduced Dissolved 

Oxygen (DO) concentrations in wastewater with high COD levels. 
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pH level for Uttara lake, Mirpur lake, Baridhara lake, Gulshan lake and Hatirjheel were 

found 6.72 to 7.37, 6.64 to 7.87, 6.5 to 7.11, 6.35 to 7.47 and 6.65 to 7.36 respectively. 

Mirpur lake was found higher pH level than the other lakes. High pH causes a bitter 

taste, water pipes and water-using appliances become encrusted with deposits, and it 

depresses the effectiveness of the disinfection of chlorine, thereby causing the need for 

additional chlorine when pH is high. Low-pH water will corrode or dissolve metals and 

other substances. When the pH of water becomes greater than 8.5, water taste can become 

more bitter. This elevated pH can also lead to calcium and magnesium carbonate building 

up in your pipes. While this higher pH doesn't pose any health risks, it can cause skin to 

become dry, itchy and irritated. pH is an important quantity that reflects the chemical 

conditions of a solution. The pH can control the availability of nutrients, biological 

functions, microbial activity, and the behavior of chemicals. 

Water colour values for Uttara lake, Mirpur lake, Baridhara lake, Gulshan lake and 

Hatirjheel were found 84 to 88.67, 99.67 to 102, 119.3 to 142.7, 89.67 to 101 and 102.33 

to 113.33 Pt-Co respectively. Baridhara lake was found higher water colour value 

than the other lakes. Highly colored water has significant effects on aquatic plants and 

algal growth. Light is very critical for the growth of aquatic plants and colored water can 

limit the penetration of light. Thus a highly colored body of water could not sustain 

aquatic life which could lead to the long term impairment of the ecosystem. 

Turbidity values for Uttara lake, Mirpur lake, Baridhara lake, Gulshan lake and Hatirjheel 

were found 24.13 to 28.97, 18.73 to 22.57, 23.53 to 27.47, 20.83 to 24 and 21.34 to 25.42 

NTU respectively. Uttara lake was found higher turbidity value than the other lakes. 

Material that causes water to be turbid include clay, silt, very tiny inorganic and organic 

matter, algae, dissolved colored organic compounds, and plankton and other microscopic 

organisms. Excess turbidity can cause heavy metals to be added to the water supply. 

These metals may include lead, mercury, and cadmium, which are toxic to humans. 

Turbidity can harm aquatic life by reducing the food supply, degrading spawning beds 

and affecting the function of fish gills. 

TDS values for Uttara lake, Mirpur lake, Baridhara lake, Gulshan lake and Hatirjheel 

were found 181.2 to 212, 124.73 to 169.8, 208.07 to 265.33, 210.33 to 289.67 and 180.38 

to 241.8 respectively. Gulshan lake was found higher TDS value than the other lakes. 
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In bodies of water, like rivers, higher levels of total dissolved solids often harm aquatic 

species. The TDS changes the mineral content of the water, which is important to survival 

of many animals. Also, dissolved salt can dehydrate the skin of aquatic animals, which 

can be fatal. Even if the high amount is due to the presence of beneficial minerals, 

increased levels of TDS can give water a bitter, metallic, or salty taste, along with 

discoloring the water and creating an unpleasant odor. 

Visible indications of eutrophication are high turbidity caused by algal blooms, dense 

macrophyte growth, mass development of harmful cyanobacteria (blue green algae), 

reduced species diversity, oxygen depletion, formation of hydrogen sulfide, fish kills, and 

smell nuisance. Oxygen depletion, or hypoxia, is a common consequence of 

eutrophication, both in fresh water and seawater. The direct effects of hypoxia include 

fish kills, especially the death of fish that need high levels of dissolved oxygen. 

Eutrophication leads to an increased algal growth (because the level of nutrients 

increases). It can lead to a shift in species composition to fast growing algae species 

(including toxic species) and a shift from long lived macroalgae to more nuisance species. 

In all the cases, five selected lakes were found imbalance water quality. However, 

Baridhara lake was found most severe condition over other lakes. Sources of pollution 

were identified around the all lakes. It was observed that sewerage connections from 

residential areas, hospitals/clinics, restaurants/shops etc were found around the five 

selected lakes. These sewerage connections are the sources of nitrogen and phosphorus. 

Mirpur lake area is comparatively less populated area. As a result, less numbers of 

pollution points were found around this lake.  

LU/LC change pattern is directly influencing/affecting algal content in lake. Specifically, 

increased numbers of urban areas are main sources of sewerage discharge (main sources 

of nitrogen) into the lakes. Satellite imagery analysis was carried out in the year of 1990. 

2000, 2010 and 2021. It was found that urban area increased from 22.17 to 38.81 sqkm 

(75% increased) over the specified time. On the other hand, vegetation cover was reduced 

from 24.78 to 17.34 sqkm (30% reduced). Barren land was increased from 12.46 to 19.67 

sqkm (57.86% increased). Change in water body of the influenced area was reduced 

significantly from 22.59 to 6.28 sqkm (72.2% reduced). These all factors directly 

influence the lake water quality. 
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NDVI analysis in different year shows that healthy vegetation cover reduced significantly 

over the time. At the same time, NDBI analysis in different year shows that build up area 

coverage increased significantly. NDWI analysis pattern indicates that significant change 

in water index all over the study area. At the same time, NDCI analysis shows that 

chlorophyll index all over the water content areas. Average value for each lake was 

measured from this index and TSI was calculated using Eutrophication Status Vs NDCI 

figure (Lobo et al. 2021). In the year of 1990, it was found that all five major lakes are 

within the range of “Supertrophic”. In the year of 2000, it was also found that all five 

major lakes are within the range of “Supertrophic”. In the year of 2010, on the other 

hand, all five major lakes are within the range of “Hypertrophic” except Gulshan lake. 

In the year of 2021, it was identified that all five major lakes are within the range of 

“Hypertrophic”. By 31 years, all lakes changed to next higher trophic state i.e. 

“Supertrophic” to “Hypertrophic”. Therefore, lakes were previously in relatively good 

condition, presently condition deteriorated and in future it will be more unusable.   

ANN model was applied using MOLUSC Plug-in of QGIS software. LU/LC, water body, 

NDVI, NDBI, NDWI and NDCI values were used as input data as these all directly 

influence lake water quality. For the training model, input data were used from the year of 

1990, 2000 and 2010. From the ANN model, expected NDCI values for the year of 2021 

were found 81% similar to the predicted value. After training data validation, ANN model 

was applied and predicted NDCI values for the year of 2030 and 2040 found. All five 

lakes were found “Hypertrophic” condition and NDCI values are increasing. As a result, 

TSI values are also increasing. 

This study assessed initially different water quality parameters including chl-a and TN in 

the year of 2021 (September to December). This assessment will help any other research 

related to the water quality investigation. As it has also measured eutrophication status 

therefore this can also help to further assessment on eutrophication. As this study assessed 

and analyzed satellite imagery of 1990, 2000, 2010 and 2021 therefore these data can also 

be used for previous assessment related to this. Satellite imagery analysis mainly focused 

on chlorophyll assessment and find out trophic state of selected lakes. As a result, it can 

also help to study on this issue further. This whole study can help decision makers to plan 

and execute lake management related issues. With the help of this study, Clean water and 
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sanitation can be ensured. Lake management will be improved and lake water quality can 

be monitored. Public health issues will be addressed and recreational facilities can be 

developed. Finally, lake ecosystem and ecological balance can be ensured to meet the one 

of the SDGs mentioned by the United Nations. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

6.1.1 The study was carried out in five selected lakes of Dhaka city in Uttara, Mirpur, 

Baridhara, Gulshan and Hatirjheel areas. The study focused to assess previous and present 

eutrophication status using satellite imagery covering the year 1990, 2000, 2010 and 

2021. Water quality parameters of selected lakes were tested in the year of 2021. 

Thereafter, satellite imagery analysis and present water quality data were calibrated. 

Using previous and present lake water quality data, future eutrophication status in the 

year of 2030 and 2040 was predicted using ANN model. Following observations were 

found from this study: 

i) Chlorophyll-a concentration ranges between 154.68 µg/l (Mirpur) to 581.3 µg/l 

(Gulshan) and corresponding TSI ranges from 80.06 to 93.04. Calculated TN also 

indicate the similar phenomenon for these lakes and TN value ranges between 

10.9 mg/L (Gulshan) to 36.13 mg/L (Baridhara) and corresponding TSI ranges 

from 88.91 to 106.21. Both results indicate the ―Hypertrophic” condition for all 

lakes in 2021 (November to December). 

 

ii) Phosphate values (PO₄³⁻) of five selected lakes were found 2.4 to 9.33 mg/L. DO 

values were found 1.52 to 4.20 mg/L. BOD values were found 10.6 to 32.66 

mg/L. COD values were found 41.67 to 100.6 mg/L. pH level were found 6.35 to 

7.87 (within the range). Water colour values were found 84 to 142.7 Pt-Co. 

Turbidity values were found 18.73 to 27.47 NTU. TDS values were found 124.73 

to 289.67. All water quality parameters were found imbalanced condition. 

 

iii) Sources of pollution were identified around the five selected lakes which are 

discharging different types of waste directly from residential areas, 

hospitals/clinics, restaurants/shops and other facilities. Therefore, all WQ 

parameters were found imbalanced. 
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iv) From the LU/LC classification, urban area was increased from 22.17 to 38.81 

sqkm (75% increased); vegetation cover was reduced from 24.78 to 17.34 sqkm 

(30% reduced); barren land was increased from 12.46 to 19.67 sqkm (57.86% 

increased); and water body was reduced significantly from 22.59 to 6.28 sqkm 

(72.2% reduced). 

 

v) In the year of 1990, average NDCI value indicates TSI value within the range of 

“Supertrophic” for all the lakes. In the year of 2000, average NDCI value 

indicates TSI value within the range of “Supertrophic” for all the lakes too. In in 

the year of 2010, average NDCI value indicates TSI value within the range of 

“Hypertrophic” for all the lakes except Gulshan lake which is “Supertrophic”. 

In the year of 2021, average NDCI value indicates TSI value within the range of 

“Hypertrophic” for all the five lakes. NDCI values varied from 0.066 (Gulshan 

lake) to 0.187 (Baridhara Lake) over the year (1990 to 2021) which indicate 

trophic status “Supertrophic to Hypertrophic” condition by 31 years. 

 

vi) ANN model was developed and applied using MOLUSC Plug-in of QGIS 

software. LU/LC, water body, NDVI, NDBI, NDWI and NDCI values were used 

as input data. For the training model, input data were used from the year of 1990 

to 2010. From the ANN model, NDCI values for the year of 2021 were found 

0.185, 0.182, 0.196, 0.143 and 0.171 where tested results are almost similar (81%) 

to the predicted trained data. 

 

vii) After training data validation, ANN model was applied using LU/LC, water body, 

NDVI, NDBI, NDWI and NDCI values as input data. Predicted NDCI (TSI value) 

values for the year of 2030 and 2040 were found 0.21 (82.85), 0.2 (82.28), 0.218 

(84.11), 0.164 (76.38) & 0.183 (79.22) and 0.239 (87), 0.231 (85.85), 0.246 

(88.07), 0.189 (79.92) & 0.217 (84.56) for Uttara, Mirpur, Baridhara, Gulshan and 

Hatirjheel areas respectively. It is to be mentioned that all five lakes were 

predicted as “Hypertrophic” with more TSI values. 
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6.1.2 This study will be beneficial for the decision makers to carry out lake monitoring 

and management. This study identified lake eutrophication from the previous data and 

calibrated with the present data. As this study predicted future eutrophication status 

therefore it can help to develop policies and action plan by which all lakes can be 

monitored and managed effectively and efficiently. Subsequently lake water quality can 

be improved, ecological balance can be ensured, recreational facilities can be developed, 

and water can be stored to meet future demand. 

  

6.2 Recommendations and Further Study 

The topic of Eutrophication status in Dhaka city’s lakes explored here within the limited 

time and resource. On the other hand, this topic is so wide and there is plenty of 

opportunities for future study in terms of seasonal variation, iterative monitoring, 

introducing other important parameters (Total Phosphate), comparing with drone imagery 

etc. Based on the findings of the study and experienced gathered during the research work 

following recommendations are made that need to be explored in the future: 

i) All lakes of Dhaka city are in deteriorating condition and need to have 

special attention by the authority. Therefore, an organized and active Lake 

Committee / Institute may be formed to recover and regular monitoring of these 

lakes condition. 

ii) Every lake has its unique characteristics which contributed by its 

surrounding LULC pattern. Therefore, identifying of pollution sources and 

implementation of treatment plants may be introduced where findings of similar 

study results may be used. 

iii) A numerical model can be developed for these lakes which will be used to 

assess the lake’s present condition and, will predict future status also by 

incorporating regular monitoring information. 

iv) An integrated study may be conducted in future by considering all the 

lakes and surrounding water bodies where seasonal and in-depth data may be used 

for better projection of lake condition. 
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