
CHARACTERIZATION AND PREDICTIVE 

MODELING OF THERMALLY AGED GLASS FIBER 

REINFORCED PLASTIC COMPOSITES 

 

 

 

MD MIJANUR RAHMAN 

 

 

 

M.SC. ENGINEERING THESIS 

 

 

 

DEPARTMENT OF AERONAUTICAL ENGINEERING 

MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY 

DHAKA, BANGLADESH 

 

 

JULY 2023 

  



 

 

R
A

H
M

A
N

 
 

 
M

.S
c
. E

n
g
g
. T

H
E

S
IS

 
 

 
M

IS
T

 • A
E

 •  2
0
2
3

 



CHARACTERIZATION AND PREDICTIVE MODELING OF THERMALLY 

AGED GLASS FIBER REINFORCED PLASTIC COMPOSITES 

 

 

 

 

MD MIJANUR RAHMAN (SN. 0420220002) 

 

 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of 

Science in Aeronautical Engineering 

 

 

 

DEPARTMENT OF AERONAUTICAL ENGINEERING 

MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY 

DHAKA, BANGLADESH 

 

 

 

JULY 2023 

 



 
 

CHARACTERIZATION AND PREDICTIVE MODELING OF 

THERMALLY AGED GLASS FIBER REINFORCED PLASTIC 

COMPOSITES 

 

M.Sc. Engineering Thesis 

By 

 

MD MIJANUR RAHMAN (SN. 0420220002) 

Approved as to style and content by the Board of Examination on 13th July 2023 

 

_________________________ 

Commodore M Muzibur Rahman, psc, PhD (Retd.)  Chairman (Supervisor) 

Professor       Board of Examination                                                                                  

Department of Naval Arch. & Marine Engineering                                       

MIST, Dhaka. 

 

_________________________ 

Md Atif Yasir       Member (Co-Supervisor) 

Assistant Professor                                                                 Board of Examination                                                                                  

Department of Mechanical Engineering 

MIST, Dhaka. 

 

___________________________ 

Dr. Shaikh Reaz Ahmed      Member (External) 

Professor       Board of Examination                                                                                  

Department of Mechanical Engineering 

BUET, Dhaka. 

 

_____________________________ 

Dr. Shahida Begum      Member (Internal) 

Professor                                                                                 Board of Examination                                                                                  

Department of Mechanical Engineering 

MIST, Dhaka. 

 
_____________________________ 

Air Cdre Md Aminul Haque, ndc, psc    Head of the Department 

Head                                                                                       (Ex-Officio) 

Department of Aeronautical Engineering 

MIST, Dhaka. 

 

 

Department of Aeronautical Engineering, MIST, Dhaka 

 



 
 

CHARACTERIZATION AND PREDICTIVE MODELING OF 

THERMALLY AGED GLASS FIBER REINFORCED PLASTIC 

COMPOSITES 

 

 

DECLARATION 

 

 

I hereby declare that the study reported in this thesis entitled as above is my own original 

work and has not been submitted before anywhere before for any degree or other purpose. 

Further I certify that the intellectual content of this thesis is the product of my own work 

and that all the assistance received in preparing this thesis and sources have been 

acknowledged and/or cited in the reference section. 

 

_________________ 

Md Mijanur Rahman 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Department of Aeronautical Engineering, MIST, Dhaka. 

 



 
 

CHARACTERIZATION AND PREDICTIVE MODELING OF 

THERMALLY AGED GLASS FIBER REINFORCED PLASTIC 

COMPOSITES 

 

 

A Thesis  

By 

Md Mijanur Rahman 

 

DEDICATION 

 

Dedicated to my family for supporting and 

 encouraging me to be the best I can be. 

 

 



i 
 

ACKNOWLEDGEMENT 

 

 

The author would like to convey his heartiest gratitude to Commodore M Muzibur Rahman, 

psc, PhD (Retd.), Professor, Department of Naval Architecture and Marine Engineering, 

MIST for his relentless support, guidance, supervision and encouragement throughout the 

entire research work. The author also gratefully acknowledges the invaluable suggestion 

and cooperation of Md Atif Yasir, Assistant Professor, Department of Mechanical 

Engineering, MIST. 

 

The author wishes to express his sincere gratitude to Air Cdre Md Aminul Haque, ndc, psc, 

Professor and Head, Department of Aeronautical Engineering, MIST for his utmost support 

and guidance regarding an excellent research environment. 

 

The author also wishes to convey his thanks and gratitude to Dr. Shaikh Reaz Ahmed, 

Professor, Department of Mechanical Engineering, BUET and Dr. Shahida Begum, 

Professor, Department of Mechanical Engineering, MIST for their comments, suggestions 

and approvals have undoubtedly enhanced the quality of the work. 

 

Special thanks are offered to Mr. Razu, Mr. Nazmul and other lab staff of MIST for their 

cooperation in this research. The author also acknowledges the support of MAWTS for 

GFRP fabrication and BCSIR for their support in SEM testing. 

 

Finally, the author expresses his devoted affection to his family and friends for their moral 

support and sacrifice in completing the thesis. 

  



ii 
 

ABSTRACT 

 

Characterization And Predictive Modeling Of Thermally Aged Glass Fiber 

Reinforced Plastic Composites 

 

This study investigated the characterization and predictive modeling of thermally aged 

Glass Fiber Reinforced Plastic (GFRP) Composites. The experimental part of the study 

explored the effect of fiber orientation, laser cutting and thermal aging on GFRP 

mechanical properties. The development of a predictive model for estimating the 

mechanical properties of thermally aged GFRP was explored in the computational part. 

GFRP composites were fabricated with woven and random glass fiber and epoxy resin 

hardener and subjected to mechanical and laser machining. Mechanical property testing 

reveals that Tensile and flexural properties are found to be superior in mechanically cut 

samples. Compromised surface integrity due to thermal damage in the case of laser cut 

samples is also noted. All results indicated that woven GFRP has superior mechanical 

properties than random GFRP. Woven GFRP tensile test samples were thermally aged at 

50°C, 100°C, 150°C and 200°C for 30 mins, 60 mins, 90 mins and 120 mins. The samples 

showed a gradually increasing brown color at temperatures above 150°C. The tensile test 

showed that the Ultimate Tensile Strength (UTS) value had a general decreasing trend as 

the thermal aging temperature increased. The predictive model read the photographic image 

of a thermally aged sample and used the color change due to thermal aging as an identifier 

for the image processing algorithm. Artificial Neural Networks (ANN) estimated the 

thermal aging temperature and time from the image processing algorithm’s Red Green Blue 

(RGB) color matrix output. A regression equation was also developed which creates a 

mathematical relationship between the UTS values and the thermal aging variables from 

the experimental data. Finally, the ANN’s output was forwarded to the developed 

regression equation to get the estimated UTS. The predictive model’s estimated UTS 

showed an average accuracy of 97% compared to the experimental results. The results of 

the characterization of mechanical properties of thermally aged GFRP can contribute 

meaningful insights into the existing literature. The developed predictive model can have 

potential applications in aerospace line maintenance operations with the promise of cost 

and time savings. 
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Characterization And Predictive Modeling Of Thermally Aged Glass Fiber 

Reinforced Plastic Composites 

 

এই গবেষণাটিবে োপপ্রভাবেে গ্লাস ফাইোর বরইনবফাস সড প্লাবিক (বিএফআরবপ) কবপাবিটগুবির ভভৌে 

বেবিষ্ট্য এেং প্রাক্কিনমূিক মবডবিং অনুসন্ধান করা হবেবে। গবেষণার পরীক্ষামূিক অংিটিবে 

বিএফআরবপ-র ভভৌে বেবিষ্ট্যগুবিবে ফাইোর অবভব ািন, ভিিার কাটিং এেং োপপ্রভােবনর প্রভাে 

অবেষণ করা হবেবে। োপপ্রভাবেে বিএফআরবপ-র ভভৌে বেবিষ্ট্য অনুমান করার িন্য একটি প্রাক্কিনমূিক 

মবডবিং গঠন গবেষণার গণনামূিক অংবি অবেষণ করা হব়েবে। বিএফআরবপ কবপাবিটগুবি ভোনা ও 

এবিাবমবিা গ্লাস ফাইোর এেং ইবপাবি রিন ও  হাড সনার বিব়ে বেবর করা হব়েবেি এেং  াবিক ও ভিিার 

ভমবিবনংব়ের মাধ্যবম কাটা হব়েবেি। ভভৌে বেবিবষ্ট্যর পরীক্ষাে ভিখা  াে ভ  প্রসা স এেং নমনী়ে বেবিষ্ট্যগুবি 

 াবিকভাবে কাটা নমুনাগুবিবে উচ্চের। ভিিার কাটা নমুনার ভক্ষবে োপিবনে কারবণ পৃবের ক্ষবে 

িক্ষণী়ে। সমস্ত ফিাফি ইবিে কবর ভ  ভোনা বিএফআরবপ এবিাবমবিা বিএফআরবপর ভেব়ে উচ্চের 

ভভৌে বেবিষ্ট্য সপন্ন। ভোনা বিএফআরবপ-র প্রসা স পরীক্ষার নমুনাগুবি ৫০, ১০০, ১৫০ এেং ২০০- বডগ্রী 

ভসিবস়োবস ৩০ বমবনট, ৬০ বমবনট, ৯০ বমবনট এেং ১২০ বমবনবটর িন্য োপপ্রভাবেে করা হবেবেি। 

নমুনাগুবি ১৫০ বডবগ্র ভসিবস়োবসর উপবর োপমাো়ে ধীবর ধীবর ক্রমেধ সমান োিামী রঙ ধারণ কবরবেি। 

প্রসা স পরীক্ষা়ে ভিখা ভগবে ভ  োপ প্রভােবনর োপমাো বৃবির সাবে সাবে েরম প্রসারনব াগ্য িবি 

(ইউটিএস) মান হ্রাবসর একটি সাধারণ প্রেণো রব়েবে। প্রাক্কিনমূিক মবডিটিবে োপপ্রভাবেে নমুনার 

ফবটাগ্রাবফক বেেটি পাঠ কবর োপ প্রভােবনর কারবণ রঙ পবরেে সবনর বেষেটি বেে প্রবক্র়োকরণ 

অযািগবরিবমর িনািকারী ইবিে বহসাবে ব্যেহার করা হবেবেি। কৃবেম বনউরাি ভনটও়োক সগুবি (এ এন 

এন) বেে প্রবক্র়োকরণ অযািগবরিবমর িাি সবুি নীি (িা স নী) রবঙর ম্যাবিি ভেবক োপপ্রভােবনর 

োপমাো এেং সম়ে অনুমান কবর। একটি প্রেযাবৃবি সমীকরণও বেবর করা হব়েবে  া পরীক্ষামূিক উপাি 

ভেবক ইউটিএস-র মান এেং োপপ্রভােবনর েিকগুবিার মবধ্য একটি গাবণবেক সপকস বেবর কবর। 

অেবিবষ, আনুমাবনক ইউটিএস ভপবে এ এন এন-এর ফিাফি প্রেযাবৃবি সমীকরবণ প্রবোগ করা হ়ে। 

প্রাক্কিনমূিক মবডবির আনুমাবনক ইউটিএস পরীক্ষামূিক ফিাফবির তুিনা়ে ৯৭% গড় বনর্ভসিো ভিখা়ে। 

োপপ্রভাবেে বিএফআরবপ-র ভভৌে বেবিবষ্ট্যর ফিাফিগুবি বেদ্যমান জ্ঞানভাণ্ডাবর অে সপূণ স অন্তর্দ সবষ্ট্মূিক 

অেিান রাখবে পাবর। প্রাক্কিনমূিক মবডবির খরে এেং সম়ে সাশ্রব়ের প্রবেশ্রুবে সহ বেমান প্রবকৌিবির 

িাইন রক্ষণাবেক্ষণ কা সক্রবম প্রব়োবগর সম্ভাব্যো রব়েবে। 

  



iv 
 

LIST OF MAIN NOTATIONS 

 

GFRP Glass Fiber Reinforced Plastic 

FRP Fiber Reinforced Plastic 

ANN Artificial Neural Network 

Tg Glass Transition Temperature 

UTS Ultimate Tensile Strength 

UFS Ultimate Flexural Strength 

HAZ Heat Affected Zone 

ASTM American Society for Testing and Materials 

RGB Red Green Blue 

HV Vickers Microhardness 

SGN Sample Group Number 

SEM Scanning Electron Microscope 

MC Mechanically Cut 

LC Laser Cut 

  

  

  

 

  



v 
 

LIST OF TABLES 

 

Table 2.1:  Physical and mechanical properties of glass fibers 20 

Table 3.1:  Composition of the Woven GFRP composite slab. 44 

Table 3.2:  Composition of the Random GFRP composite slab. 44 

Table 3.3:  GFRP sample dimensions of tensile, flexural and microhardness 

  testing. 
47 

Table 3.4:  Unaged GFRP sample count. 47 

Table 3.5:  Thermally aged GFRP sample count. 48 

Table 3.6:  GFRP sample size, ASTM standard and equipment used for 

                        tensile, flexural and microhardness testing. 
50 

Table 3.7:  Sample group numbers and associated thermal aging variables. 59 

Table 4.1:  Comparison of woven GFRP tensile test results with the 

                        specifications. 
77 

Table 4.2:  Comparison of woven GFRP flexural test results with material 

                        specifications. 
86 

Table 5.1:  Comparison of experimental results with predictive model   

                        predicted results 
114 

 

  



vi 
 

LIST OF FIGURES 

 

Figure 1.1:  Potential application of the predictive model. 5 

Figure 2.1:  Composition of composite materials. 8 

Figure 2.2:  Historical evolution of the composite materials. 9 

Figure 2.3:  Specific strength of aircraft engine materials as a function of 

temperature. 
11 

Figure 2.4:  Classification of glass fiber and physical properties. 13 

Figure 2.5:  Different types of glass fibers 14 

Figure 2.6:  Preparation of woven glass fiber mat. 14 

Figure 2.7:  Different types of GFRP laminates. 15 

Figure 2.8:  Usage of composite materials in Boeing 787. 18 

Figure 2.9:  GFRP Structural components in an ATR 72-500 aircraft. 19 

Figure 2.10: Surface failures resulting from machining of FRP with different 

cutting tools. 

23 

Figure 2.11: GFRP color change due to thermal aging in ATR 72-500 aircraft. 29 

Figure 2.12:  An illustration of Tg plotting the temperature and stiffness. 30 

Figure 2.13:  Nonhomogeneous microstructure of FRP. 32 

Figure 2.14:  A biological neuron in comparison to an artificial neural network. 36 

Figure 2.15:  Commonly used activation functions. 38 

Figure 3.1:  Graphical methodology of this research. 42 

Figure 3.2:  Handlayup method of composite fabrication. 43 

Figure 3.3:  Arrangement of layers in GFRP composite sheet. 45 

Figure 3.4:  Fabricated Woven GFRP Sheet. 45 

Figure 3.5:  Measurement of laser beam temperature. 46 

Figure 3.6:  Tensile test Samples. 48 



vii 
 

Figure 3.7:  Flexural test Samples. 49 

Figure 3.8:  Microhardness test samples. 49 

Figure 3.9:  Woven GFRP samples after tensile test. 52 

Figure 3.10: Random GFRP samples after tensile test. 52 

Figure 3.11:  Woven GFRP samples after flexural test. 54 

Figure 3.12: Random GFRP samples after tensile test 54 

Figure 3.13:  MATLAB pseudocode of the image processing algorithm. 61 

Figure 3.14: MATLAB image processing algorithm with ‘imread’ function 62 

Figure 3.15:  nntool toolbox in MATLAB. 64 

Figure 3.16:  The architecture of the two ANNs. 65 

Figure 4.1:  Photo of machined edge of woven GFRP samples. 67 

Figure 4.2:  SEM of woven GFRP machined surfaces. 68 

Figure 4.3:  Photo of Machined edge of random GFRP samples. 68 

Figure 4.4:  SEM of random GFRP machined surfaces. 69 

Figure 4.5:  Effect of laser cutting on CFRP composite from literature. 70 

Figure 4.6:  SEM Image of CFRP machined surface from literature. 71 

Figure 4.7:  Tensile stress-strain behavior of woven GFRP composites. 71 

Figure 4.8:  Tensile stress-strain behavior of random GFRP composites. 73 

Figure 4.9:  UTS and Yield strength of woven GFRP. 75 

Figure 4.10:  UTS and Yield Strength of random GFRP. 75 

Figure 4.11:  Elastic modulus of woven and random GFRP. 76 

Figure 4.12:  UTS and elastic modulus of GFRP from literature. 78 

Figure 4.13:  Effect of laser cutting in CFRP from literature. 78 

Figure 4.14:  Flexural load-deflection behavior of woven GFRP composites. 79 



viii 
 

Figure 4.15:  Flexural load-deflection behavior of random GFRP composites. 80 

Figure 4.16:  UFS of woven and random GFRP. 83 

Figure 4.17:  Flexural modulus of woven and random GFRP. 85 

Figure 4.18:  GFRP flexural properties from literature. 86 

Figure 4.19:  Vickers microhardness results of woven and random GFRP 87 

Figure 4.20:  GFRP microhardness value from literature. 88 

Figure 4.21: GFRP microhardness value from literature with different load. 89 

Figure 4.22:  SEM micrographs of woven GFRP tensile fractured surface. 90 

Figure 4.23:  SEM micrographs of random GFRP tensile fractured surface. 90 

Figure 4.24:  SEM micrographs of GFRP tensile fracture surface from literature. 91 

Figure 4.25: GFRP color change effect due to thermal aging. 92 

Figure 4.26:  Color change of epoxy due to thermal aging from literature. 94 

Figure 4.27:  Change of UTS due to thermal aging for different SGN. 96 

Figure 4.28:  Change of max strain (%) due to thermal aging for different SGN. 97 

Figure 4.29:  Change of yield strength due to thermal aging for different SGN. 98 

Figure 4.30:  Change of UTS due to thermal aging temperature. 100 

Figure 4.31:  Change of UTS due to thermal aging time 100 

Figure 4.32:  Contour plot of UTS 101 

Figure 4.33: Effect of thermal aging on GFRP tensile properties from literature. 102 

Figure 5.1:  Overview of the predictive model. 103 

Figure 5.2:  Data Source, input and output of elements within the predictive 

                        model. 
104 

Figure 5.3:  Graphical methodology of the predictive model. 104 

Figure 5.4:  Red green and blue color values for SGN 1-17. 106 

Figure 5.5:  Training performance of ANN1. 107 



ix 
 

Figure 5.6: Training performance of ANN2 108 

Figure 5.7:  Two trained ANNs in the MATLAB workspace. 109 

Figure 5.8:  Testing performance of ANNs. 110 

Figure 5.9:  The regression model and its various parameters. 111 

Figure 5.10:  Comparison of experimental and regression results for UTS. 113 

Figure 5.11:  Comparison of experimental results with predictive model  

                        results. 
114 

 

  



x 
 

TABLE OF CONTENTS 

 

Acknowledgement          i 

Abstract           ii 

List of Main Notation         iv 

List of Tables           v 

List of Figures          vi 

Table of Contents          x 

CHAPTER 1:  INTRODUCTION 

1.1 Background of the Study      1 

1.2 Problem Statement        2 

1.3 Research Objectives        3 

1.4 Scope of this work        3 

1.5 Significance of this research      4 

1.6 Novelty of this research      4 

1.7 Potential Application       5 

1.8 Organization of the Thesis       6 

CHAPTER 2:  LITERATURE REVIEW 

2.1 Background on Composite Materials     8 

2.2 Classification of Composite Materials    10 

2.3 Glass Fibers         12 

2.4 Epoxy Resins         15 

2.5 Glass Fiber Reinforced Plastic (GFRP) Composites   16 

2.6 GFRP in Aerospace        17 

2.7 GFRP Mechanical Properties       20 

2.7 Machining of GFRP        23 

2.8 Thermal Aging of GFRP       26 

2.9 Glass Transition Temperature      30 

2.10 Predictive Modeling        31 

2.11 Artificial Neural Networks       34 

 2.11.1 Basic Structure of Nural Networks    35 

2.11.2 Types of Neural Networks      36 

2.11.3 Activation Functions       37 

2.11.4 Neural Network Learning      39 



xi 
 

2.11.5 Neural Network Testing     40 

CHAPTER 3:  MATERIALS AND METHODOLOGY 

3.1 Introduction        41 

3.2 Materials Used       41 

3.3 Methodology         41 

3.4 Fabrication of GFRP       43 

3.5 Machining of GFRP        45 

3.6 Mechanical Property Testing      49 

 3.6.1 Tensile Test       51 

 3.6.2 Flexural Test       53 

 3.6.3 Microhardness Test      55 

 3.6.4 Scanning Electron Microscope (SEM) Observation  56 

3.7 Thermal Aging       57 

3.8 Computational Work       60 

3.8.1 Image Processing      60 

3.8.2 Artificial Neural Networks     62 

3.8.3 Regression Analysis      65 

CHAPTER 4:  CHARACTERIZATION OF GFRP 

4.1 Introduction        67 

4.2 Effect of Fiber Orientation and Machining     67 

on Surface  

4.3 Effect of Fiber Orientation and Machining    71 

on Tensile Behavior 

4.4 Effect of Fiber Orientation and Machining    79 

on Flexural Behavior 

4.5 Effect of Fiber Orientation and Machining    87 

on Microhardness 

4.6 Effect of Fiber Orientation and Machining 

on Tensile Fracture       89 

4.7 Effect of Thermal Aging on GFRP Color    92 

4.8 Effect of Thermal Aging on GFRP Tensile Properties  95 

CHAPTER 5:  PREDICTIVE MODELING OF GFRP 

5.1 Overview of the Predictive Model      103 

5.2 Graphical Methodology of the Predictive Model    104 



xii 
 

5.3 Image Processing       105 

5.4 Artificial Neural Networks (ANN)     106 

5.5 Regression Analysis       111 

5.6 Performance of the Predictive Model     113 

CHAPTER 6:  CONCLUSIONS 

6.1 Conclusion        116 

6.2 Recommendations       116 

REFERENCES         109 

Appendix A: Image Processing MATLAB Code     A-1 

Appendix B: ANN1 Training MATLAB Code     A-2 

Appendix C: ANN2 Training MATLAB Code     A-3 

Appendix D: ANN1 Testing MATLAB Code     A-4 

Appendix E: ANN2 Testing MATLAB Code     A-5 

Appendix F: Predictive Model MATLAB Master Code    A-6 

Appendix G: ANN1 Dataset        A-7 

Appendix H: ANN2 Dataset        A-8 

Appendix I: Technical Specifications of Glass Fiber Cloth    A-9 

Appendix J: Technical Specifications of Epoxy Resin and Hardener  A-10 

Appendix K: ATR 72-212A Type Certificate Datasheet    A-11 

Appendix L: ATR 72-212A Air Conditioning System Schematic   A-12 

Appendix M: Materials Used for GFRP fabrication     A-13 

Appendix N: Photos of Lab Equipment and Apparatus    A-14 

Appendix O: Tensile Test Data of Unaged Samples     A-17 

Appendix P: Flexural Test Data of Unaged Samples     A-19 

Appendix Q: Microhardness Test Data of Unaged Samples    A-20 

Appendix R: Tensile Test Dataset with Thermal Aging Variables   A-21 

Appendix S: Publication Endeavors of This Study     A-22 



1 
 

CHAPTER 1 

INTRODUCTION 

 

1.1 Background of the Study 

Glass fiber reinforced plastic (GFRP), a type of Fiber Reinforced Plastic (FRP) composite 

having glass fibers as the reinforcing element, has received widespread attraction in many 

applications including aerospace, marine, automobile and sports components due to mainly 

high strength-to-weight ratio, sustainability at cryogenic as well as elevated temperature, 

notable surface finishing, attractive aesthetic view,  corrosion resistance and wear 

resistance (Ghafarizadeh et al., 2015; Krishnamoorthy et al., 2009; Rao B et al., 2019).  

 

The mechanical behavior of a fiber-reinforced composite depends on the fiber strength and 

modulus, the chemical stability, matrix strength and the interface bonding between the 

fiber/matrix to enable stress transfer (Erden et al., 2010). Scientists and engineers are well 

aware of the properties of fiber reinforced polymers, but there are still a lot of unsolved 

questions concerning their durability and performance under harsh environmental 

conditions (Bakis et al., 2002). In aerospace applications, GFRP composites are subjected 

to thermal aging at elevated temperatures, especially in Unmanned Aerial Vehicle (UAV) 

operations, aircraft fuselage panels, aircraft wingtips, control surfaces, bleed air ducts and 

inlet fan blade casing (Pavan et al., 2021).   

 

Several researchers have studied the thermal aging effect of GFRPs and predictive 

modeling techniques. Kun et al. used epoxy resin and glass fiber and performed wet and 

heat cycle aging tests, finding that the composites' mechanical and dielectric properties 

deteriorate over time. Lan et al. studied the color changes and mechanical properties of 

glass fiber-reinforced polycarbonate (GF-PC) composites after aging at various 

temperatures and revealed that the brightness of the GF-PC composites relates with trends 

detected in their tensile strength and bending strength.  

 

A good number of researchers have also investigated the computational methods to estimate 

the mechanical properties of GFRP particularly when exposed to thermal aging. Gibson et 

al. studied raised temperature effect on mechanical property measurements of woven glass 

fiber/polypropylene composites and suggested a 3-parameter model to define the tensile 

behavior and a 2-parameter model to define the compressive behavior to analyze the effects. 
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Kim and Oh, experimented with multiple regression analysis (MRA), polynomial 

regression analysis (PRA) and Artificial Neural Networks (ANNs) to analyze issues 

affecting the tensile strength of basalt and glass fiber-reinforced polymers (FRPs). They 

found that ANNs can be the most efficient model for forecasting the durability of FRPs. 

 

This research is focused on the characterization and predictive modeling of thermally GFRP 

composites. The predictive model will be developed using image processing, regression 

analysis and artificial neural networks. This model will be able to make predictions about 

the mechanical properties of thermally aged GFRP with a photographic image of the 

sample. 

 

1.2 Problem Statement 

There is significant literature on varying fiber orientation and the addition of different fillers 

in GFRP; leading to a comparison of the changes in mechanical properties. The effects of 

different types of machining have also been studied. The mechanical property testing of 

thermally aged GFRP has also been studied in detail. Also, several predictive models using 

multi-parameter models, regression and ANN techniques have been developed with good 

accuracy. It is evident that regarding thermal aging, on a macroscopic level, the physical 

and chemical mechanisms causing a change in GFRP properties are well understood. 

However, the mechanical property values reported by different researchers remain in a 

large scatter for thermally aged GFRP. The precise physical micro-phenomena and 

chemical reactions, as well as how they interact, are still being researched. Again, most of 

the predictive models in the literature depend on testing the material and predicting the 

output value based on the test input parameters. This is a time-consuming process that 

involves disassembly, sample preparation and destructive testing. It costs a lot of money 

for applications in aerospace, automobile, marine and similar industries. As such, a 

computational method to estimate the mechanical properties of thermally aged GFRP 

would be very beneficial for highly competitive and operational industries like Aerospace.  

As such, the literature survey pinpoints the following problem statements: 

i. Mechanical property testing of thermally aged GFRP shows variations in results 

reported by researchers.  

ii. Determining the physical state of the GFRP after thermal aging and retracing the 

mechanical and thermal histories are difficult tasks. 
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iii. A data-driven computational method to estimate the mechanical properties of 

thermally aged GFRP remains largely unaddressed.  

 

1.3 Research Objectives 

The objectives of this research are as follows: 

i. To fabricate GFRP composites with woven and random fibers, epoxy resin-

hardener. 

ii. To characterize and compare the mechanical properties of thermally aged GFRP 

composites. 

iii. To develop a predictive model for estimating the mechanical properties of 

thermally aged GFRP composites. 

GFRP samples are to be prepared from composite slabs. Tensile, Flexural and 

Microhardness tests are to be carried out. SEM imaging is to be performed to supplement 

the findings of the mechanical property testing at room temperature. The tensile test will 

also be carried out after the thermal aging of GFRP samples. Thereafter, a predictive model 

is to be developed to estimate the Ultimate Tensile Strength (UTS) of thermally aged 

samples. 

 

1.4 Scope of this Work 

The scope of this work regarding the Characterization and Predictive Modeling of 

Thermally Aged Glass Fiber Reinforced Plastic Composites encompasses several key areas 

of investigation. 

i. GFRP Fabrication: GFRP composites will be prepared using woven and randomly 

oriented glass fibers. Epoxy resin will be used as the matrix. The composite slab 

will be prepared by the hand lay-up method. 

ii. Machining: A study of two types of machining namely mechanical cutting using an 

angle grinder and laser cutting using a CO2 laser machine will be performed to 

produce the samples for mechanical property testing. 

iii. Thermal Aging: The prepared samples will be thermally aged in ovens below and 

beyond the glass transition temperature (Tg). The selected temperature will be 

chosen with Aerospace applications in mind. Samples will be thermally aged at 

different temperatures with different aging times. 
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iv. Characterization of Mechanical Properties: Several mechanical properties of the 

GFRP samples will be tested including Tensile, Flexural, Microhardness and SEM 

Imaging. The thermally aged samples will undergo a tensile test to show the effect 

of thermal aging on Ultimate Tensile Strength (UTS). A dataset containing the 

mechanical properties of the thermally aged GFRP composite will be developed 

after the completion of the mechanical property testing. 

v. Predictive Modeling: A predictive model will be developed to estimate the 

mechanical properties of the thermally aged GFRP composites. The model will use 

the dataset developed earlier. This model will be developed by combining image 

processing, regression analysis and artificial neural networks (ANNs). The model 

will be able to estimate the mechanical properties of the thermally aged GFRP 

composite from its photographic image. This will be accomplished by using the 

color changes due to thermal aging as an identifier for the image processing 

algorithm. The regression analysis will develop a mathematical model with the 

desired mechanical property as the output and the thermal aging temperature and 

time as the input. Afterward, two ANNs will be trained and tested to estimate the 

thermal aging temperature and time from the image processing algorithm. The ANN 

output variables will be sent to the mathematical model to estimate the mechanical 

property of the thermally aged GFRP. Finally, a comparison will be made between 

the experimental results and the predictive model’s estimation 

 

1.5 Significance of this Research 

The research aims to experimentally study the mechanical properties and machinability of 

thermally aged GFRP and provide sets of data for future reference as well as shed light on 

the variations in results reported by researchers. Also, the predictive model can estimate 

the Ultimate Tensile Strength (UTS) values only from a photographic image of the sample. 

This model has the potential to save time and money by avoiding disassembly, sample 

preparation and destructive testing of GFRP components especially in aerospace line 

maintenance applications. 

 

1.6 Novelty of this Research 

Laser machining of GFRP and its SEM imaging provides new information regarding the 

effect of very high temperatures on the mechanical properties of GFRP. 
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Thermal aging of GFRP contributes contemporary insights into the interdependency of 

thermal aging temperature and time for the chosen configurations. 

 

The predictive model developed in this research and its exact design is completely novel 

and it has not been studied yet by researchers as per the literature review and best 

knowledge of the author. 

 

1.7 Potential Application 

The predictive model developed in this research has the potential to estimate the mechanical 

properties of in-service aerospace parts which have been subjected to thermal aging. The 

model can estimate the UTS value from a photographic image only. This can lead to time 

and cost savings by avoiding the disassembly and testing of thermally aged parts. In the 

case of aerospace applications, this model can be used to take a photo of a thermally aged 

GFRP part and assist in deciding its airworthiness status with reference to Aircraft 

Maintenance Manual (AMM). The model can be retrofitted and adapted to predict a 

multitude of Mechanical properties. 

 

 

Fig. 1.1: Potential application of the predictive model. 
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1.8 Organization of the Thesis 

This thesis is presented in several chapters, starting with Introduction, and ending with 

Conclusions. Each of the other chapters has a precise title reflecting the contents of the 

chapter. A chapter is further subdivided into sections, subsections and subsubsection to 

present the content discretely and with due emphasis. 

 

Chapter 1 is the Introduction. It gives a brief background to the problem and highlights the 

importance of the study. It outlines the scope, aim, general character of the research and the 

reasons for the interest in the problem. 

 

Chapter 2 is Literature Review. This chapter demonstrates a systematic examination of the 

scholarly literature on the research topic. The literature review chapter aims to delineate 

various theoretical positions and from these, develop a conceptual framework for the 

generation of hypotheses and setting up the research question. 

 

Chapter 3 is Materials and Methodology. Here, materials and research methods used are 

provided in detail so that other researchers can repeat the experiments. Sufficient 

information is given allowing the readers to judge whether the 

experimental methods are suitable and, consequently, whether the validity of the 

findings are acceptable. 

 

Chapter 4 is Characterization of GFRP. This chapter covers how the GFRP was fabricated, 

and machined and what mechanical property testing was carried out in the experimental 

work. This section also reports the experimental data through Tables and Figures, 

emphasizing important patterns or trends. Results and discussions relevant to the 

experimental work is also discussed.  

 

Chapter 5 is Predictive Modeling of GFRP. The overview and methodology of the 

predictive model is discussed here. This chapter introduces the different elements of the 

predictive model, explains their software architecture and how they are developed. The 

results of the individual elements are also presented. Results and discussions relevant to the 

computational work is also discussed. 
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Chapter 6 is Conclusions. This chapter states the conclusions drawn from the study and 

interpretations in a concise form. It bridges the culmination of the research work and relates 

it to the objective of the study. Potential applications, limitations and future 

recommendations of this study are also discussed. 

 

Finally, A List of references and appendices are placed at the end of the thesis. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Background on Composite Materials 

Composite materials are engineered materials made up of two or more distinct components 

with different physical or chemical properties. These components, known as the matrix and 

the reinforcement, work together to create a composite material with improved overall 

properties compared to the individual components. The matrix material holds the 

reinforcement in place and transfers loads between the reinforcement elements, while the 

reinforcement material provides strength and stiffness to the composite. The combination 

of the matrix and reinforcement materials allows composite materials to exhibit superior 

properties compared to traditional materials. Composites can possess high strength, 

stiffness, and durability while also being lightweight. They can have improved resistance 

to corrosion, impact, and fatigue. Additionally, composite materials can have tailorable 

properties, allowing for customization to suit specific application requirements (Egbo, 

2021). Figure 2.1 shows the schematic representation of FRP composites. 

 

 

Fig. 2.1: Composition of composite materials (Peairs et al., 2004). 

 

The history of composite materials spans centuries, with civilizations throughout time 

exploring the concept of combining different materials to create a new material with 

enhanced properties. However, the modern development and widespread use of composite 

materials can be attributed to significant advancements in the 20th century. In the early 

1900s, researchers and engineers began experimenting with the incorporation of fibers, 

such as asbestos, into matrix materials to enhance their mechanical properties (Daniel and 

Ishai, 2005). These early attempts laid the foundation for the development of composite 

materials as we know them today. 
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One pivotal milestone in the history of composites was the invention of fiberglass in the 

1930s by Russell Games Slayter and Dale Kleist, who discovered the reinforcing properties 

of glass fibers when mixed with a resin matrix. This breakthrough opened up new 

possibilities for the use of composites in various industries. During World War II, 

composites gained significant attention and were extensively used in military applications, 

such as aircraft components and radomes. The high strength-to-weight ratio and corrosion 

resistance offered by composites proved to be advantageous in these demanding 

environments (Daniel and Ishai, 2005). 

 

Since then, the development of composite materials has continued to advance rapidly. New 

types of reinforcing fibers, such as carbon fibers, aramid fibers, and natural fibers, have 

been introduced, each offering unique properties suitable for specific applications. Matrix 

materials have also evolved, with thermosetting resins like epoxy and thermoplastics like 

polyetheretherketone (PEEK) becoming widely used in composite manufacturing (Dodiuk, 

2013). In Figure 2.2 the historical evaluation of composite materials is presented.  

 

 

Fig. 2.2: Historical evolution of the composite materials (Kelly and Zweben, 1999). 

 

To understand the significance and potential of composite materials, it is crucial to explore 

their various types and manufacturing processes. Polymer Matrix Composites (PMCs), 

Metal Matrix Composites (MMCs), and Ceramic Matrix Composites (CMCs) are some of 
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the prominent types of composites with unique characteristics and applications (Gibson, 

2016). The fabrication of composites involves specific manufacturing processes tailored to 

each composite type, including layup, filament winding, compression molding, and 

sintering (Hull & Clyne, 1996). 

 

2.2 Classification of Composite Materials 

Composite materials consist of a matrix phase that binds and supports the reinforcement 

phase, resulting in a synergistic combination of properties. This literature review aims to 

provide an overview of different types of matrix materials used in composite materials, 

focusing on their composition, properties, and applications. The review aims to consolidate 

the findings from relevant studies and highlight the advancements made in understanding 

and utilizing various matrix materials in composite systems. 

 

Polymer Matrix Composites: Polymer matrix composites (PMCs) are widely used due to 

their low density, excellent corrosion resistance, and ease of processing. The matrix phase 

is composed of a polymeric material, such as epoxy, polyester, or polyamide. These 

polymers offer a wide range of mechanical properties, including flexibility, toughness, and 

chemical resistance (Gibson, 2016). PMCs find applications in industries such as 

automotive, aerospace, and sporting goods. 

 

Metal Matrix Composites: Metal matrix composites (MMCs) incorporate a metallic matrix 

phase, usually aluminum, magnesium, or titanium, with reinforcing elements such as 

ceramic particles or fibers. MMCs exhibit excellent mechanical properties, including high 

strength, stiffness, and thermal conductivity (Kelly and Zweben, 1999). These composites 

are utilized in applications requiring high strength-to-weight ratios, such as aerospace 

structures, automotive components, and electronic packaging. 

 

Ceramic Matrix Composites: Ceramic matrix composites (CMCs) consist of a ceramic 

matrix phase, such as silicon carbide, alumina, or zirconia, reinforced with ceramic fibers 

or particles. CMCs offer exceptional high-temperature stability, excellent corrosion 

resistance, and low thermal expansion coefficients (Hegde et al., 2019). These materials are 

widely used in aerospace propulsion systems, heat exchangers, and thermal protection 

systems. 
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Carbon Matrix Composites: Carbon matrix composites (CMCs) utilize a carbon-based 

matrix material, such as carbon/carbon composites or carbon nanotubes, in combination 

with carbon fibers or other reinforcing materials. CMCs possess high strength, lightweight 

characteristics, and excellent thermal properties, making them suitable for applications in 

aerospace, defense, and high-performance industries (Hegde et al., 2019). These 

composites also exhibit good resistance to oxidation and wear. 

 

Hybrid Matrix Composites: Hybrid matrix composites combine different types of matrix 

materials to leverage their unique properties. For example, combining a polymer matrix 

with ceramic particles or fibers can enhance the mechanical and thermal properties of the 

composite (Gibson, 2016). Hybrid matrix composites offer a balance of strength, 

toughness, and versatility, making them suitable for diverse applications in engineering and 

construction. Figure 2.3 a comparison of specific strength of different composite materials 

is shown. 

 

 

Fig. 2.3: Specific strength of aircraft engine materials as a function of temperature 

(Parveez et al., 2022). 

 

Different types of matrix materials used in composite materials, including polymer matrix 

composites, metal matrix composites, ceramic matrix composites, carbon matrix 

composites, and hybrid matrix composites offer distinct advantages in terms of mechanical 

properties, thermal stability, and corrosion resistance. Polymer matrix composites excel in 
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versatility and ease of processing, while metal matrix composites offer high strength and 

thermal conductivity. Ceramic matrix composites provide excellent high-temperature 

stability, and carbon matrix composites combine lightweight properties with exceptional 

performance. Understanding the composition, properties, and applications of these matrix 

materials is crucial for the design and development of composite systems for various 

industries. This research work deals with Glass Fiber Reinforced Plastic Composites 

(GFRP) which is a type of Polymer matrix composites (PMC). 

 

2.3 Glass Fibers 

Glass fibers have become widely recognized as an essential component in composite 

materials, offering exceptional mechanical properties and versatility (Gibson, 2016). These 

fibers, composed of thin strands of glass, are commonly used as reinforcements in various 

industries due to their high tensile strength and durability (Hull & Clyne, 1996). Glass fibers 

are extensively employed in applications where lightweight materials with excellent 

mechanical performance are required. 

 

The unique properties of glass fibers make them suitable for a wide range of industries, 

including aerospace, automotive, construction, and marine (Kelly and Zweben, 1999). In 

the aerospace sector, glass fibers are utilized in the fabrication of composite aircraft 

components such as wings, fuselage, and interior structures. Their lightweight nature 

contributes to weight reduction, leading to improved fuel efficiency and increased payload 

capacity. In the automotive industry, glass fibers are incorporated into composites to create 

lightweight panels, reinforcing structures, and interior components, resulting in enhanced 

fuel economy and reduced emissions. Figure 2.4 shows the unique properties of different 

types of glass fibers. 
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Fig. 2.4: Classification of glass fiber and physical properties (Sathishkumar et al., 2014). 

 

The manufacturing process of glass fibers involves several stages, including melting, 

fiberization, and surface treatment (Hull & Clyne, 1996). The raw materials, typically silica 

sand, limestone, and soda ash, are melted together at high temperatures to form molten 

glass. This molten glass is then extruded through tiny orifices, which results in the 

formation of thin continuous strands of glass fibers. Surface treatment techniques are 

employed to enhance the adhesion between the glass fibers and the polymer matrix in 

composite materials. In Figure 2.5, different types of glass fibers are shown. 
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Fig. 2.5: Different types of glass fibers (Havenith, George, 1999). 

 

Glass fibers are commonly incorporated into polymer matrix composites, where they act as 

the primary reinforcement. The glass fibers provide strength and rigidity to the composite 

structure, enhancing its mechanical properties. They are often combined with a matrix 

material, such as epoxy or polyester resin, to create a strong and durable composite material. 

Figure 2.6 shows the preparation of woven glass fiber cloth from glass fibers. 

 

 

Fig. 2.6: Preparation of woven glass fiber mat (Sathishkumar et al., 2014). 

 

The use of glass fibers in composites offers several advantages. Glass fibers have low 

density, making them lightweight and ideal for applications where weight reduction is 

important. They also exhibit good resistance to moisture, making them suitable for use in 

humid or corrosive environments. Glass fibers can be easily processed and molded into 

various shapes, allowing for versatility in design and manufacturing processes. Also, the 
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fiber orientation can be varied to create different types of glass fibers as shown in Figure 

2.7. 

 

 

Fig. 2.7: Different types of GFRP laminates (a) Continuous unidirectional fibers, (b) 

continuous woven fibers and (c) random fibers (Bazli et al., 2019). 

 

Research studies have extensively investigated the mechanical behavior and performance 

of glass fiber-reinforced composites. These studies have examined the effects of fiber 

content, orientation, and surface treatment on the composite's strength, stiffness, and fatigue 

resistance. The findings have contributed to the optimization of composite manufacturing 

processes and the development of tailored glass fiber composites for specific applications. 

 

2.4 Epoxy Resins 

Epoxy resins are a class of versatile thermosetting polymers widely used as matrix materials 

in composite applications. These resins are derived from the reaction between epoxide 

monomers and curing agents, resulting in a cross-linked and highly durable structure. 

Epoxy resins offer a combination of excellent mechanical properties, chemical resistance, 

and adhesion strength, making them suitable for various industries and applications. 

 

Epoxy resins are known for their high strength and stiffness, making them an ideal choice 

for load-bearing applications. They exhibit a low shrinkage during curing, ensuring 

dimensional stability and minimizing the formation of internal stresses within the 

composite structure. Additionally, epoxy resins have excellent adhesion to a wide range of 

substrates, including metals, ceramics, and fibers, leading to strong interfacial bonding in 

composite materials (Kinloch, 1987). 
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The curing process of epoxy resins can be tailored to suit specific application requirements. 

By selecting different curing agents and adjusting curing conditions, the processing and 

mechanical properties of epoxy-based composites can be optimized. Epoxy resins are 

compatible with various reinforcement materials, including carbon fibers, glass fibers, and 

aramid fibers, enabling the production of high-performance composites with tailored 

mechanical characteristics (Balguri et al., 2021). 

 

Research studies have extensively investigated the mechanical, thermal, and chemical 

properties of epoxy resin-based composites. These studies have focused on optimizing the 

resin formulation, curing parameters, and reinforcement configurations to enhance the 

overall performance of the composites. The findings have contributed to advancements in 

the development of epoxy-based composites for the aerospace, automotive, electronics, and 

construction industries (Tikhani et al., 2020). 

 

2.5 Glass Fiber Reinforced Plastic (GFRP) Composites  

Glass Fiber Reinforced Plastic (GFRP) composites have emerged as a prominent type of 

composite material, offering a unique combination of strength, stiffness, and corrosion 

resistance (Gibson, 2016). GFRP composites are composed of a polymer matrix, typically 

epoxy or polyester, reinforced with glass fibers (Hull & Clyne, 1996). The incorporation of 

glass fibers imparts exceptional mechanical properties to the composite, making it suitable 

for various applications. The use of GFRP composites has gained significant traction in 

industries such as aerospace, automotive, construction, and marine due to their lightweight 

nature and high strength-to-weight ratio (Kelly and Zweben, 1999). GFRP is being 

extensively used in the following industries. 

 

Aerospace Industry: The aerospace industry extensively employs GFRP composites for 

their lightweight nature and high strength-to-weight ratio (Kelly and Zweben, 1999). GFRP 

composites are used in the manufacturing of aircraft components, including wings, fuselage 

sections, interior structures, and engine parts. These composites offer weight reduction, 

leading to improved fuel efficiency, increased payload capacity, and enhanced 

performance. 
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Automotive Industry: In the automotive sector, GFRP composites contribute to lightweight 

vehicle designs and sustainable transportation solutions (Kelly and Zweben, 1999). They 

are utilized in the fabrication of body panels, structural components, and interior parts. By 

incorporating GFRP composites, automakers can achieve significant weight reduction, 

resulting in improved fuel economy, reduced emissions, and enhanced crash performance. 

Construction Industry: GFRP composites find application in the construction industry for 

various structural elements (Gibson, 2016). They are utilized in the production of 

reinforcement bars, rebars, and grids. GFRP composites offer corrosion resistance, high 

strength, and durability, making them an ideal alternative to traditional steel reinforcement. 

Their use in construction enables longer service life, reduced maintenance costs, and 

improved resistance to harsh environmental conditions. 

 

Marine Industry: The marine industry benefits from the use of GFRP composites in boat 

hulls, decks, and other marine structures (Hull & Clyne, 1996). These composites provide 

lightweight alternatives to traditional materials while maintaining strength and durability. 

GFRP composites offer resistance to water, chemicals, and UV radiation, making them 

well-suited for marine environments. Their utilization in marine applications leads to 

improved fuel efficiency and reduced maintenance requirements. 

 

Sports and Recreation: GFRP composites have found extensive applications in the sports 

and recreation sector (Hull & Clyne, 1996). They are used in the production of sporting 

goods such as tennis rackets, golf clubs, bicycle frames, and fishing rods. The lightweight 

and high-strength properties of GFRP composites contribute to improved performance, 

increased maneuverability, and enhanced player experience in various sports. 

 

2.6 GFRP in Aerospace 

The application of GFRP composites across industries has revolutionized several sectors 

by offering lightweight, high-strength, and corrosion-resistant solutions. In aerospace, 

automotive, construction, marine, sports, and recreation industries, GFRP composites 

enable improved performance, fuel efficiency, sustainability, and cost-effectiveness. As 

research and development continue to enhance the properties and manufacturing techniques 

of GFRP composites, their significance in various applications is expected to grow, leading 

to further advancements in multiple industries. 
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(GFRP) composites have revolutionized the aerospace industry, offering lightweight and 

high-performance alternatives to traditional materials (Gibson, 2016). This article explores 

the extensive application of GFRP composites in the aerospace sector, highlighting their 

significance in aircraft components and their contributions to improved fuel efficiency, 

enhanced performance, and reduced maintenance requirements. 

 

Wings and Fuselage: GFRP composites find extensive use in the manufacturing of aircraft 

wings and fuselage sections (Kelly and Zweben, 1999). The lightweight nature of these 

composites allows for significant weight reduction compared to conventional metallic 

structures. This weight reduction contributes to increased fuel efficiency, enabling aircraft 

to consume less fuel and reduce carbon emissions. Additionally, GFRP composites offer 

excellent strength-to-weight ratio and resistance to corrosion, enhancing the durability and 

longevity of the aircraft. Recently, the use of composite materials in aircraft is increasing 

significantly. Figure 2.8 shows an illustration of Boeing 787 aircraft which contains about 

50% composite materials. 

 

 

Fig. 2.8: Usage of composite materials in Boeing 787 (Peairs et al., 2004). 

 

Interior Structures: GFRP composites are utilized in the construction of interior structures 

in aircraft, such as cabin panels, overhead compartments, and lavatory components. These 

composites provide a balance between weight reduction and structural integrity, ensuring 

passenger safety while maintaining fuel efficiency. Moreover, GFRP composites offer 

design flexibility, allowing for customized and aesthetically pleasing interiors. In Figure 

2.9, GFRP components used in exterior components (not subjected to structural loads) of 
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ATR 72-212A aircraft is shown. It is worth mentioning that these components are exposed 

to up to -40 °C during flight. 

 

 

Fig. 2.9: GFRP structural components in an ATR 72-212A aircraft. 

 

Engine Components: GFRP composites play a crucial role in the manufacturing of engine 

components, including fan blades, nacelles, and thrust reversers (Gibson, 2016). The 

exceptional strength and heat resistance of these composites makes them suitable for 

demanding engine environments. By incorporating GFRP composites, engine 

manufacturers can achieve weight reduction, leading to improved overall aircraft 

performance and reduced fuel consumption. 

 

Structural Reinforcements: GFRP composites are utilized as structural reinforcements in 

various aircraft components (Kelly and Zweben, 1999). They provide enhanced strength 

and stiffness, improving the structural integrity of critical areas such as landing gear, 

control surfaces, and structural joints. The use of GFRP composites in these applications 

contributes to increased safety, reduced maintenance costs, and extended service life. 

 

 (GFRP) composites have significantly impacted the aerospace industry, offering 

lightweight, high-strength, and corrosion-resistant solutions for aircraft components. Their 

application in wings, fuselage, interior structures, engine components, and structural 

reinforcements has resulted in improved fuel efficiency, enhanced performance, and 

reduced maintenance requirements. As research and development continue to advance the 
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properties and manufacturing techniques of GFRP composites, their significance in 

aerospace applications is expected to grow, leading to further advancements in aircraft 

design and performance. 

 

2.7 GFRP Mechanical Properties 

GFRP composites have gained significant attention in various industries due to their 

exceptional mechanical properties, making them a desirable material for high-performance 

applications. This literature review aims to provide an overview of the research conducted 

on the mechanical properties of GFRP composites, focusing on strength, stiffness, 

toughness, and fatigue resistance. The review aims to consolidate the findings from relevant 

studies and highlight the advancements made in understanding and optimizing the 

mechanical performance of GFRP composites. The Physical and mechanical properties of 

glass fibers depend on a lot of factors including the selection of fiber type, weave pattern 

and treatments. A general overview of the physical and mechanical properties of glass 

fibers in weight% is given in Table 2.1. 

 

Table 2.1: Physical and mechanical properties of glass fibers (Sathishkumar et al., 2014). 

 

 

Strength: Numerous studies have demonstrated the impressive strength characteristics of 

GFRP composites. The incorporation of glass fibers, known for their high tensile strength, 

significantly enhances the strength of the composite material (Hull & Clyne, 1996). 

Researchers have investigated various parameters, such as fiber orientation, fiber volume 

fraction, and matrix properties, to optimize the strength of GFRP composites. The findings 

indicate that higher fiber volume fractions and proper fiber alignment can lead to improved 

strength properties (Gibson, 2016). 
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Stiffness: The stiffness or modulus of elasticity is a critical mechanical property of GFRP 

composites. The reinforcing glass fibers provide excellent stiffness, enabling the 

composites to resist deformation under applied loads. Researchers have examined the effect 

of fiber type, fiber content, and matrix properties on the stiffness of GFRP composites 

(Kelly and Zweben, 1999). It has been observed that the use of high-modulus glass fibers 

and increased fiber content enhances the stiffness of the composites. 

 

Toughness: The toughness of GFRP composites refers to their ability to absorb energy 

before fracture. Researchers have investigated the impact resistance and crack propagation 

behavior of GFRP composites, which are essential for applications subjected to dynamic 

loading or potential impacts. The incorporation of toughening mechanisms, such as 

interlayer toughening and hybrid fiber reinforcements, has been explored to enhance the 

toughness of GFRP composites (Gibson, 2016). 

 

Fatigue Resistance: The fatigue resistance of GFRP composites is crucial in applications 

subjected to cyclic loading. Researchers have conducted fatigue tests to assess the 

endurance and durability of GFRP composites under repeated loading conditions. Factors 

such as fiber architecture, matrix properties, and environmental conditions have been 

investigated to understand their influence on the fatigue behavior of GFRP composites 

(Kelly and Zweben, 1999). It has been observed that the use of appropriate fiber 

architecture and matrix materials can significantly improve the fatigue resistance of GFRP 

composites. 

 

There are several works found in the literature on the mechanical property testing of GFRP. 

The mechanical performance of FRP depends on the physio-mechanical properties of the 

individual constituents, i.e.,  fibers, matrix, fillers and their interface  (Cs. Varga, N. 

Miskolczi, 2010). Suitable orientations and composition of glass fibers can produce GFRPs 

with desired characteristics and functional properties. GFRPs can be fabricated having 

greater stiffness than aluminum with less relative density than steel. The matrix of the 

composite decides the maximum operating temperature of the composite material 

(Morampudi et al., 2021). For high-performance applications in engineering, epoxy resins 

are most widely used as the matrix material among thermosetting plastics (Hameed et al., 

2007).  
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Many researchers have been investigating the role of inorganic and organic fillers to 

enhance mechanical and tribological properties. Micro and Nanofillers like Al2O3, TiO2, 

SiO2, Mg(OH)2, SiC, Carbon Nano Tubes (CNTs) and also various natural fillers have been 

added by researchers to augment the mechanical properties of GFRPs (Devendra and 

Rangaswamy, 2012; Dhawan et al., 2013; Nayak et al., 2014; Roustazadeh et al., 2020). 

(Ashrafi et al., 2020) examined the tensile characteristics of several GFRP laminates after 

being exposed to high temperatures. The test factors were laminate thickness, fiber 

arrangement, and exposure temperature. In general, it was found that as exposure time and 

laminate thickness increased, so did the rate at which the tensile strength was reduced. 

Following exposure to high temperatures, the results of tensile testing revealed that 

laminates with progressive unidirectional fibers outperformed those with chopped strands 

of randomly dispersed fibers, and laminates with woven continuous fibers performed in the 

middle. (Ratim et al., 2012) studied the effects of woven and non-woven kenaf fiber on the 

mechanical properties of polyester composites. They discovered that the composite's tensile 

strength was greatest for the twill weave pattern of fiber structure, while there was no 

significant difference between the mat structures and plain weave. (EL-Wazery et al., 2017) 

studied the effect of the percentage of glass fiber on the tensile strength, bending strength, 

and impact strength of GFRP in their research. The results revealed that adding more glass 

fibers by weight percentage significantly improved the mechanical properties of the 

composite that was created. The manufactured composites with 60-weight percent glass 

fiber had the best mechanical characteristics. (Alavudeen et al., 2015) investigated the 

impact of weaving patterns and random orientation on the mechanical properties of 

polyester composites reinforced with banana, kenaf, and banana/kenaf fibers. The hand lay-

up technique was used to make composites with two different weaving types, namely plain 

and twill. In all the produced composites, the plain type outperformed the twill type in terms 

of tensile characteristics. Furthermore, plain woven hybrid composites rather than 

composites with random orientation showed the greatest gain in mechanical strength. 

(Almeida et al., 2015) investigated the interlaminar and in-plane shear characteristics of 

glass fiber reinforced epoxy composites as a result of the lay-up design. For this work, resin 

transfer molding with vacuum aid was used to create the following laminates: [0]5, [90]5, 

[0/90/0/90/0], and randomly oriented (mat). Due to its random fiber orientation, the mat 

samples displayed stronger in-plane shear strength in both tests compared to the 

[0]5laminate and [90]5 interlaminar shear strength. Due to the longitudinally oriented 

fibers, the composites [0]5 had a greater dynamic shear modulus than one might anticipate. 
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The literature review highlights the research conducted on the mechanical properties of 

GFRP composites, including strength, stiffness, toughness, and fatigue resistance. The 

findings from various studies indicate that the incorporation of glass fibers enhances the 

mechanical performance of the composites. Factors such as fiber orientation, volume 

fraction, matrix properties, and toughening mechanisms have been investigated to optimize 

the mechanical properties of GFRP composites. Further research is needed to explore 

advanced manufacturing techniques and innovative material combinations to further 

enhance the mechanical performance of GFRP composites in different applications. 

 

2.7 Machining of GFRP 

Machining of GFRP presents unique challenges due to the heterogeneous nature of the 

composite material. GFRP consists of a matrix, typically epoxy resin, reinforced with glass 

fibers. The presence of glass fibers significantly impacts the machining process and 

requires careful consideration to ensure optimal results. 

 

When machining GFRP, the main objective is to cut through the composite material while 

minimizing damage to the fibers and maintaining dimensional accuracy. However, the 

hardness and abrasive nature of the glass fibers can cause excessive tool wear, leading to 

reduced machining efficiency and compromised surface finish. In Figure 2.10, FRP 

composite surface failures resulting from different machining techniques are shown. 

 

 

Fig. 2.10: Surface failures resulting from machining of FRP with different cutting tools  

(Altin Karataş and Gökkaya, 2018). 
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Several machining techniques are commonly employed for GFRP, including milling, 

drilling, turning, and grinding. The selection of the machining method depends on the 

specific requirements of the application and the desired outcome. Machining parameters 

such as cutting speed, feed rate, depth of cut, and tool material play a crucial role in 

achieving satisfactory results (Biermann, 2016). 

 

Due to extensive use, the machining of GFRP has received widespread attention among 

researchers. It is a very important consideration and different processes are needed to be 

explored to impart high surface quality, good dimensional accuracy and less alteration of 

mechanical properties. To address the challenges associated with GFRP machining, 

researchers have conducted extensive investigations into the optimization of machining 

parameters and tool selection. Studies have explored the influence of various factors, such 

as fiber orientation, cutting tool geometry, and cooling strategies, on the machinability of 

GFRP (Negarestani & Li, 2012; Saad et al., 2020). Advanced machining techniques, such 

as ultrasonic machining and laser machining, have also been explored to overcome the 

limitations of conventional machining methods when dealing with GFRP (Slamani and 

Chatelain, 2023). These techniques offer advantages such as reduced tool wear, improved 

precision, and better surface finish. 

 

Laser beam machining being a non-contact and virtually force-free manufacturing method 

is a preferable alternative means of cutting FRP composites. Laser cutting is a thermal 

process that focuses a laser beam to melt and vaporize material in a localized area (Fatimah 

et al., 2012). Machining of GFRPs or FRPs in general is a challenging task and different 

from that of metals due to their low thermal conductivity, heat sensitivity and anisotropic 

behavior (El-Hofy et al., 2011). In the case of laser machining, these considerations are 

even more acute and need sound technical investigation to achieve good results. Several 

researchers have explored different laser drilling/cutting parameters including laser 

intensity, cutting speed and gas pressure to achieve minimum surface roughness (Ra), heat-

affected zone (HAZ), taper angle (TA), and maximum tensile strength (TS) of the laser-

drilled glass fiber-reinforced plastic (GFRP) laminate (Solati et al., 2019). (Rose et al., 

2020) investigated how the mechanical characteristics of CFRP were affected by the 

remote-laser beam cutting technique. The findings of the present investigation demonstrate 

that, in comparison to test specimens made from milling, the maximal tensile stress 

decreases when the HAZ expands to an unreasonable degree. (Harada et al., 2012) 
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experimented on the impact of various cutting techniques on the static tensile strength and 

the fatigue strength of CFRP. The CFRP was cut using a CO2 gas laser, a single-mode fiber 

laser, an abrasive water jet, and a conventional mechanical device. High-quality cuts were 

made by the mechanical cutting specimen. The heat-affected zone (HAZ) was clearly 

visible in the laser-cutting specimens. When compared to mechanical or water-jet cut 

specimens, the static tensile strength and fatigue strength of specimens created by laser 

cutting was significantly reduced. The specimen created by laser cutting showed a linear 

dependence of the tensile strength on the HAZ, showing that the primary effect was caused 

by the thermal degradation of CFRP inside the HAZ. Choudhury and Chuan, investigated 

the quality of glass fiber-reinforced plastic surfaces cut by single-pass and double-pass laser 

beams. The input laser variables were the nozzle diameter, material thickness, and cutting 

speed, while the outputs were the surface roughness and kerf width at the irradiation and 

exit sides. According to the findings, a double-pass laser beam appeared to generate cut 

surfaces of a significantly higher quality than a single-pass laser beam. Hirsch et al. 

investigated the single mode fiber laser cutting of a composite with glass fiber 

reinforcement (PA6/GF60) and a composite with carbon fiber reinforcement (PA6/CF60). 

Both were continuous fiber-reinforced thermoplastic composites (TPC) with polyamide6 

(PA6) matrix and fiber content of 60 weight percent of these materials was investigated. 

By using optical microscopy and uniaxial tensile testing to analyze the HAZ and 

mechanical characteristics of the laser-cut composites, it was revealed that there was 

anisotropy and a dependence on the laminate structure. The obtained mechanical properties 

of the laser-cut composites, however, were discovered to be on par with those of their water 

jet-cut counterparts.  Rahman and Rahman, studied the laser cutting effect of woven glass 

fiber reinforced plastic composites. They found mechanical cutting to be superior than laser 

cutting in terms of tensile, flexural and Vickers microhardness propertiesThe reason being 

thermal damage in laser cutting. 

 

According to available research, laser cutting affects the mechanical performance of FRP 

components. The reason is the formation of a HAZ, whose development is dependent on 

the laser cutting circumstances. Modifications to the laser cutting parameters may affect 

mechanical performance (Rose et al., 2020). However, studies on the comparative effect of 

mechanically cut and laser cut on the mechanical performance of GFRPs or even FRPs, in 

general, are very seldom. The closest to our experiment is research on the evaluation of the 

cutting process on the tensile and fatigue strength of CFRP composites (Harada et al., 
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2012), which found that the static tensile strength and the fatigue strength by laser cutting 

specimens decreased in comparison with mechanical or water-jet cutting specimen. 

Moreover, the laser cutting specimen exhibited a linear dependency of the tensile strength 

on the heat-affected zone (HAZ), indicating that the main effect resulted from the thermal 

destruction of CFRP within the HAZ. 

 

The research in GFRP machining aims to optimize the process parameters to enhance 

productivity, reduce costs, and minimize damage to the composite material. By 

understanding the interaction between the cutting tool and the composite structure, 

manufacturers and engineers can develop effective machining strategies for GFRP 

components used in industries such as aerospace, automotive, and marine. 

 

2.8 Thermal Aging of GFRP 

Thermal aging is a critical factor that can significantly impact the performance and 

reliability of various materials, particularly those exposed to high temperatures for extended 

periods. This literature review aims to provide an overview of research conducted on the 

thermal aging of materials, focusing on the effects of elevated temperatures on their 

mechanical, thermal, and chemical properties.  

 

Glass Fiber Reinforced Plastic (GFRP) composites are widely used in various industries 

due to their excellent mechanical properties and corrosion resistance. However, their long-

term performance under thermal aging conditions is a critical concern. This literature 

review aims to provide an overview of research conducted on the thermal aging of GFRP 

composites, focusing on the effects of elevated temperatures on their mechanical, thermal, 

and chemical properties. The review aims to consolidate the findings from relevant studies 

and highlight the challenges and advancements in understanding the thermal aging behavior 

of GFRP composites. 

 

Effect on Mechanical Properties: Several studies have investigated the influence of thermal 

aging on the mechanical properties of GFRP composites. Researchers have conducted 

tensile, flexural, and impact tests to evaluate changes in strength, stiffness, and toughness 

after exposure to elevated temperatures. The findings indicate that prolonged thermal aging 

can lead to a decrease in mechanical properties, including reductions in tensile strength, 

stiffness, and impact resistance (Huang et al., 2018; Ouedraogo et al., 2020). The 
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degradation mechanisms include matrix degradation, fiber-matrix interface debonding, and 

fiber damage. 

 

Thermal Properties: Thermal aging can also affect the thermal properties of GFRP 

composites. Researchers have examined changes in thermal conductivity, coefficient of 

thermal expansion (CTE), and glass transition temperature (Tg) after exposure to elevated 

temperatures. It has been observed that thermal aging can result in increased thermal 

conductivity, higher CTE, and a shift in the Tg of the composite material (Song et al., 2021; 

Kim et al., 2017). These changes can impact the dimensional stability and thermal 

performance of GFRP composites under thermal loading conditions. 

 

Chemical Degradation: In addition to mechanical and thermal property changes, thermal 

aging can cause chemical degradation of GFRP composites. Researchers have studied the 

effects of elevated temperatures on the chemical composition, degradation of the polymer 

matrix, and fiber-matrix interfacial bonding. The findings indicate that thermal aging can 

lead to the degradation of the polymer matrix, including chain scission, oxidation, and 

crosslinking reactions (Song et al., 2021; Huang et al., 2018). The chemical changes can 

affect the overall performance and service life of GFRP composites. 

 

Regarding the thermal aging of GFRPs and its influence on mechanical properties, a 

considerable amount of literature has been published. Bazli et al. investigated the behavior 

of unidirectional, woven, and chopped strand GFRP laminates subjected to impact and 

flexure loads at extreme temperatures. According to the findings, GFRP laminates' flexural 

and impact capabilities generally deteriorate as exposure time and temperature rise, and as 

laminate thickness decreases. Kun et al. developed an epoxy glass fiber composite and 

performed wet and heat cycle aging tests. They found that the composites' mechanical and 

dielectric properties deteriorated over time. Zuo et al. performed an experiment in which 

the isothermal and non-isothermal crystallization behaviors of glass fiber-reinforced 

polyphenylene sulfide were rigorously investigated and a broad variety of widely used 

models were applied to this material. It was discovered that the polymer crystallizes more 

slowly during crystallization when it has undergone extreme age and degeneration. 

According to Birger et al., thermal aging influences the mechanical characteristics and 

failure processes of graphite-fabric epoxy composites exposed to flexural stress. The 

authors thermally aged the samples at 170 °C for 120, 240, and 626 hours. For the longest 
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exposure period, bare fibers were detectable due to the weakening of the fiber-matrix 

interface, and as thermal aging progresses, fracture transforms from ductile with more 

plastic deformations to brittle. Mouritz et al. investigated the post-fire residual flexure 

strength of glass, carbon, and Kevlar-reinforced polyester, epoxy, and phenolic-based 

laminates. They discovered that even a little amount of fire damage resulted in a significant 

decrease in strength qualities, and the model used to forecast the strength properties showed 

a strong connection with the experimental data. Dodds et al. subjected the epoxy, phenolic, 

and polyester GFRP panels to a high-temperature fire and compared the behavior using 

thermal modeling. Phenolic-based GFRP laminates were shown to be more susceptible to 

delamination. In addition, the thickness of the composites had a significant effect in their 

fire resistance. (Jafari et al.,  examined the behavior of unidirectional, woven, and randomly 

dispersed (chopped strand mat) laminate specimens at elevated temperatures. The type of 

fiber, temperature, and laminate thickness was the test variables. The results demonstrated 

that an increase in temperature had the greatest impact on the specimens among the 

parameters. At 550°C, the unidirectional laminate specimens performed the best, retaining 

about 40% of their load capacity. The laminate specimens with randomly distributed fibers 

lost all of their strength at 400°C, while the woven laminate specimens were unable to 

support any tensile loads at this temperature. 

 

The glass transition temperature (Tg) is an important consideration for the thermal aging 

study of all FRPs.  Zavatta et al. conducted research to determine how the strength of carbon 

fabric/epoxy composites changed as a result of thermal aging in air. For aging at 

temperatures below the glass transition temperature (Tg) of the resin, a considerable decline 

in strength was observed. In contrast, a fast drop in strength was found at aging 

temperatures exceeding Tg. Furthermore, it was determined that even brief exposure to 

operating temperatures over Tg might significantly reduce the load-bearing capacity of 

CFRP components.  

 

Several researchers have also noted the color changes due to thermal aging. (Lan et al., 

2022) studied the color changes and mechanical properties of glass fiber-reinforced 

polycarbonate (GF-PC) composites after aging at various temperatures. The experiment 

revealed that the brightness of the GF-PC composite is related to trends detected in their 

tensile strength and bending strength. Song et al., investigated the impact of thermal aging 

on the mechanical properties of glass-reinforced PEI plate composites. They found that as 
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the aging temperature increased from 80 to 145°C, both the tensile and flexural strengths 

of the GF/PEI composite samples dropped, which was also reflected in their color 

difference. In Figure 2.11, the interior GFRP components of an ATR 72-212A aircraft 

subjected to thermal aging are shown. Their distinctive color change is notable. 

 

 

Fig 2.11: GFRP color change due to thermal aging in ATR 72-212A aircraft. 

 

To mitigate the negative effects of thermal aging, researchers have explored various 

strategies. These include incorporating thermally stable matrix materials, utilizing 

advanced fiber-matrix interfacial bonding techniques, and employing protective coatings 

or additives to enhance the thermal stability of GFRP composites (Ouedraogo et al., 2020; 

Sun et al., 2021). These approaches aim to improve the resistance of GFRP composites to 

thermal aging and extend their service life in high-temperature environments. 

 

The literature review highlights the research conducted on the thermal aging of GFRP 

composites, focusing on the effects of elevated temperatures on their mechanical, thermal, 

and chemical properties. The findings indicate that thermal aging can lead to degradation 

in mechanical properties, changes in thermal behavior, and chemical degradation of the 

composite material. Mitigation strategies have been explored to enhance the thermal 

stability and extend the service life of GFRP composites under thermal aging conditions. 

Further research is needed to develop robust and reliable techniques for the design and 

manufacturing of GFRP composites with improved thermal resistance and durability. 
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2.9 Glass Transition Temperature 

The Glass Transition Temperature (Tg) is a critical parameter in understanding the thermal 

behavior of GFRP composites. Tg refers to the temperature at which the polymer matrix 

transitions from a glassy, rigid state to a rubbery, more flexible state. It is an essential 

characteristic that influences the mechanical, thermal, and processing properties of GFRP 

composites. 

 

The determination of Tg is crucial for selecting appropriate operating conditions and 

ensuring the long-term stability and performance of GFRP components. Several 

experimental techniques, such as Differential Scanning Calorimetry (DSC) and Dynamic 

Mechanical Analysis (DMA), are commonly employed to measure the Tg of GFRP 

composites (Bishay et al., 2017; Sehrawat et al., 2022). Knowledge of the Tg of GFRP 

composites aids in material selection, process optimization, and component design, 

ensuring that the composite can withstand the intended service conditions. By accurately 

determining and considering the Tg, engineers and manufacturers can produce GFRP 

composites with superior thermal performance and durability. 

 

The Tg of GFRP composites depends on various factors, including the polymer matrix, 

fiber content, fiber orientation, and the presence of additives or fillers. Generally, the 

addition of glass fibers to the polymer matrix increases the Tg of the composite due to the 

reinforcing effect of the fibers (Nassar & Nassar, 2020). Figure 2.12 shows a general 

illustration of Tg of a material by plotting the stiffness vs temperature. It is noteworthy that 

beyond the Tg temperature, the material transitions into a rubbery state. 

 

 

Fig 2.12: An illustration of Tg plotting the temperature and stiffness 

(Polanský et al., 2009). 
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Understanding the Tg of GFRP composites is essential for designing and manufacturing 

components that can withstand the anticipated operating temperatures. Operating a GFRP 

composite above its Tg can lead to a significant reduction in mechanical properties, 

dimensional stability, and even structural failure. 

 

To optimize the performance of GFRP composites, researchers have investigated methods 

to improve the Tg and thermal stability of the composite materials. Strategies such as 

modifying the polymer matrix, using hybrid reinforcement systems, and incorporating 

nanofillers have been explored to enhance the Tg and thermal resistance of GFRP 

composites (Seydibeyoğlu et al., 2023). 

 

2.10 Predictive Modeling 

Predictive modeling of thermally aged Glass Fiber Reinforced Plastic (GFRP) composites 

plays a vital role in understanding the long-term behavior and performance of these 

materials under elevated temperature conditions. Thermal aging refers to the degradation 

and changes that occur in the composite structure when exposed to high temperatures over 

extended periods. 

 

The development of predictive models for thermally aged GFRP composites is crucial for 

industries that rely on these materials, such as aerospace and automotive. By utilizing these 

models, engineers can assess the long-term durability and performance of GFRP 

components, optimize maintenance schedules, and make informed decisions regarding 

material selection and design modifications. 

 

Predictive models are well suited for FRP composites due to their non-homogeneous nature 

of microstructure arrangement (Cai and Jin, 2018). Generally, upon close examination of 

FRP microstructure, manufacturing-level defects are observed. The most common defects 

are fibers without any matrix in between, uneven spacing, epoxy pockets which are empty 

voids that the epoxy did not fill and air entrapment. Figure 2.13 shows this 

nonhomogeneous microstructure arrangement of FRPs. 
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Fig. 2.13: Nonhomogeneous microstructure of FRP (“The Questionable Engineering of 

Oceangate,” 2023). 

 

All these defects combinedly create a random arrangement of microstructure arrangement 

which makes traditional Finite Element Method (FEM) analysis less effective. This is 

because FEM analysis relies on mathematical modeling of a finite element of the material 

and integrating it over different boundary conditions. Although it can be mentioned that 

FRPs fabricated in good quality controlled manufacturing facilities have a negligible 

amount of defects as discussed above. In addition, autoclave curing further removes any air 

bubbles within the matrix. However, these are very high-level manufacturing techniques 

that are used only for very sensitive applications. For general manufacturing techniques 

like the hand layup method which is used for this study, the possibility of the defects as 

discussed above remains very much a concern. Hence, data-driven predictive models are 

of more interest in general for FRPs. Also, with the rise in computing power, availability 

of cross-platform data and advancement in data mining technologies, data-driven predictive 

models have gained the attention of researchers. 

 

To accurately predict the effects of thermal aging on GFRP composites, various modeling 

approaches have been developed and applied. These models aim to simulate the 

degradation mechanisms, mechanical property changes, and microstructural evolution that 

occur during thermal aging. One commonly used modeling technique is finite element 

analysis (FEA), which employs mathematical algorithms to simulate the behavior of 

complex structures. FEA can be utilized to predict the mechanical properties, such as 

stiffness and strength, of thermally aged GFRP composites based on inputs such as 
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temperature, time, and material properties (Karuppannan Gopalraj and Kärki, 2021). 

Another approach is the development of empirical models based on experimental data. 

Researchers have conducted extensive testing to characterize the mechanical properties of 

GFRP composites before and after thermal aging. By analyzing the experimental data, 

empirical models can be derived to predict the degradation of specific properties, such as 

tensile strength or flexural modulus, as a function of aging time and temperature (Shalaby 

et al., 2018). 

 

The literature review suggests thorough experimentation by different researchers 

combining different new and old approaches to get increasingly higher accuracy.  Gibson 

et al. studied raised temperature effect on the mechanical properties of woven glass 

fiber/polypropylene composites and suggested a 3-parameter model to define the tensile 

behavior and a 2-parameter model to define the compressive behavior to analyze the effects. 

Kim et al. experimented with multiple regression analysis (MRA) and polynomial 

regression analysis (PRA) and ANNs, to analyze the factors affecting the tensile strength 

of basalt and glass fiber-reinforced polymers (FRPs). They found that ANNs could be the 

most efficient model for forecasting the durability of FRPs. Gayatri Vineela et al. 

performed an experiment in which the ultimate tensile strength of hybrid short fiber 

composites comprised of glass fiber, carbon fiber, and epoxy resin is predicted utilizing 

artificial neural network approaches. It was discovered that ANN can predict the values of 

tensile strength more precisely than the regression model. Mishra et al. conducted an 

experiment to demonstrate a MATLAB-based artificial neural network (ANN)-based 

approach for forecasting the deflection behavior of three kinds of beams: plain, steel-

reinforced, and bamboo-reinforced beams. The findings demonstrate that the ANN is a 

potent and trustworthy technique for evaluating the deflection behavior of concrete beams 

under the studied loading circumstances. Doblies et al. have developed a model to predict 

the mechanical properties, as well as the thermal exposure time and temperature of epoxy 

resin, using Fourier-transform infrared spectroscopy (FTIR)-spectroscopy, data processing, 

and artificial neural networks. Turco et al. developed two Artificial Neural Networks 

(ANNs) in order to forecast the compressive (ANN1) and tensile (ANN2) strengths of 

natural fiber-reinforced CEBs. The correlation coefficients (R-values) for ANN1 and 

ANN2 were 0.97 and 0.91, respectively, demonstrating the great accuracy of their 

generated tools.  
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The ongoing research in predictive modeling of thermally aged GFRP composites aims to 

improve the accuracy and reliability of these models. By further refining the understanding 

of degradation mechanisms and incorporating advanced modeling techniques, researchers 

strive to provide valuable tools for predicting the behavior of GFRP composites throughout 

their service life.  

 

In recent years, there has been an increasing interest in the use of data-driven modeling 

techniques, such as machine learning and artificial neural networks, to predict the effects 

of thermal aging on GFRP composites. These models utilize large datasets of experimental 

results to establish relationships between aging parameters and material properties, 

enabling accurate predictions of the composite behavior under different aging conditions 

(Zhang et al., 2023; Fazilat et al., 2012). These recent advancements in ANN and AI 

technologies have motivated the author to investigate the feasibility of developing the 

predictive model based on the discussed technologies. Although there are other techniques 

used in the predictive model like Image Processing and Regression Analysis; ANNs being 

a specialized and vast topic on its own, a theoretical background on the same has been 

incorporated. 

 

2.11 Artificial Neural Networks 

Neural networks and deep learning are trending topics in the realm of computer science and 

technology. Since the beginning of this century, the world has seen many developments in 

machine learning algorithms. Such algorithms are extremely complex and are often used 

for doing things that were thought to be impossible even as little as 40 years ago. Things 

like recognizing a face in a stadium full of thousands of people, driving a car through 9am 

traffic, playing chess with renowned grandmasters etc. are some of the accomplishments 

people have achieved with artificial intelligence and machine learning technology. This 

wonderful technology is modeled after probably the most complex object in the world that 

we often take for granted, and that is our brain. 

 

The billions of neurons that make up the entire brain are interconnected in an endless web 

of complexity. There are roughly 1014–1015 of these connections, known as synapses, in 

a single brain. Most of the time, they allow humans to learn from nature, adapt to it, and 

gain control of it. A neuron's fundamental form consists of a cell body with a few tiny 

branches attached to it. These branches are known as dendrites. The axon, a long, unique 
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item that resembles a wire and is joined to the cell body, is another component. Information 

is transmitted from the cell body to the next neuron via the dendrites of the axon. This 

connection between the two neurons is called a synapse. After we are born, we start to learn 

both consciously and subconsciously.  

 

Our brain receives data from our nerve endings and uses connections between neurons to 

analyze or recall them. Most of the time, walking does not require us to pay much attention 

to it. We don't calculate each step and perform the required activities. When we were taught 

to walk as children, our brains had to acquire the technique after numerous futile efforts. 

Our brain's synapses "remember" these unsuccessful attempts and change the way our leg 

muscles work so that we can continue walking without falling. It should come as no surprise 

that Artificial Intelligence, the force behind modern technology, is based on what is 

considered to be the most sophisticated system to man—our brain (Doblies et al., 2019). 

 

2.11.1 Basic Structure of Nural Networks 

Similar to the brain, neurons are a basic component of a neural network. It takes in data 

from the preceding neurons, analyses it, and then delivers it to the subsequent neuron. As 

shown in Figure 2.14, information from the prior neurons is received as numerical values 

(x0, x1, x2, etc.). The "weights" (w0, w1, w2, etc.), which are still another set of numerical 

values allocated to the connections, are multiplied by these. The cell body then adds up and 

processes the multiplied values of these weights (w0, w1, w2, etc.) and input values (x0, 

x1, x2, etc.), together with another numerical value assigned to each neuron, called the bias 

(b), using an activation function. The following neuron receives the processed value after 

that. A comparison of biological neurons with ANNs and their synapse is shown in Figure 

2.14. 
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Fig. 2.14: A biological neuron in comparison to an artificial neural network (a) human 

neuron, (b) artificial neuron, (c) biological synapse and (d) ANN synapses (Meng et al., 

2020). 

 

Several activation functions are used to get output from each neuron. Purelin function, 

Sigmoid function, hyperbolic tan (tanh) and rectified linear unit (ReLU) are some of the 

most widely used activation functions in neural networks. Purelin and Sigmoid functions 

have been used as activation functions in this research. 

 

2.11.2 Types of Neural Networks 

There are many types of neural networks and each of them have their applications along 

with a set of advantages and disadvantages. The models that are mostly used include: 

 

Feedforward fully connected neural network: A feedforward fully connected neural 

network is a type of artificial neural network in which there are no cycles, or repetitions of 

connections between the neurons. In this network, information only flows in one direction 

through the neurons. Information travels from the input neurons in the input layers, via the 

hidden nodes in the hidden layer (if any), and to the output nodes in the output layer during 

the forward stroke or forward movement of data. No neuron's output becomes an input to 

the neuron that came before it. Similarly, during training of the network, the network 

parameters are updated sequentially in a reverse direction. This starts from the output layer, 
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goes through all the hidden layers and ends with the input layer. The input layer takes input 

and the output layer generates output. Each neuron in each layer is connected to all the 

neurons in the previous layer; hence, the name is “Fully connected neural network”. In a 

feedforward fully connected neural network, the connections between the neurons do not 

recur, or, to put it another way, there are no cycles. In this network, information travels 

only one way through the neurons. The input neurons in the input layers send information 

to the output nodes in the output layer via the hidden nodes in the hidden layer, if any, 

during the forward stroke or forward movement of data. Any neuron's output is not 

ultimately used as an input by the neuron that comes before it (Le, 2020; Kim and Oh, 

2021). 

 

Convolutional neural network: Different principles govern how convolutional neural 

networks operate. Usually, these networks are applied to image categorization issues. 

Convolution neural networks do not have fully connected neurons or nodes, in contrast to 

fully connected neural networks. Not all pixels are connected to the network's next layer 

when dealing with image classification difficulties, and the input neurons reflect the color 

value of the pixels that make up the image. Instead, the image is split up into different areas, 

each of which has a separate connection to a node in the layer below. The output layers and 

the outermost concealed layers are both fully connected layers (Kim and Oh, 2021). 

 

Recurrent neural network: In recurrent neural networks, the neurons or nodes in one layer 

and the layer before it are directly connected. In recurrent networks, which differ from 

feedforward networks in which information only travels in one direction, cycles can be 

visible at various stages of the network, allowing the network to feed information straight 

from a given layer to its previous layer. These networks are frequently used to forecast 

power demand in global electric grid systems (Kim and Oh, 2021). 

 

2.11.3 Activation Functions 

The mathematical modeling of neural networks also has features that replicate the brain and 

enable a neuron to "fire," or transfer data from one neuron to another, using the notion that 

a neuron can "fire" or transmit information from one neuron to another within our brain. 

The fact that these neurons are interconnected causes the data to flow from one neuron to 

the next to form a complex network chain, allowing the network as a whole to be described 

in a way that allows it to recall input values and recreate which neurons to fire. The 
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processes known as activation functions are those that cause neurons to fire. In neural 

networks, a variety of activation functions are employed. Some of the most used activation 

functions are shown in Figure 2.15. 

 

 

Fig. 2.15: Commonly used activation functions (a) tansig, (b) logsig, (c) purelin, (d) 

rectilin, (e) satlin and (f) satlins (Le, 2020). 

 

Sigmoid function: The sigmoid function is a well-known mathematical function that can 

take any numerical value and output a value ranging from 0 to 1. The sigmoid function can 

be written as  (Meng et al., 2020): 

 
(2.1) 

 

The key benefit of utilizing a sigmoid activation function is that it consistently generates 

an output in the range of 0 to 1. All of the neurons in all of the network's layers can have a 

controlled and effective flow of information thanks to this data processing. In classification 

issues, when the output neurons just need to produce a number close to 0 or 1 to reflect the 

input data being classified between various classes, sigmoid functions play a significant 

role. A neural network, which is intended to distinguish between handwritten numbers, is 

a nice illustration of this. There are ten numbers in the typical 10-based numbering system 

and so this network can have 10 neurons in the output layer. If only the first neuron 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
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produces a value close to 1 and other neurons produce values close to 0, the input number 

can be classified as a “0”. So the output from the output layer may look like “1000000000” 

for “0”. Similarly, for “1”, the output layer may look like “0100000000” and for “9”, the 

output layer may look like “0000000001”. 

 

Hyperbolic tan function: The hyperbolic tan or tanh(x) is closely related to the sigmoid 

function in terms of the output it can generate based on the inputs it receives. Its output 

ranges from -1 to 1 as opposed to the 0 to 1 range of the sigmoid function. The hyperbolic 

tan function can be written as (Mishra et al., 2019): 

 
(2.2) 

 

Rectified linear unit (ReLU) function: The ReLU function is one of the most used activation 

functions of a neural network. It takes an input and outputs a 0 if the input is 0 or negative 

and outputs the input value unchanged if it is positive. It can be written as (Mishra et al., 

2019): 

 
(2.3) 

 

ReLU function is used quite often in neural network models as it takes less computational 

time and power to calculate. But unlike sigmoid or tanh function, ReLU function cannot 

crunch the data between two numerical values and can generate values ranging from 0 to 

infinity. 

 

Purelin function: Purelin is the simplest transfer function. Transfer functions calculate a 

layer's output from its net input. The purelin function can be written as (Mishra et al., 2019): 

 
(2.4) 

 

2.11.4 Neural Network Learning 

Neural network learning involves several sequential steps. Setting up a neural network with 

known inputs and outputs, choosing random values for the weights and biases, and then 

using an algorithm called the back-propagation algorithm to adjust the weights are the 

tanh(x) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

𝑅𝑒𝐿𝑈(𝑥) = {
0, 𝑖𝑓 𝑥 ≤ 0
𝑥, 𝑖𝑓 𝑥 > 0

 

𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑥) = 𝑥 
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major steps in the learning process. This is done so that the known inputs can produce the 

known outputs as accurately as possible (Doblies et al., 2019).  

 

The learning rate is regarded as the most crucial hyper-parameter of a neural network 

architecture since it determines how quickly the network learns new information. Although 

it will take a very long time, a learning rate that is too low will lead to the weights being 

fine-tuned. A too-high learning rate will speed up training, but the outcomes will typically 

contain more mistakes. The goal is to identify the optimal learning rate that will allow the 

neural network model to acquire accurate knowledge as quickly as feasible.  

 

2.11.5 Neural Network Testing 

Typically, neural networks are tested to determine what kind of output they can produce 

with certain unknown input values. The neural networks' accuracy is determined by this. A 

similar process is employed in the research methodology. The Red, Green and Blue color 

values of thermally aged GFRP samples serve as the known input, and the known output is 

the thermal aging time and temperature of thermally aged GFRP. The efficiency of the 

neural networks is then assessed by testing them on a collection of Red, Green and Blue 

color values of thermally aged GFRP samples that they have never been trained on. 

 



41 
 

CHAPTER 3 

MATERIALS AND METHODOLOGY 

 

3.1 Introduction 

This chapter discusses the materials and methodology used for this research work. The 

objective of this chapter is to aid in the validation of the results in case the study is to be 

repeated by another researcher. Experimental setup both the experimental and 

computational part of the work is discussed here. The experimental part discussed GFRP 

fabrication, machining, thermal Aging and mechanical property testing. The computational 

part discusses using image processing, ANNs and regression analysis using MATLAB and 

Minitab. Complete details of the materials used, specifications of the lab equipment, 

software tools and other experimental setup are presented. Some information has also been 

referred to the appendices.  

 

3.2 Materials Used 

Commercially available 1100 GSM high silica (SiO2 ≥ 96%) woven Glass fiber cloth was 

selected as the reinforcing element for preparing the GFRP composite material. This glass 

fiber cloth was purchased from Jiangnan Company and originated in Jiangsu, China. The 

glass fiber fabric has a thickness of 1.2 mm and a thread count of 15 for WEFT and 20 for 

WARP. Two different orientation of glass fiber cloth was chosen for this research.  

 

As the matrix material, Araldite AW 106 IN epoxy resin and HV 953 U hardener were 

used. According to the manufacturer's recommendations, 100R/80H by weight of resin and 

hardener was utilized. The viscosity (cP) at 25°C is 50000 and 35000, respectively, while 

the specific gravities of the hardener and resin are 1.17 and 0.92, respectively. Appendix 

M shows the photos of the reinforcement and matrix material. 

 

3.3 Methodology 

The methodology used for this study involved 10 interrelated steps. The first 5 steps were 

part of the experimental work which dealt with fabrication and characterization of the 

GFRP. The other 5 steps were part of the computational work which dealt with predictive 

modeling. The step-by-step graphical methodology is shown in Figure 3.1 as follows.  
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Fig. 3.1: Graphical methodology of this research. 

 

The details of the  10-step methodology is as follows: 

i. GFRP Composites were fabricated using woven and random glass fibers by hand-

layup method. 

ii. Samples for mechanical testing were prepared as per ASTM standards by 

mechanical cutting and laser cutting. 

iii. These unaged samples underwent tensile test, flexural test, microhardness test and 

SEM imaging to find the effect of fiber orientation and machining on the 

mechanical properties. 

iv. Tensile test Samples were thermally aged at different temperatures and times. Their 

distinct color changes at elevated temperatures were identified and photographed.  

v. Thermally aged Samples were mechanically tested as per ASTM standards and 

results including Ultimate Tensile Strength (UTS), Yield Strength, Maximum 

Strain, Elastic Modulus and Tangent Modulus were recorded. 

vi. An image processing algorithm identified the color changes of the thermally aged 

samples (from the photos taken in step iv) and gave the most consistent Red, Green 

and Blue (RGB) color values as the output. 

vii. Two ANNs were trained which took input of the RGB values and predicted the 

thermal aging variables (aging temperature and time) the samples underwent. 

viii. A regression analysis was performed to correlate UTS and thermal aging variables 

(aging temperature and time). 
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ix. The ANN-predicted aging temperature and time were used to predict the UTS value 

using the regression equation developed in step viii. This was the final output of the 

predictive model. 

x. UTS from the experimental result (step v) and estimations of the predictive model 

(step ix) were analyzed and compared. 

 

3.4 Fabrication of GFRP  

The GFRP composite material was fabricated using the hand layup technique. The hand 

layup method is one of the traditional and widely used techniques for fabricating composite 

materials. It involves the manual placement of reinforcement fibers, such as fiberglass, in 

a mold, followed by the application of a resin matrix. Figure 3.2 shows the process of the 

handlayup method. 

 

Fig. 3.2: Handlayup method of composite fabrication 

(Udupi and Lester Raj Rodrigues, 2016). 

 

GFRP sheets were prepared from both woven glass fibers and randomly oriented glass 

fibers. A plywood mold with the dimensions of 325 mm × 325 mm x 10 mm was employed. 

To create one composite slab, two layers of glass fibers were sliced into 325mm x 325mm 

squares from both woven fiber GFRP and random fiber GFRP. A clear plastic release sheet 

was positioned at the bottom and coated with wax to make the removal procedure easier 

after production. To prevent air entrapment, the resin-hardener mixture was first placed in 

one layer and spread uniformly with a spatula. Then, one layer of the resin-hardener 
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combination was put between two layers of glass fiber. The topmost layer was then filled 

with the resin-hardener combination and protected by a transparent plastic release film. 

Using a roller, gentle pressure was applied above the release film to release any trapped air. 

As soon as the topmost layer of resin-hardener was placed, the joint parts were clamped. 

The composite was then allowed to cure for 12 hours at room temperature under the weight 

of a 17 kg plywood sheet. The constructed composite slab had a 3mm thickness. Table 3.1 

and 3.2 shows the composition of fabricated GFRP slab using woven and random glass 

fibers respectively. 

 

Table 3.1: Composition of the woven GFRP composite slab 

Material Weight (gm) Weight (%) 

Glass Fiber Cloth 206 45 

Epoxy Resin 138 30 

Hardener 111 25 

Total 456 100 

 

Table 3.2: Composition of the random GFRP composite slab 

Material Weight (gm) Weight (%) 

Glass Fiber Cloth 150 45 

Epoxy Resin 100 30 

Hardener 80 25 

Total 330 100 

 

A total of 5 layers of reinforcement and matrix were laid up in the GFRP slab for both 

woven and random glass fibers. Figure 3.3 shows the arrangement of reinforcement and 

matrix layers in the GFRP slab. 
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Fig. 3.3: Arrangement of layers in GFRP composite sheet. 

 

After the curing time was finished, loads were removed from the GFRP mold. The GFRP 

slab was carefully removed from the protective polyurethane film to ensure a good surface 

finish. Figure 3.4 shows the fabricated GFRP composite slabs after curing. 

 

 

(a) 

 

(b) 

Fig. 3.4: Fabricated Woven GFRP Sheet (a) Woven GFRP, (b) Random GFRP. 

 

3.5 Machining of GFRP 

The prepared composite slabs were both mechanically cut and laser cut to prepare the 

samples for mechanical testing. For mechanical cutting, Bosch GWS 900-100 professional 

angle grinder with TJWELD 1.2 mm thickness cutting wheel was used.  

 

For laser cutting, CO2 laser cutting machine model STJ1530M was employed. The laser 

power of this machine is 220w. The laser was used at 80% power (176w) with a 5 mm/s 

speed. It took two runs of the laser to completely cut the 3mm thickness of the sample. The 
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maximum temperature of the laser beam was 558°C. Although it varied around 450°C 

during the cutting process. This temperature was measured using UNI-T Pro UTI 260B 

professional thermal imager. Figure 3.5 shows the maximum temperature measurement of 

the laser beam. 

 

 

Fig. 3.5: Measurement of laser beam temperature. 

 

Using Mechanical and Laser machining, GFRP samples were prepared for mechanical 

testing as per ASTM standards. Table 3.3 shows the sample sizes as per ASTM standards 

for tensile, flexural and microhardness testing. 
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Table 3.3: GFRP sample dimensions of tensile, flexural and microhardness testing 

Test Name 
Sample Size 

(mm) 
Ref Standard 

Tensile Test 250 x 25 x 3 

ASTM D3039 

Standard Test Method for Tensile Properties of 

Polymer Matrix Composite Materials 

Flexural Test  

(3 point) 
125 x 12.7 x 3 

ASTM D790 

Standard test Methods for Flexural Properties of 

Unreinforced and reinforced Plastics and 

Electrical Insulating Materials 

Microhardness Test 30 x 30 x 3 

ASTM E-384 

Standard Test Method for Micro indentation 

Hardness of Materials 

 

A total of 80 samples were prepared for testing the tensile, flexural, microhardness (HV) 

properties and SEM imaging at room temperature. Also, a total of 48 samples were prepared 

for the tensile test of thermally aged GFRP. A grand total of 128 samples were prepared 

and tested including the 80 unaged samples and 48 thermally aged samples. Table 3.4 and 

3.5 shows the sample count for Unaged and Thermally aged samples respectively.  

 

Table 3.4: Unaged GFRP sample count  

Fiber 

Orientation 
Machining 

Mechanical Property Testing 
Total 

Tensile Flexural HV SEM 

Woven Fiber 
MC 5 5 5 5 20 

LC 5 5 5 5 20 

Random Fiber 
MC 5 5 5 5 20 

LC 5 5 5 5 20 

Total  20 20 20 20 80 
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Table 3.5: Thermally aged GFRP sample count 

 
 

Time (mins) 
Temperature (°C) 

Total 
50 100 150 200 

Tensile Test 

30 3 3 3 3 12 

60 3 3 3 3 12 

90 3 3 3 3 12 

120 3 3 3 3 12 

Total  12 12 12 12 48 

 

The prepared GFRP samples subjected to mechanical and laser cutting showed distinctive 

surface finishing. Figures 3.6, 3.7 and 3.8 shows the GFRP samples prepared using 

mechanical and laser cutting for tensile, flexural and microhardness tests respectively. 

 

 

(a) 

 

 

(b) 

Fig. 3.6: Tensile test Samples (a) Mechanically cut, (b) Laser cut. 
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(a) 

 

 

(b) 

Fig. 3.7: Flexural test Samples (a) Mechanically cut, (b) Laser cut. 

 

 

(a) 

 

(b) 

 

Fig. 3.8: Microhardness test samples (a) Mechanically cut, (b) Laser cut. 

 

3.6 Mechanical Property Testing 

Mechanical property testing plays a crucial role in assessing and characterizing the 

performance of glass fiber reinforced composites. These tests provide valuable information 

about the strength, stiffness, toughness, and other mechanical properties of the composite 

material. By conducting rigorous mechanical property testing, engineers and researchers 

can evaluate the suitability of glass fiber reinforced composites for various applications and 

optimize their design and manufacturing processes. 

 

In this research, tensile, flexural and microhardness tests were carried out. The prepared 

GFRP samples were machined and samples were prepared as per the dimensions specified 

in the respective ASTM standards. SEM imaging was also performed along the machined 
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edges and tensile fractured edges. Appendix N shows the photos of tensile, flexural, 

microhardness and SEM test equipment used for this study. Table 3.6 shows the GFRP 

sample size, ASTM standard and equipment used for tensile, flexural and microhardness 

testing. 

 

Table 3.6: GFRP sample size, ASTM standard and equipment used for tensile, flexural 

and microhardness testing 

Test Name Equipment Sample Size (mm) Ref Standard 

Tensile Test 

HST Kason PLS 

100 UTM 

Machine 

250 x 25 x 3 

ASTM D3039 

Standard Test Method for 

Tensile Properties of 

Polymer Matrix Composite 

Materials 

Flexural Test 

(3 point) 

HST Kason PLS 

100 UTM 

Machine 

100 x 12.7 x 3 

ASTM D790 

Standard test Methods for 

Flexural Properties of 

Unreinforced and 

reinforced Plastics and 

Electrical Insulating 

Materials 

Microhardness 

Test 

TMTECK-

10MDT Auto 

Turret Vickers 

Microhardness 

Tester 

30 x 30 x 30 

ASTM E-384 

Standard Test Method for 

Micro indentation 

Hardness of Materials 

SEM Imaging 

JSM-7610F 

Field Emission 

SEM 

3 x 3 x 3 

(approximate) 
As per OEM 

 

 

 



51 
 

3.6.1 Tensile Test 

Tensile testing is a fundamental method used to evaluate the mechanical properties of glass 

fiber reinforced composites. This test provides valuable information about the tensile 

strength, modulus, and elongation characteristics of the material. Understanding these 

properties is crucial for assessing the performance and suitability of glass fiber reinforced 

composites in various applications. 

 

During a tensile test, a test specimen of the composite material is subjected to an axial load 

in a controlled manner until it fractures. The test measures the force applied to the specimen 

and the corresponding deformation, allowing for the determination of key tensile 

properties. The ultimate tensile strength represents the maximum load the specimen can 

withstand before failure, indicating the material's resistance to tensile forces. The elastic 

modulus, also known as Young's modulus, represents the stiffness of the material and is 

determined from the initial linear portion of the stress-strain curve. 

 

Tensile testing provides insights into the failure behavior of glass fiber reinforced 

composites. The fracture pattern and the presence of specific failure modes, such as fiber 

pull-out or fiber breakage, can be analyzed to understand the composite's performance 

under tension. Additionally, the strain at failure or elongation at break provides information 

about the material's ductility or brittleness. 

 

The tensile test was performed on flat samples as per ASTM D3039 standard (“Standard 

Test Method for Tensile Properties of Polymer Matrix Composite Materials,” 2014). 

Samples are cut into 250mm x 25mm x 3mm sizes with end tabs. The test was performed 

in the universal testing machine (UTM) PLS100 with a crosshead speed of 5mm/min. The 

flat samples were fixed between the grips of each head of the testing machine. The grip was 

set up in such a way that the direction of force applied to the sample was coincident with 

the longitudinal axis of the sample. Fig 3.9 and 3.10 shows the tensile test samples 

following the tensile failure during the test for woven and random samples respectively. 
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(a) 

 

 

(b) 

Fig. 3.9: Woven GFRP samples after tensile test (a) Mechanically cut, (b) Laser cut. 

  

 

(a) 

 

 

(b) 

Fig. 3.10: Random GFRP samples after tensile test (a) Mechanically cut, (b) Laser cut. 

 

The Tensile test was performed for a total of 51 samples from 17 SGNs with 3 samples in 

each SGN. At first, 03 thermally unaged samples underwent tensile testing. From the tensile 

test data, max strain (%), UTS (MPa), yield strength (MPa), elastic modulus (MPa) and 

tangent modulus (MPa) were calculated. Afterward, 48 thermally aged samples underwent 

tensile testing. The average values of the 3 samples in each group were considered for the 

respective group. Finally, a total of 17 sets of tensile test data was obtained including UTS, 

Max Strain and Yield Strength. 
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3.6.2 Flexural Test 

Flexural testing is a crucial method for evaluating the mechanical properties of glass fiber 

reinforced composites, particularly their strength and stiffness under bending loads. This 

test provides valuable information about the flexural modulus, flexural strength, and 

fracture behavior of the material, which are important considerations for structural 

applications. 

 

In a flexural test, a test specimen of the glass fiber reinforced composite is subjected to a 

three-point or four-point bending load. The specimen is supported on two points or three 

points, respectively, and a load is applied at the midpoint. As the load increases, the 

specimen undergoes bending, and the resulting stress and strain are measured. This test 

allows for the determination of the flexural modulus, which represents the material's 

resistance to deformation under bending, and the flexural strength, which represents the 

maximum stress the material can withstand before failure. 

 

Flexural testing provides insights into the performance of glass fiber reinforced composites 

under bending loads, which are common in structural applications. It helps assess the 

material's ability to withstand bending stresses and provides information about its resistance 

to fracture and deformation. The fracture behavior observed during the test, such as fiber 

breakage or delamination, can be analyzed to understand the failure mechanisms and 

improve the composite's design and manufacturing processes. 

 

The flexural test was performed utilizing a three-point loading system applied to a simply 

supported flat GFRP specimen as per ASTM standard D790 (“Standard Test Methods for 

Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating 

Materials,” 2017). This test was employed by a universal testing machine (UTM) PLS100 

with a crosshead speed of 5 mm/min. Samples were cut into 100mm x 12.7mm x 3mm size. 

The support span size was 60mm. The flat samples were placed between the support span. 

The load was applied to the samples at the center of the support span and the load-deflection 

characteristics were investigated from the flexural test of the GFRP samples. Detailed data 

from the tensile test was analyzed to calculate Ultimate Flexural Strength (UFS) and 

Flexural Modulus. The test was performed on five samples and the average values along 

with standard deviations were calculated for each data. Figure 3.11 and 3.12 shows the 
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flexural test samples following the flexural failure during test for woven and random 

samples respectively. 

 

 

(a) 

 

(b) 

Fig. 3.11: Woven GFRP samples after flexural test (a) Mechanically cut, (b) Laser cut. 

 

 

(a) 

 

(b) 

Fig. 3.12: Random GFRP samples after flexural test (a) Mechanically cut, (b) Laser cut. 
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3.6.3 Microhardness Test 

Vickers microhardness testing is a valuable method for evaluating the hardness and 

mechanical properties of glass fiber reinforced composites at a microscopic scale. This test 

provides information about the material's resistance to indentation, which can be indicative 

of its strength and toughness. 

 

In Vickers microhardness testing, a pyramidal-shaped indenter with a square base is pressed 

into the surface of the glass fiber reinforced composite under a specific load. The 

indentation size is measured, typically using an optical microscope, and the Vickers 

hardness number (HV) is calculated based on the applied load and the surface area of the 

indentation. Unlike traditional hardness tests, such as Rockwell or Brinell, Vickers 

microhardness testing allows for smaller indentations and provides more localized hardness 

measurements. 

 

Vickers microhardness testing is particularly useful for characterizing the hardness 

variations within a glass fiber reinforced composite. It can help identify differences in 

hardness between the matrix and the reinforcement, as well as variations in different regions 

of the composite structure. By mapping the hardness distribution, researchers can gain 

insights into the material's microstructure, such as the degree of fiber-matrix bonding or the 

presence of defects. 

 

Several studies have utilized Vickers microhardness testing to investigate the mechanical 

properties of glass fiber reinforced composites (Zhou et al., 2007; Pan, 2022). The results 

obtained from these tests contribute to understanding the material's response to localized 

loading and aid in the optimization of composite fabrication processes. Standards and 

guidelines, such as ASTM E384 (“Standard Test Method for Microindentation Hardness of 

Materials,” 2022), provide standardized procedures and recommendations for conducting 

Vickers microhardness testing on a wide range of materials, including glass fiber reinforced 

composites. These standards ensure consistency and accuracy in testing methodologies, 

allowing for reliable comparison of results across different studies. 

 

Vickers Micro Hardness testing machine TMHV-10MDT manufactured by TMTeck 

Instrument Company Ltd. was used in this experiment. This machine has a diamond 

indenter of a pyramid shape at an angle of 136°. Samples were cut into a 30mm x 30mm x 
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3mm size and tested on the aforementioned tester as per ASTM standard E384. The test 

load was selected as 300 grams. During the test, the pyramid indenter presses on the sample 

with the prescribed test load. Accordingly, a pyramid shape indentation is made on the 

sample. Attached microscopes are then used to measure the two diagonals of the pyramid 

shape. Then the Vickers Micro Hardness value (HV) is calculated and displayed in the 

machine. Five samples had been tested from both mechanically cut and laser cut GFRP. 

Ten HV readings were taken from each sample to calculate the average HV and standard 

deviation for each sample. 

 

3.6.4 Scanning Electron Microscope (SEM) Observation 

Scanning electron microscope (SEM) testing is a powerful technique used to analyze the 

microstructure and surface morphology of glass fiber reinforced composites. This method 

provides detailed information about the fiber-matrix interface, fiber distribution, and the 

presence of defects or damage within the composite material. 

 

In SEM testing, a focused electron beam scans the surface of the composite, and the 

interactions between the beam and the material produce various signals, such as secondary 

electrons, backscattered electrons, and X-rays. These signals are detected and processed to 

generate high-resolution images and elemental composition maps of the sample. 

 

SEM imaging allows for the observation of the composite's microstructure at high 

magnification, revealing details about the fiber arrangement, fiber-matrix bonding, and the 

presence of voids, cracks, or delamination. It provides insights into the quality of the 

composite fabrication process and the effectiveness of interfacial bonding between the glass 

fibers and the matrix. 

 

Additionally, SEM testing can be coupled with energy-dispersive X-ray spectroscopy 

(EDS) analysis, which enables the identification and mapping of elemental compositions 

within the composite. This information helps in understanding the distribution of elements 

and the chemical interactions at the fiber-matrix interface. 

 

Numerous studies have employed SEM testing to investigate the microstructural 

characteristics of glass fiber reinforced composites. The results obtained from SEM 

analysis contribute to the understanding of the material's failure mechanisms, the 
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optimization of fabrication processes, and the development of advanced composite 

materials. SEM testing is typically conducted following proper sample preparation, 

including sample mounting, polishing, and coating to enhance conductivity and minimize 

charging effects.  

 

The machined surface of one sample each from mechanically cut and laser cut composites 

was examined using Scanning Electron Microscope (SEM) model JSM-7610F. 

Micrographs of the machined surface are taken in 150x, 300x and 700x magnification at 15 

kV setting. The tensile fractured surface of one sample each from mechanically cut and 

laser cut composites had also been studied using Scanning Electron Microscope (SEM) 

model JSM-7610F. Micrographs of the tensile fractured surface were taken in 150x, 300x 

and 700x magnification and 15 kV setting. 

 

3.7 Thermal Aging 

As this study involves thermal aging, the elevated temperature properties of the 

reinforcement and the matrix were very important considerations. The glass fiber cloth used 

in this study can reportedly withstand operating temperatures of up to 1100°C and has a 

melting point of 1700°C, according to the manufacturer. The glass transition temperature 

(Tg) of the resin-hardener is 63°C as reported by the manufacturer. The specification 

highlighting the Tg of the epoxy resin and hardener is shown in Appendix J. 

 

The Glass Transition Temperature (Tg) is one of the most important properties of any epoxy 

and is the temperature region where the polymer transitions from hard, glassy material to a 

soft, rubbery material. For comparison with room temperature mechanical properties, 3 

samples were also tested. These room-temperature samples are not thermally aged in ovens 

and are hereafter referred to as “Unaged” samples. 

 

Temperature and time were the two variables selected for the thermal aging of the samples. 

For thermal aging, specific temperatures and aging times were chosen considering the 

problem statement in aerospace applications and Tg of the epoxy. ATR 72-212A aircraft is 

certified for 120 mins Extended Twin Engine Operations (ETOPS). The relevant type 

certificate document is presented in Appendix K. It means that with only one out of two 

engines serviceable, this aircraft can fly a maximum of 120 mins. Single-engine operations 

put maximum stress on the engine. For this reason, the temperature in the GFRP bleed ducts 
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is the highest in this condition. Also, as per the Airconditioning system schematic of ATR 

72-212A aircraft, the maximum allowable bleed temperature is 204°C. The ATR 72-212A 

air conditioning system schematic is presented in Appendix L. Beyond this temperature, 

the bleed is shut off. Hence, during the operations, the most extreme situations can occur 

in terms of thermal aging in bleed ducts at 200°C for 120 mins. Again, to study the effect 

of thermal aging below but near the Tg temperature of 63°C is also required. 

 

As such The selected thermal aging temperatures were 50°C, 100°C, 150°C and 200°C 

while the thermal aging time were 30 mins, 60 mins, 90 mins and 120 mins. Such 

temperatures and exposure times are frequently encountered in the case of Air-conditioning 

bleed ducts of commercial aircraft and UAV operations and as well. 

 

Tensile testing samples were thermally aged in Carbolite Gero CWF 13/13 furnace. As per 

the manufacturer’s specifications, this furnace can reach the maximum temperature of 

1300°C in 121 minutes with a maximum continuous operating temperature of 1200°C. The 

internal dimension of the furnace chamber is 200 mm x 200 mm x 325 mm which is 

sufficient to accommodate several tensile testing samples at once. 

 

For each one of the thermal aging temperatures, samples were aged at all the above aging 

times. As such, a total of 16 combinations of thermal aging were performed in the ovens. 

With the addition of the unaged samples, the total number of combinations were 17. These 

17 combinations were labeled as sample group numbers (SGN). Each of the sample groups 

had 3 samples making a total of 51 samples for 17 groups. Table 3.7 shows the sample 

group numbers and associated thermal aging variables. 
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Table 3.7: Sample group numbers and associated thermal aging variables 

Sample group number 

(SGN) 

Aging 

temperature 

Aging 

time 

Number of samples in the 

group 

1 Unaged Unaged 3 

2 50°C 30 mins 3 

3 50°C 60 mins 3 

4 50°C 90 mins 3 

5 50°C 120 mins 3 

6 100°C 30 mins 3 

7 100°C 60 mins 3 

8 100°C 90 mins 3 

9 100°C 120 mins 3 

10 150°C 30 mins 3 

11 150°C 60 mins 3 

12 150°C 90 mins 3 

13 150°C 120 mins 3 

14 200°C 30 mins 3 

15 200°C 60 mins 3 

16 200°C 90 mins 3 

17 200°C 120 mins 3 
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3.8 Computational Work 

The computational work relies on the data obtained from the experimental work. This work 

was done in MATLAB and Minitab software. Three parts of the computational model 

namely, image processing, ANNS and regression analysis was done separately in respective 

software. Image processing and ANNs were developed in MATLAB while Regression was 

done in Minitab. Standard library functions were used to perform the calculations. 

However, all the data processing, standardization and sequencing were done with codes 

specifically written for the model. Finally, a master code was developed to integrate the 

results of the three parts of the model and provide the final output. The model was able to 

predict the UTS value of thermally aged GFRP from a photograph of the sample. 

 

3.8.1 Image Processing 

A MATLAB image processing program using ‘imread’ function was developed which can 

read and identify the color changes of the samples. The `imread` function in MATLAB is 

a powerful tool for reading and importing digital images into the MATLAB environment. 

It allows users to access and manipulate image data for various applications, including 

image processing, computer vision, and data analysis. 

 

The `imread` function is part of the Image Processing Toolbox in MATLAB and provides 

a straightforward syntax for loading images in different formats, such as JPEG, PNG, BMP, 

and TIFF. By specifying the file name or path as the input parameter, `imread` reads the 

image file and returns a matrix representation of the image data. (“Read image from 

graphics file - MATLAB imread,” n.d.) 

 

One of the key advantages of the `imread` function is its ability to handle both grayscale 

and color images. Grayscale images are represented as 2D matrices, where each element 

corresponds to the intensity value of a pixel. Color images, on the other hand, are 

represented as 3D matrices, with each element containing the RGB (Red, Green, Blue) 

color values of a pixel. 

 

Researchers and practitioners in various fields have utilized the `imread` function in 

numerous applications. For instance, in image processing, `imread` is commonly used for 

image enhancement, noise reduction, and feature extraction tasks. In computer vision, it 

aids in object detection, image recognition, and tracking algorithms. Additionally, in 
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scientific research, `imread` enables the analysis of images captured in experiments or 

simulations. (Gonzalez, R. C., & Woods, R. E. 2002) 

 

The photos of the thermally aged samples were uploaded to the ‘imread’ function within 

the MATLAB program. The program performed calculations and gave the most consistent 

value of the Red, Green and Blue color (RGB) values in a matrix form for each of the 

samples. The code was optimized in such a way that even if there was some slight variation 

of color throughout different areas of the sample, the code was able to Figure out the most 

consistent value. 

 

All of the photos of the samples were taken on the same day by keeping the lighting 

conditions same. This was an important criterion as large variations of light exposure have 

the possibility of distorting the color values and thus de-normalizing the dataset of the 

image processing algorithm. Figure 3.13 shows the pseudocode used for the image 

processing algorithms in MATLAB. Figure 3.14 shows the MATLAB ‘imread’ function. 

 

 

Fig. 3.13: MATLAB pseudocode of the image processing algorithm. 

 

Step 4: Export the results to an excel file. 

Step 3: Calculate the most consistent values of Red Green and Blue color value 
among all the pixels within each matrix.

Step 2: Seperate the Red, Green and Blue color values for every pixel of the image 
in seperate matrices.

Step 1: Read the uploaded photo of the sample.
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Fig. 3.14: MATLAB image processing algorithm with ‘imread’ function. 

 

3.8.2 Artificial Neural Networks 

Artificial Neural Networks (ANN) is a biologically-inspired computational method. It is 

one of many Artificial Intelligence algorithms and techniques. The ANN technique is based 

on a group of interconnected units or nodes called artificial neurons. The architecture of 

ANN consists of an input layer, one or several hidden layers and an output layer. As their 

name suggests, the input layer provides the input parameters to the ANN and the output 

layer provides the desired output. The calculations are performed by the hidden layers using 

weights and biases. The overall structure loosely models the neurons in a biological brain.  

 

The nntool is a powerful graphical user interface (GUI) tool in MATLAB that facilitates 

the design, training, and evaluation of artificial neural networks (ANNs). It provides a user-

friendly environment for constructing and fine-tuning neural network architectures for 

various applications, such as pattern recognition, classification, and regression. 

 

In MATLAB, the nntool can be accessed through the Neural Network Toolbox, which 

offers a comprehensive set of functions and tools for neural network analysis. The nntool 

allows users to define the network architecture by specifying the number of layers, the 

number of neurons in each layer, and the activation functions. It provides flexibility in 

choosing various network types, including feedforward networks, recurrent networks, and 

radial basis function networks. 
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The nntool in MATLAB also enables users to train the neural network using different 

algorithms, such as backpropagation, Levenberg-Marquardt, and resilient backpropagation. 

It provides options for setting training parameters, including the number of epochs, learning 

rate, and momentum. Users can monitor the training progress through visualizations, such 

as error curves and weight updates. (Haykin, S. 2009) 

 

Furthermore, the nntool allows users to evaluate the performance of the trained network 

using test data. It provides measures like mean squared error, classification accuracy, and 

confusion matrices to assess the network's accuracy and generalization capabilities. 

Additionally, the nntool supports visualization of the network structure, weight matrices, 

and activation profiles, aiding in the interpretation and analysis of the network's behavior. 

(“Deep Learning ToolboxDocumentation,” n.d.) 

 

Selecting the number of hidden layers and neurons in an Artificial Neural Network (ANN) 

is an important task, as it directly impacts the network's learning capability and 

performance. While there isn't a definitive rule for determining the optimal number of 

hidden layers and neurons, there are some approaches can be followed. Some problems 

may require more complex architectures with multiple hidden layers, while others can be 

adequately addressed with a simpler network. Training and evaluating the network using 

appropriate evaluation metrics is also an approach. If the model is underfitting (has high 

training and validation errors), it might be considered to increase the complexity by adding 

more hidden layers or neurons. On the other hand, if the model is overfitting (performs well 

on training data but poorly on unseen data), it may be needed to reduce the number of 

hidden layers or neurons, or use regularization techniques like dropout or L1/L2 

regularization. That there is no one-size-fits-all solution, and finding the optimal 

architecture often requires experimentation and iteration. It's essential to strike a balance 

between model complexity, computational resources, and the available dataset's generally 

recommended to start with a smaller architecture and gradually increase its complexity if 

needed. As such, the number of layers, amount of neurons and transfer functions are chosen 

through trial and error to achieve a balance between accuracy, computational time and 

architectural complexity. The ‘nntool’ toolbox of MATLAB is shown in Figure 3.15. 
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Fig. 3.15: nntool toolbox in MATLAB. 

 

Using MATLAB, two ANNs were used in series to predict the thermal aging temperature 

and time. ANN1 took 3 inputs as the RGB values and gave the thermal aging temperature 

as the output x1. ANN2 takes 4 inputs including the same 3 previous RGB values and the 

output of the first ANN, x1. The output of the second ANN is the thermal aging time x2. 

Both ANNs consist of two layers including one hidden layer and one output layer. The 

hidden layer has 10 neurons and the output layer has 1 neuron. The transfer function of the 

hidden layer is chosen as tansigmoid while the transfer function of the output layer is chosen 

as purelin.  

 

A lot of trial and error was performed in selecting the number of layers, neurons and the 

transfer functions. Increasing the number of layers and neurons have the potential of 

increasing the accuracy at the cost of processing power and time. However, this outcome 

is also heavily dependent on the composition of the dataset and its inter-relationship. After 

testing different combinations of many layers and neurons, the architecture of the ANNs 

were finalized at the chosen configuration. Regarding the transfer function, tansig was 

chosen to have all the color values normalized within +1 and -1. This reduced the 

propagation of errors in the image-processing algorithm. The transfer function of the output 

layer was kept as purelin to simplify the model and develop a linear relationship. Figure 

3.16 shows the architecture of the two ANNs. 
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(a) 

 

(b) 

Fig 3.16: The architecture of the two ANNs (a) ANN1, (b) ANN2. 

 

Total 24 sets of thermal aging data were used for the training and testing of the two ANNs. 

Among the 24 sets, 19 set were used for the training and the remaining 5 sets were used for 

testing. These datasets are presented in Appendix G and Appendix H respectively. 

 

3.8.3 Regression Analysis 

A multi-regression analysis was performed in Minitab software. The regression analysis 

developed an equation to estimate the UTS values from the thermal aging variables. The 

tensile testing dataset of SGN 1-17 shown in table 3 was used to perform the regression. 

The thermal aging temperature and time were considered as the two independent variables. 

UTS was the dependent variable. The two cascaded ANNs estimated the thermal aging 

temperature.  

 

Multiple regression analysis is a statistical technique used to examine the relationship 

between a dependent variable and two or more independent variables. It is a powerful tool 

for analyzing complex data sets and identifying the most influential factors that impact the 

outcome of interest. Minitab, a popular statistical software package, provides robust 

capabilities for conducting multiple regression analyses. 

 

In Minitab, the multiple regression analysis is performed using the "Regression" menu, 

which allows users to specify the dependent variable and select the independent variables 
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for analysis. Minitab automatically fits the regression model, estimates the coefficients, and 

provides various statistical measures, such as the coefficient of determination (R-squared), 

significance levels, and confidence intervals (Montgomery et al., 2012). 
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CHAPTER 4 

CHARACTERIZATION OF GFRP 

 

4.1 Introduction 

This chapter discusses the characterization the fabricated GFRP composites by performing 

tensile, flexural and microhardness tests. SEM imaging is also performed to investigate the 

effect of machining on the machined surface. SEM of the tensile fracture surface is also 

performed to determine the nature of the tensile failure. Thermal aging of tensile test 

samples is performed to study the effect on the appearance and tensile properties. 

Comparison with material specifications and relevant literature is presented as a validation 

of the experimental work. Finally, A dataset of UTS values with corresponding thermal 

aging conditions is developed for subsequent use in the predictive model.  

 

4.2 Effect of Fiber Orientation and Machining on Surface 

The machined surface of one sample each from mechanically cut and laser cut composites 

was studied to identify the effect of machining on GFRP. Scanning Electron Microscope 

(SEM) model JSM-7610F was used to study the micrographs of the machined surface of 

both woven GFRP and random GFRP samples. 

 

For woven GFRP, it is noted that the laser cut samples have burn spots all the way through 

the thickness of the machined edge of the composite for both woven and random GFRP. 

Whereas the mechanically cut samples exhibit no such observation. The reason behind 

these burn marks is the thermal damage of the laser beam. Figure 4.1 shows mechanically 

cut and laser cut samples and their machined edge. 

 

 

(a) Mechanically cut 

 

 

(b) Laser cut 

Fig. 4.1: Photo of machined edge of woven GFRP samples  

(a) Mechanically cut, (b) Laser cut. 
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SEM Micrographs of the machined surface are taken in 150x, 300x and 700x magnification 

at 15 kV setting. From Figure 4.2, a comparison of surface finishing pattern and quality 

between mechanically cut and laser cut samples can be observed. Figure 4.2(a) shows the 

surface smoothness and uniformity, good adhesion and uniformly axially aligned fibers in 

the mechanically cut sample. In contrast, Figure 4.2 (b) shows burnt and rough surfaces, 

potholes and coagulation of burnt matrix in the laser-cut sample.  

 

 

(a) 

 

(b) 

Fig. 4.2: SEM of woven GFRP machined surfaces  

(a) Mechanically cut, (b) Laser cut. 

 

Similar to woven GFRP. Additionally, it was observed that both woven and random GFRP 

samples from laser cutting include burn spots that extend all the way to the thickness of the 

composite's machined edge. The mechanically cut samples, however, do not show such a 

finding. The laser beam's thermal damage is the cause of these burn marks. Figure 4.3 

shows mechanically cut and laser cut samples and their machined edge. 

 

 

(a) 
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(b) 

Fig. 4.3. Photo of Machined edge of random GFRP samples  

(a) Mechanically cut, (b) Laser cut. 

 

SEM Micrographs of the random GFRP machined surface are acquired at 10 keV at 

magnifications of 150x, 300x, and 500x. Figure 6.4 shows a comparison of surface 

finishing pattern and quality between mechanically cut and laser cut samples. Figure 4.4 

(a) shows the surface smoothness and uniformity, randomly aligned fibers and good 

adhesion in the mechanically cut sample. In contrast, Figure 4.4 (b) shows surface 

roughness and non-uniformity, potholes and coagulation of the burnt matrix in the laser cut 

sample.  

 

 

(a) 

 

 

(b) 

Fig. 4.4: SEM of random GFRP machined surfaces 

 (a) Mechanically cut, (b) Laser cut. 

 

From the SEM imaging of both woven and random GFRP, it is evident that the laser beam 

has caused thermal damage to the surface, compromising its integrity. Due to high 
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temperature up to 598°C, the epoxy melted and subsequently re-hardened creating voids 

and potholes. Also, during the re-hardening, the matrix was rearranged in a random matter 

creating irregular and rough surface finishing. 

 

By comparing this study with the literature shows similar findings regarding the effect of 

laser cutting on machined surface of FRP composites in general. Figure X shows burn 

marks, Heat Affected Zone (HAZ) and fiber pullout which is consistent with the findings 

of this work presented in Figure 4.5. 

 

Fig. 4.5: Effect of laser cutting on CFRP composite from literature (Rao B et al., 2018). 

 

In Figure 4.6, an SEM image comparing GFRP machined surface subjected to mechanical 

and laser cutting is shown which is referred to existing literature. The mechanical cutting 

shows good surface smoothness and adhesion. While laser cutting imparts delamination, 

potholes, and surface roughness. Both these findings from the literature are in agreement 

with the findings of this study. 
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Fig. 4.6: SEM Image of CFRP machined surface from literature  

(a) Mechanical Cutting, (b) Laser Cutting (Harada et al., 2012). 

 

4.3 Effect of Fiber Orientation and Machining on Tensile Behavior 

The load-deflection characteristics are investigated from the standard tensile test of unaged 

GFRP samples. The characteristics of both mechanically cutting and laser cutting samples 

are then expressed in terms of conventional stress-strain curves. The results are presented 

for Woven and Random GFRP separately. 

 

For Woven GFRP, Figures 4.7 and 4.8 present stress-strain relations of mechanically and 

laser cut samples for woven and random GFRP respectively. Also, the average values from 

both mechanically cutting and laser cutting have been shown comparatively to highlight 

the differences in stress-strain behavior.  

 

 

(a) 
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(b) 

 

 

(c) 

Fig. 4.7: Tensile stress-strain behavior of woven GFRP composites (a) Mechanically cut, 

(b) Laser cut and (c) Mechanically cut vs Laser cut (on average values). 
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(a) 

 

 

(b) 
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(c) 

Fig. 4.8: Tensile stress-strain behavior of random GFRP composites (a) Mechanically cut, 

(b) Laser cut and (c) Mechanically cut vs Laser cut (on average values). 

 

From Figure 4.8 above, it is evident that the mechanically cut samples reached a higher 

Ultimate Tensile Strength (UTS) value before failure in comparison to laser-cut samples. 

This phenomenon is common for both woven and random GFRP. Due to the epoxy thermal 

damage during laser cutting, mechanical strength at the machined surface got reduced. This 

peripheral phenomenon had a detrimental effect on the overall strength of the sample. All 

the curves show that the relationships among the stress and strain are almost linearly rising, 

followed by quick fall and fracture after the UTS value is reached indicating a brittle mode 

of failure. This brittle mode failure is consistent with the SEM micrographs of the tensile 

failure surface. In the SEM it was observed that the individual fibers experienced brittle 

failure which is characterized by a flat and blunt fiber cutoff.  

 

The UTS, yield strength and elastic modulus are obtained from the tensile test report. 

Detailed data is shown in Appendix O. The average values along with standard deviations 

were calculated for each data obtained from several repeated tests. UTS is the maximum 

stress experienced by samples before breaking. Yield strength is the maximum stress the 

sample can withstand without permanent deformation. For Woven GFRP, the UTS and 

yield strength were 85.6 MPa and 25.60 MPa respectively for mechanical cutting while for 

laser cutting it was 63.4 and 19 MPa respectively. For Random GFRP, the UTS and yield 
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strength was 54.2 MPa and 16.20 MPa respectively for mechanical cutting while for laser 

cutting it was 43.8 and 13.20 MPa respectively. Figure 4.9 shows the comparison of woven 

GFRP UTS and yield strength with error bars for mechanically cut and laser cut samples. 

Figure 4.10 shows the same information for random GFRP.  

 

 

Fig. 4.9: UTS and Yield strength of woven GFRP. 

 

 

Fig. 4.10: UTS and Yield Strength of random GFRP. 

 

It is observed that for woven GFRP, both UTS and yield strength decreased by 25.93% and 

26.4% respectively in laser-cut samples compared to mechanically cut samples. For random 

GFRP, The UTS and yield strength of laser-cut samples fell by 19.19% and 18.52%, 

respectively, as compared to mechanically cut samples. The trend of reduction in UTS and 
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yield strength is similar for both woven and random GFRP where laser cutting caused a 

reduction in the mechanical properties. The reduction of UTS and yield strength is due to 

the thermal damage at the machined edge which was also noted during the SEM 

investigation. The thermal damage during laser cutting deteriorated the bonding between 

the fibers and the matrix which rendered the machined edge less capable of bearing the 

tensile stress. As a shole, woven GFRP exhibited higher UTS and yield strength compared 

to random GFRP as the close-knit configuration of fibers supported each other during the 

tensile test which ultimately enabled woven GFRP to endure higher UTS before failure. 

 

The Elastic Modulus is the slope of a sample’s stress–strain curve in the elastic deformation 

region. A stiffer material will have a higher elastic modulus. In our study the elastic 

modulus I obtained directly from the tensile test report. For woven GFRP, the Elastic 

modulus was 1.47 GPa and 1.30 GPa respectively for mechanical cutting. For Random 

GFRP, the Elastic modulus was 0.80 GPa and 0.74 GPa respectively for mechanical cutting 

Figure 4.11 shows the Elastic modulus for woven and random GFRP. 

 

 

Fig. 4.11: Elastic modulus of woven and random GFRP. 

 

From the above graph it is evident that for Woven and Random GFRP, the elastic modulus 

decreased by 12% and 7.96% respectively when the material was subjected to laser cutting. 

This reduction of Elastic modulus is mainly due to the reduced UTS value due to laser 

cutting. As the elastic modulus is the ratio of stress and strain, the reduction of the stress 
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value has a linear relationship with the elastic modulus. In general, random GFRP exhibited 

less elastic modulus than woven GFRP for the same reason. 

 

For validation od results, comparison was made with the material specifications and 

existing literature. At first, the results of the tensile test was compared with the material 

specification of the glass fiber and the matrix presented in Appexdix I and Appendix J 

respectively. In the specifications, the maximum strength of the fiber and matrix was given. 

The comparison was done for woven GFRP as the specification particularly mentioned the 

number of fibers in tensile and flexural directions. This comparison in not accurately 

possible for random GFRP as the number of fibers are not consistent and the fiber 

orientation is random. Table 4.1 shows the comparison of the results with the specifications. 

 

Table 4.1: Comparison of woven GFRP tensile test results with the specifications. 

Direction 

Woven Fiber Cloth 

Strength (MPa) 

As per Spec 

Epoxy Strength 

(Mpa) 

As per Spec 

GFRP Strength 

(Mpa) 

As per Experiment 

Tensile 

(51 Threads per Inch) 
86.95 33 85.6 

 

From the table, it is seen that the woven GFRP had a maximum tensile strength of 86.65 

MPa as per specification while the experimental result was 85.6. The strength of the epoxy 

was 33 MPa which acted as a medium for adhesion and load transfer. The experimental 

result is very close to the specification which affirms the validation of the experimental 

work.  

 

The UTS value of the GFRP was of utmost interest for this study as this data was used for 

the development of the predictive model. The validation of this data directly affects the 

validation of the model. As such, the UTS and Elastic modulus values were also compared 

to existing literature for validation purpose. Figure 4.12 shows GFRP UTS and elastic 

modulus from literature. 
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Fig. 4.12: UTS and elastic modulus of GFRP from literature (Abass et al., 2021). 

 

The study above was conducted on GFRP composite prepared using materials of similar 

specifications as this study. From the two graphs, the UTS and Elastic modulus is found as 

90.28571 MPa and 1.3952 GPa. In our study, the UTS and Elastic modulus was found as 

85.6 MPa and 1.47 GPa. The values from the literature and this study are very close. 

 

The findings of reduced tensile properties due to laser cutting was also compared to the 

literature. Harada et al investigated the effect of laser cutting on Carbon Fiber Reinforced 

Plastics (CFRP). Figure 4.13 shows the effect of laser cutting CFRP tensile properties. 

 

 

Fig. 4.13: Effect of laser cutting in CFRP from literature (Harada et al., 2012). 
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The above study was conducted on carbon fiber which has higher UTS values compared to 

GFRP. However, the effect of laser cutting had similar effect as this study. A 6% decrease 

of UTS was observed which is consistent with the findings of this study.  

 

4.4 Effect of Fiber Orientation and Machining on Flexural Behavior 

The flexural test has been performed utilizing a three-point loading system applied to a 

simply supported flat GFRP specimen as per ASTM standard D790. Universal testing 

machine (UTM) PLS100 with a crosshead speed of 5 mm/min was employed to perform 

this test. Samples were cut into 100mm x 12.7mm x 3mm size. The support span size was 

60mm. The flat samples were placed between the support span. The load was applied to the 

samples at the center of the support span and the load-deflection characteristics were 

investigated from the flexural test of the GFRP samples. Detailed data from the flexural 

test was analyzed to calculate Ultimate Flexural Strength (UFS) and Flexural Modulus as 

per ASTM D790 standard. The test was performed on five samples and the average values 

along with standard deviations were calculated for each data.  

 

For Woven GFRP, Figures 4.14 and 4.15 present flexural load-deflection behavior of 

mechanically and laser cut samples for woven and random GFRP respectively. Also, the 

average values from both mechanically cutting and laser cutting have been shown 

comparatively to highlight the differences in stress-strain behavior.  

 

 

(a) 
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(b) 

 

 

(c) 

Fig. 4.14: Flexural load-deflection behavior of woven GFRP composites (a) Mechanically 

cut, (b) Laser cut and (c) Mechanically cut vs Laser cut (on average values).  
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(a) 

 

 

(b) 
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(c) 

Fig. 4.15: Flexural load-deflection behavior of random GFRP composites (a) 

Mechanically cut, (b) Laser cut and (c) Mechanically cut vs Laser cut (on average 

values).  

 

One clear observation from the load-deflection graphs is that, for random GFRP, a 

significantly high amount of load value fluctuations are noted compared to woven GFRP. 

This is visualized by the fuzzy appearance of the random GFRP graphs. The reason behind 

this is that in this case, the fibers are randomly oriented and separated from each other 

without a weave. Hence, when the load is applied, the fibers break without any 

synchronization in a random direction. Unlike the woven GFRP, the fibers are not knit 

together. In the woven GFRP, the closely knit fibers share the load and when they ultimately 

break, it happens in groups and in the direction of the fiber weave. Hence, in woven GFRP 

there is significantly lower load fluctuations. From the comparative average value figures, 

it is evident that on average, the mechanically cut samples reached a higher load value 

before failure in comparison to laser-cut samples. This phenomenon is common for both 

woven and random GFRP. Similar to our findings during the tensile test, due to the epoxy 

thermal damage during laser cutting, mechanical strength at the machined surface got 

reduced. This peripheral phenomenon had a detrimental effect on the overall strength of the 

sample. 
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Data from the flexural test was used to calculate the Ultimate Flexural Strength (UFS) and 

Flexural Modulus. Both of these properties were calculated as per the guidelines established 

in ASTM D790. The average values along with standard deviations were calculated for 

each data obtained from several repeated tests. UFS is a material property, defined as the 

maximum stress in a material just before it yields in a flexural test. The formula for 

calculating UFS is given below: 

 

𝜎 =
3𝑃𝐿

2𝑏𝑑2
 (4.1) 

 

Where: 

𝜎 = UFS (MPa) 

𝑃 = Maximum load on the load deflection curve (N) 

𝐿 = Length of support span (mm) 

𝑏 = Width of sample (mm) 

𝑑 = Thickness of beam (mm) 

 

For Woven GFRP, the UFS was 73.66 MPa and 56.63 MPa for mechanical cutting and 

laser cutting respectively. For Random GFRP, the UFS was 52.43 MPa and 41.34 MPa for 

mechanical cutting and laser cutting respectively. Figure 4.16 shows the UFS of Woven 

and Random GFRP.  

 

 

Fig. 4.16: UFS of woven and random GFRP.  
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It is noted that for woven GFRP, UFS decreased by 23% in laser-cut samples compared to 

mechanically cut samples. For random GFRP, this decrease was 21%. Similar to tensile 

test, the reduction of UFS and yield strength is due to the thermal damage at the machined 

edge which was also noted during the SEM investigation. The thermal damage during laser 

cutting deteriorated the bonding between the fibers and the matrix which rendered the 

machined edge less capable of bearing the flexural stress. Again, woven GFRP exhibited 

higher UFS and yield strength compared to random GFRP as the close knit configuration 

of fibers supported each other during this which ultimately enabled woven GFRP to endure 

higher UTS before failure.  

 

The flexural modulus or bending modulus is an intensive property that is computed as the 

ratio of stress to strain in flexural deformation, or the tendency for a material to resist 

bending. The formula for flexural modulus is given below: 

 

𝐸 =
𝐿3𝑚

4𝑏𝑑3
 (4.2) 

 

Where: 

𝐸 = Flexural Modulus (MPa) 

𝐿 = Length of support span (mm) 

𝑏 = Width of sample (mm) 

𝑑 = Thickness of beam (mm) 

𝑚 = Slope of the tangent to the initial straight-line portion of the load-deflection curve, 

       (N/mm) 

 

For woven GFRP , the flexural modulus was 3.41 GPa and 2.91 GPa  for mechanical cutting 

and laser cutting respectively. For Random GFRP, the flexural modulus was 2.14 GPa and 

2.09 GPa for mechanical cutting and laser cutting respectively. Figure 4.17 shows the 

Flexural Modulus of Woven and Random GFRP. 
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Fig. 4.17: Flexural modulus of woven and random GFRP.  

 

From the above graph it is found that for Woven and Random GFRP, the flexural modulus 

decreased by 15% and 2% respectively when the material was subjected to laser cutting. 

This reduction of flexural modulus is mainly due to the reduced UFS value due to laser 

cutting. As the elastic modulus is the ratio of stress and strain, the reduction of the stress 

value has a linear relationship with the flexural modulus. In general, random GFRP 

exhibited less flexural modulus than woven GFRP for the same reason. 

 

For validation purpose, the results of the flexural test was compared with the material 

specification of the glass fiber and the matrix presented in Appendix I and Appendix J 

respectively. In the specifications, the maximum strength of the fiber and matrix was given. 

The comparison was done for woven GFRP as the specification particularly mentioned the 

number of fibers in tensile and flexural directions. This comparison in not accurately 

possible for random GFRP as the number of fibers are not consistent and the fiber 

orientation is random. Table 4.2 shows the comparison of the results with the specifications. 
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Table 4.2: Comparison of woven GFRP flexural test results with material specifications. 

Direction 

Woven Fiber Cloth 

Strength (MPa) 

As per Spec 

Epoxy Strength 

(Mpa) 

As per Spec 

GFRP Strength 

(Mpa) 

As per Experiment 

Flexural 

(38 Threads per Inch) 
53.01 33 73.66 

 

For the flexural strength, the experimental value was 73.66 MPa where as per specification, 

the fiber cloth and the epoxy has the strength of 53.01 MPa and 33 MPa respectively. It is 

to be noted that the glass fiber cloth had more fibers in the tensile direction (51 threads per 

inch) compared to the flexural direction (38 threads per inch). Also, due to the woven nature 

of the glass fiber cloth, the threads in the flexural direction are also suppored by the threads 

of the tensile direction. As such, the experimental value of the flexural strength was found 

more than the maximum strength of the fibers only. This also affirms that the fibers are the 

main load bearing members of the GFRP while the matrix provides adhesion and load 

transfer. 

 

Several researchers have also experimented with the flexural behaviors of GFRP. They 

have prepared GFRP samples with different reinforcements and matrix along with the 

addition of micro and nano fillers. Hence, there are a lot of literature reporting different 

results for different compositions. The research conducted by Kaleg et al. specifically 

explored the flexural properties of GFRP with similar composition as this study. Their 

results are shows in Figure 4.18. 

 

 

Fig. 4.18: GFRP flexural properties from literature (Kaleg et al., 2018). 
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From the above results it is seen that the researchers found GFRP flexural strength as 73.59 

MPa and Flexural Modulus as 4.39 GPa. Their findings are within the ballpark of the 

findings of this study. 

 

4.5 Effect of Fiber Orientation and Machining on Microhardness 

Vickers Micro Hardness testing machine TMHV-10MDT manufactured by TMTeck 

Instrument Company Ltd. was used in this experiment. This machine has a diamond 

indenter of pyramid shape at an angle of 136°. Samples were cut into a 30mm x 30mm x 

3mm size and tested on the tester as per ASTM standard E384. The test load was selected 

as 300 grams. During the test, the pyramid indenter presses on the sample with the 

prescribed test load. Accordingly, a pyramid shape indentation is made on the sample. 

Attached microscopes are then used to measure the two diagonals of the pyramid shape. 

Then the Vickers Micro Hardness value (HV) is calculated and displayed in the machine. 

Five samples had been tested from both mechanically cut and laser cut GFRP. Ten HV 

readings are taken from each sample to calculate the average HV and standard deviation 

for each sample. Readings were taken at various locations of the sample. Some readings 

were taken at close proximity to the machine edge while some readings were taken at the 

center. Figure 4.19 shows the Vickers microhardness results of woven and random GFRP. 

 

 

Fig. 4.19: Vickers microhardness results of woven and random GFRP. 

 

For woven GFRP, it is observed that for mechanically cut samples average HV and standard 

deviation are 34.54 and 2.14 respectively. And for laser cut samples average HV and 
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standard deviation for are 36.71 and 2.11 respectively. For Random GFRP, mechanically 

cut samples' average HV and standard deviation are 4.82 and 1.37 respectively. And for 

laser cut samples average HV and standard deviation for are 4.97 and 0.34 respectively.  

 

It is evident that for both woven GFRP and random GFRP, the HV values for mechanically 

cut and laser cut samples are similar. This is because the laser cutting only had a peripheral 

effect on the material and did not affect the material substrate. Also, woven GFRP exhibited 

significantly increased hardness value compared to random GFRP. This is due to the close-

knit configuration of woven GFRP where the fibers provide resistance to the indenter. For 

random GFRP, the fibers are randomly oriented and have gaps within them. Unlike the 

woven GFRP, the random GFRP fibers do not provide such resistance to the indenter as 

they are not closely knit. As such, random GFRP exhibits lower hardness value.  

 

From the literature review, it is discovered that the Vickers microhardness varies from 20 

HV to 200 HV for different compositions and fillers. The study conducted by Ghani and 

Mahmud experimented with similar GFRP and similar methodology as this study. Their 

results are shown in Figure 4.20. From the figure, it can be inferred that they found average 

microhardness value of GFRP as 65.12 HV. 

 

Fig. 4.20: GFRP microhardness value from literature (Ghani and Mahmud, 2017). 

 

Another study conducted by Mohamed et al explored the effect of cellulose nanocrystal 

reinforcement in GFRP they also varied the microhardness test for different indenter 

loading. Figure 4.21 shows the results of their study. 
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Fig. 4.21: GFRP microhardness value from literature with different load  

(Mohamed et al., 2018). 

It is seen from the graph that the average GV value of plain GFRP indicated by UR; which 

means unreinforced by any cellulose nanocrystals, had HV values ranging from 20 – 50 for 

different indenter loading. For direct comparison to our study, the load value of 2.94 is 

referred (Our selected load was 300g which equates to 2.94N) and the corresponding HV 

value is found as 47 HV. 

 

Both the above studies present results which are somewhat nearby to our results of 34.54 

HV. The variations in results can be contributed to several different factors including 

production flaws, curing condition, material condition, fiber weave and many more.  

 

4.6 Effect of Fiber Orientation and Machining on Tensile Fracture 

For Woven GFRP, SEM Micrographs of the tensile fractured surface are taken in 150x, 

300x and 700x magnification and 15 kV setting. For Random GFRP, The tensile fractured 

surface was micrographed at 150x, 300x, and 500x magnification at 10 keV. The individual 

configurations are chosen to have the best possible image clarity and magnification. Figure 

4.22 shows the SEM image of the tensile fracture surface of mechanical and laser-cut 

samples for woven GFRP. Figure 4.23 shows the same information for random GFRP.  
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(a) 

 

 

(b) 

Fig. 4.22: SEM micrographs of woven GFRP tensile fractured surface  

(a) Mechanically cut, (b) Laser cut. 

 

 

(a) 

 

 

(b) 

Fig. 4.23: SEM micrographs of random GFRP tensile fractured surface  

(a) Mechanically cut, (b) Laser cut. 
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From the above Figures, it is observed that in both types of machining, the predominant 

reason for tensile fracture of the composite is matrix/fiber interface debonding, brittle 

fracture of fibers and fiber pullout. Also, in the laser-cut sample, some areas of weaker 

adhesion are observed compared to the mechanically cut sample. In general, the nature of 

tensile fracture is similar in both mechanical and laser cutting. These observations are 

common for woven and random GFRP. These findings are in agreement with the findings 

of microhardness behavior where it was evident that the laser cutting did not affect the 

material substrate. Accordingly, the nature of tensile fracture remained similar.  

 

There is significant literature on the SEM analysis of GFRP tensile fracture. The results 

reported by the researchers remain in unison in terms of fiber pullout and the brittle more 

of failure. Although the fiber orientation and matrix cracking largely depends on material 

selection and production method used. Figure 4.24 shows the SEM micrographs of GFRP 

tensile failure from relevant literature. The images show findings similar to this study. 

 

 

Fig. 4.24: SEM micrographs of GFRP tensile fracture surface from literature  

(Beura et al., 2018). 
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4.7 Effect of Thermal Aging on GFRP Color 

During the thermal aging process at 100°C (SGN 6,7,8 and 9), very mild smoke and a 

burning smell were noticed. This smoke and smell effect became more noticeable at 150°C 

(SGN 10,11,12 and 13). At 200°C (SGN 14,15,16 and 17) the smoke and burning smell 

were clearly noticeable. This was expected as the glass transition temperature (Tg) of the 

epoxy is 63°C.  

Also, at 150°C (SGN 10,11,12 and 13), the tensile test samples started to show color 

changes with the introduction of very slight shades of brown. At 200°C (SGN 14,15,16 and 

17) this color change effect became apparent. In SGN 14, the color was light brown. As the 

thermal aging time increased, the brown color became progressively darker in SGN 15, 16 

and 17. The burning smell and color changes are mainly related to the oxidation process. 

The color change effect due to thermal aging is shown in Figure 4.25. 

 

SGN (Left to Right) and 

associated thermal aging 

variables: 

2 = 50°C 30 mins 

3 = 50°C 60 mins 

4 = 50°C 90 mins 

5 = 50°C 120 mins 

 

(a) 
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SGN (Left to Right) and 

associated thermal aging 

variables: 

6 = 100°C 30 mins 

7 = 100°C 60 mins 

8 = 100°C 90 mins 

9 = 100°C 120 mins 

 

(b) 

 

SGN (Left to Right) and 

associated thermal aging 

variables: 

6 = 150°C 30 mins 

7 = 150°C 60 mins 

8 = 150°C 90 mins 

9 = 150°C 120 mins 

 

(c) 
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SGN (Left to Right) and 

associated thermal aging 

variables: 

14 = 200°C 30 mins 

15 = 200°C 60 mins 

16 = 200°C 90 mins 

17 = 200°C 120 mins 

 

(d) 

Fig. 4.25: GFRP color change effect due to thermal aging  

(a) SGN 2-5, (b) SGN 6-9, (c) SGN 10-13 and (d) SGN 14-17. 

 

Several researchers have experimented with the thermal aging of GFRP. But one researcher 

in particular put emphasis on the color change of epoxies due to thermal aging and used 

this as an identifier to develop a predictive model. This particular study done by Doblies et 

al. is of interest to our work. Figure 4.26 shows this color change due to the thermal aging 

of epoxy. 

 

 

Fig. 4.26: Color change of epoxy due to thermal aging from literature  

(Doblies et al., 2019). 
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In the above study, only epoxy was used in the absence of a reinforcing element. It is 

observed that the epoxy demonstrates a clear yellowing at 120°C. As the temperature is 

increased to 150°C the yellowing color becomes dark brown. This trend of color change is 

in agreement with our findings. Also, according to the existing literature, a higher 

temperature and longer exposure time typically result in a darker color. (Lan et al., 2022). 

Although, the complete details are not fully understood yet (Bellenger and Verdu, 1985; 

Krauklis and Echtermeyer, 2018). Researchers have proposed reactive sites and respective 

reactions to chemically explain the micro phenomena. Most notably; the carbonyl 

formation in the epoxy backbone due to thermo-oxidation as the cause for the yellowing of 

the material is similar to our study (Krauklis and Echtermeyer, 2018). 

 

4.8 Effect of Thermal Aging on GFRP Tensile Properties 

With three samples in each SGN, a total of 51 samples from 17 SGNs underwent the tensile 

test. 03 thermally unaged samples were first put through tensile testing. From the tensile 

test data, max strain (%), UTS (MPa), yield strength (MPa), elastic modulus (MPa) and 

tangent modulus (MPa) were calculated. Afterward, 48 thermally aged samples underwent 

tensile testing. The average values of the 3 samples in each group were considered for the 

respective group. Finally, a total of 17 sets of tensile test data was gathered comprising 

UTS, Max Strain and Yield Strength. This dataset is presented in Appendix R. From this 

dataset the effect of thermal aging on UTS, Max Strain and Yield Strength is shown 

individually with varying SGN. 

 

In the present work, Ultimate Tensile Strength (UTS) is the mechanical property of interest. 

As such, it is analyzed with much deliberation. Figure X shows the change of UTS due to 

thermal aging. The Figure is divided into 5 separate graphs to aid the visualization of the 

thermal aging effect due to a fixed temperature and increasing aging time. Finally, graph 

4.27 (e) shows the effect with all sample group numbers sequentially. The black bar in this 

graph represents the UTS value for unaged samples. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 4.27: Change of UTS due to thermal aging for different SGN  

(a) SGN 2-5, (b) SGN 6-9, (c) SGN 10-13, (d) SGN 14-17 and (e) SGN 1-17. 

 

It is observed that for SGN 2-5 a decreasing UTS, a clear trend is observed. SGN 6-9 shows 

a more consistent rend with UTS values increase and decrease in an oscillating manner. For 

SGN 10-13 the UTS values slowly increase. For SGN 14-17, the UTS values increase 

initially but later reach a plateau. Finally, for graph (e) there is an overall trend of decreasing 

UTS is observed although there are noticeable variations as mentioned earlier. These 

variations in UTS due to different thermal aging are consistent with the literature. The initial 
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decrease in UTS below and slightly over the Tg is expected due to the epoxy being rubbery 

and causing voids inside the material substrate. However, the increase in UTS at higher 

temperatures (SGN 11,12,13,15,16,17) is not fully understood by the auhor and and 

requires further research.  

 

Similar to UTS, Figure 4.28 shows the change of Max Strain due to thermal aging. The 

Figure is divided into 5 separate graphs to aid the visualization of the thermal aging effect 

due to a fixed temperature and increasing aging time. Finally, graph 4.28 (e) shows the 

effect with all sample group numbers sequentially. The black bar in this graph represents 

the Max Strain value for unaged samples. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

Fig. 4.28: Change of max strain (%) due to thermal aging for different SGN  

(a) SGN 2-5, (b) SGN 6-9, (c) SGN 10-13, (d) SGN 14-17 and (e) SGN 1-17. 

 

Also, Figure 4.29 shows the change in Yield Strength due to thermal aging. The Figure is 

divided into 5 separate graphs to aid the visualization of the thermal aging effect due to a 

fixed temperature and increasing aging time. Finally, graph 4.29 (e) shows the effect with 

all sample group numbers sequentially. The black bar in this graph represents the Yield 

Strength value for unaged samples. 
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(e) 

Fig. 4.29: Change of yield strength due to thermal aging for different SGN  

(a) SGN 2-5, (b) SGN 6-9, (c) SGN 10-13, (d) SGN 14-17 and (e) SGN 1-17. 

 

As a general observation, from Figure 4.15 to 4.17, it is revealed that a gradual decrease in 

UTS, Max Strain and Yield strength values occurred as samples were exposed to 

increasingly higher temperatures during the thermal aging process. The highest value was 

obtained from the unaged samples while the lowest value was found from the thermally 

aged samples at 200°C 30 mins. The percentile decreases of UTS, Max Strain and Yield 

strength values were 43.34%, 41.48% and 53.52% respectively between the two extremes. 

The high amount of scattering in the mechanical properties after thermal aging is consistent 

with the literature. 

 

Further analysis of the dataset in Appendix R was performed to see variations in UTS of 

SGN 2 – 17, due to the variations in thermal aging temperature and time separately. Figure 

4.30 shows the change of UTS due to thermal aging temperature and Figure 4.31 shows the 

change of UTS due to thermal aging time. 
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Fig. 4.30: Change of UTS due to thermal aging temperature. 

 

 

Fig 4.31: Change of UTS due to thermal aging time 

 

From Figure 4.30, although there are some scatter and randomness in the mechanical 

properties after thermal aging consistent with the literature; the UTS of the thermally aged 

samples decreases as the thermal aging temperature increases. It is because the higher 

temperatures caused the epoxy to turn rubbery especially when the temperature is well 

beyond the Tg temperature. From Figure 4.31 however, no specific trend is observed as the 
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aging time increases for a specific temperature. In both cases, exposure to thermal aging 

always yields UTS values that are lower than the unaged UTS value. It confirms that even 

thermal aging below the Tg temperature cause a permanent loss of strength of GFRP. 

 

Additionally, a Contour Surface plot was generated to understand the combined 

dependency of UTS of SGN 2 – 17 on thermal aging temperature and time. Figure 4.32 

shows the contour plot of UTS. 

 

 

Fig. 4.32: Contour plot of UTS. 

 

The contour plot shows the mapping of UTS values at various combinations of aging 

temperatures and time. In the plot, the UTS values are shown in 5 ranges which are 

represented by 5 shades of color. Darker shades represent higher values and lighter shades 

represent lower values. From the plot, the UTS decreases as temperatures reach higher 

values on the x-axis.  

 

However, as the aging time increases for a specific temperature in the y-axis, no trend is 

observed. It also affirms the previous findings that the sensitivity of UTS reduction is more 

dependent on the change of thermal aging temperature rather than the thermal aging time 

between 30 mins and 120 mins. However, existing literature suggests that a reduction of 

UTS can result in case of longer thermal exposures in similar temperatures (Doblies et al., 

2019). The variation of mechanical properties due to thermal aging time needs further 

research at higher aging periods to attain better understanding of the phenomenon. 
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Several researchers have investigated the effect of thermal aging on GFRP tensile 

properties. The work done by Doblies et al. is referred due to its relevance and similarity 

with this work. In the mentioned study the researchers experimented with tensile samples 

made with epoxy and thermally aged them it similar temperature ranges. Figure 4.33 shows 

the effect of Effect of thermal aging on GFRP tensile properties as per their study. 

 

 

Fig. 4.33: Effect of thermal aging on GFRP tensile properties from literature 

(Doblies et al., 2019). 

 

From the above findings, it is clear that the UTS of the epoxy decreased when exposed to 

thermal aging. Aging at the minimum 60 °C caused a permanent loss of UTS. Higher 

temperatures caused further loss of UTS although the data is scattered with high standard 

deviation. All these findings are similar to the findings of the present study. 
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CHAPTER 5 

PREDICTIVE MODELING OF GFRP 

 

5.1 Overview of the Predictive Model  

The predictive model uses image processing, regression analysis and cascaded artificial 

neural networks (ANN) developed earlier to predict the Ultimate Tensile Strength (UTS) 

value with a photographic image of the sample. The model can also be customized to 

predict any mechanical properties with visually distinguishable identifiers dependent on 

thermal aging. 

 

This model uses the color changes due to thermal aging from the photographic image as an 

identifier that allows it to estimate the UTS value without destructive testing. Firstly, the 

Image processing program reads the photographic image of the thermally aged samples and 

calculates the RGB color values. Two cascaded ANNs are used to estimate the thermal 

aging variables from the RGB color values. ANNs are used because this estimation follows 

a data-driven approach rather than a mathematical formulation. It involves several variables 

like the lighting conditions of the photo, image noise and sample precleaning which can 

impact the data accuracy of RGB values. With such scattered data, ANNs are found to be 

useful. Although the larger the dataset, the better. The regression analysis develops a 

mathematical equation to estimate the UTS values from the thermal aging temperature and 

time. The dataset in Appedix M is used for the regression analysis. Figure 5.1 shows the 

overview of the predictive model. The data source, input and output of elements within the 

predictive model is shown in Figure 5.2. 

 

 

Fig. 5.1: Overview of the predictive model. 
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Fig. 5.2: Data Source, input and output of elements within the predictive model. 

 

5.2 Graphical Methodology of The Predictive Model  

The Predictive Model was developed by combining the two separate parts of this research 

namely, the experimental work and then the development of the predictive model. Data 

obtained from the experimental work was used to develop the predictive model. Also, 

different stages of the predictive model received testing and training data from different 

stages of the experimental work. To aid the visualization of data flow between the 

experimental work and the predictive model, a graphical methodology has been prepared 

and shown in Figure 5.3. 

 

 

Fig 5.3. Graphical methodology of the predictive model. 
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The upper half of the Figure shows the experimental work. The work process has been 

shown in 5 sequential steps starting from preparation of GFRP sample, thermal aging in the 

oven, color changes post thermal aging, tensile testing and results. Step no 2, 3 and 5 has 

been shown in red, green and blue color respectively. This is done to better distinguish the 

flow of data from these steps to the predictive model. 

 

The lower half shows the predictive model. There are 7 sequential steps starting from the 

photo of the sample, image processing, ANN1, ANN2, regression, result and results 

comparison. 3 types of lines have been shown in the graphical methodology. Continuous 

lines indicate the operational phase of the predictive model. Dotted lines indicate the 

training phase of the predictive model. Step 1 is common for both the operational and 

training phase of the model. It is indicated by ‘long dash dot dot’ line. 

 

The three different techniques used in the predictive model serves three different purpose 

in the predictive model. The image processing part processes the image and prepares a 

dataset. 

 

5.3 Image Processing 

After the thermal aging was done, it was noted that the samples underwent a color change 

at 150°C and 200°C. This started at 150°C with a very slight shade of brown color which 

became more apparent at 200°C. Also, as the aging time increased, the shade of brown 

color became progressively darker. As such, this change of color could be used as an 

identifier to predict the thermal aging variables i.e., temperature and time. 

 

To meet this purpose, A MATLAB image processing program was developed which can 

read and identify the color changes of the samples. SGN 10-17 were exposed to thermal 

aging at 150°C and 200°C. The photos of these SGN 10-17 were uploaded to the MATLAB 

program. The program performed calculations and gave the most consistent value of the 

Red, Green and Blue color (RGB) values in a matrix form for each of the samples. The 

code was optimized in such a way that even if there was some slight variation of color 

throughout different areas of the sample, the code was able to Figure out the most consistent 

value. 
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The Image processing program calculated the most consistent Red Green and Blue color 

values of all 51 samples. Then the average of these values for 3 samples within each sample 

group was taken to obtain the Red Green and Blue color values for a particular sample 

group number. Figure 5.4 shows the Red Green and Blue color values for SGN 1-17.  

 

 

Fig 5.4. Red green and blue color values for SGN 1-17. 

 

From the above Figure, it is observed that the RGB color values progressively decrease 

from SGN 1 to SGN 13. However, at SGN 14, when the thermal aging temperature reaches 

200°C, the RGB color values decrease drastically. The overall trend of decreasing RGB 

color values is denoted by dotted lines for each respective color. The trend of decreasing 

RGB color values physically indicates the graduation darkening which ultimately reaches 

deep brown at SGN 17. This color change and the associated trend of RGB values agree 

with the color changes during thermal aging reported in Figure 4.25 from Chapter 4. These 

RGB values are used as an identifier for the ANNs. 

 

5.4 Artificial Neural Networks (ANN) 

A total of 24 sets of thermal aging data were used for the training and testing of the two 

ANNs. Among the 24 sets, 19 sets (80%) were used for the training and the remaining 5 

sets (20%) were used for testing. Appendix G and appendix H shows the training and testing 

datasets for ANN1 and ANN2 respectively. The training performance of ANN1 and ANN2 

is shown in Figure 5.5 and Figure 5.6 respectively. 
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Fig 5.5: Training performance of ANN1. 
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Fig 5.6: Training performance of ANN2. 

 

From fig. 5.5, the overall R value for ANN1 is 0.99794 which indicates a good fit with the 

dataset.  Generally, the closer the R value is to 1, the better in terms of an ANNs training 

befitting to the dataset. However, the overall R value for ANN2 is only 0.43774 which does 
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not indicate a good fit. The effect of the goodness of fit for ANN training is discovered 

during the testing phase.  

 

When the training of the ANNs were complete, two neural networks were created in the 

MATLAB workspace. ANN1 was named as “network_temp.mat” and ANN2 was named 

as “network_time.mat”. Figure 5.7 shows the two trained networks in the MATLAB 

workspace. 

 

 

Fig. 5.7: Two trained ANNs in the MATLAB workspace. 

 

The trained ANNs are tested with 5 sets of data each as per shown in Appendix G and 

Appendix H. The RGB values of the image processing program were given as input to the 

two cascaded ANNs to estimate the associated thermal aging temperature and time. The 

test performance of ANN1 and ANN2 is shown in Figure 5.8. 
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(a) 

 

(b) 

 

Fig 5.8: Testing performance of ANNs. (a) ANN1 (b) ANN2 

 

From the above Figure, it is noted that ANN1 made very accurate estimations compared to 

the experimental results. This is relatable to the findings and analysis presented in of the 

experimental work Figure 4.30. As there was a trend of declining UTS with increasing 
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thermal aging time, ANN1 successfully followed the same. This was also expected as per 

the training performance of ANN1. However, ANN2 predictions have high errors. This is 

also relatable to the experimental work in Figure 4.31. In this case, there were no clear 

trends which led to ANN2 making high errors. This was also indicated during the training 

phase of ANN2. To achieve better results from ANN2, a much larger training dataset is 

required. 

 

5.5 Regression Analysis 

The final output of the regression analysis was an equation that establishes the relationship 

between the UTS value of the thermally aged GFRP and its associated thermal aging 

temperature and time. The tensile testing dataset of SGN 1-17 shown in Appendix R was 

used to perform the regression. Figure 9 shows the regression model and its various 

parameters. 

 

  

  

 

Fig 5.9. The regression model and its various parameters. 
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From the above Figures, it is observed that the p-value of the regression model was less 

than 0.10 which indicates a strong relationship between the 𝑦 and 𝑥 variables. The 𝑅2 value 

was 86.76% which means that 86.76% of the variation in 𝑦 can be explained by the 

regression model. The 𝑅2 adjusted value was found as 82.351% which indicates that most 

of the variables were useful in terms of generating the model. The incremental impact of 𝑥 

variables indicated that aging temperature had a 70.3987% impact on increasing 𝑅2 value 

compared to only 6.57032% for aging time. Also, there were no residual values nor any 

strong curvature or clusters which would have indicated problems with the regression 

model. All the data points fall randomly on both sides of zero indicating a good fit. 

 

The regression analysis found the relationship for UTS as: 

 

𝑦 = 95.63 − 0.4070 × 𝑥1 − 0.1099 × 𝑥2 + 0.000900 × 𝑥1
2 

+0.000998 × 𝑥1 × 𝑥2      (5.1) 

 

Where:  

𝑦 = UTS (MPa) 

𝑥1 = Thermal aging temperature (°C) 

𝑥2 = Thermal aging time (mins).  

 

A comparison was made between the results of the experimental work and the results 

obtained using the regression equation (1). Figure 5.10 shows the comparative plot of UTS 

values of SGN 1-17 obtained from experimental work and from the regression equation.   
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Fig. 5.10: Comparison of experimental and regression results for UTS. 

 

From the Figure above it is seen that the UTS values obtained through the regression 

equation closely follow the experimental values. The average absolute error of all 17 SGN 

was calculated and found as 4%. 

 

5.6 Performance of the Predictive Model 

Combining the results from the Image Processing, Regression Analysis and Artificial 

Neural Networks; the predictive model predicted the UTS value of the thermally aged 

samples. The model was tested with 05 samples within SGN 10-17. Figure 5.11 graphically 

compares the experimental result and the predictive model predicted result. Table 5.1 shows 

the dataset of the experimental result and predictive model predicted result with associated 

errors. 
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Fig 5.11: Comparison of experimental results with predictive model predicted results. 

 

Table 5.1. Comparison of experimental results with predictive model predicted results 

Sample 

No 
SGN 

Temp. 

(°C) 

Time 

(mins) 

Exp. 

UTS 

(MPa) 

Predictive 

Model predicted 

UTS (MPa) 

Error 

(%) 

Absolute 

Error (%) 

1 10 150 30 56.00 56.50 -1% 1% 

2 11 150 60 56.33 56.37 0% 0% 

3 13 150 120 56.33 55.75 1% 1% 

4 14 200 30 48.50 54.47 -12% 12% 

5 17 200 120 58.33 59.21 -2% 2% 

Average Absolute Error 3% 

 

From the Figure, it is evident that the predictive model estimated the experimental results 

of samples no 1, 2 and 3 with 99%, 100% and 99% accuracy. In sample no 4, the predictive 

model successfully followed the declining trend of the experimental result. However, the 

estimation had a 12% error. Again, in sample no 5, the predictive model successfully 

followed the rising trend of the experimental result and made an estimation with 98% 

accuracy. The average absolute accuracy of the predictive model is calculated as 97%. 

 

The accuracy of the predictive model depends on the input image quality which influences 

the RGB values. Also, the accuracy largely depends on the regression equation as it is a 
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best-fit equation by nature that inherently has some errors. Moreover, the predictive model 

is compared with experimental results which are also prone to scattering due to matrix 

rearrangement post-thermal aging, sample randomness and several other experimental 

factors. It is seen that only in the case of sample 4, the predictive model made a noticeable 

error. This error may be attributed to the causes discussed above. In general, the accuracy 

of the predictive model can be maximized by increasing the number of experimental work 

samples and the ANN training dataset. 
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CHAPTER 6 

CONCLUSIONS 

 

6.1 Conclusions 

This study investigated the mechanical properties of thermally aged GFRP composites. 

Also, a novel predictive model was also developed consisting of image processing, 

regression analysis and cascaded artificial neural networks. The conclusions of the study 

are presented as follows: 

 

Woven Fiber GFRP exhibits superior mechanical properties compared to Random fiber 

GFRP. Mechanical cutting exhibits super surface finishing and mechanical properties 

compared to Laser cutting. Optimization of laser cutting parameters is critical to achieve 

good surface finish and mechanical properties. 

 

Thermal aging of woven GFRP leads to color changes from 150°C onward (from light 

brown to gradually darker). UTS values slowly decline as samples are exposed to higher 

temperatures. The thermally aged UTS values have scattering which is consistent with the 

literature. The thermal aging temperature has a significantly higher impact (70.39%) than 

thermal aging time (6.57%) within the chosen thermal aging conditions. 

 

The developed predictive model can estimate the UTS value of thermally aged samples 

with only a photographic image of the affected sample. The model has an average absolute 

accuracy of 97%. A Larger dataset can further improve the accuracy of the model. 

 

6.2 Recommendations 

The current research investigates the characterization and predictive modeling of thermally 

aged glass fiber reinforced plastic composites. In the future, the investigation can be 

continued by the augmentation of the following activities: 

i. Investigation of different manufacturing techniques like compression molding and 

vacuum resin transfer molding. 

ii. Optimization of laser machining parameters to have a better surface finish. 

iii. Investigate a greater range of thermal aging temperatures and time. Particular attention 

may be given to temperatures beyond 200 °C. 
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iv. Investigation of the effect of thermal aging on other mechanical properties like flexural 

testing and microhardness. 

v. Investigate the effect of larger datasets on the accuracy of the predictive model. 
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APPENDICES 

Appendix A: Image Processing MATLAB Code 

clc 
% Import Image 
I=imread('image.jpg'); 

  
%Seperate RGB values in seperate matrix 
R=I(:,:,1); 
G=I(:,:,2); 
B=I(:,:,3); 

  
%Calculate the Mode of each RGB Matrix 
mode_R=mode(R); 
mode_G=mode(G); 
mode_B=mode(B); 

  
%Calculate the Mean of all the values of mode_R, mode_G and mode_B 
%matirx 

  
mean_R=mean(mode_R) 
mean_G=mean(mode_G) 
mean_B=mean(mode_B) 
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Appendix B: ANN1 Training MATLAB Code 

input_temp = [134   116 65 
132 116 65 
158 137 76 
154 135 74 
147 128 76 
154 135 76 
130 112 60 
162 142 82 
153 133 68 
144 92  21 
137 85  19 
133 73  16 
128 75  16 
123 63  11 
91  44  18 
109 51  14 
89  37  16 
99  41  21 
92  35  14 
]'; 
target_temp = [150 
150 
150 
150 
150 
150 
150 
150 
150 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
]'; 
nntool 
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Appendix C: ANN2 Training MATLAB Code 

input_time = [134   116 65  150 
132 116 65  150 
158 137 76  150 
154 135 74  150 
147 128 76  150 
154 135 76  150 
130 112 60  150 
162 142 82  150 
153 133 68  150 
144 92  21  200 
137 85  19  200 
133 73  16  200 
128 75  16  200 
123 63  11  200 
91  44  18  200 
109 51  14  200 
89  37  16  200 
99  41  21  200 
92  35  14  200 
]'; 
target_time = [30 
30 
60 
60 
90 
90 
90 
120 
120 
30 
30 
60 
60 
60 
90 
90 
90 
120 
120 
]'; 
nntool 
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Appendix D: ANN1 Testing MATLAB Code 

test_temp = [149    130 68 
149 131 70 
142 121 59 
130 76  17 
98  34  10 
]'; 
test_target_temp = [150 
150 
150 
200 
200 
]'; 
result_temp=sim(network_temp,test_temp); 
plot(test_target_temp); hold on; plot(result_temp); 
fprintf('%5.5f \n', [test_target_temp]') 
fprintf('%5.5f \n', [result_temp]') 
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Appendix E: ANN2 Testing MATLAB Code 

test_time = [149    130 68  150 
149 131 70  150 
142 121 59  150 
130 76  17  200 
98  34  10  200 
]'; 
test_target_time = [30 
60 
120 
30 
120 
]'; 
result_time=sim(network_time,test_time); 
plot(test_target_time); hold on; plot(result_time); 
fprintf('%5.5f \n', [test_target_time]') 
fprintf('%5.5f \n', [result_time]') 
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Appendix F: Predictive Model MATLAB Master Code 

clear 
load network_temp; 
load network_time; 

  
% Read RGB from Image 

  
I=imread('image.jpg'); 

  
R=I(:,:,1); 
G=I(:,:,2); 
B=I(:,:,3); 

  
mode_R=mode(R); 
mode_G=mode(G); 
mode_B=mode(B); 

  
mean_R=mean(mode_R); 
mean_G=mean(mode_G); 
mean_B=mean(mode_B); 

  
RGB_Matrix = [mean_R mean_G mean_B] 
%Find Temp from RGB 

  
test_temp = RGB_Matrix'; 
result_temp=sim(network_temp,test_temp) 

  
%Find Time from RGB and Temp 

  
test_time = [mean_R mean_G mean_B result_temp]'; 
result_time=sim(network_time,test_time) 

  
%Calculate UTS from Regression Equation 

  
result_UTS = 95.63-0.4070*result_temp-

0.1099*result_time+0.000900*result_temp^2+0.000998*result_temp*result_ti

me 

  
%Calculate Max Strain from Regression Equation 

  
result_max_strain = 6.522-0.01275*result_temp 
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Appendix G: ANN1 Dataset 

 

Training Dataset 

 Input (3) Output (1) 

Dataset No R G B Aging Temp (𝑥1) 

1 134 116 65 150 

2 132 116 65 150 

3 158 137 76 150 

4 154 135 74 150 

5 147 128 76 150 

9 154 135 76 150 

7 130 112 60 150 

8 162 142 82 150 

9 153 133 68 150 

10 144 92 21 200 

11 137 85 19 200 

12 133 73 16 200 

13 128 75 16 200 

14 123 63 11 200 

15 91 44 18 200 

16 109 51 14 200 

17 89 37 16 200 

18 99 41 21 200 

19 92 35 14 200 

 

Test Dataset 

 Input (3) Output (1) 

Dataset No R G B Temp (𝑥1) 

1 149 130 68 150 

2 149 131 70 150 

3 142 121 59 150 

4 130 76 17 200 

5 98 34 10 200 
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Appendix H: ANN2 Dataset 

 

Training Dataset 

 Input (4) Output (1) 

Dataset No R G B Temp (𝑥1) Aging Time (𝑥2) 

1 134 116 65 150 30 

2 132 116 65 150 30 

3 158 137 76 150 60 

4 154 135 74 150 60 

5 147 128 76 150 90 

9 154 135 76 150 90 

7 130 112 60 150 90 

8 162 142 82 150 120 

9 153 133 68 150 120 

10 144 92 21 200 30 

11 137 85 19 200 30 

12 133 73 16 200 60 

13 128 75 16 200 60 

14 123 63 11 200 60 

15 91 44 18 200 90 

16 109 51 14 200 90 

17 89 37 16 200 90 

18 99 41 21 200 120 

19 92 35 14 200 120 

 

Test Dataset 

 Input (4) Output (1) 

Dataset No R G B Temp (𝑥1) Aging Time (𝑥2) 

1 149 130 68 150 30 

2 149 131 70 150 60 

3 142 121 59 150 120 

4 130 76 17 200 30 

5 98 34 10 200 120 
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Appendix I: Technical Specifications of Glass Fiber Cloth 

 

 

Ref: http://www.jnglassfiber.com/ 
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Appendix J: Technical Specifications of Epoxy Resin and Hardener 

 

 

 

Ref: https://www.huntsman.com/ 
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Appendix K: ATR 72-212A Type Certificate Datasheet 

 

Ref: www.easa.europa.eu 

https://www.easa.europa.eu/en 

  

http://www.easa.europa.eu/
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Appendix L: ATR 72-212A Air Conditioning System Schematic 

 

Ref: ATR Training Centre - ATR Aircraft (atr-aircraft.com) 

https://www.atr-aircraft.com/training/atr-training-centre/ 

  

https://www.atr-aircraft.com/training/atr-training-centre/
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Appendix M: Materials Used for GFRP fabrication 

 

 

(a) 

 

(b) 

Fig: Glass fiber cloth (a) Woven (b) Random 

 

 

Fig: Araldite AW 106 IN epoxy resin and HV 953 U hardener 
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Appendix N: Photos of Lab Equipment and Apparatus 

 

 

Fig: HST Kason PLS 100 UTM Machine (For Tensile and Flexural Test) 

 

 

Fig: TMTECK-10MDT Auto Turret Vickers Microhardness Tester 
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Fig: SEM Imaging Equipment 

 

 

Fig: Bosch GWS 900-100 professional angle grinder with TJWELD 1.2 mm thickness 

cutting wheel 
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Fig: TJWELD 1.2 mm thickness cutting wheel 

 

 

Fig: CO2 laser cutting machine model STJ1530M 
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Appendix O: Tensile Test Data of Unaged Samples 

 

Tensile test data of Woven GFRP mechanically cut samples 

Sample No 
UTS 

(MPa) 

Yield Strength 

(MPa) 

Elastic 

Modulus (GPa) 

Sample 1 74 22 1.65 

Sample 2 87 26 1.37 

Sample 3 84 25 1.42 

Sample 4 85 25 1.41 

Sample 5 98 30 1.51 

Average 85.6 25.60 1.47 

Standard Deviation 8.56 2.88 0.11 

 

Tensile test data of Woven GFRP laser cut samples 

Sample No 
UTS 

(MPa) 

Yield Strength 

(MPa) 

Elastic 

Modulus 

(GPa) 

Sample 1 64 19.00 1.17 

Sample 2 67 20.00 1.4 

Sample 3 42 13.00 1.06 

Sample 4 74 22.00 1.47 

Sample 5 70 21.00 1.39 

Average 63.4 19.00 1.30 

Standard Deviation 12.52 3.54 0.17 
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Tensile test data of Random GFRP mechanically cut samples 

Sample No 
UTS 

(MPa) 

Yield Strength 

(MPa) 

Elastic 

Modulus  

(GPa) 

1 50 15 0.75 

2 57 17 0.83 

3 58 17 0.80 

4 53 16 0.77 

5 53 16 0.87 

Average 54.20 16.20 0.80 

Standard Deviation 3.27 0.84 0.05 

 

Tensile test data of Random GFRP laser cut samples 

Sample No 
UTS 

(Mpa) 
Yield Strength 

Elastic 

Modulus  

(GPa) 

1 46 14.00 0.76 

2 30 9.00 0.75 

3 46 14.00 0.73 

4 49 15.00 0.71 

5 48 14.00 0.75 

Average 43.8 13.20 0.74 

Standard Deviation 7.82 2.39 0.02 
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Appendix P: Flexural Test Data of Unaged Samples 

 

Flexural test data of woven GFRP 

Machining Sample UFS (Mpa) 
E (Flex Modulus) 

Gpa 

Mechanical (MC) 

Sample 1 88.78 3.33 

Sample 2 93.50 3.71 

Sample 3 58.66 2.48 

Sample 4 64.67 3.72 

Sample 5 62.70 3.82 

Average 73.66 3.41 

Std Dev 16.19 0.55 

Laser (LC) 

Sample 1 56.16 3.16 

Sample 2 47.11 1.83 

Sample 3 59.68 3.02 

Sample 4 50.32 3.05 

Sample 5 69.90 3.46 

Average 56.63 2.91 

Std Dev 8.89 0.62 

 

 

Table. Flexural test data of random GFRP 

Machining Sample UFS (Mpa) 
E (Flex Modulus) 

Gpa 

Mechanical (MC) 

Sample 1 35.63 0.78 

Sample 2 54.04 2.06 

Sample 3 67.61 2.36 

Sample 4 93.90 3.38 

Sample 5 58.27 2.13 

Average 52.43 2.14 

Std Dev 16.05 0.93 

Laser (LC) 

Sample 1 42.36 2.14 

Sample 2 44.75 2.53 

Sample 3 36.91 1.90 

Sample 4 91.67 2.93 

Sample 5 38.33 0.95 

Average 41.34 2.09 

Std Dev 4.02 0.75 
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Appendix Q: Microhardness Test Data of Unaged Samples 

 

Vickers Micro Hardness test data of woven GFRP 

Sample No HV Value (Mechanically Cut) HV Value (Laser Cut) 

Sample 1 34.26 37.36 

Sample 2 33.75 34.00 

Sample 3 31.84 36.91 

Sample 4 37.71 35.62 

Sample 5 35.14 39.67 

Average 34.54 36.71 

Standard Deviation 2.14 2.11 

 

Vickers Micro Hardness test data of random GFRP 

Sample No HV Value (Mechanically Cut) HV Value (Laser Cut) 

Sample 1 5.8 5.46 

Sample 2 4.08 4.76 

Sample 3 4.58 5.2 

Sample 4 6.54 4.76 

Sample 5 3.08 4.68 

Average 4.82 4.97 

Standard Deviation 1.37 0.34 
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Appendix R: Tensile Test Dataset with Thermal Aging Variables 

 

Tensile test dataset with thermal aging variables and corresponding mechanical properties 

SGN 
Temperature 

(°C) 

Time 

(mins) 

UTS 

(MPa) 

Max Strain 

(%) 

Yield 

Strength 

(MPa) 

1 Unaged Unaged 85.6 6.34 25.60 

2 50 30 79.33 5.52 23.83 

3 50 60 71.33 5.74 20.50 

4 50 90 70.00 6.30 21.47 

5 50 120 72.33 5.71 21.54 

6 100 30 64.00 5.64 19.33 

7 100 60 58.00 5.39 17.65 

8 100 90 69.00 5.59 20.67 

9 100 120 61.00 4.83 18.53 

10 150 30 70.33 4.37 17.00 

11 150 60 56.33 4.22 17.00 

12 150 90 80.67 5.02 19.00 

13 150 120 62.50 5.08 19.00 

14 200 30 47.00 3.71 11.90 

15 200 60 63.33 4.41 18.50 

16 200 90 64.67 4.06 18.50 

17 200 120 58.33 3.99 17.67 

 

 

 

  



A-22 
 

Appendix S: Publication Endeavors of This Study 

At the time of writing this thesis, this research work has produced one published paper, one 

paper in the process of being published and one paper in the review process. The details of 

the publication endeavor are as follows:  

i. Mijanur Rahman, M., Muzibur Rahman, M., 2023. Effect of laser cutting on mechanical 

performance of woven glass fiber reinforced plastic composites. Materials Today: 

Proceedings 80, 911–917. https://doi.org/10.1016/j.matpr.2022.11.327 

 

ii. Mechanical Performance of Mat Glass Fiber Reinforced Plastic (GFRP) Composites 

subjected to Laser Cutting. 

Presented at ICMEAS 22 – MIST. The Paper is accepted for publishing at Scopus-

indexed proceedings. 

 

iii. Characterization and Predictive Modeling of Thermally Aged Glass Fiber Reinforced 

Plastic Composites. 

The Paper is under review at a Q-ranked journal. 
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