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ABSTRACT 

 

CRASH SEVERITY MODELLING INVOLVING PUBLIC BUS CRASHES IN 

DHAKA CITY 

 

This study attempts to identify the influencing factors for triggering public bus crash 

injury severity in Dhaka city where public buses alone were involved in 23 % of all the 

crashes. Though there are some descriptive-based works in Bangladesh pertinent to public 

bus safety, very few in-depth studies on the crash severities of public bus have been 

conducted; those are however, mostly based on an old crash data. Hence, utilizing the 

recent crash data (2017-2020) collected from the Accident Research Institute (ARI) of 

Bangladesh University of Engineering and Technology (BUET), the primary goal of this 

study is to discover the roadway and environment-related factors impacting the public bus 

crash severity in the context of Dhaka city.  

 

A prominent way to deal with crash injury severity is by using statistical modelling 

techniques; the selection of these suitable methods often depends on the nature of data, 

especially the response variables. R software environment has been adopted to facilitate 

the analysis. In relation to the genre of police-reported public bus crash data, four 

different established models namely, Multinomial Logit (MNL), Ordered Logit (OL), 

Ordered Probit (OP) and Partial Proportional Odds (PPO) have been selected for the 

study. All of these severity models were then applied on this crash data to investigate 

public bus safety mechanism prevalent in Dhaka city. 

 

The analysis showed that pedestrians, bicyclists and motorcyclists are the most vulnerable 

road user group (around 80%), as indicated by the all selected models. Lack of efficient 

police controlled traffic in all the places (in some cases, 0% fatal incidents in police-

controlled areas), absence of dividers in two way roads (38.23% fatal vs 57.78% fatal 

where there are no dividers), over speeding, lack of necessary safety parameters as per the 

condition/geometry of roads etc. seemed to accelerate road traffic crashes. In addition, the 

severity models (i.e., MNL, OL, OP, and PPO) were evaluated in terms of relevant 

comparative parameters where MNL model is found to be more effective in terms of log-

likelihood (-237) and PPO model fared better in terms of Akaike Information Criterion 



ii  

(AIC_529) and Bayesian Information Criterion (BIC_616). The models were further 

evaluated on the significance of their predictors where collision type, junction type, 

movement, road class, road geometry, surface quality, surface type and time are found to 

be significant for triggering public bus related accidents in Dhaka city. Some viewpoints 

related to pedestrian facilities and roadway improvement (safety features) have been 

recommended for the decision makers for reducing both accident frequency and severity. 
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সারসংক্ষেপ 

 
CRASH SEVERITY MODELLING INVOLVING PUBLIC BUS 

CRASHES IN DHAKA CITY 

 
এই অনুসন্ধানমূলক রচনায় ঢাকা শহরর পাবললক বাস সম্পলকিত দরূ্ িটনার 

তীব্রতারক প্রভালবত করবার সম্ভাবয কারনগুলল লচলিতকররনর চচষ্টা করা 

হরয়রে, চেখারন সংর্টটত সমস্ত দরূ্ িটনার শতকরা  ভাগই পাবললক বাস 

সম্পলকিত দরূ্ িটনা (২০২১ সারলর সমীক্ষা অনুোয়ী)। েলদও বাংলারদরশ এ 

ধররনর োনবাহরনর লনরাপত্তা চকন্দ্রিক লকেু বর্ িনালভলত্তক কাজ থাকরলও, 

এর ফরল সৃষ্ট দরূ্ িটনা লনরয় খুব কমই লনলবড় গরবষর্ালভলত্তক কাজ হরত চদখা 

লগরয়রে। মূলতঃ এ সকল গরবষর্ার লসংহভাগই পুররনা তথয-উপারত্তর উপর 

লভলত্ত করর ততরীকৃত। বাংলারদরশর প্ররকৌশল ও প্রেুন্দ্রি লবশ্বলবদযালরয়র 

(BUET) এন্দ্রিরেন্ট লরসাচি ইনলিটটউট (ARI) চথরক সংগৃহীত ট্রালফক দরূ্ িটনার 

হালনাগাদকৃত তথয (২০১৭-২০২০) বযবহার করর, এই গরবষর্ার প্রাথলমক 

লক্ষয হরলা পাবললক বাস দরূ্ িটনা-লবষয়ক প্রভাবক রাস্তা এবং পলররবশ-

সম্পলকিত কারর্গুলল উদ  র্াটন করা।  

 

োনবাহন দরূ্ িটনা সম্পলকিত ক্ষয়ক্ষলতর বয¡পকতা লনর্ িরয় 

পলরসংখযানগত মরেরলর বযবহার একটট বহুল প্রচললত বযবস্থা। তরব উপেিু 

পদ্ধলত সমরূহর লনব িাচন প্রায়শঃই উপারত্তর প্রকৃলতর উপর লনভির করর; 

লবরশষ করর পলরবতিনশীল প্রলতন্দ্রিয়ার ধররর্র উপর। মলুতঃ পুললশ-

প্রলতরবলদত পাবললক বাস িÉ¡শ োটা (Crash Data) এর উপর লভলত্ত করর 

চারটট লভন্ন লভন্ন প্রলতটিত পলরসংখযানগত মরেল চেমন, মালিনলমনাল 

লন্দ্রজট (Multinomial Logit_MNL), অেিারে   লন্দ্রজট (Ordered Logit_OL), 

অেিারে  চপ্রালবট (Ordered Probit_OP), পারলশয়াল প্রপরশনাল অে  স 

(Partial Proportional Odds_PPO) গরবষর্ার জনয লনব িাচন করা হরয়রে। 
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দরূ্ িটনা তীব্রতা লনরুপরর্ এ সমস্ত মরেলসমূহ পরবতীরত ঢাকা শহররর 

পাবললক বাস সম্পলকিত দরূ্ িটনার উপারত্তর উপর প্ররয়াগ করা হরয়লেল। 

উরেখয চে, লবরেষরর্র সুলবধারথ ি সমগ্র গরবষর্ায় ‘আর’ (R) সফট  ওয়যার 

বযবüত হরয়রে। 

  

 লবরেষরর্ চদথা োয় চে পথচারী, সাইরকল চালক এবং চমাটরসাইরকল 

চালকরা হরলা সবরচরয় ঝুুঁ লকপূর্ ি রাস্তা বযবহারকারী চগািী (প্রায় ৮০%), ো 

চারটট মরেল/প্রলতমান দ্বারাই লনরদিলশত। দক্ষ পুললশ লনয়লিত ট্রালফক 

বযবস্থাপনার অভাব (লকেু চক্ষরে, পুললশ-লনয়লিত এলাকায় ০% মারাত্মক 

দরূ্ িটনা), লদ্বমুখী রাস্তায় লেভাইোররর অনুপলস্থলত (৩৮.২৩% মারাত্মক বনাম 

৫৭.৭৮% মারাত্মক, চেখারন চকানও লেভাইোর চনই), অলতলরি গলত, রাস্তার 

প্রকৃলত অনেুায়ী প্ররয়াজনীয় ট্রালফক লনরাপত্তা বযবস্থালদর অপ্রতুলতা 

ইতযালদর কাররর্ রাস্তায় প্রলতলনয়ত দরূ্ িটনা র্টরে। এরক্ষরে, তীব্রতা 

প্রলতমানগুরলা (MNL, OL, OP এবং PPO) তুলনামূলক পলরলমলতগুললর 

চপ্রলক্ষরত মুলযায়ন করা হরয়লেল, চেখারন এমএনএল (MNL) মরেলটট লগ-

সম্ভাবযতা (-২৩৭) অনুোয়ী এবং লপলপও (PPO) মরেলটট এআইলস 

(AIC_৫২৯) এবং লবআইলস (BIC_৬১৬) পলরলমলতর চক্ষরে অলধকতর 

কাে িকরী মরেল লহরসরব পলরগলর্ত হরয়রে। এোড়াও, প্রলতমানগুরলা হরত 

প্রাপ্ত ফলাফল (রাস্তা ও পলররবশ লবষয়ক) এর চপ্রলক্ষরত চদখা োয় চে 

সংর্রষ ির ধরর্, রাস্তার সংরোগস্থল এর ধরর্, চলাচল, রাস্তার চের্ী, রাস্তার 

জযালমলত, পৃরির গুর্মান, পৃরির ধরর্ এবং সময়, ঢাকা শহরর পাবললক বাস 

সম্পলকিত দরূ্ িটনা সংর্টরনর চক্ষরে প্রভাবক লহসারব তাvপে িপূর্ ি ভূলমকা 

পালন করর। পলররশরষ, লবরষরয়াি গরবষর্ায় ঢাকা শহরর পাবললক বাস এর 

দরূ্ িটনা পুনরাবৃলত্তর হার এবং তীব্রতা, উভয়ই করারনার জনয পথচারী সুলবধা 

বৃন্দ্রদ্ধসহ রাস্তার লনরাপত্তা তবলশরষ্টযর উন্নয়ন সম্পলকিত লকেু দৃটষ্টভলি সুপালরশ 
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করা হরয়রে। 

 



v  

ACKNOWLEDGEMENTS 

First of all, I am indebted to the Almighty Allah for helping me to overcome the obstacles 

and predicaments that have come in the way during the whole research work and for 

bringing this thesis into its authenticity. I am also too grateful to my family for their 

support and encouragement. 

At the outset, I would like to offer my heartiest gratitude to Brig Gen Shah Md 

Muniruzzaman (Retd), psc, Ph.D., Professor, Department of Civil Engineering, MIST for 

his patient guidance and encouragement from the beginning till the end of this thesis 

work. His constant inspiration, criticism and guideline have made every stage of this 

work possible. 

I would like to thank Dr. Md Asif Raihan, Professor, Bangladesh University of 

Engineering and Technology (BUET) for his constant support throughout the period. 

I would also like to thank all others who directly or indirectly helped me to make this 

thesis_ a complete one. 



vi 
 

TABLE OF CONTENTS 

Abstract  i i-iv 

Acknowledgement v 

Table of Contents  vi-ix 

List of Figures  x 

List of Tables xi 

List of Main Notation xii 

CHAPTER 1: INTRODUCTION  

 1.1 Background and Motivation 1 

 1.2 Objectives of the Study 5 

 1.3 Scope of the Study 5 

 1.4 Thesis Outline 6 

CHAPTER 2: LITERATURE REVIEW   

 2.1 Introduction 7 

 2.2 Illustration of the Related Terms 7 

  2.2.1 Public Bus 7 

  2.2.2 Crash Severity Type 8 

 2.3 Public Bus Pertinent Studies 8 

  2.3.1 National Studies 8 

  2.3.2 International Studies 10 

 2.4 Model Pertinent Studies 11 

  2.4.1 Multinomial Logit (MNL) 12 

  2.4.2 Ordered Logit (OL) 13 

  2.4.3 Others 14 

 2.5 Summary 16 

CHAPTER 3: RESEARCH METHODOLOGY  

 3.1 Introduction    18 

 3.2 Methodological Flow of the Study 18 

 3.3 Cross-Tabulation 18 

 3.4 Discrete Outcome Models 19 

  3.4.1 Multinomial Logit (MNL) Model 20 

  



vii 
 

  3.4.1.1 Model Assumption 20 

  3.4.1.2 Mathematical Interpretation 20 

  3.4.1.3 Model Identification 22 

  3.4.1.4 Elasticity Determination 23 

  3.4.1.5 Model Limitations 24 

 3.4.2 Ordered Logit (OL) Model 26 

  3.4.2.1 Model Assumption 26 

  3.4.2.2 Mathematical Interpretation 26 

  3.4.2.3 Model Identification 28 

  3.4.2.4 Elasticity Determination 30 

  3.4.2.5 Model Limitations 31 

 3.4.3 Ordered Probit (OP) Model 31 

  3.4.3.1 Model Assumption 31 

  3.4.3.2 Mathematical Interpretation 31 

  3.4.3.3 Model Identification 34 

  3.4.3.4 Elasticity Determination 35 

  3.4.3.5 Model Limitations 35 

 3.4.4 Partial Proportional Odds (PPO) Model 35 

  3.4.4.1 Assumption 35 

  3.4.4.2 Mathematical Interpretation 36 

 3.5 Model Selection 38 

  3.5.1 Fit Adequacy 38 

  3.5.1.1 Akaike Information Criterion (AIC) 38 

  3.5.1.2 Bayesian Information Criterion (BIC) 39 

  3.5.1.3 McFadden’s Pseudo 𝝆-Square 39 

  3.5.1.4 Mean Absolute Percentage Error (MAPE) 40 

  3.5.2 Comparison of Predictors 40 

  3.5.3 Cross-Validation 40 

  3.5.3.1 𝒌-fold Cross-validation (KFCV) 41 

 3.6 Summary 41 

  



viii 
 

CHAPTER 4: PUBLIC BUS SAFETY STATUS IN DHAKA CITY  

 4.1 Introduction 42 

 4.2 Traffic Accident Database System 42 

 4.3 Public Bus Safety Status in Dhaka 44 

  4.3.1 Year-wise accident severities 44 

  4.3.2 Year-wise accident severities by day of the week, month, year 45 

  4.3.3 Year-wise accidents by junction type 45 

  4.3.4 Year-wise accidents by the traffic control system and collision type 45 

  4.3.5 Year-wise accidents by light condition 46 

  4.3.6 Year-wise accidents by surface condition, type, and quality 46 

  4.3.7 Year-wise accidents by road class, road feature, and location 46 

CHAPTER 5: DATA ANALYSIS AND MODEL SELECTION  

 5.1 Introduction 60 

 5.2 Data Collection 60 

 5.3 Data Processing 60 

 5.4 Descriptive Analysis 61 

 5.5 Results of Model Estimation 63 

  5.5.1 Application of the MNL Model 63 

  5.5.1.1 Interpretation of Result 63 

 5.5.2 Application of the OL Model 66 

  5.5.2.1 Interpretation of Result 66 

  5.5.2.2 Brant Test of OL Model 68 

 5.5.3 Application of the OP Model 69 

  5.5.3.1 Interpretation of Result 69 

 5.5.4 Application of the PPO Model 70 

  5.5.4.1 Result Interpretation 70 

 5.6 Comparative Study 74 

 5.7 Summary of Comparison 75 

CHAPTER 6: CONCLUSIONS  

 6.1 General 76 

 6.2 Key Findings of this Study 76 

  



ix 

 

 6.3 General Recommendations  77 

 6.4 Limitations of the Study 78 

 6.5 Future Scope 79 

REFERENCES 80 

ANNEXURE  

 Anx 1 Accident Research Form (Bangla) Ax-2 

 Anx 2 Accident Research Form (English) Ax-4 

 Anx 3 Instructions for Filling up Accident Research Form Ax-6 

 Anx 4 Year-wise Public Bus Accident Severities  Ax-26 

 



x 
 

LIST OF FIGURES 

Figure 3- 1 : Relationship between unobserved and observed injury variables 28 

Figure 3-2 : Illustration of an ordered logit model with 𝜇1 = 0 30 

Figure 3-3 : Relationship between unobserved and observed injury variables 33 

Figure 3-4 : Illustration of an ordered probit model with 𝜇1 = 0 35 

Figure 3-5 : Methodological steps 41 

Figure 4-1 : Trend of year-wise accidents at different days of week 47 

Figure 4-2 : Trend of year-wise accidents at different months of year 48 

Figure 4-3 : Trend of year-wise accidents at different times of day 49 

Figure 4-4 : Trend of year-wise accidents at different junction types 50 

Figure 4-5 : Trend of year-wise accidents at different traffic control systems 51 

Figure 4-6 : Trend of year-wise accidents at different collision types 52 

Figure 4-7 : Trend of year-wise accidents at different light conditions 53 

Figure 4-8 : Trend of year-wise accidents at different road surface conditions 54 

Figure 4-9 : Trend of year-wise accidents at different road surface types 55 

Figure 4-10 : Trend of year-wise accidents at different road surface qualities 56 

Figure 4-11 : Trend of year-wise accidents at different road classes 57 

Figure 4-12 : Trend of year-wise accidents at different road features 58 

Figure 4-13 : Trend of year-wise accidents at different locations 59 

    

 



xi  

LIST OF TABLES 

Table 2-1 : RHD Public Bus Categories 8 

Table 4-1 : Regional ADUs and their Jurisdictions 43 

Table 4-2 : Year-wise Public Bus Accident Severities 45 

Table 5-1 : Descriptive Analysis 61 

Table 5-2 : Estimation Results of Multinomial Logit Model 64 

Table 5-3 : Estimation Results of Ordered Logit Model 66 

Table 5-4 : Brant Test for Ordered Logit Model 68 

Table 5-5 : Estimation Results of Ordered Probit Model 69 

Table 5-6 : Estimation Results of Partial Proportional Odds Model 72 

Table 5-7 : Results in Terms of Comparison Criterion 74 

Table 5-8 : Results in Terms of Significant Predictors 75 

Table 5-9 : Summary of Comparison 75 

 

 



xii 

 

LIST OF MAIN NOTATION 

 

ADU Accident Data Unit 

AIC Akaike Information Criterion   

ARF Accident Report Form 

ARI Accident Research Institute 

BIC Bayesian Information Criterion 

BRTA Bangladesh Road Transport Authority 

BUET Bangladesh University of Engineering and  

DMP Dhaka Metropolitan Police 

FIR First Information Report 

GDP Gross Domestic Product 

HQ Headquarters 

HRL Hazardous Road Locations 

IDC Institutional Development Component 

MAAP Microcomputer Accident Analysis Package 

MNL Multinomial Logit 

MS Microsoft 

OL Ordered Logit 

OP Ordered Probit 

PDO Property Damage Only 

PPO Partial Proportional Odds 

RHD Roads and Highway Department 

RTI Road Traffic Injury 

RUM Road User Movement 

WHO World Health Organization 



 

 

 

 

1  

CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

Every society's social and economic progress is largely dependent on its transportation 

system. It plays a major role in determining our way of life and making up a sizeable portion 

of the national economy. Unfortunately, in recent years, due to the rapid urbanization 

process, high rates of vehicle and population growth and that of increased levels of 

mobility, inadequate transportation facilities and policies, a varied traffic mix with an 

overabundance of non-motorized vehicles, the absence of a dependable public and mass 

transportation system, and inadequate traffic management techniques have resulted in 

substantial road crash problems. 

The economic and social distress caused by road crashes is a fundamental concern for 

traffic safety. As per the report of World Health Organization (WHO, 2018), global road 

traffic incidents cause approximately 1.35 million fatal injuries and up to 50 million non-

fatal injuries per year. Every day, around 3,700 individuals pass away on world's highways. 

Over 90% of traffic fatalities occur in low and middle-income nations, claiming an 

economic loss of up to 5% of GDP (WHO, 2015). Same report also states that it is affecting 

about 3% of the world's GDP as a whole. In comparison to high-income countries (8.3 

deaths per 100,000 population), low-income countries have a 03 times higher rate of traffic 

fatalities (27.5 deaths per 100,000 people). Approximately 2.5% of all deaths across all age 

categories are caused by traffic injuries, placing them 8th among the world's major causes 

of death. Road fatalities are predicted to increase to the 5th greatest cause of death by 2030, 

resulting in an estimated 2.4 million fatalities annually, unless quick action is taken (RHD, 

2018). 

Low and middle-income nations bear a disproportionately heavy economic burden from 

road accidents. The most recent cost estimate is that road traffic injuries cost USD 518 

billion globally and USD $65 billion in low and middle-income countries each year, 

exceeding the whole amount of development aid received by these nations (WHO, 2018). 

The global epidemic of traffic injuries is still spreading throughout most of the world, 

despite recent stabilization or declines in the number of road traffic fatalities in many high-
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income nations. This is basically due to the fact that there were no decreases in the number 

of traffic fatalities in any low-income nation from 2013 to 2016. 

Bangladesh has the highest population density in the world; as a result, it is essential to 

comprehend its roadway situation in order to create a transport system that is both efficient 

and safe. The main motorized transportation network, which consists of the National, 

Regional, and Zilla Highways, is maintained by RHD. RHD covers a total of 21,302 km of 

road network, of which 3813 km (18%) are national, 4247 km (20%) are regional, and 

13242 km (62%) are Zilla highways in 2017. The number of motorized vehicles registered 

with the BRTA that are currently using this network is 2,984,200, which was found to be 

737,400 in 2004-2005. (RHD, 2018). 

According to a statistic based on data from 183 nations, Bangladesh is rated 106th in the 

world for having the most fatal road accidents. According to police statistics from 2021, 

over 4,000 people die and many more sustain major injuries on Bangladesh's roads each 

year ; currently holding one of the highest fatality rates (60 fatalities  per 10,000 vehicles) 

worldwide. In the first eight months of 2021, there were 3,701 road incidents that resulted 

in 3,502 fatalities and 3,479 injuries. In Bangladesh, there were 4,891 traffic incidents in 

2020 that resulted in 6,686 fatalities and 8,600 injuries, according to Jari Kalyan Samiti 

2020's annual road accident monitoring report. This indicates that 18 persons perished in 

traffic accidents nationwide on an average each day. The yearly survey found that while 

there were 6.78% more accidents on regional highways in 2020 than in 2019, less accidents 

occurred on national highways, 0.16% at railroad crossings, and 2.19% on feeder roads. 

The state of Bangladesh's roads is painted in a depressing light by international 

organizations. According to World Bank research (WB Report, 2019), Bangladesh, which 

only has 0.5 % of the world's vehicles, lost over 25,000 lives on roads in 2019. The research 

was included in a World Bank paper from 2019 titled "Guide for Road Safety Opportunities 

and Challenges: Low and Middle-Income Countries Country Profiles." This indicates that 

15 persons pass away in the nation's traffic accidents and other occurrences for every 01 

lakh people. Road traffic accidents are also the 7th leading cause of death in Bangladesh. 

According to WB study, individuals between the ages of 15 and 64 are responsible for 67% 

of road crash fatalities and injuries. Additionally, the age range of 15 to 49 years old has 

the highest death rate, and the male to female fatality ratio is 5:1. The report estimates that 

the cost of traffic accidents and serious injuries is 5.3% of Bangladesh's GDP. According 
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to the World Bank, 3, 74,310 major injuries occurred in Bangladesh in 2019. The cost of 

injuries and fatalities totaled around $11,630 million. According to World Bank data, 

Pakistan had the greatest rate of road accident-related mortality in 2016, with 27,582 

deaths, while the Maldives had the lowest rate, with 04 deaths per year. 

The most vulnerable road users are pedestrians, bicyclists, motorcyclists, and people 

utilizing informal transportation, such as bus and truck passengers, who account for over 

80% of all traffic deaths. According to Police Statistics 2021, about 34% of total road 

accidents occur in the city of Dhaka, of which 23% are public bus crashes. Modal share of 

vehicles say that bus (23%), truck (26%), micro bus (3%), cycle (3%), rickshaw/van (4%), 

vutvuti (6%), bike (14%), auto rickshaw (9%), private car (4%), and others (8%) are the 

vehicles that were most frequently involved in these collisions. Compared to the 

metropolitan areas, Bangladesh's rural areas record a higher number of RTI fatalities (Ul 

Baset et al., 2017) According to research, 70% of traffic accidents happen on rural roads, 

including rural stretches of major highways. Nearly 80% of fatalities include vulnerable 

road users (i.e., pedestrians, bicyclists, and motorcyclists). Pedestrian-vehicle collisions are 

the main issue with notable involvement of buses and trucks. According to statistics, 

pedestrians can account for up to 62% of fatalities in urban vehicle crashes, and in Dhaka 

city, they account for around 70%. Of all the recorded accidents, 50% occurred on the state 

and regional highways. Nearly 40% of those accidents are concentrated on around 2% of 

the highway network; these parts are known as Hazardous Road Locations (HRLs). 

Approximately 2.5% of accidents that are reported happen on bridges and culverts 

(Mahmud and Hoque, 2011). 

Nearly 10% of pedestrian accidents are caused by other accident/collision categories, 

suggesting that pedestrians may not only be the victims of accidents but also a contributing 

component in some of them. Urban dividers have been found to be quite successful in 

reducing fatal pedestrian accidents (38.23% fatal vs. 57.78% fatal, where there are no 

dividers). It has been determined that traffic control systems, particularly police-controlled 

traffic control systems in urban areas, are effective in lowering the number of fatal 

pedestrian accidents (in some circumstances, to 0% fatal incidences). It has been 

established that geometric intersections without police-managed traffic control systems are 

a contributing factor in deadly pedestrian accidents.   
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Compared to other types of geometric sections (such as curve only, slope, curve plus slope 

and crest), straight and level roadways have produced more double vehicle deadly accidents 

(more than 80% of incidents are fatal). The latter part of the previous finding worsened 

when the sections involved head-on, right-angle, overturn, hit an object in the road, and hit 

animal collisions (76.22% fatal); or occurred on national and regional highways or feeder 

roads (71% fatal); or during dawn/dusk and night (unlit) condition (90.91% fatal); or in 

daylight or night (lit) condition but without any centerline marking traffic control system 

(75.21% fatal). 

85.29% of fatal single-vehicle crashes occurred in head-on, right angle, side swipe, hit 

object in the road, and hit object off-road collision types connected to curve only, slope 

only, and curve and slope geometric parts of the roads. 87.88% of fatal single-vehicle 

crashes were caused by poor lighting conditions at dawn, dusk, and at night (when it was 

not lit). Paradoxically, in the daytime and at night (lit), 86.67% of fatal single-vehicle 

crashes have occurred on brick and earthen road surfaces. Contrarily, single-vehicle 

fatalities have decreased on sealed surfaces even when there is rain (58.82% of crashes are 

not lethal). 94.74% of fatal single-vehicle crashes have occurred on roads with wet or 

flooded surface conditions. However, one-way highways with dry and muddy surfaces 

sometimes resulted in fatal instances (20%), as always perceived. Whereas, in case of two-

way roads, it accounts for 86.54 % of the fatal single-vehicle accidents. 

Bangladesh currently has a police-reported accident database only. There isn't yet a hospital 

or insurance-based accident database. The Accident Research Institute (ARI), BUET is 

continuing its efforts to create a database of accidents based on newspaper reports. 

However, the newspapers have significant reporting errors by spotlighting only to the 

serious fatal accidents occurring in the immediate vicinity of growing hubs. Injury 

accidents or accidents in isolated places are hardly ever mentioned in newspaper stories. 

Even the quality of newspaper reporting is not particularly noteworthy or elaborated for 

fact-finding, analysis, and study. For thorough accident analysis and qualitative study, the 

police-reported accident database is also insufficient and inadequate. To decrease 

underreporting and to maintain and enhance database quality, many independent databases 

are required. 

Given the severity of the issues, Bangladesh is experiencing noteworthy constraints at all 

levels, and safety programs related to promoting traffic safety are still in their infancy. In 
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Bangladesh, the works pertaining to public bus crashes have remained in limited form and 

are mostly descriptive-based. Dhaka being the city of diverse traffic, the scenario is 

somewhat more aggravating. However, few comprehensive research on the collision 

severity of public buses have been done, despite the fact that these crashes have cemented 

a permanent place in the electronic and print media. There were also various attempts to 

study public transportation in the late 1990s and early 2000s, but they tended to be either 

literature-based, focused on specific buses or trucks, or concerned with the behavior of 

public transportation drivers. Therefore, the goal of this study is to determine the roadway 

and environment-related factors influencing the severity of crashes involving public buses 

with comparatively newer set of crash data (2017-2020) for Dhaka City using alternative 

severity models namely; multinomial logit (MNL), ordered logit (OL), ordered probit (OP) 

and partial proportional odds (PPO), as well as to identify the model that will work better 

in situations where the data is incomplete, such as Bangladesh. 

1.2 Objectives of the Study 

Utilizing traffic accident data (2017–2020) from ARI, BUET, the primary goal of this study 

is to discover the influencing factors triggering public bus crash injury severity. In the 

context of Dhaka city, the study specifically examined the viability of discrete-outcome 

probabilistic models. The precise objectives of this research are: 

a) To identify significant independent variables impacting public bus crash severity 

outcomes for Dhaka city (i.e., fatal, grievous, simple injury, and motor collision). 

b) To carry out an in-depth analysis (parameter estimation, model comparison) on 

the proposed methods (MNL, OL, OP, PPO) using the recent crash data of Dhaka 

city and recommend the most reliable/robust one. 

c) To recommend pragmatic measures for necessary safety enhancement. 

1.3 Scope of the Study 

In Bangladesh, public buses are frequently at blame for tragic collisions. According to data 

from BRTA 2020, there are 3,419,884 registered vehicles in the nation as of March 2018, 

of which 72,336 of those are designated as ‘Public Buses’, which can hardly be ignored. 

Moreover, the involvement of public buses in severe traffic crashes is also noteworthy. 
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Given the seriousness of the severity of public bus crash injuries, this study examines the 

correlation between a number of predictors (namely, geometric and environmental 

parameters) and the severity of crash injuries caused by public bus crashes. This thesis does 

not address the severity of injuries brought on by truck, light motor vehicle, or non-

motorized vehicle crashes. Additionally, the analysis of this study excludes a number of 

variables, such as driver attributes, vehicle-related features, pedestrian features, etc. 

1.4 Thesis Outline 

This study has been organized into six chapters. 

Chapter 1: Introduction. This chapter contains the background and motivation, objectives 

as well as scope of the study. 

Chapter 2: Literature Review. In the context of Bangladesh and the wider world, this 

chapter evaluates the literary works that are pertinent to and related to the main idea of the 

research. A summary of public vehicles, accident severity categories, and other topics are 

also provided in this chapter. 

Chapter 3: Research Methodology. The framework of the mathematical models used in this 

thesis is described in this chapter. It also explains the cross-tabulation procedure and a 

comparative study on the models that were obtained. 

Chapter 4: Public Bus Safety Status in Dhaka City. This chapter provides a brief 

discussion on the public bus safety status in Dhaka city. It also provides an overview of 

Bangladesh’s traffic accident database system. Additionally, this chapter includes graphical 

depictions of crash data for public buses in Dhaka city. 

Chapter 5: Data Analysis and Model Selection. This chapter provides a framework for 

the in-depth evaluation and interpretation of findings from discrete outcome-based models. 

The validation of acceptable approaches in relation to models suitable for Bangladesh is 

also included in this chapter. 

Chapter 6: Conclusion. This chapter presents the findings and policy implications of this 

thesis along with its limitations and future scope. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The fact that road safety is a problem on a global scale, has inspired researchers and other 

professionals to take the required actions with a view to promoting safety every now and 

then. The goal of this study is to pinpoint the geometric and environment-related variables 

that influence the severity of public bus crashes in a developing nation like Bangladesh, 

especially in the context of Dhaka city. The current chapter begins by identifying the 

collision severity categories and defining "Public Bus" in accordance with RHD and 

BRTA. Following that, it compiles the pertinent literatures already in existence on the 

severity of public bus crashes, conducted to extract significant variables by using statistical 

models, and so performs a full evaluation on the goal, directions, and advancements made 

in this crucial research subject. 

2.2 Illustration of the Related Terms 

2.2.1 Public Bus 

Roads and Highway Department (RHD) and Bangladesh Road Transport Authority are 

typically in charge of classifying automobiles in Bangladesh (BRTA). The following list 

of vehicles related to this work is organized chronologically based on the report supplied 

by (RHD, 2017). 

Large Bus: Large buses are those with more than 40 seats and a chassis longer than 36 

feet, according to RHD. Air-Conditioned, Chair Class, and Ordinary Large Buses are the 

three subcategories of large buses. Previously, Hino (Japan) and Tata (India) jointly 

controlled 88% of the large bus market. With a combined contribution of 41%, Tata is now 

in the lead with respect to the current situation. In Bangladesh, the air-conditioned bus 

models that connect the major cities include Hino, Volvo, Scania, Hyundai Universe, etc. 

Mini Bus: Minibuses are vehicles with a seating capacity of 16 to 39 passengers and a 

chassis less than 36 feet. Tata, Isuzu, and Mitsubishi are the three main manufacturers of 

minibuses. Tata now holds a 35% market share for minibuses, making it popular.
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Table 2-1: RHD Public Bus Categories (Source: RHD, 2017) 

RHD Category Description 

Large Bus >40 seats and >36 feet chassis 

Mini Bus 16-39 seats and <36 feet chassis 

2.2.2 Crash Severity Type 

It is determined by the severity of the injuries a person (or people) involved in a traffic 

collision has experienced. According to Bangladesh Police's First Information Report (FIR) 

(see Appendix A, B, and C), there are primarily four types of accident severity: 

Fatal Accident: A fatal accident is one that results in the death of one or more accident 

victims within 30 days of the commencement of the accident. 

Grievous Accident: This kind of accident causes injury to the victims and necessitates 

their hospital admission without resulting in any death related issues. 

Simple Injury Accident: This accident includes only minor injury, and as such, can be 

healed overnight. 

Motor Collision: The term "motor collision" refers to the kind of accident that causes 

damage to the automobiles or other types of personal property. 

2.3 Public Bus Pertinent Studies 

2.3.1 National Studies 

The interaction of crash severity with public buses in Bangladesh has only been the subject 

of a very small number of publicly accessible studies. The majority of the research done so 

far in Bangladesh has been examined based on straightforward statistics that illustrate the 

implications, limitations, and demands of the corrective actions taken to address the safety 

issue (Mahmud and Hoque, 2011). Studies have also been conducted to assess accident 

frequency of buses in order to determine the best safety precautions (Ahsan, Keya and 

Raihan, 2012). The works till now have helped the government in defining a holistic 

approach to overcome this severe problem, which however, fall short of the desired 

standard. The important research involving public buses are covered below:  
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In 2007, Hoque, Khondaker, and Hoque conducted a research on the driving behaviors and 

attitudes of heavy vehicle operators toward traffic safety. Through the use of a thorough 

questionnaire survey, an effort was made to understand the general profile, attitudinal, and 

behavioral characteristics of heavy vehicle drivers. The survey consisted of Ninety-nine 

questions, which were broken up into seven categories. The questionnaire focused on 

drivers' knowledge of road safety as well as their habits and viewpoints. The random 

sample approach was applied for sampling purposes. Five hundred drivers were sampled 

for the poll, comprising 279 bus and 221 truck drivers. The sample group was evenly 

divided across various bus and truck terminals, and it also made an effort to cover all 

significant national corridors spread across the nation from July 2003 to March 2004. In 

this study, drivers' knowledge of traffic control devices and their degree of proficiency 

behind the wheel in a variety of scenarios anticipated to result in auto accidents were also 

evaluated. The results of the study were used to gauge the degree of drivers' involvement 

in crashes and to create practical, workable, and efficient accident prevention strategies. 

Anjuman et al. (2013) focused on the involvement of heavy vehicles in traffic incidents in 

order to portray the overall state of road safety in Bangladesh. According to their research, 

heavier vehicles like trucks and buses account for about 35 % and 29% of all fatalities in 

traffic accidents respectively. These vehicles were disproportionately involved in 

pedestrian collisions, making up around 68% (bus 38%, trucks 30%) of all pedestrian 

collisions and 80% of pedestrian fatalities. In heavy vehicle accidents, variables like the 

type of road, composition of  vehicles, human factors, environmental factors, and the total 

number of vehicles involved were anticipated to play a considerably more significant 

influence in boosting injury severity. The potential remedies to this situation's perpetual 

collapse were also covered in this paper. It presented a preliminary investigation into the 

role of heavy vehicle drivers in multiple vehicle accidents and road safety. For a thorough 

grasp of the issue, the authors also suggested in-depth studies and investigations. 

The significant factors affecting the severity of bus crashes in Dhaka, Bangladesh, were 

determined by Barua and Tay (2011). The authors used data from 1998 to 2005 to apply 

the ordered probit (OP) model. According to data from the Micro-Computer Accident 

Analysis Package (MAAP) software, Dhaka city accounted for 41% of all urban transit bus 

crashes. The outcomes of the analysis can be interpreted in the following ways: an upward 

trend in crashes involving transit buses over time, weekdays generated a high number of 
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serious crashes, the majority of crashes involved two vehicles, although single-vehicle 

accidents were more serious, hit-pedestrian crashes were the most serious crash type, and 

the police control aided with signalized intersections reduced the chance of serious injuries. 

2.3.2 International Studies 

As a result of the quick, export-driven economic expansion, there is a noticeable increase 

in heavy vehicle (i.e., public bus, as well as truck) transportation across the road network 

in both high-income countries as well as many emerging and newly industrialized nations. 

For instance, China is observing an annual growth of 466,000 heavy vehicles (such as 

trucks and public buses) on its roadways. As such, the contribution of public bus crashes 

make up a sizable portion of fatal traffic accidents in China. In Australia, crashes involving 

heavy vehicles (such as trucks and public buses) account for up to 20% of all fatal road 

crashes, whereas in the USA, heavy vehicle crashes account for about 15% (Anderson and 

Hernandez, 2017). Similar rates are also reported in the EU member states. There is some 

urgency to better understand the factors related with this vocation given the high crash rates 

and rising number of public buses (i.e., large vehicles) on the road network (Anderson and 

Hernandez, 2017). The following discussion includes a few studies that have been done on 

public buses in various parts of the world: 

Elvik (2002) presented a study on the impact of technical inspections of heavy vehicles 

(trucks and buses) during the period 1985–1997 in Norway on accidents. The effects of 

technical inspections were estimated using multiple regression analysis. The number of 

heavy vehicles involved in injury accidents may rise by 5–10% if inspections are 

eliminated; conversely, if inspections are increased by 100%, the number of accidents falls 

by a comparable amount. Although the study has a number of flaws; its findings are 

comparable with those of the previous studies that have examined the impact of technical 

flaws in heavy trucks on accidents and the remedies used to fix them. 

Mooren et al. (2014) published a paper which reviews the literature on safety management 

interventions that have been successful in reducing the severity of injuries in occupational 

health and safety (OHS) and road safety, and evaluated their applicability in reducing crash 

and injury severity in heavy vehicular (trucks and buses) transport. Safety training, 

management commitment, scheduling or travel planning, size of organization or freight 

type, worker participation, incentives, and safety or return to work rules were among the 
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operational and management traits linked to lower collision and injury risk. Risk analysis 

and corrective actions, prior safety violations, crashes or incidents, vehicle conditions or 

physical work environment, vehicle technologies, recruitment and retention, pay and 

remuneration systems, accreditation for safety or quality management, 

communications/support, financial performance, and worker characteristics and attitudes 

were other factors linked to lower incident and injury rates. The review also emphasized 

the gaps in the literature and suggested additional research. 

Assemi and Hickman (2018) used partial least squares path modeling (PLS-PM) to 

determine how frequently heavy vehicles are inspected, what factors contribute to crashes, 

and how severe the crashes are. Using information from periodic heavy vehicle (trucks and 

bus) inspections and heavy vehicle (trucks and bus) collisions in Queensland, Australia, 

from 2011 to 2013, a research model was proposed and evaluated. In the primary vehicle's 

overall damage, primary vehicle casualties, other involved parties' overall damage, and 

other involved parties' casualties, the results of the model showed variations of 12.9%, 

21.1%, 72.4%, and 11.5%, respectively. 

Feng et al. (2016) investigated the risk variables associated with fatal bus accident injuries 

suffered by various types of drivers. Data that was recovered from the USA's Bus Involved 

in Fatal Accidents (BIFA) database for the years 2006–2010 was subjected to OL 

specifications. The K-means approach was used to divide drivers into three groups; with 

425, 302, and 653 drivers in each cluster, respectively. The results showed that the middle-

aged drivers with a history of traffic violations are "the safest ones" (i.e., they are less likely 

to be involved in more serious accidents), while the young and elderly drivers with a history 

of traffic violations are "the riskiest ones" (i.e., they are more likely to be involved in more 

serious accidents), and drivers without a history of traffic violations fall somewhere in 

between. 

2.4 Model Pertinent Studies 

Researchers frequently employ statistical methods to gauge the seriousness of accident 

injuries. In some studies, (Shankar and Mannering, 1996; Carson and Mannering, 2001; 

Ulfarsson and Mannering, 2004; Khorashadi et al., 2005; Kim et al., 2007; Tay et al., 2011), 

multinomial logit (MNL) models with multiple levels of injury severity were used, whereas 

ordered probability models (viz. OL, OP, etc.) were used to account for the ordinal nature 
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of the crash (O’Donnell and Connor, 1996; Kockelman and Kweon, 2002; Abdel-Aty, 

2003; Garrido et al., 2014; Feng et al., 2016). On the other hand, these techniques have their 

own set of restrictions. To get around the limitations of conventional (i.e., nominal and 

ordered) probability models, Peterson and Harrell (1990) proposed the partial proportional 

odds (PPO) model. This model takes into account the ordinal nature of traffic crash severity 

and permits some independent variables to have different impacts across crash severity 

levels. Due to its distinct combination of flexibility and data constraints, the PPO model 

has been used in a number of research (Wang and Abdel-Aty, 2008; Wang, Chen, and Lu, 

2009; Soon, 2010; Sasidharan and Menéndez, 2014; Li and Fan, 2019). This strategy, 

though, is beyond the purview of this case. 

The work on a comparison study of paradigms that behave differently in various contexts 

is also revealed in a research (Mooradian et al., 2013; Zong, Xu and Zhang, 2013; Iranitalab 

and Khattak, 2017). The majority of injury severity analyses in recent years have relied on 

extensions of ordered response models (Generalized Ordered Logit/Probit, Hierarchical 

Ordered Logit, Bayesian Spatial Generalized Ordered Logit/Probit, Heteroskedastic 

Ordered Probit) that take into account for different specification limitations (Quddus, Wang 

and Ison, 2010; Lemp, Kockelman and Unnikrishnan, 2011; Wang, Yin and Zeng, 2019). 

In certain review publications, methodological approaches for assessing the seriousness of 

accident injuries were also highlighted (Savolainen et al., 2011; Mooren et al., 2014). 

2.4.1 Multinomial Logit (MNL) 

Shankar and Mannering (1996) used a multinomial logit (MNL) model to predict the 

severity of motorcycle rider crashes based on crash frequency. The five-year state-wide 

study of single-vehicle motorbike crashes in Washington, USA, provided the crash data. 

Five levels of severity were examined by the authors: death, serious harm, obvious injury, 

possible injury, and property damage alone (PDO). The results show that the use of a helmet 

in a fixed-object collision is ineffective because this situation increases the risk of fatality. 

Overall, the multinomial logit model performed well in identifying the variables affecting 

the severity of motorcycle crashes. 

The usefulness of ice warning signs in lowering the quantity and severity of accidents was 

examined by Carson and Mannering (2001) in Washington State, USA. The authors 

specifically examined crash severity using the MNL specification. The information showed 
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that a crash's severity was unaffected by an ice warning sign's presence. On the other hand, 

truck tractors and semi-trailers were found to be a significant contributor to fatal collisions, 

and PDO occurrences were found to be more likely as the drivers’ age grew. 

Ulfarsson and Mannering (2004) used various multivariate MNL models to examine how 

male and female drivers differed in terms of accident severity in single- and two-vehicle 

collisions involving SUVs, minivans, pickup trucks, and passenger cars. The algorithms 

were created to calculate the likelihood of four severity outcomes: fatal harm, obvious 

injury, possible injury, and no injury (PDO). The results of the estimations showed that 

variables have a considerably different impact on the degree of damage in male and female 

drivers. 

(Kim et al., 2007) used the MNL model to analyze the elements that affect how seriously 

an injured cyclist is hurt in a collision with a motor vehicle. Police-reported crash data from 

North Carolina, USA, from 1997 to 2002 served as the study's foundation. The authors 

listed a number of characteristics that had a significant effect on fatal injuries, including 

inclement weather, darkness without illumination, head-on incidents, truck involvement, 

cyclists aged 55 or older, and others. However, the probability of death increases by almost 

16 times if the vehicle's speed just prior to the accident was more than 80.5 km/h. 

Tay et al. (2011) used the MNL model in South Korea to identify the variables that 

influence the severity of pedestrian-vehicle collisions. The researchers discovered that, 

compared to minor incidents, fatal and serious collisions were associated with light-vehicle 

collisions, collisions involving intoxicated drivers, male or younger pedestrians, female or 

older pedestrians, and pedestrians struck in the centre of the road. On the other hand, the 

study also found that the drunk drivers are more likely to be involved in minor injury 

crashes than catastrophic damage crashes. 

2.4.2 Ordered Logit (OL) 

O'Donnell and Connor (1996) estimated two ordered paragons, specifically the ordered 

logit (OL) model and the ordered probit (OP) model with heteroscedasticity, to assess 

injury severities in traffic crashes in New South Wales, Australia. The results showed that 

the chance of serious injuries and fatalities is increased by vehicle speed, vehicle age, and 

victim age. According to the authors, factors such as seat position, blood alcohol content, 

gender, collision type, and vehicle type (especially light-duty vehicles) significantly 
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affected the severe outcomes.  

To examine the connection between crash severity and traffic congestion, Quddus, Wang, 

and Ison (2010) used ordered response models including the OL model, heterogeneous 

choice model (HCM), and generalized ordered logit (GOL) (partially restricted) models. 

These models work well for both disaggregate crash data and ordinal dependable variables. 

The results showed that the severity of collision injuries is not significantly affected by 

traffic congestion on London's M25 highway. 

2.4.3 Others 

Hutchinson (1986) estimated the seriousness of occupant injuries in a traffic collision using 

an OP model. Cross-tabulation was used to display the severity of injuries to the driver and 

front-seat passenger in four separate single-vehicle crashes. For that matter, the processed 

British accident data from 1962 to 1972 were used. According to the authors, passengers 

are more likely than drivers to sustain serious injuries in non-overturning collisions, but no 

difference was seen in overturning collisions. 

Abdel-Aty (2003) examined factors affecting the severity of driver injury levels across 

several Central Florida sites using the OP model. He developed concepts for toll plazas, 

signalized intersections, and road segments. The results showed that the driver's age, 

gender, seat belt use, speed, point of impact, and crash type all have a higher chance of 

severe injury regardless of the occurrence site. However, there is a higher likelihood that 

the drivers will be hurt if the cars are using an Electronic Toll Collection system (E-Pass) 

at a toll plaza. The author carried out the same analysis using layered logit response models 

and multinomial logit response models. OP had a higher goodness-of-fit score than MNL, 

and although being more effective, NL was avoided because of its complexity. 

Garrido et al. (2014) conducted research on the severity of injuries sustained by motor 

vehicle occupants in Portugal. The datasets were first examined for multicollinearity as part 

of the modeling strategy, and then the OP specification was used. Women are more likely 

than men to die in an automobile accident, yet the driver's seat is considered to be the safest 

position inside the car. Although the former experiences more accidents, it was also shown 

that urban areas experience less serious collisions than rural ones. 

Wang, Chen, and Lu (2009) investigated and evaluated the factors that affect how serious 
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injuries are at highway divergence zones. At 231 separate highway exit segments in the 

state of Florida, crash data and route statistics were gathered. Using Partial Proportional 

Odds (PPO) regression, which removes the constraint that all regression coefficients be the 

same across all output values and allows one or more regression coefficients to differ across 

outcome levels, the injury severity prediction models were developed. Injury severity at 

freeway to diverge areas was significantly influenced by the length of deceleration/ramp 

lanes, curve and grade at diverging areas, light and weather conditions, alcohol/drug 

involvement, heavy vehicle involvement, number of lanes on mainlines, ADT on 

mainlines, surface conditions, land type, and crash types. The study also found that injury 

severity at motorway diverge locations was not significantly impacted by exit ramp 

designs. 

The Partial Proportional Odds (PPO) model was created by Mooradian et al. (2013) to 

bridge the gap between ordered and multinomial techniques without compromising their 

central tenets. PPO came out on top when the response models were contrasted in terms of 

model fit, covariate significance, and holdout prediction accuracy. On the other hand, it 

was demonstrated that the MNL model had the best average fit. 

The PPO model was applied as a logistic regression model by Toran Pour et al. (2016) for 

pedestrian crashes at mid-blocks in the Melbourne Metropolitan Area. This study examined 

vehicle-pedestrian collisions in mid-blocks for the first time. Additionally, this model was 

also developed by taking into the account of different variables like the separation between 

crashes and public transit stations, average road gradient, and the numerous socioeconomic 

characteristics for the first time. The PPO model showed that the most significant 

parameters determining the severity of car-pedestrian crashes at mid-blocks are the speed 

limit, light condition, pedestrian age and gender, and vehicle type. 

The parameters of road accident severity data and the most popular analytical approaches 

for analyzing such data were computed by Savolainen et al. in 2011. According to the 

authors, binary response models (such as binary logit, binary probit, etc.), ordinal discrete 

response models (such as OL, GOL, etc.), nominal multinomial discrete response models 

(such as MNL, NL, etc.), and some data mining techniques are among the discrete response 

paradigms that gave rise to the majority of modeling approaches. 

Zeng et al. (2020) examined Bayesian network and Regression models for forecasting the 
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seriousness of traffic accidents (i.e., OP model). The number of fatalities, injuries, and 

property damage were the officially recognized severity indicators. The authors came to 

the conclusion that Bayesian networks performed better than Regression models in terms 

of the mean absolute percentage error (MAPE) and hit-ratio. However, missing factors such 

as traffic circumstances and driver characteristics restricted the effort. 

Wang, Chen, and Lu (2009) looked into the pertinent variables that predict the seriousness 

of driver injuries in rural non-interstate collisions in the state of New Mexico. The authors 

employed Bayesian inference to estimate the model using the hierarchically ordered logit 

(HOL) model. In contrast to heavy vehicle drivers, motorcycle riders, female drivers, 

elderly drivers, and the majority of accident types (such as head-on, rear-end, angle 

collision, overturn, fixed object, sideswipe, and other collision) were all significant in 

causing serious injury. An OL model was also generated, although it was less accurate in 

terms of interpretation than the H-OL model. 

Iranitalab and Khattak (2017) investigated four statistical and machine learning methods 

for forecasting traffic crash severity: the MNL model, Nearest Neighbor Classification 

(NNC), Support Vector Machines (SVM), and Random Forests (RF). As part of their 

investigation into the effects of data clustering techniques like K-means Clustering (KC) 

and Latent Class Clustering, the authors also developed a crash costs-based method for 

evaluating different prediction algorithms (LCC). MNL, NNC, and RF all performed better 

when using clustering techniques, but NNC had the best prediction performance. 

A Bayesian spatial GOL model with conditional autoregressive priors was constructed by 

Zeng et al. (2020) to examine the severity of Kaiyang road crashes in China. Using 

Bayesian inference, the proposed model was contrasted against a typical G-OL model, and 

the former was found to be superior. Major crashes rose as a result of a variety of reasons, 

including the summer season, vertical gradients, angle collisions, and others. Professional 

drivers' significant representation in the dataset as intercity coach drivers can be used to 

explain their role in elevating the likelihood of fatal accident. 

2.5 Summary 

Public bus accidents are a problem for both industrialized and developing nations. In many 

developed nations across the world, discrete outcome models (MNL, PPO, OL, OP, GOL, 

etc.) have shown to be efficient and reliable in determining the severity of collision injuries. 
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On the contrary, in many underdeveloped countries like Bangladesh, efforts to address this 

type of challenge are mostly based on descriptive analyses, and often impeded by the 

incompleteness of accident data. As a result, it is past due for Bangladesh to employ more 

cutting-edge approaches supported with modern technologies, such as discrete outcome 

models, to provide an effective solution to this serious issue. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter describes the methodology for creating mathematical models that make it 

easier to assess the seriousness of a public bus crash. For poor nations like Bangladesh, the 

process for identifying the underlying high impact characteristics determining crash 

severity is hazy. This issue is primarily brought on by poor crash data recording. As a result, 

basic probabilistic methods have been applied as the main strategy in this research to 

address the limitation of data under-reporting. 

3.2 Methodological Flow of the Study 

This work has been carried out analytically which consists of three crucial tasks: 

comprehending the current state of traffic safety in Bangladesh as well as Dhaka city, using 

probabilistic methods to delve into the crash data for some unusual and far-reaching 

outcomes, and choosing the best methodology through comparative study in the context of 

this country. The first task includes simple cross-tabulation in MS Excel utilizing accident 

data from Accident Research Institute (ARI). The second job, which is the most important 

portion of the study, used discrete response models to evaluate the data in the R 

programming environment, including the multinomial logit (MNL) model, ordered logit 

(OL) model, ordered probit (OP), and partial proportional odds (PPO) model. Finally, an 

appropriate model that best addresses the data crises in the context of Bangladesh was 

chosen based on fit adequacy and comparison of variables. The subsequent sections give a 

quick overview of the relevant steps in order. 

3.3 Cross-Tabulation 

Cross-tabulation, commonly referred to as a contingency table, is a statistical method for 

analyzing categorical data that are mutually exclusive. This method groups information 

about the variables to evaluate the relationship between them and also shows the pattern of 

change in the variable groups. Cross-tabulation makes it possible to investigate data at a 

more granular level, which makes it easier to interpret and offers deeper insights. The 

convenience of using data of various sorts is the main benefit of contingency table analysis 
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(viz., nominal, ordinal, interval, and ratio). In this study, a straightforward cross-tabulation 

will be used to comprehend the dataset that represents the severity of public crashes. Most 

studies on the safety of public buses have used it as the basis of analysis. 

3.4 Discrete Outcome Models 

Since several practical judgments are made using this information, discrete data frequently 

play an important role in traffic engineering. Theoretically, these data are divided into two 

categories: those describing discrete outcomes of a physical event and those requiring 

behavioral choice. Discrete models can be traced back to either from economic theory or 

from simple probabilistic theory based on physical and behavioral phenomena, 

respectively. Most road traffic incidents are physical events that produce distinct results. 

The use of probabilistic models to forecast and evaluate crash severity for categorical 

response variables was therefore recommended by Mooradian et al. (2013). However, the 

examination of accident data has its own relevance for economic theory. Econometric 

models were adopted into some of the older crash severity calculation techniques 

(Mooradian et al., 2013). 

Traffic collisions produce discrete injury severity outcomes, which are often arranged from 

the worst crash (death) to the least bad crash (motor collision). In Bangladesh, public bus 

accidents are typically categorized according to their severity as follows: (a) motor 

collision, (b) simple injury accident, (c) grievous accident, and (d) fatal accident. In order 

to draw the relationship between crash severity levels, ordered probability models, such as 

the ordered logit (OL) and the ordered probit (OP) are often used for convenience 

(Hutchinson, 1986; O'Donnell and Connor, 1996; Kockelman and Kweon, 2002; Iranitalab 

and Khattak, 2017; Quddus, Wang, and Ison, 2010; Abdel-Aty, 2003; Yamamoto and 

Shankar, 2004; Lee and Abdel-Aty, 2005; Barua and Tay, 2011; Tay et al., 2011). 

To provide for the non-monotonic effect of the independent variables on the dependent 

variable, models for nominal outcomes are frequently used with ordinal response variables. 

This method makes the assumption that damage severity levels are nominal or unordered. 

In contrast to proportion odds, unordered response models, such as the multinomial logit 

(MNL) model allow all model variables to have a different impact on each response level 

(Shankar and Mannering, 1996; Carson and Mannering, 2001; Ulfarsson and Mannering, 

2004; Khorashadi et al., 2005; Savolainen et al., 2011; Kim et al., 2007; Mooradian et al., 
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2013). The estimation of parameters for ordered response variables using conventional 

unordered requirements may be impartial, particularly when data are lacking, according to 

Yamamoto, Hashiji, and Shankar (2008). 

Partial Proportional Odds (PPO) model ignores the limitations provided by ordered 

response and multinomial models. The PPO is, in fact, an intermediate method bridging 

the gap between ordinal and MNL models (Sasidharan and Menéndez, 2014). 

The discrete nature of response variable has motivated the use of MNL, OL, OP and PPO 

models, as the basis of analysis for this research work, which are briefed below: 

3.4.1 Multinomial Logit (MNL) Model 

3.4.1.1 Model Assumption 

a) Assumes data are level specific i.e., each feature has a unit value for each level. 

b) Ignores the sequential order of the levels of response variable. 

c) Relies on the assumption of independence of irrelevant alternatives (IIA). For 

more details, see 3.4.1.5. 

d) Disturbance term is assumed to be identically and independently distributed 

(IID) with type 1 extreme value distribution. 

3.4.1.2 Mathematical Interpretation 

The probability of observation 𝑛 experiencing injury with severity outcome 𝑖 can be written 

as, 

𝑃𝑛(𝑖) = 𝑃(𝑈𝑛𝑖 ≥ 𝑈𝑛𝐼), ∀𝐼 ≠ 𝑖                                             (3.1) 

where, 𝑖 = Crash severity outcomes: 1,2, … , 𝐼 . 

𝑈𝑛𝑖 = Function of covariates that determines the likelihood of severity 𝑖 of observation 

𝑛. 

It is assumed that an individual usually endures the one severity type which maximizes 𝑈𝑛 𝑖. 

Using a linear-in-parameter form, such that, 

𝑈𝑛𝑖 = 𝛽𝑖𝑋𝑛 + 휀𝑛𝑖      (3.2) 
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Where, 𝛽𝑖 = Vector of estimable parameters for injury outcome 𝑖. 

𝑋𝑛 = Vector of exogenous explanatory variables. 

휀𝑛𝑖 = Disturbance term accounting for the unobserved effects influencing injury severity 𝑖 
of individual 𝑛. 

The unobserved term 휀𝑛𝑖’s is assumed to be independent from one severity level to another; 

The term 𝛽𝑖𝑋𝑛 is the observable component of severity determination as the vector 𝑋𝑛 is 

composed of measurable variables (e.g., roadway attributes at the location of accident 𝑛) 

(Shankar and Mannering, 1996). 

By substituting Eq. 3.2 in Eq. 3.1, the former can be expressed as, 

𝑃𝑛(𝑖) = 𝑃(𝛽𝑖𝑋𝑛 + 휀𝑛𝑖 ≥ 𝛽𝐼𝑋𝑛 + 휀𝑛𝑙), ∀𝐼 ≠ 𝑖   (3.3) 

or, 

𝑃𝑛(𝑖) = 𝑃(𝛽𝑖𝑋𝑛 − 𝛽𝐼𝑋𝑛 ≥ 휀𝑛𝐼 − 휀𝑛𝑖), ∀𝐼 ≠ 𝑖   (3.4) 

Eq. 3.4 promotes the derivation of severity model assuming a distribution form for 휀𝑛𝑖. A 

natural choice would be the assumption of normally distributed disturbance term. However, 

normal distribution violates the desirable property of the disturbance term which states, the 

maximums of randomly drawn values from the distribution have the same distribution as 

the values from which they were drawn (Washington et al., 2011). A more common 

approach is to assume that the disturbance term 휀𝑛𝑖, is an extreme value type 1 distribution 

(sometimes referred as Gumbel distribution), which simplifies crash severity modeling. 

The probability density function (pdf) for the distribution is, 

𝑓(휀) = 𝜂 exp(−𝜂(휀 − 𝜔)) exp(−exp(−𝜂(휀 − 𝜔))) (3.5) 

The cumulative distribution function (cdf) is, 

𝐹(휀) = 𝑒𝑥𝑝(−𝑒𝑥𝑝(−𝜂(휀 − 𝜔)))    (3.6) 

 

where, 𝜂 = Positive scale parameter. 

𝜔 = Location parameter (mode). 

Mean = (𝜔 + 0.5772⁄𝜂). 
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Standard multinomial logit model can be derived from generalized extreme value (extreme 

value type 1) assumption such as (McFadden, 1981), 

𝑃𝑛(𝑖) =
𝑒𝑥𝑝[𝛽𝑖𝑋𝑛]

∑  ∀𝐼 𝑒𝑥𝑝[𝛽𝐼𝑋𝑛]
      (3.7) 

Where, all terms are previously defined. Given this equation, vector of parameters, 𝛽’s can 

be estimated using standard maximum likelihood (ML) methods. For a sample of 𝑁 

observations, the log-likelihood function is, 

𝐿𝐿 = ∑  𝑁
𝑛=1 (∑  𝐼

𝑖=1 𝛿𝑛𝑖[𝛽𝑖𝑋𝑛 − 𝐿𝑁∑  ∀𝐼 𝑒𝑥𝑝(𝛽𝐼𝑋𝑛)])  (3.8) 
 

where, 𝛿𝑛𝑖 = 1, if discrete outcome for observation 𝑛 is 𝑖. 

𝛿𝑛𝑖 = 0, if otherwise. 

Multinomial logit models are structurally related to logistic regression models; however, 

assumptions, estimation technique, and associated results vary among these models 

(Ulfarsson and Mannering, 2004). 

3.4.1.3 Model Identification 

The sum of probabilities of all observed outcomes 𝐼 of an individual 𝑛, using Eq. 3.7, equals to 

1. However, addition of new parameters generates the same probabilities of observed 

outcomes (Long, 1997). The model is hence, not identified, which can be clarified revising 

Eq. 3.7 as follows, 

𝑃𝑛(𝑖) =
𝑒𝑥𝑝[𝛽𝑖𝑋𝑛]

∑  ∀𝐼 𝑒𝑥𝑝[𝛽𝐼𝑋𝑛]
×

𝑎𝑋𝑛

𝑎𝑋𝑛
      

or, 

𝑃𝑛(𝑖) =
𝑒𝑥𝑝[(𝛽𝑖+𝑎)𝑋𝑛]

∑  ∀𝐼 𝑒𝑥𝑝[(𝛽𝐼+𝑎)𝑋𝑛]
     (3.9) 

where, 
𝑎𝑋𝑛

𝑎𝑋𝑛
= 1. 

𝑎 = Parameters that keeps the values of probabilities unchanged. 

The original parameter 𝛽𝑖 𝑖 have been replaced by (𝛽𝑖 + 𝑎) for outcome 𝑖, producing a new 

set of parameters. 
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The model is made identifiable by imposing constraints on the 𝛽’s, such that for any 𝑎 ≠ 0 

the constraints are violated (Long, 1997). To execute this restriction for multinomial logit 

model, one of the 𝛽’s is made zero. Considering the outcomes having values such as, 𝑖 =

1, 2, … 𝐼, the arbitrary choice is made as follows, 

𝛽1 = 0 

Hence, the probability equation of observed outcomes is expressed as, 

𝑃𝑛(𝑖) =
𝑒𝑥𝑝[𝛽𝑖𝑋𝑛]

∑  ∀𝐼 𝑒𝑥𝑝[𝛽𝐼𝑋𝑛]
      (3.10) 

where, 𝛽1 = 0 and all terms are predefined. 

3.4.1.4 Elasticity Determination 

The interpretation of model’s parameters is a bit perplexing as these values cannot fully 

explore the effect of explanatory variables on outcome probabilities. The motivation of this 

situation is the dependency of marginal effect of a variable on all coefficients, rather than 

a single coefficient (Khorashadi et al., 2005). Elasticities are then calculated and used to 

assess the marginal effects as a cure to this complication. The prime task of elasticity is to 

compute the influence of specific variables on the outcome probabilities. In general, 

elasticity of each observation 𝑛 is expressed as, 

𝐸𝑥𝑛𝑘
𝑃𝑛(𝑖) =

𝜕𝑃𝑛(𝑖)

𝜕𝑥𝑛𝑘
×

𝑥𝑛𝑘

𝑃𝑛(𝑖)
      (3.11) 

where, 𝐸 = Elasticity. 

 𝑥𝑛𝑘 = Value of kth variable for observation 𝑛. 

 𝑃𝑛(𝑖) = Probability of observation 𝑛 experiencing severity outcome 𝑖. 

Applying Eq. 3.11 to the multinomial logit formulation using Eq. 3.7 provides, 

𝐸𝑥𝑛𝑘
𝑃𝑛(𝑖) = (1 − 𝑃𝑛(𝑖))𝛽𝑖𝑘𝑥𝑛𝑘     (3.12) 

where, 𝛽𝑖𝑘 = Estimable parameter for outcome 𝑖 associated with variable 𝑥𝑛𝑘. 

Elasticity values can approximately be interpreted as the percent effect of 𝑥𝑛𝑘 on the 

probability of severity-level (𝑖).  If the observed elasticity value is less than 1%, the 

variable 𝑥𝑛𝑘 is said to be inelastic, and a 1% change in 𝑥𝑛𝑘 will have less than a 1% change in 
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the selection probability of outcome 𝑖. However, if the elasticity observed, is more than 

1%, then a 1% change in 𝑥𝑛𝑘 will have more than a 1% change in the selection probability 

of outcome 𝑖. 

Eq. 3.11 is only valid for continuous explanatory variables such as, driver’s age, and vehicle 

speed. For indicator variables (those taking on values of 0 and 1), direct pseudo-elasticity 

is calculated. The equation can be written as, 

 

𝐸𝑥𝑛𝑘
𝑃𝑛(𝑖) =

𝑒𝑥𝑝[𝛥(𝛽𝑖𝑋𝑛)]∑  ∀𝐼 𝑒𝑥𝑝[𝛽𝐼𝑘𝑥𝑛𝑘]

𝑒𝑥𝑝[𝛥(𝛽𝑖𝑋𝑛)]∑  ∀𝐼𝑛 𝑒𝑥𝑝[𝛽𝐼𝑘𝑥𝑛𝑘]+∑  ∀𝐼≠𝐼𝑛 𝑒𝑥𝑝[𝛽𝐼𝑘𝑥𝑛𝑘]
− 1 (3.13) 

where, 𝐼𝑛 = Set of alternate with 𝑥𝑛𝑘 in the function determining the outcome. 

 𝐼 = Set of all possible outcomes. 

Pseudo-elasticity of a variable can be elucidated as the average percent change in the 

probability of a specific crash level when the variable is changed from 0 to 1. Hence, a 

measured pseudo-elasticity of 0.5 for a variable, 𝑥𝑛𝑘 in the fatal injury category of 

observation 𝑛 signifies that the probability of fatal injury is increased, on average, by 50%, 

when the value of variable, where 𝑥𝑛𝑘 = 0, is changed from 0 to 1. 

3.4.1.5 Model Limitations 

This section describes about the specification errors resulting due to the violation of 

assumptions made to generate the multinomial logit model (MNL), for the analysis of 

sample data. 

Independence of Irrelevant Alternatives (IIA): IIA in the MNL model simply refers to 

the independence of the ratio of probabilities of any two outcomes from the functions 

determining any other outcomes. This property is seemed to persist in the multinomial logit 

specifications, if all the outcomes share the same unobserved effects (materialized in the 

disturbance term), which eventually cancels out according to Eq. 3.4; however, the problem 

arises when some of the outcomes share unobserved effects, and the probability ratio is no 

longer independent (Ulfarsson and Mannering, 2004). This correlation problem (IIA 

violation) can be addressed with nested logit models. 

The red bus-blue bus paradox is an excellent explanation to this situation. Let’s consider, a 

commuter has two choices with same utility for commuting to college: an auto that is 

selected with 𝑃𝑟(𝑎𝑢𝑡𝑜) = 1 2⁄  and a red bus with 𝑃𝑟(𝑟𝑒𝑑𝑏𝑢𝑠) = 1 2⁄ . The odds of taking 
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the auto over the red bus is(1 2)/ (1 2) = 1⁄⁄ . Now, suppose a new bus service is 

introduced in the region that is identical to the existing service, except the buses are painted 

blue. For validation IIA, multinomial logit predicts: Pr(auto) = 1 3⁄ , Pr(redbus) = 1 3⁄ , 

and Pr(bluebus) = 1 3⁄ , so that, the odds of auto over red bus remains the same (=

(1 3)/ (1 3) = 1⁄⁄ ).  However,  color  cannot  be  the  only  reason  of  the  shift  of  choice. 

Instead, the share of red bus Pr(redbus) = 1 2⁄  would split, resulting in: Pr(auto) = 1 2⁄ , 

Pr(redbus) = 1 4⁄ , and Pr(bluebus) = 1 4⁄ . The novel ratio(= (1 2)/ (1 4) = 2 ≠ 1⁄⁄ ), 

hence, infers the violation of IIA assumption. 

Identically and Independently Distributed (IID): A major conjecture of the MNL model 

derivation is considering the independent, and identical distribution (IID) of the disturbance 

term, 휀 i.e., the variance of the disturbance is constant; however, an undesirable 

contradictory scenario results in inconsistent parameter estimates (Washington et al., 

2011). Having said that, ‘comfort’ (unobserved) is considered a crucial disturbance 

influencer in the paragon of choice of mode of travel; let’s assume, Personal vehicles 

(BMW, Toyota Premio, and Tata Nano), and MRT are the modes to use. Pondering the 

influencer, it can be deduced that variance of the disturbance term is bigger for personal 

vehicles than the disturbance term for MRT (Washington et al., 2011). 

Omitted Variables: The crash reports often contain limited information resulting in an 

erroneous analysis of data. Elimination of relevant variables can lead to a specious 

estimation of coefficients, if such variables possess any significant connection with the 

other variables existing in the model, or the mean and variance of the omitted variables 

vary across severity outcomes (Washington et al., 2011; Savolainen et al., 2011). 

Irrelevant Variables: Despite the fact that results are obtained using extraneous variables, 

efficiency of parameter estimates will be eluded concluding in a meaningless effort. 

Endogeneity: The influence of injury-severity levels on the explanatory variables can arise 

estimation issues using the MNL model. Specifically, Carson and Mannering (2001) 

rationalized the endogenous nature of ice warning sign in relating it with ice- accident 

frequency. The authors elucidated that ice-accident frequency can potentially impact the 

presence of ice warning sign as it is a conventional exercise to place warning signs at 

accident spots. Hence, the analysis might put forth a fallacious result, showing signs only 

increases accident frequency, if the endogeneity is ignored (i.e., ice warning is considered 
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an exogenous variable). 

3.4.2 Ordered Logit (OL) Model 

3.4.2.1 Model Assumption 

a) Parallel Odds Assumption: According to the parallel odds assumption (also known 

as parallel lines assumption), the effect of an independent variable will be uniform across 

all levels of response variable i.e., the value of estimable coefficient 𝛽 is same for all 

outcome levels 𝑖 (Soon, 2010; Sasidharan and Menéndez, 2014). The fulfilment of the 

assumption thus conditions on the parallelism of the odds ratios across severity levels. A 

test devised by Brant (also known as Brant Test) is used to assess the validity of parallel 

odds assumption. 

b) Disturbance term is assumed to be logistically distributed across observations. 

c) Assumption is made considering homoscedastic nature of disturbance term (i.e., the 

variance of disturbance term cannot vary across observations). 

d) The disturbance terms for different observations are assumed to be uncorrelated. 

3.4.2.2 Mathematical Interpretation 

Ordered logit model, also known as Proportional odds (PO) model, is usually defined in a 

latent (i.e., unobserved) variable framework. The general specification of each single 

equation model is, 

𝑧𝑛 = 𝛽𝑋𝑛 +휀𝑛    (3.14) 

where, 𝑧𝑛 = Latent continuous variable measuring the risk of injury faced by observation 

𝑛 in a crash. 

𝑋𝑛 = 𝑝 × 1 vector of non-stochastic (i.e., non-random) explanatory variables measuring 

the attributes of observation 𝑛. 

𝛽 = 𝑝 × 1 vector of parameters to be estimated. 

휀𝑛 = Random disturbance term. 

The error term is assumed to be logistically distributed across observations with mean= 0, 
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and variance= 𝜋2/3, which eventually results in an ordered logit model (Washington et 

al., 2011). 

The probability density function (pdf) is, 

𝜆(휀) =
𝑒𝑥𝑝(𝜀)

[1+𝑒𝑥𝑝(𝜀)]2
     (3.15) 

The cumulative density function (cdf) is, 

𝛬(휀) =
𝑒𝑥𝑝(𝜀)

[1+𝑒𝑥𝑝(𝜀)]
     (3.16) 

The unknown parameter 𝛽 is to be estimated; however, standard regression technique 

cannot be applied to Eq. 3.14, as dependent variable, 𝑧𝑛 is unobserved (O’Donnell and 

Connor, 1996). Instead, the observed and coded discrete injury severity variable, 𝑦𝑛 

contained in the data is used, and a relation is drawn with the latent variable, 𝑧𝑛 as follows: 

 𝑦𝑛 = {

1, −∞ ≤ 𝑧𝑛 ≤ 𝜇1 (MotorCollison)
2, 𝜇1 < 𝑧𝑛 ≤ 𝜇2 (SimpleInjuryAccident)
3, 𝜇2 < 𝑧𝑛 ≤ 𝜇3 (GrievousAccident)
4, 𝜇3 < 𝑧𝑛 ≤ ∞ (FatalAccident)

   (3.17) 

where, the threshold values 𝜇1 , 𝜇2 and 𝜇3 are unknown estimable parameters. This implies that 

the probability of injury severity 𝑖 sustained by observation 𝑛 is the same as the probability 

that an unobserved variable 𝑧𝑛 measuring injury risk, takes a value between two thresholds. 

The cumulative probability for a given crash 𝑛 with injury severity levels 𝑖 can be expressed 

as follows: 

𝑃(𝑦𝑛 ≤ 𝑖) =
𝑒𝑥𝑝[𝜇𝑖−𝛽𝑋𝑛]

1+𝑒𝑥𝑝[𝜇𝑖−𝛽𝑋𝑛]
   (3.18) 

where, 𝑦𝑛 = Recorded crash injury severity for crash 𝑛. 

𝑖 = Crash injury severity levels: 1, 2…, 𝐼 − 1. 

𝜇𝑖 = Cut-off point for level 𝑖. 

𝑋𝑛 = 𝑝 × 1 vector containing the values of all 𝑝 predictor variables for crash 𝑛. 

β = 𝑝 × 1 vector of estimable parameters associated with 𝑋𝑛. 

The probabilities associated with the coded responses of an ordered logit model can be 
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further shown as, 

𝑃𝑛(1) = 𝑃𝑟(𝑦𝑛 = 1) = 𝑃𝑟(𝑧𝑛 ≤ 𝜇1) = 𝑃𝑟(𝛽𝑋𝑛 + 휀𝑛 ≤ 𝜇1)

= 𝑃𝑟(휀𝑛 ≤ 𝜇1 − 𝛽𝑋𝑛) = 𝛬(𝜇1 − 𝛽𝑋𝑛)

𝑃𝑛(2) = 𝑃𝑟(𝑦𝑛 = 2) = 𝑃𝑟(𝜇1 < 𝑧𝑛 ≤ 𝜇2)

= 𝑃𝑟(휀𝑛 ≤ 𝜇2 − 𝛽𝑋𝑛) − 𝑃𝑟(휀𝑛 ≤ 𝜇1 − 𝛽𝑋𝑛)

= 𝛬(𝜇2 − 𝛽𝑋𝑛) − 𝛬(𝜇1 − 𝛽𝑋𝑛)

  (3.19) 

 

𝑃𝑛(𝑖) = 𝑃𝑟(𝑦𝑛 = 𝑖) = 𝑃𝑟(𝜇𝑖−1 < 𝑧𝑛 ≤ 𝜇𝑖)

= 𝑃𝑟(휀𝑛 ≤ 𝜇𝑖 − 𝛽𝑋𝑛) − 𝑃𝑟(휀𝑛 ≤ 𝜇𝑖−1 − 𝛽𝑋𝑛)

= 𝛬(𝜇𝑖 − 𝛽𝑋𝑛) − 𝛬(𝜇𝑖−1 − 𝛽𝑋𝑛), 𝑖 = 3

𝑃𝑛(𝐼) = 𝑃𝑟(𝑦𝑛 = 𝐼) = 𝑃𝑟(𝜇𝐼−1 < 𝑧𝑛) = 𝑃𝑟(𝜇𝐼−1 < 𝛽𝑋𝑛 + 휀𝑛)

= 𝑃𝑟(𝜇𝐼−1 − 𝛽𝑋𝑛 < 휀𝑛) = 1 − 𝛬(𝜇𝐼−1 − 𝛽𝑋𝑛), 𝐼 = 4

 

where, 𝛬(. ) = Standard logistic cumulative distribution function of the disturbance term, 

휀𝑛. 

The probabilities in Eq. 3.19 will be positive if the thresholds parameters follow the 

constraints 𝜇1 < 𝜇2 < 𝜇3 (O’Donnell and Connor, 1996). 

Figure 3.1 illustrates the agreement between unobserved, continuous variable, 𝑧𝑛, and 

observed discrete variable, 𝑦𝑛. 

Fig. 3.1: Relationship between unobserved and observed injury variables. 

The parameters of ordered logit paradigms are estimated by the method of maximum 

likelihood (ML). For a sample of N observations, the log-likelihood function can be written 

as: 

𝐿𝐿 = ∑  𝑁
𝑛=1 (∑  𝐼

𝑖=1 𝛿𝑛𝑖𝐿𝑁[𝛬(𝜇𝑖 − 𝛽𝑋𝑛) − 𝛬(𝜇𝑖−1 − 𝛽𝑋𝑛)])  (3.20) 

where, all terms are predefined.  

3.4.2.3 Model Identification 

Mean and variance of the unobserved variable, 𝑧𝑛 cannot estimated as the variable is latent 
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in nature. Therefore, the variance is identified by assuming Var 휀 = 𝜋2 3⁄  in ordered logit 

model (Long, 1997). However, the mean of 𝑧𝑛 still remains unidentified. 

The non-identification of the model can be shown revising Eq. (12) for a single independent 

variable as: 

𝑧𝑛 = 𝑎 + 𝛽𝑋𝑛 + 휀𝑛    (3.21) 

where, 𝑎 = Intercept, and all terms are previously defined. 

The assumed cut-off points (thresholds) for this model, 𝜇𝑖 (where 𝑖 = 1, 2, … ,−1), and 𝑎 

are considered to be ‘true parameters’ as they are used to generate the observed data. 

Defining an alternative set of parameters such that: 

𝑎∗ = 𝑎 − φ     (3.22) 

and 

𝜇𝑖
∗ = 𝜇𝑖 − φ     (3.23) 

where, φ = Arbitrary constant. 

The probability that 𝑦 = 𝑖 can be written as: 

𝑃𝑛(𝑖) = Λ(𝜇𝑖 − 𝑎 − 𝛽𝑋𝑛) − Λ(𝜇𝑖−1 − 𝑎 − 𝛽𝑋𝑛)

= Λ(𝜇𝑖
∗ − 𝑎∗ − 𝛽𝑋𝑛) − Λ(𝜇𝑖−1

∗ − 𝑎∗ − 𝛽𝑋𝑛)
  (3.24) 

Here, both sets of parameters are generating same value of probability for a given observed 

outcome leaving no way to choose between the parameter sets using the observed data. So, 

it can be surmised that the model is unidentified. 

Dual assumptions regarding parameters, 𝑎 and 𝜇𝑖 can engender an identifiable model, which 

eventually lead to an arbitrary choice of 𝜇𝑖 = 0, and 𝑎 ≠ 0 in our case. Eq. 3.19, then can 

be synopsized as: 

𝑃𝑛(1) = Pr(𝑦𝑛 = 1) = Λ(−𝛽𝑋𝑛)

𝑃𝑛(2) = Pr(𝑦𝑛 = 2) = Λ(𝜇2 − 𝛽𝑋𝑛) − Λ(−𝛽𝑋𝑛)

𝑃𝑛(3) = Pr(𝑦𝑛 = 3) = Λ(𝜇3 − 𝛽𝑋𝑛) − Λ(𝜇2 − 𝛽𝑋𝑛)

𝑃𝑛(4) = Pr(𝑦𝑛 = 4) = 1 − Λ(𝜇3 − 𝛽𝑋𝑛)

    (3.25) 
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The following figure shows the probability distribution function (pdf) of a logistically distributed 

ordered probability model with 𝜇1 = 0. 

 

Fig. 3.2: Illustrates an ordered logit model with 𝜇1 = 0. 

3.4.2.4 Elasticity Determination 

The effect of the exogenous variables on the response variables often create issues in 

deciphering the parameter estimates. A positive sense of 𝛽 in Fig. 3.2 signifies that an 

increase in 𝑋𝑛 will generate the increase (or, decrease) of the probabilities of the highest 

(or, lowest) ordered injury severity outcomes. However, it is baffling to interpret the trend 

of the probabilities of the transitional severity levels based on the sense (i.e., positive, or 

negative) of 𝛽. Hence, the calculation of elasticities to evaluate the marginal effects for 

each level is essential (Washington et al., 2011; Garrido et al., 2014). 

For continuous variables, the elasticities measuring the effects on probabilities of different 

outcome levels can be expressed as: 

∂𝑃(𝑦𝑛=𝑖)

∂𝑋
= [Λ(𝜇𝑖 − 𝛽𝑋𝑛) − Λ(𝜇𝑖−1 − 𝛽𝑋𝑛)]𝛽   (3.26) 

where, all terms are previously defined. 

In case of categorical explanatory variables, Eq. 3.26 is not valid resulting in adoption of a 

different approach. The effect of the change of an indicator variable from 0 to 1, holding 

all other variables values at their means, on the probabilities of response variable can be 
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accounted as (Garrido et al., 2014): 

𝑋𝑛 = 𝑃(𝑦𝑛 = 𝑖 ∣ 𝑋𝑛 = 1) − 𝑃(𝑦𝑛 = 𝑖 ∣ 𝑋𝑛 = 0)   (3.27) 

where, all terms are predefined. 

3.4.2.5 Model Limitations 

Flexibility: Ordered logit model is not suitable for crash severity analysis because it restricts 

the effects of variables across outcomes (Khorashadi et al., 2005; Washington et al., 2011). 

The air bag incident provided by Washington et al. (2011) is an important explanation to 

this limitation. The authors considered three scenario of severity levels namely, PDO, 

injury, and fatality. The air bag deployment indicator variable in ordered response model 

would either increase fatality and decrease PDO, or decrease fatality and increase PDO. 

However, the deployment of air bag itself would increase the probability of injury, which 

cannot be explained using this kind of model structure. Eluru, Bhat and Hensher (2008) 

also pointed that ordered specifications hold fixed threshold values across crashes, which 

in turn lead to incompatible injury risk propensity, and inconsistent effects of variables on 

injury severity levels. 

3.4.3 Ordered Probit (OP) Model 

3.4.3.1 Model Assumption 

a) Follows parallel lines assumption like the OL model. 

b) Disturbance term is assumed to be normally distributed across observations. 

c) Assumption is made considering homoskedastic nature of disturbance term (i.e., 

the variance of disturbance term cannot vary across observations). 

d) The disturbance terms for different observations are assumed to be uncorrelated. 

 

3.4.3.2 Mathematical Interpretation 

Ordered probit model is typically defined in a latent (i.e., unobserved) variable structure 

like the OL model. The general specification of each single equation model is, 

𝑧𝑛 = 𝛽𝑋𝑛 + 휀𝑛     (3.28) 



 

 

 

 

32  

where, 𝑧𝑛 = Latent continuous variable measuring the risk of injury faced by observation 

𝑛 in a crash. 

𝑋𝑛 = 𝑝 × 1 vector of non-stochastic (i.e., non-random) explanatory variables 

measuring the attributes of observation 𝑛. 

𝛽 = 𝑝 × 1 vector of parameters to be estimated. 

휀𝑛 = Random disturbance term. 

The error term is assumed to be normally distributed across observations with mean = 0, 

and variance = 1, which eventually results in an ordered probit model (Washington et al., 

2011). The probability density function (pdf) is, 

𝜙(휀) =
1

√2𝜋
exp (−

𝜀2

2
)    (3.29) 

The cumulative density function (cdf) is, 

Φ(휀) = ∫  
𝜀

−∞

1

√2𝜋
exp (−

𝑡2

2
) 𝑑𝑡   (3.30) 

The unknown parameter 𝛽 is to be estimated; however, standard regression technique 

cannot be applied to Eq. 3.28, as dependent variable, 𝑧𝑛 is unobserved (O’Donnell and 

Connor, 1996). Instead, the observed and coded discrete injury severity variable, 𝑦𝑛 

contained in the data is used, and a relation is drawn with the latent variable, 𝑧𝑛 as follows: 

𝑦𝑛 = {

1,     −∞ ≤ 𝑧𝑛 ≤ 𝜇1     (Motor Collison) 

2,     𝜇1 < 𝑧𝑛 ≤ 𝜇2     (Simple Injury Accident) 

3,     𝜇2 < 𝑧𝑛 ≤ 𝜇3     (Grievous Accident) 

4,     𝜇3 < 𝑧𝑛 ≤ ∞     (Fatal Accident) 

  (3.31) 

where, the threshold values 𝜇1, 𝜇2 and 𝜇3 are unknown estimable parameters. This implies 

that the probability of injury severity 𝑖 sustained by observation 𝑛 is the same as the 

probability that an unobserved variable 𝑧𝑛  measuring injury risk, takes a value between two 

thresholds. The cumulative probability for a given crash 𝑛 with injury severity levels 𝑖 can 

be expressed as follows: 

𝑃(𝑦𝑛 < 𝑖) =
exp[𝜇𝑖−𝛽𝑋𝑛]

1+[𝜇𝑖−𝛽𝑋𝑛]
    (3.32) 
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where, 𝑦𝑛 = Recorded crash injury severity for crash 𝑛. 

𝑖 = Crash injury severity levels: 1, 2…, 𝐼 − 1. 

𝜇𝑖 = Cut-off point for level 𝑖. 

𝑋𝑛 = 𝑝 × 1 vector containing the values of all 𝑝 predictor variables for crash 𝑛. 

𝛽 = 𝑝 × 1 vector of estimable parameters associated with 𝑋𝑛. 

The probabilities associated with the coded responses of an ordered probit model can be 

further shown as, 

𝑃𝑛(1) = 𝑃𝑟(𝑦𝑛 = 1) = 𝑃𝑟(𝑧𝑛 ≤ 𝜇1) = 𝑃𝑟(𝛽𝑋𝑛 + 휀𝑛 ≤ 𝜇1)

= 𝑃𝑟(휀𝑛 ≤ 𝜇1 − 𝛽𝑋𝑛) = 𝛷(𝜇1 − 𝛽𝑋𝑛)

𝑃𝑛(2) = 𝑃𝑟(𝑦𝑛 = 2) = 𝑃𝑟(𝜇1 < 𝑧𝑛 ≤ 𝜇2)

= 𝑃𝑟(휀𝑛 ≤ 𝜇2 − 𝛽𝑋𝑛) − 𝑃𝑟(휀𝑛 ≤ 𝜇1 − 𝛽𝑋𝑛)

= 𝛷(𝜇2 − 𝛽𝑋𝑛) − 𝛷(𝜇1 − 𝛽𝑋𝑛)

𝑃𝑛(𝑖) = 𝑃𝑟(𝑦𝑛 = 𝑖) = 𝑃𝑟(𝜇𝑖−1 < 𝑧𝑛 ≤ 𝜇𝑖)

= 𝑃𝑟(휀𝑛 ≤ 𝜇𝑖 − 𝛽𝑋𝑛) − 𝑃𝑟(휀𝑛 ≤ 𝜇𝑖−1 − 𝛽𝑋𝑛)

= 𝛷(𝜇𝑖 − 𝛽𝑋𝑛) − 𝛷(𝜇𝑖−1 − 𝛽𝑋𝑛), 𝑖 = 3

𝑃𝑛(𝐼) = 𝑃𝑟(𝑦𝑛 = 𝑙) = 𝑃𝑟(𝜇𝑙−1 < 𝑧𝑛) = 𝑃𝑟(𝜇𝑙−1 < 𝛽𝑋𝑛 + 휀𝑛)

= 𝑃𝑟(𝜇𝑙−1 − 𝛽𝑋𝑛 < 휀𝑛) = 1 − 𝛷(𝜇𝑙−1 − 𝛽𝑋𝑛), 𝐼 = 4

 (3.33) 

where, 𝛷(. ) = Standard normal cumulative distribution function of the disturbance term, 

휀𝑛. 

The probabilities in Eq. 3.31 will be positive if the thresholds parameters follow the 

constraints 𝜇1 < 𝜇2 < 𝜇3 (O’Donnell and Connor, 1996). 

Figure 3.3 illustrates the agreement between unobserved, continuous variable, 𝑧𝑛, and 

observed discrete variable, 𝑦𝑛. 

 

 

 

 

Fig. 3.3: Relationship between unobserved and observed injury variables. 

The parameters of ordered probit paradigms are estimated by the method of maximum 
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likelihood (ML). For a sample of N observations, the log-likelihood function can be written 

as: 

𝐿𝐿 = ∑  𝑁
𝑛=1 (∑  𝐼

𝑖=1 𝛿𝑛𝑖𝐿𝑁[Φ(𝜇𝑖 − 𝛽𝑋𝑛) − Φ(𝜇𝑖−1 − 𝛽𝑋𝑛)]) (3.34) 

where, all terms are predefined. 

3.4.3.3 Model Identification 

Mean and variance of the unobserved variable, 𝑧𝑛 cannot estimated as the variable is latent 

in nature. Therefore, the variance is identified by assuming Var 휀 = 1 in ordered probit 

model (Long, 1997). However, the mean of 𝑧𝑛 still remains unidentified. 

The non-identification of the model can be shown revising Eq. (12) for a single independent 

variable as: 

𝑧𝑛 = 𝑎 + 𝛽𝑋𝑛 + 휀𝑛     (3.35) 

where, 𝑎 = intercept, and all terms are previously defined. 

The assumed cut-off points (thresholds) for this model, 𝜇𝑖 (where = 1, 2, …, 𝐼 − 1), and 𝑎 

are considered to be ‘true parameters’ as they are used to generate the observed data. 

Defining an alternative set of parameters such that: 

𝑎∗ = 𝑎 − 𝛷      (3.36) 

and 

𝜇∗ = 𝜇𝑖 − 𝛷      (3.37) 

where, 𝜑 = arbitrary constant. 

The probability that , 𝑦 = 𝑖  can be written as: 

𝑃𝑛(𝑖) = 𝛷(𝜇𝑖 − 𝑎 − 𝛽𝑋𝑛) − 𝛷(𝜇𝑖−1 − 𝑎 − 𝛽𝑋𝑛)

= 𝛷(𝜇𝑖
∗ − 𝑎∗ − 𝛽𝑋𝑛) − 𝛷(𝜇𝑖−1

∗ − 𝑎∗ − 𝛽𝑋𝑛)
   (3.38) 

Here, both sets of parameters are generating same value of probability for a given observed 

outcome leaving no way to choose between the parameter sets using the observed data. So, 

it can be deduced that the model is unidentified. 
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Dual assumptions regarding parameters, 𝑎 and 𝜇1 can engender an identifiable model, 

which eventually lead to an arbitrary choice of 𝜇1 = 0, and 𝑎 ≠ 0 in this thesis. Eq. 3.33, 

then can be synopsized as: 

𝑃𝑛(1) = 𝑃𝑟(𝑦𝑛 = 1) = 𝛷(−𝛽𝑋𝑛)

𝑃𝑛(2) = 𝑃𝑟(𝑦𝑛 = 2) = 𝛷(𝜇2 − 𝛽𝑋𝑛) − 𝛷(−𝛽𝑋𝑛)

𝑃𝑛(3) = 𝑃𝑟(𝑦𝑛 = 3) = 𝛷(𝜇3 − 𝛽𝑋𝑛) − 𝛷(𝜇2 − 𝛽𝑋𝑛)

𝑃𝑛(4) = 𝑃𝑟(𝑦𝑛 = 4) = 1 − 𝛷(𝜇3 − 𝛽𝑋𝑛)

  (3.39) 

The following figure shows the probability distribution function (pdf) of a normally 

distributed ordered probability model with 𝜇1 = 0. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4: Illustrates an ordered probit model with 𝝁𝟏 = 𝟎. 

3.4.3.4 Elasticity Determination 

See section 3.4.2.4. 

 

3.4.3.5 Model Limitations 

See section 3.4.2.5. 

3.4.4 Partial Proportional Odds (PPO) Model 

3.4.4.1 Assumption 

a) Partially relaxes the parallel odds assumption for some variables. 
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3.4.4.2 Mathematical Interpretation 

The general cumulative probability function of injury severity level 𝑖 for a given crash 𝑛 

can be written as (Mooradian et al., 2013)s: 

𝑃(𝑦𝑛 ≤ 𝑖) = 𝐹(𝜇𝑖 − 𝛽𝑋𝑛 − 𝛾𝑖𝑇𝑛) =
exp[𝜇𝑖−𝛽𝑋𝑛−𝛾𝑖𝑇𝑛]

1+exp[𝜇𝑖−𝛽𝑋𝑛−𝛾𝑖𝑇𝑛]
   (3.40) 

where, 𝑦𝑛 = Recorded crash injury severity for crash 𝑛. 

𝑖 = Crash injury severity levels: 1, 2…, 𝐼 − 1. 

𝐹(. ) = Standard cumulative distribution 

function. 

𝜇𝑖 = Cut-off point for level 𝑖. 

𝑋𝑛 = 𝑝 × 1 vector containing the values of all 𝑝 predictor variables for crash 𝑛. 

𝛽 = 𝑝 × 1  vector of estimable parameters associated with 𝑋𝑛. 

𝑇𝑛 = 𝑞 × 1 vector (𝑞 ≤ 𝑝), containing the values of all predictor variables on 

the subset of 𝑝 for crash 𝑛, where proportional odds assumption is rejected. 

𝑦𝑖 = 𝑞 × 1  vector of estimable parameters associated with 𝑇𝑛, such that 𝑦𝑖𝑇𝑛 

corresponds only to the 𝑖 th level of injury severity for observation 𝑛, and 𝑦𝑖 = 0. 

A key problem of parallel-lines model like, proportional odds (PO) model is that its 

assumptions are often violated; it is common for one or more 𝛽’s to vary across the values 

of 𝑖; i.e., parallel-lines model is overly restrictive (Williams, 2006). The only difference the 

PPO model has with the PO model is the way PPO partially relaxes the parallel odds 

assumption for a particular set of variables, which generally is a subset of the set of total 

predictor features available in the data. Eq. 3.18 implies that the value of the estimable 

parameter 𝛽 for each explanatory variable is restricted to be identical across all the severity 

levels, 𝑖. In other words, the parallel odds assumption in PO model signifies that, 𝛽
1
=

𝛽
2
= ⋯ = 𝛽

𝑖−1
= 𝛽, which is relatively true for PPO model. Eq. 3.40 shows the inclusion 

of an additional parameter 𝑦𝑖  which vary across 𝑖 for an observation 𝑛. The PPO model 
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only restricts the parameters which follows the parallel lines assumption. 

Let’s consider a particular variable 𝑋𝑛𝑠 where 𝑠 ∈ 𝑞 i.e., the variable violates proportional 

odds assumption. The available parameters associated with 𝑋𝑛𝑠 will be the coefficient 𝛽
𝑠

 

(same across the values of 𝑖), and the coefficient 𝑦
𝑠
 (different across the values of 𝑖). Now 

for a specific level 𝑖, the true coefficient of 𝑋𝑛𝑠 is equal 𝛽
𝑠
+ 𝑦𝑖𝑠1 (considering 𝑦𝑖𝑠1 be value 

of 𝑦𝑖𝑠 for that specific level 𝑖). 

Eq. 40 can also be deduced into multinomial and order response models. If 𝑞 = 0, then the 

preceding equation becomes, 

𝐹(𝜇𝑖 − 𝛽𝑋𝑛) =
𝑒𝑥𝑝[𝜇𝑖−𝛽𝑋𝑛]

1+𝑒𝑥𝑝[𝜇𝑖−𝛽𝑋𝑛]
   (3.41) 

which corresponds to an order response model. 

Again, if 𝑞 = 𝑝, then Eq. 27 becomes, 

𝐹(𝜇𝑖 − 𝛽𝑖𝑋𝑛) =
exp[𝜇𝑖−𝛽𝑖𝑋𝑛]

1+exp[𝜇𝑖−𝛽𝑖𝑋𝑛]
   (3.42) 

which dovetails the cumulative density function of multinomial model. 

The probabilities associated with the coded responses of a PPO model can be shown as: 

𝑃𝑟(𝑦𝑛 = 1) = 𝐹(𝜇1 − 𝛽𝑋𝑛 − 𝛾1𝑇𝑛)

𝑃𝑟(𝑦𝑛 = 2) = 𝐹(𝜇2 − 𝛽𝑋𝑛 − 𝛾2𝑇𝑛) − 𝐹(𝜇1 − 𝛽𝑋𝑛 − 𝛾1𝑇𝑛)

𝑃𝑟(𝑦𝑛 = 𝑖) = 𝐹(𝜇𝑖 − 𝛽𝑋𝑛 − 𝛾𝑖𝑇𝑛) − 𝐹(𝜇𝑖−1 − 𝛽𝑋𝑛 − 𝛾𝑖−1𝑇𝑛), 𝑖 = 3

𝑃𝑟(𝑦𝑛 = 𝐼) = 1 − 𝐹(𝜇𝐼−1 − 𝛽𝑋𝑛 − 𝛾𝐼−1𝑇𝑛), 𝐼 = 4

 (3.43) 

 

where, all terms are predefined. 

For the ease of interpretation, a slightly altered version of Eq. 40 is as follows: 

𝑝(𝑦𝑛 ≥ 𝑖) = 𝐺(𝜇𝑖 + 𝑎𝑋𝑛 + 𝑏𝑖𝑇𝑛   (3.44) 

where, 𝐺(. ) = 1 − 𝐹(. ). 

𝑎 = −𝛽. 

  𝑐𝑖 = 𝑦𝑖. 
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In this method, the Motor Collision result level, which is the lowest level of outcome, will 

serve as the reference level. Consequently, a positive value will imply a larger probability 

of a higher severity level (i.e., fatal), while a negative sense will indicate a decreased 

probability (Mooradian et al., 2013). 

3.5 Model Selection 

The intrinsic trait of an ideal model selection approach is to stabilize goodness of fit with 

simplicity. This section structures about the rationale of criteria for statistical model 

selection from a set of candidate models. 

3.5.1 Fit Adequacy 

The degree to which a paradigm successfully fits the observed data is referred to as its 

"goodness of fit," which also captures the difference between expected and observed 

values. The Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), 

and McFadden's Pseudo R-Squared are utilized criteria in this context to evaluate the fit 

adequacy of candidate models. The mistake percentages for the two paradigms utilized for 

the severity analysis are also evaluated using MAPE. 

3.5.1.1 Akaike Information Criterion (AIC) 

The AIC acts as an estimator of the relative standard of statistical paragons for a given 

dataset, motivating the selection of appropriate paragons. More precisely, AIC is single 

number score identifying the suitable model among a number of models that better fits the 

given set of data. AIC value of a model is represented as follows: 

𝐴𝐼𝐶 = −2 ln(𝐿) + 2𝑘    (3.45) 

where, 𝐿 = Maximum value of likelihood function for the model. 

𝑘 = Number of estimated parameters in the model. 

𝐴𝐼𝐶 primarily uses maximum likelihood estimation (log-likelihood) of the model to assess 

fitness sufficiency. For models with high log-likelihood, the 𝐴𝐼𝐶 value is low, which 

implies that a lower 𝐴𝐼𝐶 value is preferable. 

The penalty term 2𝑘 in Eq. 3.45, which represents overfitting of the model's parameters, 

increases model complexity while maintaining appropriate goodness of fit. 𝐴𝐼𝐶 doesn’t 
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give any warning if all candidate models fit poorly because it measures the model's 

relativity. 

𝐴𝐼𝐶 calculates the relative loss of this information. Any model reflecting the process that 

produced the data will lose some information along the way. It is decided to choose the 

model that minimizes the loss, however this decision is uncertain. 

3.5.1.2 Bayesian Information Criterion (BIC) 

The Bayesian Information Criterion (BIC) is a standard for model selection which is closely 

related to the Akaike Information Criterion (AIC). The BIC is structured as follows: 

𝐵𝐼𝐶 = −2 ln(𝐿) + ln(𝑛)𝑘    (3.46) 

where, 𝐿 = Maximum value of likelihood function for the model. 

𝑘 = Number of estimated parameters in the model. 

𝑛 = Number of observations (i.e., sample size). 

However, 𝐵𝐼𝐶 assumes that sample size 𝑛 is much larger than parameters 𝑘 in the model. 

The one with the lowest value of 𝐵𝐼𝐶 is selected among various paradigms that generated 

the data like the 𝐴𝐼𝐶. 

Overfitting with complexity is also an issue in 𝐵𝐼𝐶; however, the penalty term in 𝐵𝐼𝐶 

ln(𝑛)𝑘 is larger than 2𝑘. Another fact is that 𝐵𝐼𝐶 can only be used as an estimator if the 

response values of dependent variable are identical for all models being compared. 

3.5.1.3 McFadden’s Pseudo 𝝆-Square 

A common weapon of model fit is McFadden’s 𝜌2 statistic which is almost similar to 

McFadden’s 𝑅2 in regression models in terms of purpose. The statistic is expressed as: 

𝜌2 = 1 −
𝐿𝐿(𝛽)

𝐿𝐿(0)
      (3.47) 

where, 𝐿𝐿(𝛽) = Model’s log likelihood at convergence. 

𝐿𝐿(0) = Log likelihood when all parameters are set to 0. 
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This statistic is also known as likelihood ratio index. The value of 𝜌2 ranges from 0 to 1, 

and the value being close to 1 signifies the parameters are estimated with much conviction 

(Washington et al., 2011). 

3.5.1.4 Mean Absolute Percentage Error (MAPE) 

Mean absolute percentage error (MAPE) is a statistical measure that examine the accuracy 

of the models as a loss function for regression analysis. It looks at the average percentage 

difference between predicted values and observed values as follows: 

MAPE =
1

𝑛
∑  𝑛
𝑖=1 |

𝐴𝑖−𝑃𝑖

𝐴𝑖
| × 100%     (3.48) 

where,   𝑛 = Total number of observations. 

𝐴𝑖 = Observed value.  

𝑃𝑖 = Predicted value for observation 𝑖. 

This standard is easy to interpret as it provides error in terms of percentages. 

MAPE being a yardstick of error, high value signifies poor models whereas low value 

indicates better models. It works best to forecast error if there are no extremes to the data 

(and no zeros). 

3.5.2 Comparison of Predictors 

The parameters of the predictor variables that were acquired utilizing the various data-

generation techniques are compared. A major worry was the significant coefficients 

obtained in all of the models used for this investigation. The covariates of the multinomial 

logit (MNL), partial proportional odds (PPO), and proportional odds (PO) models were 

contrasted by Mooradian et al. (2013). In terms of parameter values and significance levels, 

the authors claimed that the PPO model and the MNL model produce findings that are 

comparable. 

3.5.3 Cross-Validation 

Cross-validation, commonly referred to as out-of-sample testing, is a well-known method 

for assessing how well prediction models perform with a given set of data. Models must be 

tested after being trained using validation datasets (i.e., training datasets), which must both 
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come from the same dataset utilized for this research. In this instance, two non-exhaustive 

cross-validation techniques are used: 𝑘 -fold cross-validation and Monte Carlo cross-

validation. 

3.5.3.1 𝒌-fold Cross-validation (KFCV) 

When compared to other exhaustive cross-validation methods, 𝑘 -fold cross-validation 

(KFCV), also known as v-fold cross-validation, requires less time for estimation 

(Beschorner et al., 2014). In this method of cross-validation, the primary sample is divided 

into 𝑘 identically sized subsamples; 10-fold cross-validation is used to determine the 

optimum model for the scenario in Bangladesh. The remaining subsample is utilized as the 

validation set while the remaining 𝑘 1 subsamples are used to execute the procedure. After 

then, the procedure is repeated 𝑘 times using a different validation set each time. The 

desired isolated approximation is then obtained by averaging the findings for 𝑘. Though, 

utilizing the full datasets for model validation has one advantage over Monte Carlo cross-

validation. 

3.6 Summary 

The following figure (Fig. 3.5) outlines the methodological steps undertaken to engineer for 

the purpose of this thesis. 

 

Fig. 3.5: Methodological steps.



 

 

 

 

42  

CHAPTER 4 

PUBLIC BUS SAFETY STATUS IN DHAKA CITY 

4.1 Introduction 

Official police reports on traffic accidents in Bangladesh provide the impression that the 

country's standing in terms of traffic safety is improving, but the reality is far different. 

Police statistics in Bangladesh indicated 2,376 road fatalities in 2016, however a WHO 

study from 2018 indicates that the true toll was higher than 24,954. The issue is also made 

worse by the collection of accident data including non-fatal injuries. A summary of 

Bangladesh's traffic accident database system is provided in this chapter, which has a 

significant bearing on the thesis's conclusion. Along with the requisite cross-tabulation, this 

chapter also includes a graphic representation of data on crashes involving public buses.  

4.2 Traffic Accident Database System 

Police in Bangladesh are in charge of collecting and preserving data on road accidents 

because they are the most extensively spread institution and have the ability to reach out to 

the most remote regions of the country. There was no standard format for gathering 

accident data before to 1996. At the time, information was acquired by local police stations 

called thanas. Districts and metropolitan police agencies received monthly aggregate 

reports of the data. Finally, information was compiled for official road accident statistics at 

the police headquarters (HQ). There was very little value for the statistics, and neither 

engineering nor research could be done with them. 

In June 1995, the Bangladesh Police built a new ARF in cooperation with the Institutional 

Development Component (IDC), which was tested in the northern division of the Dhaka 

Metropolitan Police (DMP) area. The Department for International Development (DFID) 

of the British government provided funding for the IDC of the Second Road Rehabilitation 

and Maintenance Project (RRMP2). By the end of 1996, all of the DMP's police stations 

were fully wired onto the network. The new strategy has considerably enhanced the nation's 

accident information system. The Microcomputer Accident Analysis Package (MAAP) 

was used to computerize the entire system, which was built by the Transport Research 

Laboratory (TRL) of the United Kingdom (UK) specifically for storing and analyzing road 

accident data. Since 1997, this reporting system has been in operation all over the nation, 
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and in September 1999, it was made a requirement for police personnel [Regulation 

254(b)]. 

Table 4-1: Regional ADUs and their Jurisdictions 

Location of ADUs Zonal Jurisdiction 

DMP Dhaka Metropolitan Area 

Dhaka Range Dhaka Division (Except DMP Area) 

CMP Chattogram Metropolitan Area 

Chattogram Range Chattogram Division (Except CMP Area) 

RMP Rajshahi Metropolitan Area 

Rajshahi Range Rajshahi Division (Except RMP Area) 

KMP Khulna Metropolitan Area 

Khulna Range Khulna Division (Except KMP Area) 

SMP Sylhet Metropolitan Area 

Sylhet Range Sylhet Division (Except SMP Area) 

BMP Barisal Metropolitan Area 

Barisal Range Barisal Division (Except BMP Area) 

RPMP Rangpur Metropolitan Area 

Rangpur Range Rangpur Division (Except RPMP Area) 

GMP Gazipur Metropolitan Area 

MMP Yet to be functional 

For every kind of collision, a police sub-inspector submits a First Information Report (FIR). 

This officer must also complete an ARF in the event of a road traffic collision after visiting 

the site and validating the information. The ARF is subsequently dispatched to the 

appropriate Accident Data Units (ADU), where the ARF's information and the accident's 

location are entered into MAAP. Early in 1998, ten regional ADUs were created. These 

units are responsible for processing and analyzing data from traffic accidents in their 

respective jurisdictions. Four more ADUs have recently been established, with one more 

set to open soon (Table 4.1). 

An extra ADU was developed at the police headquarters to assemble the national accident 

database and analyze the data. Data are collected from the regional ADUs in soft (MAAP) 

format for preservation and to use as a source of intelligence. 
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The Accident Research Institute (ARI) of the Bangladesh University of Engineering and 

Technology (BUET) largely uses the MAAP database for research (BUET). The police 

department and the Road Safety Cell (RSC) of the Bangladesh Road Transport Authority 

(BRTA) collaborate to transfer this database to ARI. For current road safety studies and 

investigations, this database serves as the foundation. ARI, on the other hand, collects hard 

copies (ARFs) and soft copies (MAAP) from ADUs, adds Road User Movement (RUM) 

codes to enable data analysis, and modifies, validates, and fills in the missing information 

in MAAP as retrieved from corrected ARFs to enhance the database information. Bengali 

format of the ARF (currently in use), its English format, and the instruction guide for filling 

up the ARF is enclosed in Appendix A, Appendix B, and Appendix C sequentially for a 

clear understanding of the present road accident database system in Bangladesh (Raihan, 

2013). 

4.3 Public Bus Safety Status in Dhaka 

Using straightforward statistical analysis, this part examines the current situation with 

regard to public bus safety in Dhaka from 2017 to 2020. The process largely comprises 

creating tables in MS Excel using common cross-tabulation techniques. The link between 

accident severity and geometric and environmental parameters is the main focus of this 

study. As a result, the tables are built as a year-by-year distribution of Public bus accident 

severity for each of the predictors. To better visualize crash frequency, these facts are then 

turned into graphs that show the size, trends, and characteristics of the accidents. It's 

important to note that the crash data for public buses is only represented graphically in this 

chapter. The generated tables are located in Appendix D. 

4.3.1 Year-wise accident severities 

The public bus crash data that was used in this study had four injury severity outcomes: 

motor collision (M) (2.1%), simple injury (S) (4.62%), grievous injury (G) (22.6%), and 

fatal injury (F) (70.68%). The data in Table 4.2 clearly demonstrates the tendency of the 

data toward fatal accidents and attests to the widespread reporting of fatal accidents in 

Bangladesh's accident database. 
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Table 4-2: Year-wise Public Bus Accident Severities 

 

 

Year 

Accident Severity 

F G M S Total 

2017 110 27 3 9 149 

2018 89 31 5 2 127 

2019 95 36 1 8 140 

2020 58 19 1 4 82 

Grand Total 352 113 10 23 498 

Percentage 70.68 22.6 2.1 4.62 100 

 

4.3.2 Year-wise accident severities by day of the week, month, year 

Figures 4.1, 4.2, and 4.3 provide analyses of accidents for various temporal variables. 

Regarding the day of the week and the month of the year, no noteworthy accident trend has 

been found. However, 7:30 am to 8:30 am and 11 am to 5 pm have been the most significant 

hours of accident occurrences for fatal injury and grievous harm, according to accident 

analysis regarding the time of occurrence. 

4.3.3 Year-wise accidents by junction type 

As shown by Figure 4.4, mid-block parts of roadways are more accident-prone than 

junctions. This is true for all four types of accidents, including those that result in fatalities, 

serious injuries, motor vehicle collisions, and simple injuries. These incidents have 

occurred at non-junctional parts in about 58 % of cases. The susceptibility of Tee junctions 

near not-junction sections is also shown by a surge in all four graphs. 

4.3.4 Year-wise accidents by the traffic control system and collision type 

Where there is no traffic control system in place, more than 65% of accidents have 

happened (Figure 4.5). Police-controlled zones have been found to reduce crash severity 

by statistical modeling, despite having a higher frequency of all crash severities. In terms 

of fatalities and severe injuries, the collision between a public bus and pedestrians is shown 

in Figure 4.6 to be the most vulnerable form of collision. Following this category are, in 

that order, a head-on collision, a sideswipe, and an overturn. 
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4.3.5 Year-wise accidents by light condition 

Daylight have been found to be catalysts for accidents of all kinds (Figures 4.7). General 

statistics were useful in this case merely to determine the percentages of crashes that 

occurred under various climatic conditions, but they were unable to provide any insight 

into the real circumstances. Chapter 5 of this thesis provides the acumens with regard to 

these characteristics. 

4.3.6 Year-wise accidents by surface condition, type, and quality 

According to research, Figures 4.8, 4.9, and 4.10 demonstrate that, in terms of crash 

frequencies, dry road surface conditions, sealed road surface types, and good road surface 

quality, respectively. 

4.3.7 Year-wise accidents by road class, road feature, and location 

In the case of road class, national highways share the highest crash frequency in terms of 

fatal, grievous, and simple injury (Figure 4.11). City roads, on the other hand, govern motor 

collision injury. In addition, these accidents are associated with normal road features 

(92.7% cases, Figure 4.12) and distributed quite similarly in rural (nearly 55%, decreasing 

trend) and urban areas (nearly 44%, increasing trend). Detailed statistics are incorporated 

in Appendix D in Tables 15, 16, and 17. 

From the aforementioned statistical analyses, an idea concerning public bus crash data 

scenario in Dhaka is attained. The discernments gained from these graphical trends were 

then used in the data processing segment of this study. 



 

 

 

 

47  

  
 

  

 (Note: In the above figure, 1, 2, 3, 4, 5, 6, and 7 stands for Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday, respectively). 

Fig. 4.1: Trend of year-wise accidents at different days of week. 
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 (Note: In the above figure, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 stands for January, February, March, April, May, June, July, August, September, October, 

 November, December, respectively). 

Fig. 4.2: Trend of year-wise accidents at different months of year. 
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Times of Day (F) Times of Day (G) 
  

 

  

  (Note: In the above figure, 25 stands for ?/Blank data field). 

Fig. 4.3: Trend of year-wise accidents at different times of day.
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  (Note: In the above figure, 1, 2, 3, 4, 5, 6, 7, and 8 stand for Not at a junction, Cross junction, Tee junction, Staggered junction, Roundabout, Railway/Level 

 crossing, Other, and ?/Blank data field, respectively). 

Fig. 4.4: Trend of year-wise accidents at different junction types.
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Traffic Control Systems (M) 

  
 

  

  (Note: In the above figure, 1, 2, 3, 4, 5, 6, 7, 8, and 9 stand for No control, Centerline marking, Pedestrian crossing, Police controlled, Traffic lights, Police+Traffic 

 lights, Stop/Give way sign, Other, and ?/Blank, respectively). 

Fig. 4.5: Trend of year-wise accidents at different traffic control systems.
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 (Note: In the above figure, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 stand for Head on, Rear end, Right angle, Side swipe, Overturn, Hit object in road, Hit object off road, 

 Hit parked vehicle, Hit pedestrian, Hit animal, Other, and ?/Blank data field, respectively). 

Fig. 4.6: Trend of year-wise accidents at different collision types.
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  (Note: In the above figure, 1, 2, 3, 4, and 5 stand for Daylight, Dawn/Dusk, Night (lit), Night (unlit), and ?/Blank data field, respectively). 

Fig. 4.7: Trend of year-wise accidents at different light conditions. 
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 (Note: In the above figure, 1, 2, 3, 4, 5, and 6 stand for Dry, Wet, Muddy, Flooded, Other, and?/Blank data field, respectively). 

Fig. 4.8: Trend of year-wise accidents at different road surface conditions. 
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     (Note: In the above figure, 1, 2, 3, and 4 stand for Sealed, Brick, Earth, and?/Blank data field, respectively). 

Fig. 4.9: Trend of year-wise accidents at different road surface types.
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    (Note: In the above figure, 1, 2, 3, and 4 stand for Good, Rough, Under repair, and?/Blank data field, respectively). 

Fig. 4.10: Trend of year-wise accidents at different road surface qualities. 
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    (Note: In the above figure, 1, 2, 3, 4, 5, and 6 stand for National highway, Regional highway, Feeder road, Rural road, City road, and ?/Blank data field, respectively). 

Fig. 4-11: Trend of year-wise accidents at different road classes. 
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   (Note: In the above figure, 1, 2, 3, 4, 5, and 6 stand for None, Bridge, Culvert, Narrowing/Restriction, Speed breakers, and ?/Blank data field, respectively). 

 

Fig. 4.12: Trend of year-wise accidents at different road features.
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 (Note: In the above figure, 1, 2, and 3 stand for Urban area, Rural area, and?/Blank data field, respectively). 

Fig. 4.13: Trend of year-wise accidents at different locations. 
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CHAPTER 5 

DATA ANALYSIS AND MODEL SELECTION 

5.1 Introduction 

In this chapter, the four crash severity models, namely: Multinomial Logit (MNL), Ordered 

Logit (OL), Ordered Probit (OP), and Partial Proportional Odds (PPO) as well as the data 

used in this analysis are primarily discussed along with the results of their application. 

Additionally, there are insights into model selection based on appropriate parameters at the 

end of this chapter. 

5.2 Data Collection 

The Accident Research Institute (ARI), Bangladesh University of Engineering and 

Technology (BUET), and police-reported public bus crash data from 2017 to 2020 were 

the sources of the data for this study. ARI employs the Microcomputer Accident Analysis 

Package Five (MAAP5) software to store and analyze accident data. On the other side, R, 

the main program utilized in this work, is incompatible with the data format of MAAP5. In 

order to aid in the research, ARI provided a modified Excel file of the public bus crash 

data. 

5.3 Data Processing 

At the beginning of the data processing, incomplete and inaccurate records were removed, 

leaving a total of 498 public bus crashes. The distribution of the observed injury severity 

caused by public transportation in the final sample is as follows: Fatal Injury (F): 352 

(70.68%); Grievous Injury (G): 113 (22.6%); Simple Injury (S): 33(6.72%). It is worth 

mentioning that the data is largely dominated by accidents with fatal injuries and the 

proportions of simple injuries, and the motor collisions are much lower. This is a major 

limitation of this research as the outcome of the analysis is expected to be biased towards 

fatal injury accidents. In an intention to aid the analysis, the simple injury, and the motor 

collision accidents were aggregated into a single injury severity level and were named as 

simple injury. Hence, the modified crash severity level becomes: Simple Injury(𝑦 = 1), 

Grievous Injury(𝑦 = 2); and Fatal Injury(𝑦 = 3). 

The independent variables used in this research include temporal characteristics, roadway 
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characteristics, environmental characteristics, crash type, etc. It is to be noted that the 

independent features are all nominal, and any category of a variable sharing less than 4% 

of the data compared to other categories in that variable is coded as other types. However, 

all the independent variables were not used in the analysis work; rather the entire dataset 

was scrutinized based on the AIC value, and some of the features were omitted to better 

assist the analysis work. 

 

5.4 Descriptive Analysis 

The Accident Research Institute (ARI), BUET, provided a four-year (2017-2020) police-

reported database containing 498 public transportation crash data. The database's observed 

injury level is distributed as follows: Fatal Injury (F): 352 (70.68%), Grievous Injury (G): 

113 (22.6%), and Simple Injury (S): 33 (6.72%). It is worth noting that the data is driven 

by fatal injury accidents, with the proportion of simple injury being substantially smaller. 

This is a significant limitation of this study because the results of the analysis are predicted 

to be biased toward fatal injury accidents. Crash characteristics, roadway attributes, 

environmental elements, temporal characteristics, vehicle features, and driver features are 

all included in the database. Based on the AIC value, variables linked to vehicle attributes 

and driver features were not employed in the modeling process. The variables used in the 

modeling process are summarized in Table 5-1. Using the database, this study developed 

four models: MNL, OL, OP, and PPO.  

Table 5-1: Descriptive Analysis 

 

Variable Variable Description Frequency 
Ratio 

(%) 

Target Variable 

Injury Severity 

1 – Simple injury 33 6.72 

2 – Grievous Injury 113 22.60 

3 – Fatal Injury 352 70.68 

Explanatory Variables  

Crash Characteristics 

Collision Type 

1 if a rear end or head on collision 104 20.82 

1 if a hit pedestrian Collison 306 61.49 

1 if other types of collision 88 17.68 
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Variable Variable Description Frequency 
Ratio 

(%) 

Roadway Characteristics 

Junction 

1 if no junction was present 256 51.77 

1 if junction was present 242 48.72 

Traffic Control 

1 if no traffic control system is present 116 23.38 

1 if any traffic control system is present 382 76.62 

Movement 

1 if the road was one way 256 51.47 

1 if the road was two-way 242 48.52 

Divider 

1 if no divider was present 114 22.99 

1 if divider was present 384 77.01 

Surface type 

1 if the road surface was sealed 493 99.02 

1 if the road surface was not sealed 5 0.98 

Surface quality 

1 if the road surface was good 471 94.50 

1 if the road surface was not good 27 5.50 

Road Geometry 

1 if the road was not straight 44 8.84 

1 if the road was straight 454 91.16 

Road Class 

1 if the road is a city road 221 44.40 

1 if the road is a national road 235 47.15 

1 if the road is a regional road 42 8.48 

Environment Characteristics 

Light Condition 

1 if during dawn/dusk 73 14.73 

1 if there was daylight 264 53.04 

1 if there was dark 161 32.22 

Temporal Characteristics 

Day of Week 

1 if the day was a weekday 361 72.49 

1 if the day was a weekend 137 27.50 

Time 

1 if during night hours 161 32.22 

1 if during off-peak hours 122 24.55 

1 if during morning peak hours 122 24.55 

1 if during afternoon peak hours 93 18.66 
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5.5 Results of Model Estimation 

Using the accident information gathered from ARI and BUET, four crash severity models 

were created. The goal was to find the model that could match the given flawed data most 

effectively. However, in order to satisfy this aim, triggering elements that affect crash 

severity levels had to be found. Normally, a confidence level of 95% is used to determine 

the significance of any coefficients, but given the sparse set data structure obtained from 

ARI, this confidence level didn't work well for our models. As a result, characteristics were 

considered significant for each model if their p-value was less than or equal to 0.20 (i.e., a 

p-value ≤ 0.20), which corresponds to 80% confidence interval. Additionally, a conviction 

was established that states that if any category of an independent variable was found to be 

statistically significant, then that variable as a whole was considered significant in 

influencing injury severity of public bus crashes. This conviction was established for a clear 

exposition of the results, since all of the factors will decide on the selected triggering 

factors. 

5.5.1 Application of the MNL Model 

5.5.1.1 Interpretation of Result 

The MNL model was applied to the crash data considering the nominal nature of accident 

severity. The estimation results of the MNL model are presented in Table 5.2. It is to be 

noted that the table has two parts: a set of results for grievous injury crashes, and a set of 

results for fatal injury crashes. For this study, the coefficients of simple injury crashes were 

restricted to zero (i.e., base outcome level). The estimated coefficients thus indicated the 

relative effects of contributing features on grievous, and fatal injury severity compared to 

simple injury severity; hence, a positive sense of coefficients will indicate an increased 

likelihood of severity level, and a negative sign will minimize the likelihood of severity 

level compared to simple injury severity. However, confusion might arise at the time of 

evaluating the results as all the features (viz., categorical explanatory variables) have a base 

category of their own. For simplicity, the interpretation will be established based on the 

feature base category only; although, this doesn’t change the fact that the base category of 

crash severity is simple injury. 
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Table 5-2: Estimation Results of Multinomial Logit Model 

 

 Grievous Std 

error 

P value Fatal Std 

error 

P value 

 

(Intercept) 
-0.831 1.933 0.667 - 2.824 1.899 0.137** 

Day of Week (Weekdays) 0.061 0.56 0.913 0.143 0.511 0.78 

 

Time (Off Peak) 
-0.221 0.978 0.821 - 0.264 0.942 0.779 

Time (Morning Peak) -1.985 0.971 0.041*** - 1.013 0.907 0.264 

Time (Night) -1.507 0.985 0.126* - 1.116 0.937 0.233 

Junction (Yes) -0.793 0.545 0.145** - 0.359 0.499 0.472 

Traffic Control (Yes) 0.631 0.58 0.277 0.657 0.52 0.207 

Collision type 

(Head on or Rear End) 
-0.054 0.617 0.931 -0.18 0.518 0.729 

Collision type (Hit Pedestrian) 2.412 0.79 0.002*** 2.523 0.733 0.001*** 

Movement (One Way) 1.081 0.552 0.05*** 0.553 0.505 0.274 

Divider (Yes) -0.098 0.634 0.877 - 0.198 0.573 0.729 

Light (Day light) -0.361 0.809 0.655 - 0.288 0.754 0.702 

Light (Night) -0.47 0.869 0.589 0.155 0.801 0.847 

Road Geometry 

(Straight + Flat) 
1.017 0.719 0.158* 1.374 0.629 0.029*** 

Surface type (Sealed) 0.643 1.502 0.669 2.11 1.533 0.169* 

Surface Quality (Good) 0.261 0.834 0.754 1.309 0.801 0.102** 

Road Class (City) 0.49 0.839 0.559 0.357 0.738 0.629 

Road Class (National) 0.08 0.865 0.926 0.547 0.759 0.472 
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No of Observation 498 

Log-likelihood at convergence -237.171 

AIC 546.3413 

BIC 688.4705 

*Significant at 0.05, **Significant at 0.15, ***Significant at 0.20, 

 

Base Level=Simple Injury or Motor Collision 

In an intention to assess the estimated coefficients, Table 5.2 shows that morning-peak 

hours are less vulnerable duration compared to afternoon peak hours, minimizing the 

likelihood of both grievous injury (coefficient= -1.985) and fatal injury (coefficient= - 

1.013); although, the feature is only statistically significant for grievous injury. During the 

night-time, vulnerability to grievous (coefficient= -1.507, significant feature) and fatal 

(coefficient= -1.116) injury decreases. This result quite coincides with the work of 

(Ulfarsson and Mannering, 2004) that says after dark the likelihood of fatal injury crashes 

reduces. On the other hand, off-peak hours are found to reduce the likelihood of grievous 

injury crashes; however, these results are not statistically significant. 

An interesting finding is that the combined effect of traffic control (viz., centreline marking, 

pedestrian control, traffic lights, police+traffic lights, stop/give way sign, etc.) escalates 

both grievous and fatal injury, compared to no traffic control, because even at traffic- 

controlled regions, drivers tend to display an indifferent attitude towards the traffic rules. 

Again, public buses are more prone to both grievous and fatal injury hitting pedestrians to 

a much significant extent. Straight and flat roads increase both types of injury compared to 

other road geometry, because of less precautions and over speeding of the drivers. A 

noticeable finding is that good surface quality of pavements escalates fatal injury crashes 

(coefficient= 1.309), due to the over speeding tendency of the drivers, being a statistically 

significant feature. 
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5.5.2 Application of the OL Model 

5.5.2.1 Interpretation of Result 

The ordinal nature of accident severity was considered while applying the OL model to 

crash data. It is worth mentioning that a positive (negative) value of a parameter, associated 

with a positive increase in the feature, will increase (decrease) the probability of the highest 

ordered injury severity level (i.e., fatal injury) and decrease (increase) the probability of 

lowest ordered injury severity (i.e., simple injury). 

The explanatory variables with positive parameters in Table 5.3, like hit pedestrian type 

collision (coefficient= 0.744) are more likely to be involved in a fatal accident compared 

to a simple accident. 

Moreover, a set of independent variables with positive coefficients include straight and flat 

road geometry, good surface conditions (Garrido et al., 2014), sealed surface types are 

found to be statistically significant. Public bus operation conditioned on any of these 

features is more likely to increase the probability of fatal injury. 

For example, the likelihood of fatal injury crashes increases to a great extent (coefficient= 

1.3) in sealed type surface and on dry surface quality roads (coefficient= 1.127). Again, the 

presence of dividers (coefficient = -0.193) and two-way movement of roads (coefficient = 

-0.173) alleviates fatal injury crashes compared to no dividers and one-way movement 

respectively. 

Table 5-3: Estimation Results of Ordered Logit Model 

 Estimate Std error t value P value 

Day of week (Weekdays) 0.194523 0.273721 0.710661 0.477294 

Time (Off Peak) 0.04454 0.367984 0.121039 0.903661 

Time (Morning Peak) 0.430776 0.396188 1.087302 0.276903 

Time (Night) 0.170186 0.388983 0.437514 0.661739 

Junction (Yes) 0.134149 0.249246 0.538217 0.590427 

Traffic Control (Yes) 0.240333 0.293843 0.817897 0.413416 
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Collision type (Head On or Rear End) -0.08233 0.360436 -0.22842 0.819321 

Collision type (Hit Pedestrian) 0.744208 0.325409 2.286993 0.022196*** 

Movement (One Way) -0.1737 0.255511 -0.67983 0.496614 

Divider (Yes) -0.19344 0.313825 -0.61638 0.537642 

Light (Daylight) -0.08027 0.380493 -0.21096 0.832917 

Light (Night) 0.412351 0.419234 0.983581 0.325321 

Road Geometry (Straight + Flat) 0.847304 0.393971 2.150677 0.031502*** 

Surface type (Sealed) 1.299997 0.895022 1.452474 0.14637** 

Surface Quality (Good) 1.127085 0.455013 2.477041 0.013248*** 

Road Class (City) 0.040652 0.452958 0.089748 0.928487 

Road Class (National) 0.55902 0.460276 1.214532 0.224545 

Threshold (S->G) 1.348393 1.102854 1.222639 0.221466 

Threshold (G->F) 3.05878 1.110815 2.753636 0.005894*** 

No of Observations 498 

Log-likelihood at Convergence                                       -253.604 

AIC                                          545.2084 

BIC                                          620.2211 

*Significant at 0.05, **Significant at 0.15, ***Significant at 0.20, 

 

Base Level=Simple Injury or Motor Collision 

Interpreting the coefficients in Table 5.3 is difficult as the effect of explanatory variables 

on any severity level in between the lowest and highest severity level cannot be explained. 

In our case, this abstruse severity level is grievous injury. This limitation can be interpreted 

by using marginal effect which explains all three severity levels individually. 
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5.5.2.2 Brant Test of OL Model 

A primary assumption of the proportional odds (PO) model is that all features follow 

parallel lines assumption. However, that is not the case as some of the features are often 

found to be flexible, rejecting parallel line assumption. Brant test is mainly conducted to 

check the plausibility of the OL model maintaining parallel lines assumption. The null 

hypothesis of the test is that the OL model follows parallel lines assumption which is then 

evaluated using Chi-square test. 

The results of Brant test are provided in Table 5.4, which states that altogether the parallel 

lines assumption has been relaxed for the proposed OL model. Furthermore, the individual 

features rejecting the assumption are: Time (Morning Peak), Collision type (Hit 

Pedestrian), and Movement (One way). 

Table 5-4: Brant Test for Ordered Logit Model 

 Chi-square df P value 

Omnibus 28.71914 17 0.037205 

Day of week (Weekdays) 0.008708 1 0.925652 

Time (Off Peak) 0.065849 1 0.797479 

Time (Morning Peak) 4.21519 1 0.040064 

Time (Night) 2.43075 1 0.118976 

Junction (Yes) 2.121865 1 0.14521 

Traffic Control (Yes) 1.053301 1 0.304748 

Collision type (Head On or Rear End) 0.01743 1 0.894966 

Collision type (Hit Pedestrian) 7.746898 1 0.00538 

Movement (One Way) 4.087378 1 0.043205 

Divider (Yes) 1.4E-05 1 0.997011 

Light (Daylight) 0.128902 1 0.719573 

Light (Night) 0.361256 1 0.547809 

Road Geometry (Straight + Flat) 1.406965 1 0.235561 

Surface type (Sealed) 0.00605 1 0.938003 

Surface Quality (Good) 0.071563 1 0.789074 

Road Class (City) 0.444318 1 0.505046 

Road Class (National) 0.003516 1 0.952716 
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5.5.3 Application of the OP Model 

5.5.3.1 Interpretation of Result 

The ordinal nature of accident severity was considered while applying the OP model on 

crash data exactly like the OL model. It is worth mentioning that a positive (negative) value 

of a parameter, associated with a positive increase in the feature, will increase (decrease) 

the probability of the highest ordered injury severity level (i.e., fatal injury) and decrease 

(increase) the probability of lowest ordered injury severity (i.e., simple injury). 

The explanatory variables with positive parameters in Table 5.5, like hit pedestrian type 

collision (Coefficient= 0.49) are more likely to be involved in a fatal accident compared to 

a simple accident. 

Moreover, a set of independent variables with positive coefficients include straight and flat 

road geometry ,good surface conditions (Garrido et al., 2014) are found to be statistically 

significant. Public bus operation conditioned on any of these features is more likely to 

increase the probability of fatal injury. 

For example, the likelihood of fatal injury crashes increases to a great extent (coefficient= 

0.499) in straight and flat roads and on dry surface quality roads (coefficient= 0.63). 

Again, the presence of dividers (coefficient = -0.098) and two-way movement (coefficient 

= -0.056) are likely to alleviate fatal injury crashes compared to no dividers and one-way 

movement respectively. 

Table 5-5: Estimation Results of Ordered Probit Model 

 Estimate Std error t value P value 

Day of week (Weekdays) 0.09242 0.157982 0.585006 0.558544 

Time (Off Peak) 0.020444 0.214721 0.09521 0.924148 

Time (Morning Peak) 0.184373 0.224993 0.819461 0.412523 

Time (Night) 0.065037 0.221817 0.293202 0.769368 

Junction (Yes) 0.058424 0.142022 0.41137 0.680801 

Traffic Control (Yes) 0.137549 0.166072 0.828249 0.407529 

Collision type (Head on or Rear End) -0.03555 0.205169 -0.17329 0.862427 

Collision type (Hit Pedestrian) 0.492884 0.18475 2.667847 0.007634*** 

Movement (One Way) -0.05656 0.145395 -0.38902 0.697263 
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Divider (Yes) -0.09886 0.1752 -0.56428 0.572561 

Light (Daylight) -0.0576 0.219767 -0.2621 0.793245 

Light (Night) 0.200251 0.240574 0.83239 0.405189 

Road Geometry (Straight + Flat) 0.499322 0.228814 2.182221 0.029093*** 

Surface type (Sealed) 0.719696 0.566409 1.27063 0.20386 

Surface Quality (Good) 0.63636 0.276424 2.30212 0.021328* 

Road Class (City) 0.061823 0.256155 0.241349 0.809285 

Road Class (National) 0.333012 0.259341 1.284074 0.199116* 

Threshold (S->G) 0.789447 0.672198 1.174426 0.240224 

Threshold (G->F) 1.725893 0.675722 2.554147 0.010645*** 

No of Observations 498 

Log-likelihood at Convergence -252.921 

 

AIC 543.8425 

BIC 618.8551 

*Significant at 0.05, **Significant at 0.15, ***Significant at 0.20, 

Base Level=Simple Injury or Motor Collision 

 

Interpreting the coefficients in Table 5.5 is same as the OL model. This limitation can be 

interpreted by using marginal effect which explains all three severity levels individually. 

5.5.4 Application of the PPO Model 

5.5.4.1 Result Interpretation 

The PPO model was developed relaxing all the features that rejected parallel lines 

assumption in Brant test, and restricting all other features that supported the assumption. 

Estimation results of the PPO model are shown in Table 5.6. The findings of the PPO model 

are actually a series of binary logits. In interpreting the results from Table 5.6, the current 

and all the lowest coded severity levels are considered the base group i.e., for any level 

𝑖(1 < 𝑖 < 1), categories 1 to 𝑖 are coded as zero (i.e., base group) and categories 𝑖 + 1 to 

𝐼  are coded as one. Therefore, a positive (negative) coefficient will denote an increased 

(decreased) likelihood of the higher severity level compared to the base severity level. It is 

worth mentioning that preceding discussion was for the features that rejected parallel lines 

assumption, and all the other features can be explained following the evaluation technique 

of the OL and OP models. 
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Table 5.6 presents the estimation result in three parts: All level; 2, 3 vs 1; and 3 vs 1, 2. It 

is to be noted that in the table 1 stands for simple injury, whereas 2, and 3 represents grievous, 

and fatal injury, respectively. All section contains the estimation result of all those 

explanatory features that follows the parallel lines assumption, and the other two parts 

shows the result of those features that rejected the parallel lines assumption. 
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Table 5-6: Estimation Results of Partial Proportional Odds Model 

 All level 2,3 vs 1 3 vs 1,2 

Variables Coeff. S.E. P-val. Coeff. S.E. P-val. Coeff. S.E. P-val. 

Intercept    -1.789 1.167 0.125** -2.962 1.153 0.01*** 

Time (Morning Peak)    -0.285 0.504 0.572 0.534 0.398 0.18* 

Collision type (Hit Pedestrian)    2.371 0.663 0*** 0.608 0.328 0.064** 

Movement (One Way)    0.319 0.435 0.463 -0.26 0.259 0.314 

Day of week (Weekdays) 0.163 0.273 0.55       

Junction (Yes) 0.152 0.25 0.542       

Traffic Control (Yes) 0.228 0.293 0.435       

Divider (Yes) -0.178 0.313 0.569       

Light (Daylight) -0.093 0.381 0.808       

Light (Night) 0.41 0.42 0.328       

Road Geometry (Straight + 

Flat) 

0.798 0.397 0.044***       

Surface type (Sealed) 1.446 0.95 0.128**       

Surface Quality (Good) 1.049 0.462 0.023***       

Road Class (City) 0.043 0.451 0.924       

Road Class (National) 0.562 0.46 0.221       

Time (Off. Peak) 0.036 0.369 0.922       

Time (Night) 0.182 0.388 0.639       
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Collision type (Head On or 

Rear End) 

-0.102 0.358 0.776       

No. of observation 498 

Log-likelihood at convergence                                                                              -242.387 

AIC                                                                             528.7741 

BIC                                                                             615.6309 
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The estimation result of ‘movement (one way)’ in Table 5.6 can be elucidated as follows: 

the positive coefficient of 0.319 indicates that any public bus operating on one way road 

compared to two way road is more likely to result a fatal, or a grievous injury than a simple 

injury; the other coefficient of -0.26 implies that for the same condition applied, the vehicle 

is less likely to generate a fatal injury than a simple or a grievous injury. This result is 

perceptible as one-way roads are more vulnerable to head-on crashes. 

5.6 Comparative Study 

The model performances were compared in terms of the log-likelihood (LL) of the full 

model, AIC, and BIC values. Table 5.7 presents the result of the concerned parameters. 

Table 5-7: Results in Terms of Comparison Criterion 

Comparison 

Parameters 

 

Models 

MNL OL MNL PPO 

LL -237 -254 -253 -242 

AIC 546 545 544 529 

BIC 688 620 619 616 

The parameter values in Table 5.7 are a bit perplexing to raise any explicit inference to this 

analysis work. It was found that the MNL model is most effective compared to other models 

in terms of log-likelihood, PPO is most effective in terms of AIC and BIC. 

The models were further compared based on the significance of their predictors (Table 5.8). 

In this case, if any category of an independent variable was found to be statistically 

significant, then that entire variable was considered significant in influencing the injury 

severity of public bus crashes. However, as per the degree of significance, collision type, 

road geometry and surface quality are considered to be the most significant ones; whereas, 

surface type and time are considered to be significant too. In this regard, junction type, road 

class and movement bear a least significance, since they had produced a formidable value 

for one particular model only.  Both the MNL and PPO models have almost the same 

number of significant features impacting public bus crash injury severity. Hence, MNL and 

PPO models are considered to be more robust compared to others in the context of the 

available crash data in Dhaka city. 
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Table 5-8: Results in Terms of Significant Predictors 

Predictors 
 

Models 

MNL OL OP PPO 

Collision Type ✓ ✓ ✓ ✓ 

Junction Type ✓ 

   

Movement ✓ 

   

Road Class 

  

✓ 

 

Road Geometry ✓ ✓ ✓ ✓ 

Surface Quality ✓ ✓ ✓ ✓ 

Surface Type ✓ ✓ 

 

✓ 

Time ✓ 

  

✓ 

 

5.7 Summary of Comparison  

Table 5-9: Summary of Comparison 

Name of 

Models 
 

Factor Significance Comparison Parameters 

Collision 

Type 

Junction 

Type 

Movement Road Class Road Geometry Surface 

Quality 

Surface 

Type 

Time LL AIC BIC 

MNL ✓ ✓ ✓ 

 

✓ ✓ ✓ ✓ -237 546 688 

OL ✓ 

   

✓ ✓ ✓  -254 545 620 

OP ✓ 

  

✓ ✓ ✓   -253 544 619 

PPO ✓ 

   

✓ ✓ ✓ ✓ -242 529 616 
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CHAPTER 6 

CONCLUSIONS 

6.1 General 

This thesis is one of the pioneers to use a set of recognized statistical modeling techniques 

to investigate public bus safety in Bangladesh. By using four different crash severity 

models on the collision data that was available in Bangladesh, the goal of this study was to 

identify the high impact variables relating to public bus safety. 

6.2 Key Findings of this Study 

This study's key result is that the existing accident severity models have revealed several 

important and startling truths from crash data involving public buses. Comparatively, these 

derived facts and specifics are more helpful in improving the understanding of accident 

situation in Bangladesh than the earlier descriptive-based approaches. The important 

conclusions of this thesis are as follows: 

a) Public buses striking pedestrians were highly significant in escalating grievous 

and fatal harm when compared to all other accident kinds, such as head-on, rear-end, 

side swipe, etc.  This outcome is unsurprising, given that a collision between a public 

bus and a pedestrian can only result in fatalities due to the vast disparity in their 

bodily masses.  

b) Two-way roads were seen to be significantly safer than one-way roads. Again, a 

divider between the lanes was found to reduce the risk of fatal injuries, and a two-

way road without one is more likely to have head-on collisions, which are more likely 

to end in fatalities. 

c)  Straight and flat road geometry with good surface quality are found to escalate 

public bus fatalities in Dhaka city. The outcome becomes more severe when public 

bus operates on a sealed surface, instead of brick or earthen one. The result is 

foreseeable due to the absence of necessary safety parameters on Dhaka city road 

networks. 
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d) Public buses operating on national roads are found to trigger more fatal injuries. 

However, the presence of junctions in this regard, is considered as useful in reducing 

grievous injury severities. 

e) It was discovered that light condition during the daylight and at night (unlit) time 

increased the severity of public bus crashes significantly. Additionally, the likelihood 

of deadly accidents increased at night when there were no street lights.  

f) Comparative analysis also showed that the MNL model is found to be more 

robust in terms of selected comparison parameters. MNL and PPO, both models 

yielded almost about the same number of significant predictors when compared to 

one another, despite the modest differences in the significance of the essential 

components for these models. The MNL performed better than other models based 

on log-likelihood, while PPO fared better based on AIC and BIC, respectively, which 

led to the final model selection decision. 

6.3 General Recommendations 

The ability to infer useful recommendations from the study's findings is the most important 

quality of any analysis-based activity. The four independent severity models calculated 

high impact variables triggering public bus safety in Dhaka as mentioned in section 6.2 of 

this chapter. These facts, however, do not offer a convincing justification for Bangladesh's 

Public Bus safety status. As a result, more consideration is needed before the findings can 

be used to create policy. Examples of the origins and treatment that are relevant to the 

findings include the following: 

a) Pedestrians struck by public buses result in the deadliest consequences. 

Furthermore, in rural locations, pedestrians are more at risk. This statistic emphasizes 

how vulnerable pedestrians are in remote regions without adequate pedestrian 

facilities. Additional pedestrian facilities, such as crosswalks, waiting areas, 

overpasses, etc., to be provided to both the regions in order to resolve this issue. 

b) A two-way road without a divider in the middle is more fatality-prone than a two-

way road with a divider in-between. This suggests building dividers in two-way streets 

since they will significantly reduce the likelihood of head-on crashes. 

c) Straight and flat stretches of road lure drivers into over speeding and resulting 
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unwanted fatalities for the pedestrians. However, this tendency gets more 

conspicuous when they operate on a good and sealed road surface. In this regard, 

physical separation of pedestrians from the vehicular traffics is of utmost importance.  

Provision of junction at places and marking of roadway with necessary traffic signs 

viz. warning signs, speed limit signs, mandatory signs etc., will be useful in arresting 

the speed of vehicular traffics on roadway. 

d) Public bus crash injury severity is also suffered by night-time (unlit condition) 

driving where the street lights are inadequate. Provision of using retro-reflective 

roadway markings and arranging adequate lights on the streets may be useful to 

resolve this issue. However, drivers’ understanding of night-time glare-control and 

undergoing regular medical check-up (especially, for the eye-sight) will be handy in 

reducing the likelihood of public bus related crashes.   

6.4 Limitations of this Study 

a) A number of features in the FIR report, including geometric features, 

environmental features, vehicle-related features, driver-related features, pedestrian-

related features, and others are used to exploit the severity of collision injuries. In this 

study, the four severity models were trained using only geometric and environmental 

variables. This idea was taken into account in order to simplify data analysis. The 

study's fundamental flaw is the exclusion of other features, despite the fact that this 

strategy improved assessment of the relevant qualities. 

b) Owing to the discrete nature of response variable, the approaches chosen for this 

thesis are well-established and effective. However, these approaches are a little out of 

date given the recent boom in data science. Additionally, the assumptions of these 

selected approaches severely restrict the effectiveness of crash severity modeling. On 

the other hand, by using sophisticated modeling techniques, this can be easily avoided. 

However, the objective was to assess how these fundamental and well-known models 

functioned on the crash data that was available in Bangladesh and, if necessary, to 

recommend further cutting-edge approaches. 

c) Any study's analysis generally uses a confidence level of 95–99%. However, the 

model didn't perform well with this degree of confidence level due to the little quantity 

and quality of data that we acquired from ARI. Because of this, the 80% confidence 



 

 

 

 

79  

threshold was used resulting in less precise predictions. 

6.5 Future Scope 

a) Geometric and environmental characteristics are the only predictors utilized in this 

study. However, in order to gain a better understanding of the situation of public bus 

safety in Bangladesh, vehicle-related features, driver-related features, pedestrian-

related features, and other factors are also necessary. 

b) On the same crash data (2017–2020) utilized in this thesis, advanced modeling 

techniques, including artificial neural networks, heteroskedastic ordered logit/probit, 

nested logit, random parameters (mixed) logit/ordered logit etc. can be applied. After 

that, the accuracy of these algorithms using appropriate comparison parameters can 

be tested.  

c) Since accident severity was the target/dependent predictor, the study's main focus 

was on how accident severity is related to the road, roadway, and operational 

environment. However, new connections can be discovered as a result of changing the 

target predictor to any other variables, such as accident/collision type, road class etc. 

and draw new relationships accordingly. 

d) The aspect of collecting the least severe crash records requires special attention. 
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Anx.1: Accident Research Form (1/2) 
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Anx.1: Accident Research Form (2/2) 
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Anx.2: Accident Research Form (1/2) 
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Anx.2: Accident Research Form (2/2) 
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Anx.3: Instructions for Filling up Accident Research Form (1/20) 
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Anx.3: Instructions for Filling up Accident Research Form (2/20) 
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Anx.3: Instructions for Filling up Accident Research Form (3/20) 

 



Ax-9  

Anx.3: Instructions for Filling up Accident Research Form (4/20) 
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Anx.3: Instructions for Filling up Accident Research Form (5/20) 
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Anx.3: Instructions for Filling up Accident Research Form (6/20) 
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Anx.3: Instructions for Filling up Accident Research Form (7/20) 
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Anx.3: Instructions for Filling up Accident Research Form (8/20) 
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Anx.3: Instructions for Filling up Accident Research Form (9/20) 
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Anx.3: Instructions for Filling up Accident Research Form (10/20) 
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Anx.3: Instructions for Filling up Accident Research Form (11/20) 
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Anx.3: Instructions for Filling up Accident Research Form (12/20) 
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Anx.3: Instructions for Filling up Accident Research Form (13/20) 
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Anx.3: Instructions for Filling up Accident Research Form (14/20) 
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Anx.3: Instructions for Filling up Accident Research Form (15/20) 
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Anx.3: Instructions for Filling up Accident Research Form (16/20) 
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Anx.3: Instructions for Filling up Accident Research Form (17/20) 
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Anx.3: Instructions for Filling up Accident Research Form (18/20) 
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Anx.3: Instructions for Filling up Accident Research Form (19/20) 
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Anx.3: Instructions for Filling up Accident Research Form (20/20) 
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Anx.4: Year-wise Public Bus Accident Severities (1/17) 

 Day of Week  

 
Year 

 
Accident severity 

Days of Week 

1 2 3 4 5 6 7 Total 

 

 

 
2017 

F 14 14 13 20 13 20 16 110 

G 5 3 6 3 4 2 4 27 

M 2 
     

1 3 

S 1 1 2 1 2 2 
 

9 

 

 

 
2018 

F 12 12 10 10 13 13 19 89 

G 4 4 6 6 2 4 5 31 

M 2 1 
 

2 
   

5 

S 
  

1 1 
   

2 

 

 

 
2019 

F 8 21 12 20 13 13 8 95 

G 6 4 6 3 5 7 5 36 

M 
 

1 
     

1 

S 2 3 
  

3 
  

8 
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Anx.4: Year-wise Public Bus Accident Severities (2/17) 

Day of Week 

 

 

 
2020 

F 6 14 7 8 10 3 10 58 

G 3 1 2 3 4 3 3 19 

M 
 

1 
     

1 

S 
  

1 
 

1 1 1 4 

 
Grand Total 65 80 66 77 70 68 72 498 

 

 

Notes: 1=Monday, 2=Tuesday, 3=Wednesday, 4=Thursday, 5=Friday, 6=Saturday, 

7=Sunday Source: ARI Accident Database 2017-2020 
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Anx.4: Year-wise Public Bus Accident Severities (3/17) 

Month of Year 

 
Year 

 
Accident severity 

Months of Year 

01 02 03 04 05 06 07 08 09 10 11 12 Total 

 

 

 
2017 

F 12 11 13 7 4 9 14 6 12 8 8 6 110 

G 3 5 2 2 2 
 

5 1 2 
  

5 27 

M 
   

1 1 
    

1 
  

3 

S 2 
  

1 3 1 
  

2 
   

9 

 

 

 
2018 

F 5 9 12 9 10 6 8 6 10 6 4 4 89 

G 2 2 
 

4 5 
 

4 5 4 1 2 2 31 

M 
    

1 1 2 
   

1 
 

5 

S 
  

1 
     

1 
   

2 

 

 

 
2019 

F 6 9 6 4 10 7 6 6 12 5 11 13 95 

G 1 2 1 6 2 2 5 5 3 2 4 3 36 

M 
     

1 
      

1 

S 
  

4 
  

1 2 
 

1 
   

8 

 
2020 

F 14 5 11 2 4 3 5 12 2 
   

58 

G 7 4 
   

1 1 3 3 
   

19 
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Anx.4: Year-wise Public Bus Accident Severities (4/17) 

Month of Year 

 
M 

 
1 

          
1 

S 2 
      

2 
    

4 

 
Grand Total 54 48 50 36 42 32 52 46 52 23 30 33 498 

 

Notes: 1=January, 2=February, 3=March, 4=April, 5=May, 6=June, 7=July, 8=August, 9=September, 10=October, 11=November, 

12=December Source: ARI Accident Database 2017-2020 
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Anx.4: Year-wise Public Bus Accident Severities (5/17) 

Junction Type 

 
Year 

 
Accident severity 

Junction Type 

1 2 3 4 5 7 Total 

 

 

 
2017 

F 48 23 18 1 4 16 110 

G 15 3 4 
 

1 4 27 

M 1 1 1 
   

3 

S 4 3 1 
  

1 9 

 

 

 
2018 

F 58 13 6 
 

1 11 89 

G 19 6 1 
 

3 2 31 

M 3 
   

1 1 5 

S 1 1 
    

2 

 

 

 
2019 

F 54 6 4 3 1 27 95 

G 18 4 3 1 1 9 36 

M 1 
     

1 

S 4 1 3 
   

8 
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Anx.4: Year-wise Public Bus Accident Severities (6/17) 

Junction Type 

 

 
2020 

F 32 2 3 10 2 9 58 

G 11 2 
 

2 
 

4 19 

M 
     

1 1 

S 2 
 

1 1 
  

4 

 
Grand Total 271 65 45 18 14 85 498 

 

 

Notes: 1=Not at junction, 2=Cross junction, 3=Tee junction, 4=Staggered tee junction, 5=Roundabouts, 6= Railway/level crossing, 

7=Other Source: ARI Accident Database 2017-2020 
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Anx.4: Year-wise Public Bus Accident Severities (7/17) 

Traffic Control System 
 

 
Year 

 
Accident severity 

Traffic Condition 

1 2 3 4 5 6 8 Total 

 

 

 
2017 

F 16 10 3 55 3 8 15 110 

G 7 3 
 

12 
  

5 27 

M 1 
  

1 
  

1 3 

S 3 
  

5 
  

1 9 

 

 

 
2018 

F 27 4 1 48 2 
 

7 89 

G 11 3 
 

15 1 
 

1 31 

M 2 1 
 

1 
  

1 5 

S 
   

2 
   

2 

 

 

 
2019 

F 15 8 1 65 1 
 

5 95 

G 4 1 
 

26 1 1 3 36 

M 
   

1 
   

1 

S 2 1 
 

5 
   

8 



Ax-33  

 

Anx.4: Year-wise Public Bus Accident Severities (8/17) 

Traffic Control System 
 

 
2020 

F 14 6 3 32 
  

3 58 

G 2 2 
 

13 
  

2 19 

 
M 

      
1 1 

S 
   

2 
  

2 4 

 
Grand Total 104 39 8 283 8 9 47 498 

 

 

Notes: 1=No control, 2= Centerline marking, 3=Pedestrian crossing, 4=Police controlled, 5=Traffic lights, 6=Police + Traffic lights, 

7=Stop/Give way sign, 8=Other 

Source: ARI Accident Database 2017-2020 
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Anx.4: Year-wise Public Bus Accident Severities (9/17) 

 Collision Type 
 

 
Year 

 
Accident severity 

Collision Type 

01 02 03 04 05 06 07 08 09 10 Total 

 

 

 
2017 

F 4 13 
 

5 2 2 1 1 80 2 110 

G 1 7 
 

2 
  

1 1 15 
 

27 

M 1 1 
       

1 3 

S 1 1 
    

1 1 4 1 9 

 

 

 
2018 

F 5 12 
 

10 1 
   

59 2 89 

G 
 

8 
 

1 
   

2 18 2 31 

M 
 

2 
 

1 
 

1 1 
   

5 

S 
 

1 
      

1 
 

2 

 

 

 
2019 

F 6 13 
 

8 
  

3 4 59 2 95 

G 
 

11 
 

2 
    

22 1 36 

M 
 

1 
        

1 

S 
 

2 
 

2 
   

3 1 
 

8 
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Anx.4: Year-wise Public Bus Accident Severities (10/17) 

Collision Type 
 

 
2020 

F 2 12 
 

6 
   

1 36 1 58 

G 
 

3 1 1 
   

1 11 2 19 

M 
      

1 
   

1 

S 
 

1 
      

3 
 

4 

 
Grand Total 20 88 1 38 3 3 8 14 309 14 498 

 

 

Notes:1=Head on, 2=Rear end, 3=Right angle, 4=Side swipe, 5=Overturn, 6=Hit object in road, 7=Hit object off road, 8=Hit parked vehicle, 

9=Hit pedestrian, 10=Hit animal, 

Source: ARI Accident Database 2017-2020 
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Anx.4: Year-wise Public Bus Accident Severities (11/17) 

Weather Condition 
 

 
Year 

 
Accident severity 

Weather Condition 

1 2 3 4 Total 

 

 

 
2017 

F 107 1 
 

2 110 

G 27 
   

27 

M 3 
   

3 

S 9 
   

9 

 

 

 
2018 

F 88 1 
  

89 

G 30 1 
  

31 

M 5 
   

5 

S 2 
   

2 

 

 

 
2019 

F 94 1 
  

95 

G 35 1 
  

36 

M 1 
   

1 

S 8 
   

8 

 

 

 
2020 

F 55 2 1 
 

58 

G 19 
   

19 

M 1 
   

1 

S 4 
   

4 

 
Grand Total 488 7 1 2 498 

 

 
Notes: 1=Fair, 2=Rain, 3=Wind, 4=Fog 

Source: ARI Accident Database 2017-2020 
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Anx.4: Year-wise Public Bus Accident Severities (12/17) 

Light Condition 
 

 
Year 

 
Accident severity 

Light Condition 

1 2 3 4 Total 

 

 

 
2017 

F 57 12 36 5 110 

G 17 5 3 2 27 

M 2 
 

1 
 

3 

S 3 2 4 
 

9 

 

 

 
2018 

F 40 21 24 4 89 

G 17 3 11 
 

31 

M 2 1 2 
 

5 

S 1 
 

1 
 

2 

 

 

 
2019 

F 51 15 23 6 95 

G 18 4 13 1 36 

M 1 
   

1 

S 3 3 2 
 

8 

 

 

 
2020 

F 31 8 15 4 58 

G 11 1 6 1 19 

M 
  

1 
 

1 

S 3 
 

1 
 

4 

 
Grand Total 257 75 143 23 498 

 

 
Notes: 1=Daylight, 2=Dawn/Dusk, 3=Night (lit), 4= Night 

(unlit) Source: ARI Accident Database 2017-2020 
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Anx.4: Year-wise Public Bus Accident Severities (13/17) 

Geometric Condition 
 

 
Year 

Accident severity Road Geometry 

 
1 2 3 4 5 Total 

 

 

 
2017 

F 101 5 1 2 1 110 

G 24 1 1 1 
 

27 

M 3 
    

3 

S 8 
 

1 
  

9 

 

 

 
2018 

F 83 1 4 1 
 

89 

G 30 1 
   

31 

M 5 
    

5 

S 2 
    

2 

 

 

 
2019 

F 89 3 3 
  

95 

G 34 1 
 

1 
 

36 

M 1 
    

1 

S 8 
    

8 

 

 

 
2020 

F 54 2 1 1 
 

58 

G 18 
 

1 
  

19 

M 1 
    

1 

S 3 
   

1 4 

 
Grand Total 464 14 12 6 2 498 

 

 
Notes: 1=Straight + Flat, 2=Curve only, 3=Slope only, 4=Curve + Slope, 

5=Crest Source: ARI Accident Database 2017-2020 
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Anx.4: Year-wise Public Bus Accident Severities (14/17) 

Road Surface Quality 
 

 
Year 

 
Accident severity 

Surface Quality 

1 2 3 Total 

 

 

 
2017 

F 102 6 2 110 

G 26 1 
 

27 

M 3 
  

3 

S 8 
 

1 9 

 

 

 
2018 

F 88 1 
 

89 

G 29 1 1 31 

M 5 
  

5 

S 2 
  

2 

 

 

 
2019 

F 92 1 2 95 

G 32 2 2 36 

M 1 
  

1 

S 6 
 

2 8 

 

 

 
2020 

F 57 
 

1 58 

G 16 1 2 19 

M 1 
  

1 

S 4 
  

4 

 
Grand Total 472 13 13 498 

 

 
Notes: 1=Good, 2=Rough, 3=Under 

repair Source: ARI Accident Database 

2017-2020 
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Anx.4: Year-wise Public Bus Accident Severities (15/17) 

Road Class 
 

 
Year 

 
Accident severity 

Road Class 

1 2 3 4 5 Total 

 

 

 
2017 

F 50 3 1 
 

56 110 

G 8 3 1 
 

15 27 

M 2 
   

1 3 

S 2 2 
  

5 9 

 

 

 
2018 

F 58 3 2 2 24 89 

G 13 
 

1 
 

17 31 

M 2 1 
  

2 5 

S 1 
   

1 2 

 

 

 
2019 

F 42 4 3 1 45 95 

G 6 3 
  

27 36 

M 1 
    

1 

S 6 1 
  

1 8 

 

 

 
2020 

F 33 5 2 1 17 58 

G 6 2 
  

11 19 

M 1 
    

1 

S 
    

4 4 

 
Grand Total 231 27 10 4 226 498 

 

 
Notes:; 1=National, 2=Regional, 3=Feeder, 4=Rural road, 5=City 

road Source: ARI Accident Database 2017-2020 
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Anx.4: Year-wise Public Bus Accident Severities (16/17) 

Road Class 
 

 
Year 

 
Accident severity 

Road Feature 

? 1 2 4 5 Total 

 

 

 
2017 

F 
 

108 
  

2 110 

G 
 

26 
  

1 27 

M 
 

2 
  

1 3 

S 
 

9 
   

9 

 

 

 
2018 

F 
 

87 1 
 

1 89 

G 
 

31 
   

31 

M 
 

5 
   

5 

S 
 

2 
   

2 

 

 

 
2019 

F 1 91 1 1 1 95 

G 
 

36 
   

36 

M 
 

1 
   

1 

S 
 

8 
   

8 

 

 

 
2020 

F 
 

57 
  

1 58 

G 
 

19 
   

19 

M 
    

1 1 

S 
 

4 
   

4 

 
Grand Total 1 486 2 1 8 498 

 

 
Notes: *“?” means blank data field; 1=None, 2=Bridge,

 3=Culvert, 4=Narrowing/Restriction, 5=Speed breakers 

Source: ARI Accident Database 2017-2020 
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Anx.4: Year-wise Public Bus Accident Severities (17/17) 

Road Location 
 

 
Year 

 
Accident severity 

Location Type 

01 2 Total 

 

 

 
2017 

F 110 
 

110 

G 26 1 27 

M 3 
 

3 

S 9 
 

9 

 

 

 
2018 

F 88 1 89 

G 31 
 

31 

M 5 
 

5 

S 2 
 

2 

 

 

 
2019 

F 95 
 

95 

G 36 
 

36 

M 1 
 

1 

S 8 
 

8 

 

 

 
2020 

F 58 
 

58 

G 19 
 

19 

M 1 
 

1 

S 4 
 

4 

 
Grand Total 496 2 498 

 

 
Notes: 1=Urban area, 2=Rural area 

 

Source: ARI Accident Database 2017-2020 


