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ABSTRACT

CRASH SEVERITY MODELLING INVOLVING PUBLIC BUS CRASHES IN
DHAKA CITY

This study attempts to identify the influencing factors for triggering public bus crash
injury severity in Dhaka city where public buses alone were involved in 23 % of all the
crashes. Though there are some descriptive-based works in Bangladesh pertinent to public
bus safety, very few in-depth studies on the crash severities of public bus have been
conducted; those are however, mostly based on an old crash data. Hence, utilizing the
recent crash data (2017-2020) collected from the Accident Research Institute (ARI) of
Bangladesh University of Engineering and Technology (BUET), the primary goal of this
study is to discover the roadway and environment-related factors impacting the public bus

crash severity in the context of Dhaka city.

A prominent way to deal with crash injury severity is by using statistical modelling
techniques; the selection of these suitable methods often depends on the nature of data,
especially the response variables. R software environment has been adopted to facilitate
the analysis. In relation to the genre of police-reported public bus crash data, four
different established models namely, Multinomial Logit (MNL), Ordered Logit (OL),
Ordered Probit (OP) and Partial Proportional Odds (PPO) have been selected for the
study. All of these severity models were then applied on this crash data to investigate

public bus safety mechanism prevalent in Dhaka city.

The analysis showed that pedestrians, bicyclists and motorcyclists are the most vulnerable
road user group (around 80%), as indicated by the all selected models. Lack of efficient
police controlled traffic in all the places (in some cases, 0% fatal incidents in police-
controlled areas), absence of dividers in two way roads (38.23% fatal vs 57.78% fatal
where there are no dividers), over speeding, lack of necessary safety parameters as per the
condition/geometry of roads etc. seemed to accelerate road traffic crashes. In addition, the
severity models (i.e., MNL, OL, OP, and PPO) were evaluated in terms of relevant
comparative parameters where MNL model is found to be more effective in terms of log-
likelihood (-237) and PPO model fared better in terms of Akaike Information Criterion



(AIC_529) and Bayesian Information Criterion (BIC_616). The models were further
evaluated on the significance of their predictors where collision type, junction type,
movement, road class, road geometry, surface quality, surface type and time are found to
be significant for triggering public bus related accidents in Dhaka city. Some viewpoints
related to pedestrian facilities and roadway improvement (safety features) have been

recommended for the decision makers for reducing both accident frequency and severity.
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CRASH SEVERITY MODELLING INVOLVING PUBLIC BUS
CRASHES IN DHAKA CITY
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CHAPTER 1
INTRODUCTION

1.1 Background and Motivation

Every society's social and economic progress is largely dependent on its transportation
system. It plays a major role in determining our way of life and making up a sizeable portion
of the national economy. Unfortunately, in recent years, due to the rapid urbanization
process, high rates of vehicle and population growth and that of increased levels of
mobility, inadequate transportation facilities and policies, a varied traffic mix with an
overabundance of non-motorized vehicles, the absence of a dependable public and mass
transportation system, and inadequate traffic management techniques have resulted in

substantial road crash problems.

The economic and social distress caused by road crashes is a fundamental concern for
traffic safety. As per the report of World Health Organization (WHO, 2018), global road
traffic incidents cause approximately 1.35 million fatal injuries and up to 50 million non-
fatal injuries per year. Every day, around 3,700 individuals pass away on world's highways.
Over 90% of traffic fatalities occur in low and middle-income nations, claiming an
economic loss of up to 5% of GDP (WHO, 2015). Same report also states that it is affecting
about 3% of the world's GDP as a whole. In comparison to high-income countries (8.3
deaths per 100,000 population), low-income countries have a 03 times higher rate of traffic
fatalities (27.5 deaths per 100,000 people). Approximately 2.5% of all deaths across all age
categories are caused by traffic injuries, placing them 8" among the world's major causes
of death. Road fatalities are predicted to increase to the 5™ greatest cause of death by 2030,
resulting in an estimated 2.4 million fatalities annually, unless quick action is taken (RHD,
2018).

Low and middle-income nations bear a disproportionately heavy economic burden from
road accidents. The most recent cost estimate is that road traffic injuries cost USD 518
billion globally and USD $65 billion in low and middle-income countries each year,
exceeding the whole amount of development aid received by these nations (WHO, 2018).
The global epidemic of traffic injuries is still spreading throughout most of the world,
despite recent stabilization or declines in the number of road traffic fatalities in many high-



income nations. This is basically due to the fact that there were no decreases in the number

of traffic fatalities in any low-income nation from 2013 to 2016.

Bangladesh has the highest population density in the world; as a result, it is essential to
comprehend its roadway situation in order to create a transport system that is both efficient
and safe. The main motorized transportation network, which consists of the National,
Regional, and Zilla Highways, is maintained by RHD. RHD covers a total of 21,302 km of
road network, of which 3813 km (18%) are national, 4247 km (20%) are regional, and
13242 km (62%) are Zilla highways in 2017. The number of motorized vehicles registered
with the BRTA that are currently using this network is 2,984,200, which was found to be
737,400 in 2004-2005. (RHD, 2018).

According to a statistic based on data from 183 nations, Bangladesh is rated 106th in the
world for having the most fatal road accidents. According to police statistics from 2021,
over 4,000 people die and many more sustain major injuries on Bangladesh's roads each
year ; currently holding one of the highest fatality rates (60 fatalities per 10,000 vehicles)
worldwide. In the first eight months of 2021, there were 3,701 road incidents that resulted
in 3,502 fatalities and 3,479 injuries. In Bangladesh, there were 4,891 traffic incidents in
2020 that resulted in 6,686 fatalities and 8,600 injuries, according to Jari Kalyan Samiti
2020's annual road accident monitoring report. This indicates that 18 persons perished in
traffic accidents nationwide on an average each day. The yearly survey found that while
there were 6.78% more accidents on regional highways in 2020 than in 2019, less accidents

occurred on national highways, 0.16% at railroad crossings, and 2.19% on feeder roads.

The state of Bangladesh's roads is painted in a depressing light by international
organizations. According to World Bank research (WB Report, 2019), Bangladesh, which
only has 0.5 % of the world's vehicles, lost over 25,000 lives on roads in 2019. The research
was included in a World Bank paper from 2019 titled "Guide for Road Safety Opportunities
and Challenges: Low and Middle-Income Countries Country Profiles.” This indicates that
15 persons pass away in the nation's traffic accidents and other occurrences for every 01
lakh people. Road traffic accidents are also the 7" leading cause of death in Bangladesh.
According to WB study, individuals between the ages of 15 and 64 are responsible for 67%
of road crash fatalities and injuries. Additionally, the age range of 15 to 49 years old has
the highest death rate, and the male to female fatality ratio is 5:1. The report estimates that
the cost of traffic accidents and serious injuries is 5.3% of Bangladesh's GDP. According
2



to the World Bank, 3, 74,310 major injuries occurred in Bangladesh in 2019. The cost of
injuries and fatalities totaled around $11,630 million. According to World Bank data,
Pakistan had the greatest rate of road accident-related mortality in 2016, with 27,582
deaths, while the Maldives had the lowest rate, with 04 deaths per year.

The most vulnerable road users are pedestrians, bicyclists, motorcyclists, and people
utilizing informal transportation, such as bus and truck passengers, who account for over
80% of all traffic deaths. According to Police Statistics 2021, about 34% of total road
accidents occur in the city of Dhaka, of which 23% are public bus crashes. Modal share of
vehicles say that bus (23%), truck (26%), micro bus (3%), cycle (3%), rickshaw/van (4%),
vutvuti (6%), bike (14%), auto rickshaw (9%), private car (4%), and others (8%) are the
vehicles that were most frequently involved in these collisions. Compared to the
metropolitan areas, Bangladesh's rural areas record a higher number of RTI fatalities (Ul
Baset et al., 2017) According to research, 70% of traffic accidents happen on rural roads,
including rural stretches of major highways. Nearly 80% of fatalities include vulnerable
road users (i.e., pedestrians, bicyclists, and motorcyclists). Pedestrian-vehicle collisions are
the main issue with notable involvement of buses and trucks. According to statistics,
pedestrians can account for up to 62% of fatalities in urban vehicle crashes, and in Dhaka
city, they account for around 70%. Of all the recorded accidents, 50% occurred on the state
and regional highways. Nearly 40% of those accidents are concentrated on around 2% of
the highway network; these parts are known as Hazardous Road Locations (HRLS).
Approximately 2.5% of accidents that are reported happen on bridges and culverts
(Mahmud and Hoque, 2011).

Nearly 10% of pedestrian accidents are caused by other accident/collision categories,
suggesting that pedestrians may not only be the victims of accidents but also a contributing
component in some of them. Urban dividers have been found to be quite successful in
reducing fatal pedestrian accidents (38.23% fatal vs. 57.78% fatal, where there are no
dividers). It has been determined that traffic control systems, particularly police-controlled
traffic control systems in urban areas, are effective in lowering the number of fatal
pedestrian accidents (in some circumstances, to 0% fatal incidences). It has been
established that geometric intersections without police-managed traffic control systems are

a contributing factor in deadly pedestrian accidents.



Compared to other types of geometric sections (such as curve only, slope, curve plus slope
and crest), straight and level roadways have produced more double vehicle deadly accidents
(more than 80% of incidents are fatal). The latter part of the previous finding worsened
when the sections involved head-on, right-angle, overturn, hit an object in the road, and hit
animal collisions (76.22% fatal); or occurred on national and regional highways or feeder
roads (71% fatal); or during dawn/dusk and night (unlit) condition (90.91% fatal); or in
daylight or night (lit) condition but without any centerline marking traffic control system
(75.21% fatal).

85.29% of fatal single-vehicle crashes occurred in head-on, right angle, side swipe, hit
object in the road, and hit object off-road collision types connected to curve only, slope
only, and curve and slope geometric parts of the roads. 87.88% of fatal single-vehicle
crashes were caused by poor lighting conditions at dawn, dusk, and at night (when it was
not lit). Paradoxically, in the daytime and at night (lit), 86.67% of fatal single-vehicle
crashes have occurred on brick and earthen road surfaces. Contrarily, single-vehicle
fatalities have decreased on sealed surfaces even when there is rain (58.82% of crashes are
not lethal). 94.74% of fatal single-vehicle crashes have occurred on roads with wet or
flooded surface conditions. However, one-way highways with dry and muddy surfaces
sometimes resulted in fatal instances (20%), as always perceived. Whereas, in case of two-

way roads, it accounts for 86.54 % of the fatal single-vehicle accidents.

Bangladesh currently has a police-reported accident database only. There isn't yet a hospital
or insurance-based accident database. The Accident Research Institute (ARI), BUET is
continuing its efforts to create a database of accidents based on newspaper reports.
However, the newspapers have significant reporting errors by spotlighting only to the
serious fatal accidents occurring in the immediate vicinity of growing hubs. Injury
accidents or accidents in isolated places are hardly ever mentioned in newspaper stories.
Even the quality of newspaper reporting is not particularly noteworthy or elaborated for
fact-finding, analysis, and study. For thorough accident analysis and qualitative study, the
police-reported accident database is also insufficient and inadequate. To decrease
underreporting and to maintain and enhance database quality, many independent databases

are required.

Given the severity of the issues, Bangladesh is experiencing noteworthy constraints at all
levels, and safety programs related to promoting traffic safety are still in their infancy. In
4



Bangladesh, the works pertaining to public bus crashes have remained in limited form and
are mostly descriptive-based. Dhaka being the city of diverse traffic, the scenario is
somewhat more aggravating. However, few comprehensive research on the collision
severity of public buses have been done, despite the fact that these crashes have cemented
a permanent place in the electronic and print media. There were also various attempts to
study public transportation in the late 1990s and early 2000s, but they tended to be either
literature-based, focused on specific buses or trucks, or concerned with the behavior of
public transportation drivers. Therefore, the goal of this study is to determine the roadway
and environment-related factors influencing the severity of crashes involving public buses
with comparatively newer set of crash data (2017-2020) for Dhaka City using alternative
severity models namely; multinomial logit (MNL), ordered logit (OL), ordered probit (OP)
and partial proportional odds (PPO), as well as to identify the model that will work better

in situations where the data is incomplete, such as Bangladesh.
1.2 Objectives of the Study

Utilizing traffic accident data (2017-2020) from ARI, BUET, the primary goal of this study
is to discover the influencing factors triggering public bus crash injury severity. In the
context of Dhaka city, the study specifically examined the viability of discrete-outcome

probabilistic models. The precise objectives of this research are:

a) To identify significant independent variables impacting public bus crash severity
outcomes for Dhaka city (i.e., fatal, grievous, simple injury, and motor collision).

b) To carry out an in-depth analysis (parameter estimation, model comparison) on
the proposed methods (MNL, OL, OP, PPO) using the recent crash data of Dhaka

city and recommend the most reliable/robust one.
c) Torecommend pragmatic measures for necessary safety enhancement.
1.3 Scope of the Study

In Bangladesh, public buses are frequently at blame for tragic collisions. According to data
from BRTA 2020, there are 3,419,884 registered vehicles in the nation as of March 2018,
of which 72,336 of those are designated as ‘Public Buses’, which can hardly be ignored.

Moreover, the involvement of public buses in severe traffic crashes is also noteworthy.



Given the seriousness of the severity of public bus crash injuries, this study examines the
correlation between a number of predictors (namely, geometric and environmental
parameters) and the severity of crash injuries caused by public bus crashes. This thesis does
not address the severity of injuries brought on by truck, light motor vehicle, or non-
motorized vehicle crashes. Additionally, the analysis of this study excludes a number of

variables, such as driver attributes, vehicle-related features, pedestrian features, etc.
1.4 Thesis Outline
This study has been organized into six chapters.

Chapter 1: Introduction. This chapter contains the background and motivation, objectives

as well as scope of the study.

Chapter 2: Literature Review. In the context of Bangladesh and the wider world, this
chapter evaluates the literary works that are pertinent to and related to the main idea of the
research. A summary of public vehicles, accident severity categories, and other topics are

also provided in this chapter.

Chapter 3: Research Methodology. The framework of the mathematical models used in this
thesis is described in this chapter. It also explains the cross-tabulation procedure and a

comparative study on the models that were obtained.

Chapter 4: Public Bus Safety Status in Dhaka City. This chapter provides a brief
discussion on the public bus safety status in Dhaka city. It also provides an overview of
Bangladesh’s traffic accident database system. Additionally, this chapter includes graphical

depictions of crash data for public buses in Dhaka city.

Chapter 5: Data Analysis and Model Selection. This chapter provides a framework for
the in-depth evaluation and interpretation of findings from discrete outcome-based models.
The validation of acceptable approaches in relation to models suitable for Bangladesh is

also included in this chapter.

Chapter 6: Conclusion. This chapter presents the findings and policy implications of this

thesis along with its limitations and future scope.



CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

The fact that road safety is a problem on a global scale, has inspired researchers and other
professionals to take the required actions with a view to promoting safety every now and
then. The goal of this study is to pinpoint the geometric and environment-related variables
that influence the severity of public bus crashes in a developing nation like Bangladesh,
especially in the context of Dhaka city. The current chapter begins by identifying the
collision severity categories and defining "Public Bus" in accordance with RHD and
BRTA. Following that, it compiles the pertinent literatures already in existence on the
severity of public bus crashes, conducted to extract significant variables by using statistical
models, and so performs a full evaluation on the goal, directions, and advancements made

in this crucial research subject.
2.2 llustration of the Related Terms
2.2.1 Public Bus

Roads and Highway Department (RHD) and Bangladesh Road Transport Authority are
typically in charge of classifying automobiles in Bangladesh (BRTA). The following list
of vehicles related to this work is organized chronologically based on the report supplied
by (RHD, 2017).

Large Bus: Large buses are those with more than 40 seats and a chassis longer than 36
feet, according to RHD. Air-Conditioned, Chair Class, and Ordinary Large Buses are the
three subcategories of large buses. Previously, Hino (Japan) and Tata (India) jointly
controlled 88% of the large bus market. With a combined contribution of 41%, Tata is now
in the lead with respect to the current situation. In Bangladesh, the air-conditioned bus

models that connect the major cities include Hino, VVolvo, Scania, Hyundai Universe, etc.

Mini Bus: Minibuses are vehicles with a seating capacity of 16 to 39 passengers and a
chassis less than 36 feet. Tata, Isuzu, and Mitsubishi are the three main manufacturers of

minibuses. Tata now holds a 35% market share for minibuses, making it popular.



Table 2-1: RHD Public Bus Categories (Source: RHD, 2017)

RHD Category Description
Large Bus >40 seats and >36 feet chassis
Mini Bus 16-39 seats and <36 feet chassis

2.2.2 Crash Severity Type

It is determined by the severity of the injuries a person (or people) involved in a traffic
collision has experienced. According to Bangladesh Police's First Information Report (FIR)

(see Appendix A, B, and C), there are primarily four types of accident severity:

Fatal Accident: A fatal accident is one that results in the death of one or more accident

victims within 30 days of the commencement of the accident.

Grievous Accident: This kind of accident causes injury to the victims and necessitates

their hospital admission without resulting in any death related issues.

Simple Injury Accident: This accident includes only minor injury, and as such, can be

healed overnight.

Motor Collision: The term "motor collision” refers to the kind of accident that causes
damage to the automobiles or other types of personal property.

2.3 Public Bus Pertinent Studies
2.3.1 National Studies

The interaction of crash severity with public buses in Bangladesh has only been the subject
of a very small number of publicly accessible studies. The majority of the research done so
far in Bangladesh has been examined based on straightforward statistics that illustrate the
implications, limitations, and demands of the corrective actions taken to address the safety
issue (Mahmud and Hoque, 2011). Studies have also been conducted to assess accident
frequency of buses in order to determine the best safety precautions (Ahsan, Keya and
Raihan, 2012). The works till now have helped the government in defining a holistic
approach to overcome this severe problem, which however, fall short of the desired

standard. The important research involving public buses are covered below:
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In 2007, Hoque, Khondaker, and Hoque conducted a research on the driving behaviors and
attitudes of heavy vehicle operators toward traffic safety. Through the use of a thorough
questionnaire survey, an effort was made to understand the general profile, attitudinal, and
behavioral characteristics of heavy vehicle drivers. The survey consisted of Ninety-nine
questions, which were broken up into seven categories. The questionnaire focused on
drivers' knowledge of road safety as well as their habits and viewpoints. The random
sample approach was applied for sampling purposes. Five hundred drivers were sampled
for the poll, comprising 279 bus and 221 truck drivers. The sample group was evenly
divided across various bus and truck terminals, and it also made an effort to cover all
significant national corridors spread across the nation from July 2003 to March 2004. In
this study, drivers' knowledge of traffic control devices and their degree of proficiency
behind the wheel in a variety of scenarios anticipated to result in auto accidents were also
evaluated. The results of the study were used to gauge the degree of drivers' involvement

in crashes and to create practical, workable, and efficient accident prevention strategies.

Anjuman et al. (2013) focused on the involvement of heavy vehicles in traffic incidents in
order to portray the overall state of road safety in Bangladesh. According to their research,
heavier vehicles like trucks and buses account for about 35 % and 29% of all fatalities in
traffic accidents respectively. These vehicles were disproportionately involved in
pedestrian collisions, making up around 68% (bus 38%, trucks 30%) of all pedestrian
collisions and 80% of pedestrian fatalities. In heavy vehicle accidents, variables like the
type of road, composition of vehicles, human factors, environmental factors, and the total
number of vehicles involved were anticipated to play a considerably more significant
influence in boosting injury severity. The potential remedies to this situation's perpetual
collapse were also covered in this paper. It presented a preliminary investigation into the
role of heavy vehicle drivers in multiple vehicle accidents and road safety. For a thorough

grasp of the issue, the authors also suggested in-depth studies and investigations.

The significant factors affecting the severity of bus crashes in Dhaka, Bangladesh, were
determined by Barua and Tay (2011). The authors used data from 1998 to 2005 to apply
the ordered probit (OP) model. According to data from the Micro-Computer Accident
Analysis Package (MAAP) software, Dhaka city accounted for 41% of all urban transit bus
crashes. The outcomes of the analysis can be interpreted in the following ways: an upward

trend in crashes involving transit buses over time, weekdays generated a high number of



serious crashes, the majority of crashes involved two vehicles, although single-vehicle
accidents were more serious, hit-pedestrian crashes were the most serious crash type, and

the police control aided with signalized intersections reduced the chance of serious injuries.
2.3.2 International Studies

As a result of the quick, export-driven economic expansion, there is a noticeable increase
in heavy vehicle (i.e., public bus, as well as truck) transportation across the road network
in both high-income countries as well as many emerging and newly industrialized nations.
For instance, China is observing an annual growth of 466,000 heavy vehicles (such as
trucks and public buses) on its roadways. As such, the contribution of public bus crashes
make up a sizable portion of fatal traffic accidents in China. In Australia, crashes involving
heavy vehicles (such as trucks and public buses) account for up to 20% of all fatal road
crashes, whereas in the USA, heavy vehicle crashes account for about 15% (Anderson and
Hernandez, 2017). Similar rates are also reported in the EU member states. There is some
urgency to better understand the factors related with this vocation given the high crash rates
and rising number of public buses (i.e., large vehicles) on the road network (Anderson and
Hernandez, 2017). The following discussion includes a few studies that have been done on

public buses in various parts of the world:

Elvik (2002) presented a study on the impact of technical inspections of heavy vehicles
(trucks and buses) during the period 1985-1997 in Norway on accidents. The effects of
technical inspections were estimated using multiple regression analysis. The number of
heavy vehicles involved in injury accidents may rise by 5-10% if inspections are
eliminated; conversely, if inspections are increased by 100%, the number of accidents falls
by a comparable amount. Although the study has a number of flaws; its findings are
comparable with those of the previous studies that have examined the impact of technical

flaws in heavy trucks on accidents and the remedies used to fix them.

Mooren et al. (2014) published a paper which reviews the literature on safety management
interventions that have been successful in reducing the severity of injuries in occupational
health and safety (OHS) and road safety, and evaluated their applicability in reducing crash
and injury severity in heavy vehicular (trucks and buses) transport. Safety training,
management commitment, scheduling or travel planning, size of organization or freight

type, worker participation, incentives, and safety or return to work rules were among the
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operational and management traits linked to lower collision and injury risk. Risk analysis
and corrective actions, prior safety violations, crashes or incidents, vehicle conditions or
physical work environment, vehicle technologies, recruitment and retention, pay and
remuneration  systems, accreditation for safety or quality management,
communications/support, financial performance, and worker characteristics and attitudes
were other factors linked to lower incident and injury rates. The review also emphasized

the gaps in the literature and suggested additional research.

Assemi and Hickman (2018) used partial least squares path modeling (PLS-PM) to
determine how frequently heavy vehicles are inspected, what factors contribute to crashes,
and how severe the crashes are. Using information from periodic heavy vehicle (trucks and
bus) inspections and heavy vehicle (trucks and bus) collisions in Queensland, Australia,
from 2011 to 2013, a research model was proposed and evaluated. In the primary vehicle's
overall damage, primary vehicle casualties, other involved parties' overall damage, and
other involved parties' casualties, the results of the model showed variations of 12.9%,
21.1%, 72.4%, and 11.5%, respectively.

Feng et al. (2016) investigated the risk variables associated with fatal bus accident injuries
suffered by various types of drivers. Data that was recovered from the USA's Bus Involved
in Fatal Accidents (BIFA) database for the years 2006-2010 was subjected to OL
specifications. The K-means approach was used to divide drivers into three groups; with
425, 302, and 653 drivers in each cluster, respectively. The results showed that the middle-
aged drivers with a history of traffic violations are "the safest ones" (i.e., they are less likely
to be involved in more serious accidents), while the young and elderly drivers with a history
of traffic violations are "the riskiest ones" (i.e., they are more likely to be involved in more
serious accidents), and drivers without a history of traffic violations fall somewhere in

between.
2.4 Model Pertinent Studies

Researchers frequently employ statistical methods to gauge the seriousness of accident
injuries. In some studies, (Shankar and Mannering, 1996; Carson and Mannering, 2001,
Ulfarsson and Mannering, 2004; Khorashadi et al., 2005; Kim et al., 2007; Tay et al., 2011),
multinomial logit (MNL) models with multiple levels of injury severity were used, whereas

ordered probability models (viz. OL, OP, etc.) were used to account for the ordinal nature
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of the crash (O’Donnell and Connor, 1996; Kockelman and Kweon, 2002; Abdel-Aty,
2003; Garrido et al., 2014; Feng et al., 2016). On the other hand, these techniques have their
own set of restrictions. To get around the limitations of conventional (i.e., nominal and
ordered) probability models, Peterson and Harrell (1990) proposed the partial proportional
odds (PPO) model. This model takes into account the ordinal nature of traffic crash severity
and permits some independent variables to have different impacts across crash severity
levels. Due to its distinct combination of flexibility and data constraints, the PPO model
has been used in a number of research (Wang and Abdel-Aty, 2008; Wang, Chen, and Lu,
2009; Soon, 2010; Sasidharan and Menéndez, 2014; Li and Fan, 2019). This strategy,

though, is beyond the purview of this case.

The work on a comparison study of paradigms that behave differently in various contexts
is also revealed in a research (Mooradian et al., 2013; Zong, Xu and Zhang, 2013; Iranitalab
and Khattak, 2017). The majority of injury severity analyses in recent years have relied on
extensions of ordered response models (Generalized Ordered Logit/Probit, Hierarchical
Ordered Logit, Bayesian Spatial Generalized Ordered Logit/Probit, Heteroskedastic
Ordered Probit) that take into account for different specification limitations (Quddus, Wang
and Ison, 2010; Lemp, Kockelman and Unnikrishnan, 2011; Wang, Yin and Zeng, 2019).
In certain review publications, methodological approaches for assessing the seriousness of

accident injuries were also highlighted (Savolainen et al., 2011; Mooren et al., 2014).
2.4.1 Multinomial Logit (MNL)

Shankar and Mannering (1996) used a multinomial logit (MNL) model to predict the
severity of motorcycle rider crashes based on crash frequency. The five-year state-wide
study of single-vehicle motorbike crashes in Washington, USA, provided the crash data.
Five levels of severity were examined by the authors: death, serious harm, obvious injury,
possible injury, and property damage alone (PDO). The results show that the use of a helmet
in a fixed-object collision is ineffective because this situation increases the risk of fatality.
Overall, the multinomial logit model performed well in identifying the variables affecting

the severity of motorcycle crashes.

The usefulness of ice warning signs in lowering the quantity and severity of accidents was
examined by Carson and Mannering (2001) in Washington State, USA. The authors
specifically examined crash severity using the MNL specification. The information showed
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that a crash's severity was unaffected by an ice warning sign's presence. On the other hand,
truck tractors and semi-trailers were found to be a significant contributor to fatal collisions,

and PDO occurrences were found to be more likely as the drivers’ age grew.

Ulfarsson and Mannering (2004) used various multivariate MNL models to examine how
male and female drivers differed in terms of accident severity in single- and two-vehicle
collisions involving SUVs, minivans, pickup trucks, and passenger cars. The algorithms
were created to calculate the likelihood of four severity outcomes: fatal harm, obvious
injury, possible injury, and no injury (PDO). The results of the estimations showed that
variables have a considerably different impact on the degree of damage in male and female

drivers.

(Kim et al., 2007) used the MNL model to analyze the elements that affect how seriously
an injured cyclist is hurt in a collision with a motor vehicle. Police-reported crash data from
North Carolina, USA, from 1997 to 2002 served as the study's foundation. The authors
listed a number of characteristics that had a significant effect on fatal injuries, including
inclement weather, darkness without illumination, head-on incidents, truck involvement,
cyclists aged 55 or older, and others. However, the probability of death increases by almost

16 times if the vehicle's speed just prior to the accident was more than 80.5 km/h.

Tay et al. (2011) used the MNL model in South Korea to identify the variables that
influence the severity of pedestrian-vehicle collisions. The researchers discovered that,
compared to minor incidents, fatal and serious collisions were associated with light-vehicle
collisions, collisions involving intoxicated drivers, male or younger pedestrians, female or
older pedestrians, and pedestrians struck in the centre of the road. On the other hand, the
study also found that the drunk drivers are more likely to be involved in minor injury
crashes than catastrophic damage crashes.

2.4.2 Ordered Logit (OL)

O'Donnell and Connor (1996) estimated two ordered paragons, specifically the ordered
logit (OL) model and the ordered probit (OP) model with heteroscedasticity, to assess
injury severities in traffic crashes in New South Wales, Australia. The results showed that
the chance of serious injuries and fatalities is increased by vehicle speed, vehicle age, and
victim age. According to the authors, factors such as seat position, blood alcohol content,

gender, collision type, and vehicle type (especially light-duty vehicles) significantly
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affected the severe outcomes.

To examine the connection between crash severity and traffic congestion, Quddus, Wang,
and Ison (2010) used ordered response models including the OL model, heterogeneous
choice model (HCM), and generalized ordered logit (GOL) (partially restricted) models.
These models work well for both disaggregate crash data and ordinal dependable variables.
The results showed that the severity of collision injuries is not significantly affected by

traffic congestion on London's M25 highway.
2.4.3 Others

Hutchinson (1986) estimated the seriousness of occupant injuries in a traffic collision using
an OP model. Cross-tabulation was used to display the severity of injuries to the driver and
front-seat passenger in four separate single-vehicle crashes. For that matter, the processed
British accident data from 1962 to 1972 were used. According to the authors, passengers
are more likely than drivers to sustain serious injuries in non-overturning collisions, but no

difference was seen in overturning collisions.

Abdel-Aty (2003) examined factors affecting the severity of driver injury levels across
several Central Florida sites using the OP model. He developed concepts for toll plazas,
signalized intersections, and road segments. The results showed that the driver's age,
gender, seat belt use, speed, point of impact, and crash type all have a higher chance of
severe injury regardless of the occurrence site. However, there is a higher likelihood that
the drivers will be hurt if the cars are using an Electronic Toll Collection system (E-Pass)
at a toll plaza. The author carried out the same analysis using layered logit response models
and multinomial logit response models. OP had a higher goodness-of-fit score than MNL,

and although being more effective, NL was avoided because of its complexity.

Garrido et al. (2014) conducted research on the severity of injuries sustained by motor
vehicle occupants in Portugal. The datasets were first examined for multicollinearity as part
of the modeling strategy, and then the OP specification was used. Women are more likely
than men to die in an automobile accident, yet the driver's seat is considered to be the safest
position inside the car. Although the former experiences more accidents, it was also shown

that urban areas experience less serious collisions than rural ones.

Wang, Chen, and Lu (2009) investigated and evaluated the factors that affect how serious
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injuries are at highway divergence zones. At 231 separate highway exit segments in the
state of Florida, crash data and route statistics were gathered. Using Partial Proportional
Odds (PPO) regression, which removes the constraint that all regression coefficients be the
same across all output values and allows one or more regression coefficients to differ across
outcome levels, the injury severity prediction models were developed. Injury severity at
freeway to diverge areas was significantly influenced by the length of deceleration/ramp
lanes, curve and grade at diverging areas, light and weather conditions, alcohol/drug
involvement, heavy vehicle involvement, number of lanes on mainlines, ADT on
mainlines, surface conditions, land type, and crash types. The study also found that injury
severity at motorway diverge locations was not significantly impacted by exit ramp

designs.

The Partial Proportional Odds (PPO) model was created by Mooradian et al. (2013) to
bridge the gap between ordered and multinomial techniques without compromising their
central tenets. PPO came out on top when the response models were contrasted in terms of
model fit, covariate significance, and holdout prediction accuracy. On the other hand, it
was demonstrated that the MNL model had the best average fit.

The PPO model was applied as a logistic regression model by Toran Pour et al. (2016) for
pedestrian crashes at mid-blocks in the Melbourne Metropolitan Area. This study examined
vehicle-pedestrian collisions in mid-blocks for the first time. Additionally, this model was
also developed by taking into the account of different variables like the separation between
crashes and public transit stations, average road gradient, and the numerous socioeconomic
characteristics for the first time. The PPO model showed that the most significant
parameters determining the severity of car-pedestrian crashes at mid-blocks are the speed
limit, light condition, pedestrian age and gender, and vehicle type.

The parameters of road accident severity data and the most popular analytical approaches
for analyzing such data were computed by Savolainen et al. in 2011. According to the
authors, binary response models (such as binary logit, binary probit, etc.), ordinal discrete
response models (such as OL, GOL, etc.), nominal multinomial discrete response models
(such as MNL, NL, etc.), and some data mining techniques are among the discrete response

paradigms that gave rise to the majority of modeling approaches.

Zeng et al. (2020) examined Bayesian network and Regression models for forecasting the
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seriousness of traffic accidents (i.e., OP model). The number of fatalities, injuries, and
property damage were the officially recognized severity indicators. The authors came to
the conclusion that Bayesian networks performed better than Regression models in terms
of the mean absolute percentage error (MAPE) and hit-ratio. However, missing factors such

as traffic circumstances and driver characteristics restricted the effort.

Wang, Chen, and Lu (2009) looked into the pertinent variables that predict the seriousness
of driver injuries in rural non-interstate collisions in the state of New Mexico. The authors
employed Bayesian inference to estimate the model using the hierarchically ordered logit
(HOL) model. In contrast to heavy vehicle drivers, motorcycle riders, female drivers,
elderly drivers, and the majority of accident types (such as head-on, rear-end, angle
collision, overturn, fixed object, sideswipe, and other collision) were all significant in
causing serious injury. An OL model was also generated, although it was less accurate in

terms of interpretation than the H-OL model.

Iranitalab and Khattak (2017) investigated four statistical and machine learning methods
for forecasting traffic crash severity: the MNL model, Nearest Neighbor Classification
(NNC), Support Vector Machines (SVM), and Random Forests (RF). As part of their
investigation into the effects of data clustering techniques like K-means Clustering (KC)
and Latent Class Clustering, the authors also developed a crash costs-based method for
evaluating different prediction algorithms (LCC). MNL, NNC, and RF all performed better
when using clustering techniques, but NNC had the best prediction performance.

A Bayesian spatial GOL model with conditional autoregressive priors was constructed by
Zeng et al. (2020) to examine the severity of Kaiyang road crashes in China. Using
Bayesian inference, the proposed model was contrasted against a typical G-OL model, and
the former was found to be superior. Major crashes rose as a result of a variety of reasons,
including the summer season, vertical gradients, angle collisions, and others. Professional
drivers' significant representation in the dataset as intercity coach drivers can be used to

explain their role in elevating the likelihood of fatal accident.
2.5 Summary

Public bus accidents are a problem for both industrialized and developing nations. In many
developed nations across the world, discrete outcome models (MNL, PPO, OL, OP, GOL,

etc.) have shown to be efficient and reliable in determining the severity of collision injuries.
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On the contrary, in many underdeveloped countries like Bangladesh, efforts to address this
type of challenge are mostly based on descriptive analyses, and often impeded by the
incompleteness of accident data. As a result, it is past due for Bangladesh to employ more
cutting-edge approaches supported with modern technologies, such as discrete outcome

models, to provide an effective solution to this serious issue.
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CHAPTER 3
RESEARCH METHODOLOGY

3.1 Introduction

This chapter describes the methodology for creating mathematical models that make it
easier to assess the seriousness of a public bus crash. For poor nations like Bangladesh, the
process for identifying the underlying high impact characteristics determining crash
severity is hazy. This issue is primarily brought on by poor crash data recording. As a result,
basic probabilistic methods have been applied as the main strategy in this research to

address the limitation of data under-reporting.
3.2 Methodological Flow of the Study

This work has been carried out analytically which consists of three crucial tasks:
comprehending the current state of traffic safety in Bangladesh as well as Dhaka city, using
probabilistic methods to delve into the crash data for some unusual and far-reaching
outcomes, and choosing the best methodology through comparative study in the context of
this country. The first task includes simple cross-tabulation in MS Excel utilizing accident
data from Accident Research Institute (ARI). The second job, which is the most important
portion of the study, used discrete response models to evaluate the data in the R
programming environment, including the multinomial logit (MNL) model, ordered logit
(OL) model, ordered probit (OP), and partial proportional odds (PPO) model. Finally, an
appropriate model that best addresses the data crises in the context of Bangladesh was
chosen based on fit adequacy and comparison of variables. The subsequent sections give a

quick overview of the relevant steps in order.
3.3 Cross-Tabulation

Cross-tabulation, commonly referred to as a contingency table, is a statistical method for
analyzing categorical data that are mutually exclusive. This method groups information
about the variables to evaluate the relationship between them and also shows the pattern of
change in the variable groups. Cross-tabulation makes it possible to investigate data at a
more granular level, which makes it easier to interpret and offers deeper insights. The

convenience of using data of various sorts is the main benefit of contingency table analysis
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(viz., nominal, ordinal, interval, and ratio). In this study, a straightforward cross-tabulation
will be used to comprehend the dataset that represents the severity of public crashes. Most

studies on the safety of public buses have used it as the basis of analysis.
3.4 Discrete Outcome Models

Since several practical judgments are made using this information, discrete data frequently
play an important role in traffic engineering. Theoretically, these data are divided into two
categories: those describing discrete outcomes of a physical event and those requiring
behavioral choice. Discrete models can be traced back to either from economic theory or
from simple probabilistic theory based on physical and behavioral phenomena,
respectively. Most road traffic incidents are physical events that produce distinct results.
The use of probabilistic models to forecast and evaluate crash severity for categorical
response variables was therefore recommended by Mooradian et al. (2013). However, the
examination of accident data has its own relevance for economic theory. Econometric
models were adopted into some of the older crash severity calculation techniques
(Mooradian et al., 2013).

Traffic collisions produce discrete injury severity outcomes, which are often arranged from
the worst crash (death) to the least bad crash (motor collision). In Bangladesh, public bus
accidents are typically categorized according to their severity as follows: (a) motor
collision, (b) simple injury accident, (c) grievous accident, and (d) fatal accident. In order
to draw the relationship between crash severity levels, ordered probability models, such as
the ordered logit (OL) and the ordered probit (OP) are often used for convenience
(Hutchinson, 1986; O'Donnell and Connor, 1996; Kockelman and Kweon, 2002; Iranitalab
and Khattak, 2017; Quddus, Wang, and Ison, 2010; Abdel-Aty, 2003; Yamamoto and
Shankar, 2004; Lee and Abdel-Aty, 2005; Barua and Tay, 2011; Tay et al., 2011).

To provide for the non-monotonic effect of the independent variables on the dependent
variable, models for nominal outcomes are frequently used with ordinal response variables.
This method makes the assumption that damage severity levels are nominal or unordered.
In contrast to proportion odds, unordered response models, such as the multinomial logit
(MNL) model allow all model variables to have a different impact on each response level
(Shankar and Mannering, 1996; Carson and Mannering, 2001; Ulfarsson and Mannering,
2004; Khorashadi et al., 2005; Savolainen et al., 2011; Kim et al., 2007; Mooradian et al.,

19



2013). The estimation of parameters for ordered response variables using conventional
unordered requirements may be impartial, particularly when data are lacking, according to
Yamamoto, Hashiji, and Shankar (2008).

Partial Proportional Odds (PPO) model ignores the limitations provided by ordered
response and multinomial models. The PPO is, in fact, an intermediate method bridging

the gap between ordinal and MNL models (Sasidharan and Menéndez, 2014).

The discrete nature of response variable has motivated the use of MNL, OL, OP and PPO

models, as the basis of analysis for this research work, which are briefed below:
3.4.1 Multinomial Logit (MNL) Model
3.4.1.1 Model Assumption

a) Assumes data are level specific i.e., each feature has a unit value for each level.
b) Ignores the sequential order of the levels of response variable.

c) Relies on the assumption of independence of irrelevant alternatives (I1A). For
more details, see 3.4.1.5.

d) Disturbance term is assumed to be identically and independently distributed
(11D) with type 1 extreme value distribution.

3.4.1.2 Mathematical Interpretation

The probability of observation n experiencing injury with severity outcome i can be written

as,
P,(i) =P(Uy = Uy), VI # i (3.2)
where, i = Crash severity outcomes: 1,2, ..., I .
U,; = Function of covariates that determines the likelihood of severity i of observation
n.

It is assumed that an individual usually endures the one severity type which maximizes U,,;.

Using a linear-in-parameter form, such that,

Uni = BiXn + &n; (3'2)
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Where, 8; = Vector of estimable parameters for injury outcome i.
X,, = Vector of exogenous explanatory variables.

&,; = Disturbance term accounting for the unobserved effects influencing injury severity i
of individual n.

The unobserved term &,,;’s is assumed to be independent from one severity level to another;
The term f;X,, is the observable component of severity determination as the vector X,, is
composed of measurable variables (e.g., roadway attributes at the location of accident n)
(Shankar and Mannering, 1996).

By substituting Eq. 3.2 in Eq. 3.1, the former can be expressed as,

P,(0)) =P(BiXy + &pi = L1 Xn +€01), VI # i (3.3)
or,
Pn(i) = P(ﬁan - ﬁIXn = Enr — gni):VI *1 (3-4)

Eq. 3.4 promotes the derivation of severity model assuming a distribution form for &,,;. A
natural choice would be the assumption of normally distributed disturbance term. However,
normal distribution violates the desirable property of the disturbance term which states, the
maximums of randomly drawn values from the distribution have the same distribution as
the values from which they were drawn (Washington et al., 2011). A more common
approach is to assume that the disturbance term eni, is an extreme value type 1 distribution

(sometimes referred as Gumbel distribution), which simplifies crash severity modeling.

The probability density function (pdf) for the distribution is,

f (&) = nexp(-n(e — w)) exp(— exp(-n(e — w))) (3.5

The cumulative distribution function (cdf) is,
F(e) = exp (—exp (-n(e — w))) (3.6)

where, n = Positive scale parameter.
w = Location parameter (mode).

Mean = (w + 0.5772/n).
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Standard multinomial logit model can be derived from generalized extreme value (extreme

value type 1) assumption such as (McFadden, 1981),

N _ exp[BiXn]
B = Yviexp [BrXnl @.7)

Where, all terms are previously defined. Given this equation, vector of parameters, 8’scan
be estimated using standard maximum likelihood (ML) methods. For a sample of N

observations, the log-likelihood function is,

LL =%}y (Z{=1 SnilBiXn — LN Xy exp (B1Xn)]) (3.8)
where, 6,,; = 1, if discrete outcome for observation n is i.
6ni = 0, if otherwise.

Multinomial logit models are structurally related to logistic regression models; however,
assumptions, estimation technique, and associated results vary among these models

(Ulfarsson and Mannering, 2004).
3.4.1.3 Model Identification

The sum of probabilities of all observed outcomes I of an individual n, using Eq. 3.7, equals to
1. However, addition of new parameters generates the same probabilities of observed
outcomes (Long, 1997). The model is hence, not identified, which can be clarified revising
Eq. 3.7 as follows,

N __explBiXal _ aXa
Pa(D) = Yvrexp [BrXn] X aXn

or,

\_ expl(Brra)¥al
B0 = Yv1 exp [(Br+a)Xn] (3.9)

X
where, 222 = 1,
aXy

a = Parameters that keeps the values of probabilities unchanged.

The original parameter B, have been replaced by (B; + a) for outcome i, producing a new

set of parameters.
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The model is made identifiable by imposing constraints on the 5’s, such that for any a # 0
the constraints are violated (Long, 1997). To execute this restriction for multinomial logit
model, one of the 8’s is made zero. Considering the outcomes having values such as, i =

1,2, ...1, the arbitrary choice is made as follows,

Br=0

Hence, the probability equation of observed outcomes is expressed as,

- _ _ explBiXn]
B = Zvi exp [BrXn] (3.10)

where, B; = 0 and all terms are predefined.
3.4.14 Elasticity Determination

The interpretation of model’s parameters is a bit perplexing as these values cannot fully
explore the effect of explanatory variables on outcome probabilities. The motivation of this
situation is the dependency of marginal effect of a variable on all coefficients, rather than
a single coefficient (Khorashadi et al., 2005). Elasticities are then calculated and used to
assess the marginal effects as a cure to this complication. The prime task of elasticity is to
compute the influence of specific variables on the outcome probabilities. In general,

elasticity of each observation n is expressed as,

FPn(® _ 9Pn() | Xni (3.11)

Yk Oxpk  Pa(D)
where, E = Elasticity.
xnx = Value of kth variable for observation n.
P, (i) = Probability of observation n experiencing severity outcome i.

Applying Eqg. 3.11 to the multinomial logit formulation using Eq. 3.7 provides,
By = (1= Pu(i))Burkni (3.12)
where, B;;, = Estimable parameter for outcome i associated with variable x,,,.

Elasticity values can approximately be interpreted as the percent effect of x,, on the
probability of severity-level (i). If the observed elasticity value is less than 1%, the

variable x,,, issaid to be inelastic, and a 1% change in x,,;, will have less than a 1% change in
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the selection probability of outcome i. However, if the elasticity observed, is more than
1%, then a 1% change in x,,;, will have more than a 1% change in the selection probability

of outcome i.

Eq. 3.11 is only valid for continuous explanatory variables such as, driver’s age, and vehicle
speed. For indicator variables (those taking on values of 0 and 1), direct pseudo-elasticity

is calculated. The equation can be written as,

Pn (1) — exp [A(BiXn)] Xvi exp [Bixxni] _
Ex”k exp [A(BiXn)] Eviy, exp [Bixxnkl+Zvizr, exp [Brrxnk] 1 (313)

where, I,, = Set of alternate with x,,;, in the function determining the outcome.
I = Set of all possible outcomes.

Pseudo-elasticity of a variable can be elucidated as the average percent change in the
probability of a specific crash level when the variable is changed from 0 to 1. Hence, a
measured pseudo-elasticity of 0.5 for a variable, x,, in the fatal injury category of
observation n signifies that the probability of fatal injury is increased, on average, by 50%,

when the value of variable, where x,,;, = 0, is changed from 0 to 1.
3.4.1.5 Model Limitations

This section describes about the specification errors resulting due to the violation of
assumptions made to generate the multinomial logit model (MNL), for the analysis of

sample data.

Independence of Irrelevant Alternatives (11A): 11A in the MNL model simply refers to
the independence of the ratio of probabilities of any two outcomes from the functions
determining any other outcomes. This property is seemed to persist in the multinomial logit
specifications, if all the outcomes share the same unobserved effects (materialized in the
disturbance term), which eventually cancels out according to Eq. 3.4; however, the problem
arises when some of the outcomes share unobserved effects, and the probability ratio is no
longer independent (Ulfarsson and Mannering, 2004). This correlation problem (I1A

violation) can be addressed with nested logit models.

The red bus-blue bus paradox is an excellent explanation to this situation. Let’s consider, a
commuter has two choices with same utility for commuting to college: an auto that is

selected with P.(auto) = 1/2 and a red bus with B.(red bus) = 1/2. The odds of taking
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the auto over the red bus is(1/2)/(1/2) = 1. Now, suppose a new bus service is
introduced in the region that is identical to the existing service, except the buses are painted
blue. For validation 1A, multinomial logit predicts: P.(auto) = 1/3, P.(red bus) = 1/3,
and P.(blue bus) = 1/3, so that, the odds of auto over red bus remains the same (=
(1/3)/(1/3) = 1). However, color cannot be the only reason of the shift of choice.
Instead, the share of red bus P.(red bus) = 1/2 would split, resulting in: P.(auto) = 1/2,
P.(red bus) = 1/4, and P.(blue bus) = 1/4. The novel ratio(= (1/2)/ (1/4) = 2 # 1),

hence, infers the violation of 1A assumption.

Identically and Independently Distributed (11D): A major conjecture of the MNL model
derivation is considering the independent, and identical distribution (11D) of the disturbance
term, ¢ i.e., the variance of the disturbance is constant; however, an undesirable
contradictory scenario results in inconsistent parameter estimates (Washington et al.,
2011). Having said that, ‘comfort’ (unobserved) is considered a crucial disturbance
influencer in the paragon of choice of mode of travel; let’s assume, Personal vehicles
(BMW, Toyota Premio, and Tata Nano), and MRT are the modes to use. Pondering the
influencer, it can be deduced that variance of the disturbance term is bigger for personal
vehicles than the disturbance term for MRT (Washington et al., 2011).

Omitted Variables: The crash reports often contain limited information resulting in an
erroneous analysis of data. Elimination of relevant variables can lead to a specious
estimation of coefficients, if such variables possess any significant connection with the
other variables existing in the model, or the mean and variance of the omitted variables

vary across severity outcomes (Washington et al., 2011; Savolainen et al., 2011).

Irrelevant Variables: Despite the fact that results are obtained using extraneous variables,

efficiency of parameter estimates will be eluded concluding in a meaningless effort.

Endogeneity: The influence of injury-severity levels on the explanatory variables can arise
estimation issues using the MNL model. Specifically, Carson and Mannering (2001)
rationalized the endogenous nature of ice warning sign in relating it with ice- accident
frequency. The authors elucidated that ice-accident frequency can potentially impact the
presence of ice warning sign as it is a conventional exercise to place warning signs at
accident spots. Hence, the analysis might put forth a fallacious result, showing signs only

increases accident frequency, if the endogeneity is ignored (i.e., ice warning is considered
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an exogenous variable).
3.4.2 Ordered Logit (OL) Model
3.4.2.1 Model Assumption

a) Parallel Odds Assumption: According to the parallel odds assumption (also known
as parallel lines assumption), the effect of an independent variable will be uniform across
all levels of response variable i.e., the value of estimable coefficient g is same for all
outcome levels i (Soon, 2010; Sasidharan and Menéndez, 2014). The fulfilment of the
assumption thus conditions on the parallelism of the odds ratios across severity levels. A
test devised by Brant (also known as Brant Test) is used to assess the validity of parallel

odds assumption.
b) Disturbance term is assumed to be logistically distributed across observations.

C) Assumption is made considering homoscedastic nature of disturbance term (i.e., the

variance of disturbance term cannot vary across observations).
d) The disturbance terms for different observations are assumed to be uncorrelated.
3.4.2.2 Mathematical Interpretation

Ordered logit model, also known as Proportional odds (PO) model, is usually defined in a
latent (i.e., unobserved) variable framework. The general specification of each single

equation model is,

Zn = BXy + & (3.14)

where, z,, = Latent continuous variable measuring the risk of injury faced by observation

n in a crash.

X, = p X 1 vector of non-stochastic (i.e., non-random) explanatory variables measuring

the attributes of observation n.
B =p X 1vector of parameters to be estimated.
&, = Random disturbance term.

The error term is assumed to be logistically distributed across observations with mean= 0,
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and variance= 2 /3, which eventually results in an ordered logit model (Washington et
al., 2011).

The probability density function (pdf) is,

_ _exp(e)
Ae) = [1+exp ()]? (3.15)

The cumulative density function (cdf) is,

_ _exp(g)
Ae) = [1+exp ()] (3.16)

The unknown parameter f is to be estimated; however, standard regression technique
cannot be applied to Eq. 3.14, as dependent variable, z, is unobserved (O’Donnell and
Connor, 1996). Instead, the observed and coded discrete injury severity variable, y,

contained in the data is used, and a relation is drawn with the latent variable, z,, as follows:

1, —o<z,<u (Motor Collison)
_ 2, W <z,<u, (Simplelnjury Accident) (3.17)
Yn 3, Uy <z, < U3 (Grievous Accident) '
4, 3 <z < (Fatal Accident)

where, the threshold values w2 and g3 are unknown estimable parameters. This implies that
the probability of injury severity i sustained by observation n is the same as the probability
that an unobserved variable z: measuring injury risk, takes a value between two thresholds.
The cumulative probability for a given crash n with injury severity levels i can be expressed

as follows:

P(y, <i) = % (3.18)
where, y,, = Recorded crash injury severity for crash n.

i = Crash injury severity levels: 1, 2..., [ - 1.

u; = Cut-off point for level i.

X, = p X 1 vector containing the values of all p predictor variables for crash n.

B =p X 1 vector of estimable parameters associated with X,.

The probabilities associated with the coded responses of an ordered logit model can be

27



further shown as,

P,()=Pr(y,=1) =Pr(z, < py) = Pr (BXn + &, < iy)
=Pr(e, < — .BXn) = Ay _.BXn)

Po(2) =Pr(yn =2) = Pr (u1 < 2z, < ) (3.19)
= Pr (en < U _.BXn)_Pr (gn S.ul_.BXn)
= A(MZ - .BXn) — Ay — .BXn)

Po() =Pr (=10 = Pr (pi—1 < zp < )
= Pr(en < 1y — BXn) — Pr (& < pi—1 — BXp)
= A(u; — BXy) — Api—1 — BXp), i =3
P(I) = Pr O =D =Pr (-1 <2zp) = Pr (-1 < BXn + &)
= Pr ('“1—1 — BXn < gn) =1-A(w-1—BX), 1 =4

where, A(.) = Standard logistic cumulative distribution function of the disturbance term,

En-

The probabilities in Eq. 3.19 will be positive if the thresholds parameters follow the
constraints p; < u, < ps (O’Donnell and Connor, 1996).

Figure 3.1 illustrates the agreement between unobserved, continuous variable, z,, and

observed discrete variable, y,,.

Z"

Fig. 3.1: Relationship between unobserved and observed injury variables.

The parameters of ordered logit paradigms are estimated by the method of maximum
likelihood (ML). For a sample of N observations, the log-likelihood function can be written
as:

LL = X3-y (Blzy SulN[AQ = BXn) — Apiog — BXn)]) (3.20)
where, all terms are predefined.
3.4.2.3 Model Identification

Mean and variance of the unobserved variable, z,, cannot estimated as the variable is latent
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in nature. Therefore, the variance is identified by assuming Var e = w2 /3 in ordered logit

model (Long, 1997). However, the mean of zx still remains unidentified.

The non-identification of the model can be shown revising Eq. (12) for a single independent

variable as:
Zpn=a+BX, + ¢, (3.21)
where, a = Intercept, and all terms are previously defined.

The assumed cut-off points (thresholds) for this model, u; (wherei =1,2,...,—1),and a
are considered to be ‘true parameters’ as they are used to generate the observed data.

Defining an alternative set of parameters such that:
a"=a— @ (3.22)
and

Wi = U= @ (3.23)
where, ¢ = Arbitrary constant.

The probability that y = i can be written as:

B = Alp; —a — BXy) — Api-1 —a — fXy)

= Ay —a* — BX,) — Aui_, — a* — BXy) (3.24)

Here, both sets of parameters are generating same value of probability for a given observed
outcome leaving no way to choose between the parameter sets using the observed data. So,

it can be surmised that the model is unidentified.

Dual assumptions regarding parameters, a and y; can engender an identifiable model, which
eventually lead to an arbitrary choice of u; = 0, and a # 0 in our case. Eq. 3.19, then can

be synopsized as:

P (D) =Pr(y, = 1) = A(—pXy)
P.(2) = Pr (yp = 2) = Ay — BXn) — A(—BXy)
P.(3) = Pr (yn = 3) = Alus — BXn) — Alua — BXn)
P(4) =Pr(y, =4) =1—A(us — Xy)

(3.25)
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The following figure shows the probability distribution function (pdf) of a logistically distributed
ordered probability model with y; = 0.

0.25

0.2 A

A(g) 0.15 A

0.1 4

0.05

_ﬁXn Ha _ﬂXn H3 _ﬁX;:
£

Fig. 3.2: lllustrates an ordered logit model with y; = 0.

3.4.2.4 Elasticity Determination

The effect of the exogenous variables on the response variables often create issues in
deciphering the parameter estimates. A positive sense of # in Fig. 3.2 signifies that an
increase in X,, will generate the increase (or, decrease) of the probabilities of the highest
(or, lowest) ordered injury severity outcomes. However, it is baffling to interpret the trend
of the probabilities of the transitional severity levels based on the sense (i.e., positive, or
negative) of . Hence, the calculation of elasticities to evaluate the marginal effects for
each level is essential (Washington et al., 2011; Garrido et al., 2014).

For continuous variables, the elasticities measuring the effects on probabilities of different
outcome levels can be expressed as:

0P (yn=0) — [A(,Lll _ ﬁXn) _ A(.ui—l — ﬁXn)].B (326)

0x

where, all terms are previously defined.

In case of categorical explanatory variables, Eq. 3.26 is not valid resulting in adoption of a
different approach. The effect of the change of an indicator variable from 0 to 1, holding

all other variables values at their means, on the probabilities of response variable can be
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accounted as (Garrido et al., 2014):

Xn=Pm=11X,=1) P =101X,=0) (3.27)
where, all terms are predefined.
3.4.25 Model Limitations

Flexibility: Ordered logit model is not suitable for crash severity analysis because it restricts
the effects of variables across outcomes (Khorashadi et al., 2005; Washington et al., 2011).
The air bag incident provided by Washington et al. (2011) is an important explanation to
this limitation. The authors considered three scenario of severity levels namely, PDO,
injury, and fatality. The air bag deployment indicator variable in ordered response model
would either increase fatality and decrease PDO, or decrease fatality and increase PDO.
However, the deployment of air bag itself would increase the probability of injury, which
cannot be explained using this kind of model structure. Eluru, Bhat and Hensher (2008)
also pointed that ordered specifications hold fixed threshold values across crashes, which
in turn lead to incompatible injury risk propensity, and inconsistent effects of variables on

injury severity levels.
3.4.3 Ordered Probit (OP) Model
3.4.3.1 Model Assumption

a) Follows parallel lines assumption like the OL model.
b) Disturbance term is assumed to be normally distributed across observations.

c) Assumption is made considering homoskedastic nature of disturbance term (i.e.,
the variance of disturbance term cannot vary across observations).

d) The disturbance terms for different observations are assumed to be uncorrelated.
3.4.3.2 Mathematical Interpretation

Ordered probit model is typically defined in a latent (i.e., unobserved) variable structure

like the OL model. The general specification of each single equation model is,

Zn = BXp + &, (3.28)
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where, z,, = Latent continuous variable measuring the risk of injury faced by observation
n in a crash.

X,, = p x 1 vector of non-stochastic (i.e., non-random) explanatory variables

measuring the attributes of observation n.
B = p X 1 vector of parameters to be estimated.
&, = Random disturbance term.

The error term is assumed to be normally distributed across observations with mean = 0,
and variance = 1, which eventually results in an ordered probit model (Washington et al.,
2011). The probability density function (pdf) is,

P(e) = =exp (- 5) (3.29)

The cumulative density function (cdf) is,

o) = [°, —exp (-5)dt (3.30)

The unknown parameter S is to be estimated; however, standard regression technique
cannot be applied to Eq. 3.28, as dependent variable, z, is unobserved (O’Donnell and
Connor, 1996). Instead, the observed and coded discrete injury severity variable, y,

contained in the data is used, and a relation is drawn with the latent variable, z,, as follows:

—0 <z, <u;  (Motor Collison)

< zZp < Uy (Simple Injury Accident)
Uy < Zp < U3 (Grievous Accident)

, U3 < Zp < © (Fatal Accident)

-

~

Yn = (3.31)

B Wi e

where, the threshold values p4, u, and u; are unknown estimable parameters. This implies
that the probability of injury severity i sustained by observation n is the same as the
probability that an unobserved variable z,, measuring injury risk, takes a value between two
thresholds. The cumulative probability for a given crash n with injury severity levels i can
be expressed as follows:

. [ i~ Xn]
P(y, < i) = SHEC (3.32)
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where, y,, = Recorded crash injury severity for crash n.
i = Crash injury severity levels: 1, 2..., [ — 1.
u; = Cut-off point for level i.
X, = p x 1 vector containing the values of all p predictor variables for crash n.
B = p X 1 vector of estimable parameters associated with X,,.

The probabilities associated with the coded responses of an ordered probit model can be
further shown as,

P()=Pr(y,=1)=Pr(z, <) =Pr (X, +&, <)
= Pr (gn S Uy — ﬁXn) = o (uy _ﬁXn)

Py(2) = Pr (y, = 2) = Pr (U < zp < )
= Pr (Sn < U _ﬁXn)_Pr (Sn S.ul_ﬁXn)
= CD(.“Z _.BXTL) - ‘D(ﬂl _ﬁXn)

P (i) = Pr (yp = i) = Pr (Uj—1 < zp, < ;)
= Pr (Sn < Ui _ﬁXn) — Pr (Sn < Ui-1 _ﬂXn)
= &(u; — Xn) — P(i-1 — fXp), i =3

PB,(I) = Pr n =0 =Pr (U1 <2zp) =Pr (u-1 <pXn+&)
= Pr (,ul—l - BXn < gn) =1- (p(.ul—l _ﬁXn);I =4

(3.33)

where, @ (.) = Standard normal cumulative distribution function of the disturbance term,
&n-

The probabilities in Eq. 3.31 will be positive if the thresholds parameters follow the
constraints y; <, < uz (O’Donnell and Connor, 1996).

Figure 3.3 illustrates the agreement between unobserved, continuous variable, z,, and

observed discrete variable, y,,.

z"

Fig. 3.3: Relationship between unobserved and observed injury variables.
The parameters of ordered probit paradigms are estimated by the method of maximum
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likelihood (ML). For a sample of N observations, the log-likelihood function can be written

as:
LL = ¥h-1 (Bizy SulN[P — BXp) — @4y — BX)]) (3.34)

where, all terms are predefined.

3.4.3.3 Model Identification

Mean and variance of the unobserved variable, z,, cannot estimated as the variable is latent
in nature. Therefore, the variance is identified by assuming Var € = 1 in ordered probit

model (Long, 1997). However, the mean of z, still remains unidentified.

The non-identification of the model can be shown revising Eq. (12) for a single independent

variable as:
Zn=a+ pX, +¢&, (3.35)
where, a = intercept, and all terms are previously defined.

The assumed cut-off points (thresholds) for this model, u; (where = 1,2, .., [ —1),and a
are considered to be ‘true parameters’ as they are used to generate the observed data.

Defining an alternative set of parameters such that:

a=a— (3.36)
and

pr=p—@ (3.37)
where, ¢ = arbitrary constant.

The probability that , y = i can be written as:

B = O —a—pXy) — P(ui—y —a— BXy)

= D(ui —a” ~ BXp) — P(ui_y — a" ~ BXy) (3.38)

Here, both sets of parameters are generating same value of probability for a given observed
outcome leaving no way to choose between the parameter sets using the observed data. So,
it can be deduced that the model is unidentified.
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Dual assumptions regarding parameters, a and u, can engender an identifiable model,
which eventually lead to an arbitrary choice of u; = 0, and a # 0 in this thesis. Eq. 3.33,

then can be synopsized as:

P,(1) = Pr (y, = 1) = @(—fX,)
P(2) = Pr (y, = 2) = @(up — BXy) — 2(—BXy)
Pn(3) = Pr (yn = 3) = (D(I'LB - .BXn) - (p(llz - BXn)
P(4)=Pr(y,=4)=1-®(us — pXy)

(3.39)

The following figure shows the probability distribution function (pdf) of a normally

distributed ordered probability model with y; = 0.

_'an Ha —BX?! HS—BXH

£

Fig. 3.4: lllustrates an ordered probit model with u; = 0.

3.4.3.4 Elasticity Determination

See section 3.4.2.4.

3.4.35 Model Limitations

See section 3.4.2.5.

3.4.4 Partial Proportional Odds (PPO) Model
3441 Assumption

a) Partially relaxes the parallel odds assumption for some variables.
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3.44.2 Mathematical Interpretation
The general cumulative probability function of injury severity level i for a given crash n

can be written as (Mooradian et al., 2013)s:

. [4i=BXn—ViTn]
PO < 1) = Fu — By = iTy) = Tooib oV (3.40)

where, y,, = Recorded crash injury severity for crash n.
[ = Crash injury severity levels: 1, 2..., I - 1.

F(.) = Standard cumulative distribution

function.

u; = Cut-off point for level i.

X, = p X 1 vector containing the values of all p predictor variables for crash n.
B = p X 1 vector of estimable parameters associated with X,.

T, = q X 1vector (q < p), containing the values of all predictor variables on

the subset of p for crash n, where proportional odds assumption is rejected.

y; = q X 1 vector of estimable parameters associated with T,,, such that y; T,

corresponds only to the i th level of injury severity for observation n, and y; = 0.

A key problem of parallel-lines model like, proportional odds (PO) model is that its
assumptions are often violated; it is common for one or more f8’s to vary across the values
of i; i.e., parallel-lines model is overly restrictive (Williams, 2006). The only difference the
PPO model has with the PO model is the way PPO partially relaxes the parallel odds
assumption for a particular set of variables, which generally is a subset of the set of total
predictor features available in the data. Eg. 3.18 implies that the value of the estimable
parameter S for each explanatory variable is restricted to be identical across all the severity
levels, i. In other words, the parallel odds assumption in PO model signifies that, g, =

B, = -+ = B,_, = B,which s relatively true for PPO model. Eq. 3.40 shows the inclusion

of an additional parameter y; which vary across i for an observation n. The PPO model
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only restricts the parameters which follows the parallel lines assumption.

Let’s consider a particular variable X, where s € q i.e., the variable violates proportional

odds assumption. The available parameters associated with X;,; will be the coefficient 5
(same across the values of i), and the coefficient y_ (different across the values of ). Now
for a specific level i, the true coefficient of X, isequal B + y;s, (considering y;s; be value

of y;, for that specific level 7).

EqQ. 40 can also be deduced into multinomial and order response models. If g = 0, then the

preceding equation becomes,

_ __explpi—BXnl
Flui = BXn) = 1 i p] (3.41)

which corresponds to an order response model.

Again, if g = p, then Eq. 27 becomes,

_ explpi—PBiXn]
F(u; — BiXn) = Frw———— (3.42)

which dovetails the cumulative density function of multinomial model.

The probabilities associated with the coded responses of a PPO model can be shown as:

Pr(yn=1) =F(uy — BXn —v1To)
Pr (yn =2) = F(uy — BXn — v2Tn) — F(uy — BXn — v1Tn)

Pr O = 1) = F(ts = BXn = 1iTy) — (i1 — BXn —via T i =3 O%)
Pr(yp =1 =1-F(u-1—BXn—vi-1Tp), 1 =4
where, all terms are predefined.
For the ease of interpretation, a slightly altered version of Eq. 40 is as follows:
p(y, =1) = G(u; + aX,, + b;T, (3.44)

where, G(.) =1 —F(.).
a=-—p.

Ci = Yi-
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In this method, the Motor Collision result level, which is the lowest level of outcome, will
serve as the reference level. Consequently, a positive value will imply a larger probability
of a higher severity level (i.e., fatal), while a negative sense will indicate a decreased
probability (Mooradian et al., 2013).

3.5 Model Selection

The intrinsic trait of an ideal model selection approach is to stabilize goodness of fit with
simplicity. This section structures about the rationale of criteria for statistical model
selection from a set of candidate models.

3.5.1 Fit Adequacy

The degree to which a paradigm successfully fits the observed data is referred to as its
"goodness of fit," which also captures the difference between expected and observed
values. The Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC),
and McFadden's Pseudo R-Squared are utilized criteria in this context to evaluate the fit
adequacy of candidate models. The mistake percentages for the two paradigms utilized for

the severity analysis are also evaluated using MAPE.
3.5.1.1 Akaike Information Criterion (AIC)

The AIC acts as an estimator of the relative standard of statistical paragons for a given
dataset, motivating the selection of appropriate paragons. More precisely, AIC is single
number score identifying the suitable model among a number of models that better fits the
given set of data. AIC value of a model is represented as follows:

AIC = =21In(L) + 2k (3.45)

where, L = Maximum value of likelihood function for the model.
k = Number of estimated parameters in the model.

AIC primarily uses maximum likelihood estimation (log-likelihood) of the model to assess
fitness sufficiency. For models with high log-likelihood, the AIC value is low, which

implies that a lower AIC value is preferable.

The penalty term 2k in Eq. 3.45, which represents overfitting of the model's parameters,

increases model complexity while maintaining appropriate goodness of fit. AIC doesn’t
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give any warning if all candidate models fit poorly because it measures the model's

relativity.

AIC calculates the relative loss of this information. Any model reflecting the process that
produced the data will lose some information along the way. It is decided to choose the

model that minimizes the loss, however this decision is uncertain.
3.5.1.2 Bayesian Information Criterion (BIC)

The Bayesian Information Criterion (BIC) is a standard for model selection which is closely

related to the Akaike Information Criterion (AIC). The BIC is structured as follows:
BIC = —2In(L) + In(n)k (3.46)

where, L = Maximum value of likelihood function for the model.
k = Number of estimated parameters in the model.
n = Number of observations (i.e., sample size).

However, BIC assumes that sample size n is much larger than parameters k in the model.
The one with the lowest value of BIC is selected among various paradigms that generated
the data like the AIC.

Overfitting with complexity is also an issue in BIC; however, the penalty term in BIC
In(n)k is larger than 2k. Another fact is that BIC can only be used as an estimator if the

response values of dependent variable are identical for all models being compared.
3.5.1.3 McFadden’s Pseudo p-Square

A common weapon of model fit is McFadden’s p? statistic which is almost similar to

McFadden’s R? in regression models in terms of purpose. The statistic is expressed as:

2 _ 4 _ LL(B)
p° = 1 _LL(O) (347)

where, LL(B) = Model’s log likelihood at convergence.

LL(0) = Log likelihood when all parameters are set to 0.
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This statistic is also known as likelihood ratio index. The value of p? ranges from 0 to 1,
and the value being close to 1 signifies the parameters are estimated with much conviction
(Washington et al., 2011).

3.5.1.4 Mean Absolute Percentage Error (MAPE)

Mean absolute percentage error (MAPE) is a statistical measure that examine theaccuracy
of the models as a loss function for regression analysis. It looks at the average percentage
difference between predicted values and observed values as follows:

1
MAPE =237, | -

| x 100% (3.48)

where, m = Total number of observations.
A; = Observed value.

P; = Predicted value for observation i.
This standard is easy to interpret as it provides error in terms of percentages.

MAPE being a yardstick of error, high value signifies poor models whereas low value
indicates better models. It works best to forecast error if there are no extremes to the data

(and no zeros).
3.5.2 Comparison of Predictors

The parameters of the predictor variables that were acquired utilizing the various data-
generation techniques are compared. A major worry was the significant coefficients
obtained in all of the models used for this investigation. The covariates of the multinomial
logit (MNL), partial proportional odds (PPO), and proportional odds (PO) models were
contrasted by Mooradian et al. (2013). In terms of parameter values and significance levels,
the authors claimed that the PPO model and the MNL model produce findings that are
comparable.

3.5.3 Cross-Validation

Cross-validation, commonly referred to as out-of-sample testing, is a well-known method
for assessing how well prediction models perform with a given set of data. Models must be

tested after being trained using validation datasets (i.e., training datasets), which must both
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come from the same dataset utilized for this research. In this instance, two non-exhaustive
cross-validation techniques are used: k -fold cross-validation and Monte Carlo cross-

validation.
3.5.3.1 k-fold Cross-validation (KFCV)

When compared to other exhaustive cross-validation methods, k -fold cross-validation
(KFCV), also known as v-fold cross-validation, requires less time for estimation
(Beschorner et al., 2014). In this method of cross-validation, the primary sample is divided
into k identically sized subsamples; 10-fold cross-validation is used to determine the
optimum model for the scenario in Bangladesh. The remaining subsample is utilized as the
validation set while the remaining k 1 subsamples are used to execute the procedure. After
then, the procedure is repeated k times using a different validation set each time. The
desired isolated approximation is then obtained by averaging the findings for k. Though,
utilizing the full datasets for model validation has one advantage over Monte Carlo cross-

validation.
3.6 Summary

The following figure (Fig. 3.5) outlines the methodological steps undertaken to engineer for

the purpose of this thesis.

Cross-tabulation through MS Excel using the crash data to understand the
condition of injury severity, and check the multicollinearity of variables

4

Analyzing the ordinal, and nominal models in R to predict the injury severity outcomes

Y

»| Finding out the most suitable models by investigating, and cross- validating the
predictive models

Fig. 3.5: Methodological steps.
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CHAPTER 4
PUBLIC BUS SAFETY STATUS IN DHAKA CITY

4.1 Introduction

Official police reports on traffic accidents in Bangladesh provide the impression that the
country's standing in terms of traffic safety is improving, but the reality is far different.
Police statistics in Bangladesh indicated 2,376 road fatalities in 2016, however a WHO
study from 2018 indicates that the true toll was higher than 24,954. The issue is also made
worse by the collection of accident data including non-fatal injuries. A summary of
Bangladesh's traffic accident database system is provided in this chapter, which has a
significant bearing on the thesis's conclusion. Along with the requisite cross-tabulation, this

chapter also includes a graphic representation of data on crashes involving public buses.
4.2 Traffic Accident Database System

Police in Bangladesh are in charge of collecting and preserving data on road accidents
because they are the most extensively spread institution and have the ability to reach out to
the most remote regions of the country. There was no standard format for gathering
accident data before to 1996. At the time, information was acquired by local police stations
called thanas. Districts and metropolitan police agencies received monthly aggregate
reports of the data. Finally, information was compiled for official road accident statistics at
the police headquarters (HQ). There was very little value for the statistics, and neither

engineering nor research could be done with them.

In June 1995, the Bangladesh Police built a new ARF in cooperation with the Institutional
Development Component (IDC), which was tested in the northern division of the Dhaka
Metropolitan Police (DMP) area. The Department for International Development (DFID)
of the British government provided funding for the IDC of the Second Road Rehabilitation
and Maintenance Project (RRMP2). By the end of 1996, all of the DMP's police stations
were fully wired onto the network. The new strategy has considerably enhanced the nation's
accident information system. The Microcomputer Accident Analysis Package (MAAP)
was used to computerize the entire system, which was built by the Transport Research
Laboratory (TRL) of the United Kingdom (UK) specifically for storing and analyzing road
accident data. Since 1997, this reporting system has been in operation all over the nation,
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and in September 1999, it was made a requirement for police personnel [Regulation
254(b)].

Table 4-1: Regional ADUs and their Jurisdictions

Location of ADUs Zonal Jurisdiction
DMP Dhaka Metropolitan Area
Dhaka Range Dhaka Division (Except DMP Area)
CMP Chattogram Metropolitan Area
Chattogram Range Chattogram Division (Except CMP Area)
RMP Rajshahi Metropolitan Area
Rajshahi Range Rajshahi Division (Except RMP Area)
KMP Khulna Metropolitan Area
Khulna Range Khulna Division (Except KMP Area)
SMP Sylhet Metropolitan Area
Sylhet Range Sylhet Division (Except SMP Area)
BMP Barisal Metropolitan Area
Barisal Range Barisal Division (Except BMP Area)
RPMP Rangpur Metropolitan Area
Rangpur Range Rangpur Division (Except RPMP Area)
GMP Gazipur Metropolitan Area
MMP Yet to be functional

For every kind of collision, a police sub-inspector submits a First Information Report (FIR).
This officer must also complete an ARF in the event of a road traffic collision after visiting
the site and validating the information. The ARF is subsequently dispatched to the
appropriate Accident Data Units (ADU), where the ARF's information and the accident's
location are entered into MAAP. Early in 1998, ten regional ADUs were created. These
units are responsible for processing and analyzing data from traffic accidents in their
respective jurisdictions. Four more ADUs have recently been established, with one more

set to open soon (Table 4.1).

An extra ADU was developed at the police headquarters to assemble the national accident
database and analyze the data. Data are collected from the regional ADUs in soft (MAAP)

format for preservation and to use as a source of intelligence.
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The Accident Research Institute (ARI) of the Bangladesh University of Engineering and
Technology (BUET) largely uses the MAAP database for research (BUET). The police
department and the Road Safety Cell (RSC) of the Bangladesh Road Transport Authority
(BRTA) collaborate to transfer this database to ARI. For current road safety studies and
investigations, this database serves as the foundation. ARI, on the other hand, collects hard
copies (ARFs) and soft copies (MAAP) from ADUs, adds Road User Movement (RUM)
codes to enable data analysis, and modifies, validates, and fills in the missing information
in MAARP as retrieved from corrected ARFs to enhance the database information. Bengali
format of the ARF (currently in use), its English format, and the instruction guide for filling
up the ARF is enclosed in Appendix A, Appendix B, and Appendix C sequentially for a
clear understanding of the present road accident database system in Bangladesh (Raihan,
2013).

4.3 Public Bus Safety Status in Dhaka

Using straightforward statistical analysis, this part examines the current situation with
regard to public bus safety in Dhaka from 2017 to 2020. The process largely comprises
creating tables in MS Excel using common cross-tabulation techniques. The link between
accident severity and geometric and environmental parameters is the main focus of this
study. As a result, the tables are built as a year-by-year distribution of Public bus accident
severity for each of the predictors. To better visualize crash frequency, these facts are then
turned into graphs that show the size, trends, and characteristics of the accidents. It's
important to note that the crash data for public buses is only represented graphically in this

chapter. The generated tables are located in Appendix D.
4.3.1 Year-wise accident severities

The public bus crash data that was used in this study had four injury severity outcomes:
motor collision (M) (2.1%), simple injury (S) (4.62%), grievous injury (G) (22.6%), and
fatal injury (F) (70.68%). The data in Table 4.2 clearly demonstrates the tendency of the
data toward fatal accidents and attests to the widespread reporting of fatal accidents in
Bangladesh's accident database.
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Table 4-2: Year-wise Public Bus Accident Severities

Accident Severity
F G M S Total
Year
2017 110 27 3 9 149
2018 89 31 5 2 127
2019 95 36 1 8 140
2020 58 19 1 4 82
Grand Total 352 113 10 23 498
Percentage 70.68 22.6 2.1 4.62 100

4.3.2 Year-wise accident severities by day of the week, month, year

Figures 4.1, 4.2, and 4.3 provide analyses of accidents for various temporal variables.
Regarding the day of the week and the month of the year, no noteworthy accident trend has
been found. However, 7:30 am to 8:30 am and 11 am to 5 pm have been the most significant
hours of accident occurrences for fatal injury and grievous harm, according to accident

analysis regarding the time of occurrence.
4.3.3 Year-wise accidents by junction type

As shown by Figure 4.4, mid-block parts of roadways are more accident-prone than
junctions. This is true for all four types of accidents, including those that result in fatalities,
serious injuries, motor vehicle collisions, and simple injuries. These incidents have
occurred at non-junctional parts in about 58 % of cases. The susceptibility of Tee junctions

near not-junction sections is also shown by a surge in all four graphs.
4.3.4 Year-wise accidents by the traffic control system and collision type

Where there is no traffic control system in place, more than 65% of accidents have
happened (Figure 4.5). Police-controlled zones have been found to reduce crash severity
by statistical modeling, despite having a higher frequency of all crash severities. In terms
of fatalities and severe injuries, the collision between a public bus and pedestrians is shown
in Figure 4.6 to be the most vulnerable form of collision. Following this category are, in

that order, a head-on collision, a sideswipe, and an overturn.

45



4.3.5 Year-wise accidents by light condition

Daylight have been found to be catalysts for accidents of all kinds (Figures 4.7). General
statistics were useful in this case merely to determine the percentages of crashes that
occurred under various climatic conditions, but they were unable to provide any insight
into the real circumstances. Chapter 5 of this thesis provides the acumens with regard to

these characteristics.
4.3.6 Year-wise accidents by surface condition, type, and quality

According to research, Figures 4.8, 4.9, and 4.10 demonstrate that, in terms of crash
frequencies, dry road surface conditions, sealed road surface types, and good road surface

quality, respectively.
4.3.7 Year-wise accidents by road class, road feature, and location

In the case of road class, national highways share the highest crash frequency in terms of
fatal, grievous, and simple injury (Figure 4.11). City roads, on the other hand, govern motor
collision injury. In addition, these accidents are associated with normal road features
(92.7% cases, Figure 4.12) and distributed quite similarly in rural (nearly 55%, decreasing
trend) and urban areas (nearly 44%, increasing trend). Detailed statistics are incorporated
in Appendix D in Tables 15, 16, and 17.

From the aforementioned statistical analyses, an idea concerning public bus crash data
scenario in Dhaka is attained. The discernments gained from these graphical trends were

then used in the data processing segment of this study.
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Fig. 4.1: Trend of year-wise accidents at different days of week.
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Fig. 4.2: Trend of year-wise accidents at different months of year.
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Fig. 4.3: Trend of year-wise accidents at different times of day.
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Fig. 4.6: Trend of year-wise accidents at different collision types.
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Fig. 4.7: Trend of year-wise accidents at different light conditions.
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Fig. 4.8: Trend of year-wise accidents at different road surface conditions.
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Fig. 4.9: Trend of year-wise accidents at different road surface types.
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Fig. 4.10: Trend of year-wise accidents at different road surface qualities.
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Fig. 4-11: Trend of year-wise accidents at different road classes.
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Fig. 4.12: Trend of year-wise accidents at different road features.
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Fig. 4.13: Trend of year-wise accidents at different locations.
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CHAPTER 5
DATA ANALYSIS AND MODELSELECTION

5.1 Introduction

In this chapter, the four crash severity models, namely: Multinomial Logit (MNL), Ordered
Logit (OL), Ordered Probit (OP), and Partial Proportional Odds (PPO) as well as the data
used in this analysis are primarily discussed along with the results of their application.
Additionally, there are insights into model selection based on appropriate parameters at the

end of this chapter.
5.2 Data Collection

The Accident Research Institute (ARI), Bangladesh University of Engineering and
Technology (BUET), and police-reported public bus crash data from 2017 to 2020 were
the sources of the data for this study. ARI employs the Microcomputer Accident Analysis
Package Five (MAAPS5) software to store and analyze accident data. On the other side, R,
the main program utilized in this work, is incompatible with the data format of MAAPS. In
order to aid in the research, ARI provided a modified Excel file of the public bus crash
data.

5.3 Data Processing

At the beginning of the data processing, incomplete and inaccurate records were removed,
leaving a total of 498 public bus crashes. The distribution of the observed injury severity
caused by public transportation in the final sample is as follows: Fatal Injury (F): 352
(70.68%); Grievous Injury (G): 113 (22.6%); Simple Injury (S): 33(6.72%). It is worth
mentioning that the data is largely dominated by accidents with fatal injuries and the
proportions of simple injuries, and the motor collisions are much lower. This is a major
limitation of this research as the outcome of the analysis is expected to be biased towards
fatal injury accidents. In an intention to aid the analysis, the simple injury, and the motor
collision accidents were aggregated into a single injury severity level and were named as
simple injury. Hence, the modified crash severity level becomes: Simple Injury(y = 1),

Grievous Injury(y = 2); and Fatal Injury(y = 3).

The independent variables used in this research include temporal characteristics, roadway
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characteristics, environmental characteristics, crash type, etc. It is to be noted that the
independent features are all nominal, and any category of a variable sharing less than 4%
of the data compared to other categories in that variable is coded as other types. However,
all the independent variables were not used in the analysis work; rather the entire dataset
was scrutinized based on the AIC value, and some of the features were omitted to better

assist the analysis work.

5.4 Descriptive Analysis

The Accident Research Institute (ARI), BUET, provided a four-year (2017-2020) police-
reported database containing 498 public transportation crash data. The database's observed
injury level is distributed as follows: Fatal Injury (F): 352 (70.68%), Grievous Injury (G):
113 (22.6%), and Simple Injury (S): 33 (6.72%). It is worth noting that the data is driven
by fatal injury accidents, with the proportion of simple injury being substantially smaller.
This is a significant limitation of this study because the results of the analysis are predicted
to be biased toward fatal injury accidents. Crash characteristics, roadway attributes,
environmental elements, temporal characteristics, vehicle features, and driver features are
all included in the database. Based on the AIC value, variables linked to vehicle attributes
and driver features were not employed in the modeling process. The variables used in the
modeling process are summarized in Table 5-1. Using the database, this study developed
four models: MNL, OL, OP, and PPO.

Table 5-1: Descriptive Analysis

Variable Variable Description Frequency R(;zi)o
Target Variable

1 - Simple injury 33 6.72
Injury Severity 2 — Grievous Injury 113 22.60
3 — Fatal Injury 352 70.68

Explanatory Variables

Crash Characteristics

1 if a rear end or head on collision 104 20.82
Collision Type 1 if a hit pedestrian Collison 306 61.49
1 if other types of collision 88 17.68

61



Ratio

Variable Variable Description Frequency (%)
Roadway Characteristics
1 if no junction was present 256 51.77
Junction — -
1 if junction was present 242 48.72
1 if no traffic control system is present 116 23.38
Traffic Control - - -
1 if any traffic control system is present 382 76.62
1 if the road was one way 256 51.47
Movement -
1 if the road was two-way 242 48.52
1 if no divider was present 114 22.99
Divider —
1 if divider was present 384 77.01
1 if the road surface was sealed 493 99.02
Surface type 1 if the road surface was not sealed 5 0.98
1 if the road surface was good 471 94.50
Surface quality 1 if the road surface was not good 27 5.50
1 if the road was not straight 44 8.84
Road Geometry 1 if the road was straight 454 91.16
1 if the road is a city road 221 44.40
Road Class 1 if the road is a national road 235 47.15
1 if the road is a regional road 42 8.48
Environment Characteristics
1 if during dawn/dusk 73 14.73
Light Condition 1 if there was daylight 264 53.04
1 if there was dark 161 32.22
Temporal Characteristics
1 if the day was a weekday 361 72.49
Day of Week 1 if the day was a weekend 137 27.50
1 if during night hours 161 32.22
1 if during off-peak hours 122 24.55
Time - - -
1 if during morning peak hours 122 24.55
1 if during afternoon peak hours 93 18.66

62




5.5 Results of Model Estimation

Using the accident information gathered from ARI and BUET, four crash severity models
were created. The goal was to find the model that could match the given flawed data most
effectively. However, in order to satisfy this aim, triggering elements that affect crash
severity levels had to be found. Normally, a confidence level of 95% is used to determine
the significance of any coefficients, but given the sparse set data structure obtained from
ARI, this confidence level didn't work well for our models. As a result, characteristics were
considered significant for each model if their p-value was less than or equal to 0.20 (i.e., a
p-value < 0.20), which corresponds to 80% confidence interval. Additionally, a conviction
was established that states that if any category of an independent variable was found to be
statistically significant, then that variable as a whole was considered significant in
influencing injury severity of public bus crashes. This conviction was established for a clear
exposition of the results, since all of the factors will decide on the selected triggering

factors.
5.5.1 Application of the MNL Model
5.5.1.1 Interpretation of Result

The MNL model was applied to the crash data considering the nominal nature of accident
severity. The estimation results of the MNL model are presented in Table 5.2. It is to be
noted that the table has two parts: a set of results for grievous injury crashes, and a set of
results for fatal injury crashes. For this study, the coefficients of simple injury crashes were
restricted to zero (i.e., base outcome level). The estimated coefficients thus indicated the
relative effects of contributing features on grievous, and fatal injury severity compared to
simple injury severity; hence, a positive sense of coefficients will indicate an increased
likelihood of severity level, and a negative sign will minimize the likelihood of severity
level compared to simple injury severity. However, confusion might arise at the time of
evaluating the results as all the features (viz., categorical explanatory variables) have a base
category of their own. For simplicity, the interpretation will be established based on the
feature base category only; although, this doesn’t change the fact that the base category of

crash severity is simple injury.
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Table 5-2: Estimation Results of Multinomial Logit Model

Grievous Std P value Fatal Std P value
error error
-0.831 1.933 0.667 | -2.824 1.899 0.137**
(Intercept)
Day of Week (Weekdays) 0.061 0.56 0.913 0.143 0.511 0.78
Time (Off Peak) -0.221 0.978 0.821 | -0.264 0.942 0.779
Time (Morning Peak) -1.985 0971 |0.041*** | -1.013 0.907 0.264
Time (Night) -1.507 0.985 0.126* | -1.116 0.937 0.233
Junction (Yes) -0.793 0.545 0.145** | -0.359 0.499 0.472
Traffic Control (Yes) 0.631 0.58 0.277 0.657 0.52 0.207
Collision type
-0.054 0.617 0.931 -0.18 0.518 0.729
(Head on or Rear End)
Collision type (Hit Pedestrian) 2412 0.79 0.002*** | 2.523 0.733  |0.001***
Movement (One Way) 1.081 0.552 0.05*** |  0.553 0.505 0.274
Divider (Yes) -0.098 0.634 0.877 | -0.198 0.573 0.729
Light (Day light) -0.361 0.809 0.655 | -0.288 0.754 0.702
Light (Night) -0.47 0.869 0.589 0.155 0.801 0.847
Road Geometry
. 1.017 0.719 0.158*| 1.374 0.629 0.029***
(Straight + Flat)
Surface type (Sealed) 0.643 1.502 0.669 211 1.533 0.169*
Surface Quality (Good) 0.261 0.834 0.754 1.309 0.801 0.102**
Road Class (City) 0.49 0.839 0.559 0.357 0.738 0.629
Road Class (National) 0.08 0.865 0.926 0.547 0.759 0.472

64




No of Observation 498

Log-likelihood at convergence -237.171
AlIC 546.3413
BIC 688.4705

*Significant at 0.05, **Significant at 0.15, ***Significant at 0.20,

Base Level=Simple Injury or Motor Collision

In an intention to assess the estimated coefficients, Table 5.2 shows that morning-peak
hours are less vulnerable duration compared to afternoon peak hours, minimizing the
likelihood of both grievous injury (coefficient= -1.985) and fatal injury (coefficient= -
1.013); although, the feature is only statistically significant for grievous injury. During the
night-time, vulnerability to grievous (coefficient= -1.507, significant feature) and fatal
(coefficient= -1.116) injury decreases. This result quite coincides with the work of
(Ulfarsson and Mannering, 2004) that says after dark the likelihood of fatal injury crashes
reduces. On the other hand, off-peak hours are found to reduce the likelihood of grievous

injury crashes; however, these results are not statistically significant.

An interesting finding is that the combined effect of traffic control (viz., centreline marking,
pedestrian control, traffic lights, police+traffic lights, stop/give way sign, etc.) escalates
both grievous and fatal injury, compared to no traffic control, because even at traffic-

controlled regions, drivers tend to display an indifferent attitude towards the traffic rules.

Again, public buses are more prone to both grievous and fatal injury hitting pedestrians to
a much significant extent. Straight and flat roads increase both types of injury compared to
other road geometry, because of less precautions and over speeding of the drivers. A
noticeable finding is that good surface quality of pavements escalates fatal injury crashes
(coefficient= 1.309), due to the over speeding tendency of the drivers, being a statistically

significant feature.

65



5.5.2 Application of the OL Model
5.5.2.1 Interpretation of Result

The ordinal nature of accident severity was considered while applying the OL model to
crash data. It is worth mentioning that a positive (negative) value of a parameter, associated
with a positive increase in the feature, will increase (decrease) the probability of the highest
ordered injury severity level (i.e., fatal injury) and decrease (increase) the probability of

lowest ordered injury severity (i.e., simple injury).

The explanatory variables with positive parameters in Table 5.3, like hit pedestrian type
collision (coefficient= 0.744) are more likely to be involved in a fatal accident compared

to a simple accident.

Moreover, a set of independent variables with positive coefficients include straight and flat
road geometry, good surface conditions (Garrido et al., 2014), sealed surface types are
found to be statistically significant. Public bus operation conditioned on any of these

features is more likely to increase the probability of fatal injury.

For example, the likelihood of fatal injury crashes increases to a great extent (coefficient=
1.3) in sealed type surface and on dry surface quality roads (coefficient= 1.127). Again, the
presence of dividers (coefficient = -0.193) and two-way movement of roads (coefficient =
-0.173) alleviates fatal injury crashes compared to no dividers and one-way movement

respectively.

Table 5-3: Estimation Results of Ordered Logit Model

Estimate Std error t value P value
Day of week (Weekdays) 0.194523 0.273721 0.710661 0.477294
Time (Off Peak) 0.04454 0.367984 0.121039 0.903661
Time (Morning Peak) 0.430776 0.396188 1.087302 0.276903
Time (Night) 0.170186 0.388983 0.437514 0.661739
Junction (Yes) 0.134149 0.249246 0.538217 0.590427
Traffic Control (Yes) 0.240333 0.293843 0.817897 0.413416
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Collision type (Head On or Rear End) -0.08233 0.360436 -0.22842 0.819321
Collision type (Hit Pedestrian) 0.744208 0.325409 2.286993 0.022196***
Movement (One Way) -0.1737 0.255511 -0.67983 0.496614
Divider (Yes) -0.19344 0.313825 -0.61638 0.537642
Light (Daylight) -0.08027 0.380493 -0.21096 0.832917
Light (Night) 0.412351 0.419234 0.983581 0.325321
Road Geometry (Straight + Flat) 0.847304 0.393971 2.150677 0.031502***
Surface type (Sealed) 1.299997 0.895022 1.452474 0.14637**
Surface Quality (Good) 1.127085 0.455013 2477041 0.013248***
Road Class (City) 0.040652 0.452958 0.089748 0.928487
Road Class (National) 0.55902 0.460276 1.214532 0.224545
Threshold (S->G) 1.348393 1.102854 1.222639 0.221466
Threshold (G->F) 3.05878 1.110815 2.753636 0.005894***
No of Observations 498
Log-likelihood at Convergence -253.604
AIC 545.2084
BIC 620.2211
*Significant at 0.05, **Significant at 0.15, ***Significant at 0.20,
Base Level=Simple Injury or Motor Collision

Interpreting the coefficients in Table 5.3 is difficult as the effect of explanatory variables
on any severity level in between the lowest and highest severity level cannot beexplained.
In our case, this abstruse severity level is grievous injury. This limitation can be interpreted

by using marginal effect which explains all three severity levels individually.
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5.5.2.2 Brant Test of OL Model

A primary assumption of the proportional odds (PO) model is that all features follow
parallel lines assumption. However, that is not the case as some of the features are often
found to be flexible, rejecting parallel line assumption. Brant test is mainly conducted to
check the plausibility of the OL model maintaining parallel lines assumption. The null

hypothesis of the test is that the OL model follows parallel lines assumption which is then

evaluated using Chi-square test.

The results of Brant test are provided in Table 5.4, which states that altogether the parallel
lines assumption has been relaxed for the proposed OL model. Furthermore, the individual
features rejecting the assumption are: Time (Morning Peak), Collision type (Hit

Pedestrian), and Movement (One way).

Table 5-4: Brant Test for Ordered Logit Model

Chi-square df P value
Omnibus 28.71914 17 0.037205
Day of week (Weekdays) 0.008708 1 0.925652
Time (Off Peak) 0.065849 1 0.797479
Time (Morning Peak) 4.21519 1 0.040064
Time (Night) 2.43075 1 0.118976

Junction (Yes) 2.121865 1 0.14521
Traffic Control (Yes) 1.053301 1 0.304748
Collision type (Head On or Rear End) 0.01743 1 0.894966
Collision type (Hit Pedestrian) 7.746898 1 0.00538
Movement (One Way) 4.087378 1 0.043205
Divider (Yes) 1.4E-05 1 0.997011
Light (Daylight) 0.128902 1 0.719573
Light (Night) 0.361256 1 0.547809
Road Geometry (Straight + Flat) 1.406965 1 0.235561
Surface type (Sealed) 0.00605 1 0.938003
Surface Quality (Good) 0.071563 1 0.789074
Road Class (City) 0.444318 1 0.505046
Road Class (National) 0.003516 1 0.952716
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5.5.3 Application of the OP Model
5.5.3.1 Interpretation of Result

The ordinal nature of accident severity was considered while applying the OP model on
crash data exactly like the OL model. It is worth mentioning that a positive (negative) value
of a parameter, associated with a positive increase in the feature, will increase (decrease)
the probability of the highest ordered injury severity level (i.e., fatal injury) and decrease

(increase) the probability of lowest ordered injury severity (i.e., simple injury).

The explanatory variables with positive parameters in Table 5.5, like hit pedestrian type
collision (Coefficient= 0.49) are more likely to be involved in a fatal accident compared to

a simple accident.

Moreover, a set of independent variables with positive coefficients include straight and flat
road geometry ,good surface conditions (Garrido et al., 2014) are found to be statistically
significant. Public bus operation conditioned on any of these features is more likely to

increase the probability of fatal injury.

For example, the likelihood of fatal injury crashes increases to a great extent (coefficient=
0.499) in straight and flat roads and on dry surface quality roads (coefficient= 0.63).

Again, the presence of dividers (coefficient = -0.098) and two-way movement (coefficient
= -0.056) are likely to alleviate fatal injury crashes compared to no dividers and one-way

movement respectively.

Table 5-5: Estimation Results of Ordered Probit Model

Estimate Std error t value P value

Day of week (Weekdays) 0.09242 0.157982 0.585006 0.558544

Time (Off Peak) 0.020444 0.214721 0.09521 0.924148

Time (Morning Peak) 0.184373 0.224993 0.819461 0.412523

Time (Night) 0.065037 0.221817 0.293202 0.769368

Junction (Yes) 0.058424 0.142022 0.41137 0.680801

Traffic Control (Yes) 0.137549 0.166072 0.828249 0.407529

Collision type (Head on or Rear End) -0.03555 0.205169 -0.17329 0.862427
Collision type (Hit Pedestrian) 0.492884 0.18475 2.667847 0.007634***

Movement (One Way) -0.05656 0.145395 -0.38902 0.697263
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Divider (Yes) -0.09886 0.1752 -0.56428 0.572561
Light (Daylight) -0.0576 0.219767 -0.2621 0.793245
Light (Night) 0.200251 0.240574 0.83239 0.405189
Road Geometry (Straight + Flat) 0.499322 0.228814 2.182221 0.029093***
Surface type (Sealed) 0.719696 0.566409 1.27063 0.20386
Surface Quality (Good) 0.63636 0.276424 2.30212 0.021328*
Road Class (City) 0.061823 0.256155 0.241349 0.809285
Road Class (National) 0.333012 0.259341 1.284074 0.199116*
Threshold (S->G) 0.789447 0.672198 1.174426 0.240224
Threshold (G->F) 1.725893 0.675722 2.554147 0.010645***
No of Observations 498
Log-likelihood at Convergence -252.921
AIC 543.8425
BIC 618.8551
*Significant at 0.05, **Significant at 0.15, ***Significant at 0.20,
Base Level=Simple Injury or Motor Collision

Interpreting the coefficients in Table 5.5 is same as the OL model. This limitation can be

interpreted by using marginal effect which explains all three severity levels individually.
5.5.4 Application of the PPO Model
5.5.4.1 Result Interpretation

The PPO model was developed relaxing all the features that rejected parallel lines
assumption in Brant test, and restricting all other features that supported the assumption.
Estimation results of the PPO model are shown in Table 5.6. The findings of the PPO model
are actually a series of binary logits. In interpreting the results from Table 5.6, the current
and all the lowest coded severity levels are considered the base group i.e., for any level
i (1 <i<1),categories 1to i are coded as zero (i.e., base group) and categories i + 1 to
I are coded as one. Therefore, a positive (negative) coefficient will denote an increased
(decreased) likelihood of the higher severity level compared to the base severity level. It is
worth mentioning that preceding discussion was for the features that rejected parallel lines
assumption, and all the other features can be explained following the evaluation technique
of the OL and OP models.
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Table 5.6 presents the estimation result in three parts: All level; 2, 3vs 1;and 3vs 1, 2. It
is to be noted that in the table 1 stands for simple injury, whereas 2, and 3 represents grievous,
and fatal injury, respectively. All section contains the estimation result of all those
explanatory features that follows the parallel lines assumption, and the other two parts

shows the result of those features that rejected the parallel lines assumption.
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Table 5-6: Estimation Results of Partial Proportional Odds Model

All level 2,3vs1 3vs1,2
Variables Coeff. S.E. P-val. Coeff. S.E. P-val. Coeff. S.E. P-val.
Intercept -1.789 1.167 0.125** | -2.962 1.153 0.01%**
Time (Morning Peak) -0.285 0.504 0.572 0.534 0.398 0.18*
Collision type (Hit Pedestrian) 2.371 0.663 QF*>* 0.608 0.328 0.064**
Movement (One Way) 0.319 0.435 0.463 -0.26 0.259 0.314
Day of week (Weekdays) 0.163 0.273 0.55
Junction (Yes) 0.152 0.25 0.542
Traffic Control (Yes) 0.228 0.293 0.435
Divider (Yes) -0.178 0.313 0.569
Light (Daylight) -0.093 0.381 0.808
Light (Night) 0.41 0.42 0.328
Road Geometry (Straight + 0.798 0.397 | 0.044***
Flat)
Surface type (Sealed) 1.446 0.95 0.128**
Surface Quality (Good) 1.049 0.462 | 0.023***
Road Class (City) 0.043 0.451 0.924
Road Class (National) 0.562 0.46 0.221
Time (Off. Peak) 0.036 0.369 | 0.922
Time (Night) 0.182 0.388 | 0.639
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Collision type (Head On or
Rear End)

-0.102

0.358 | 0.776

No. of observation

498
Log-likelihood at convergence -242.387
AIC 528.7741
BIC 615.6309
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The estimation result of ‘movement (one way)’ in Table 5.6 can be elucidated as follows:
the positive coefficient of 0.319 indicates that any public bus operating on one way road
compared to two way road is more likely to result a fatal, or a grievous injury than a simple
injury; the other coefficient of -0.26 implies that for the same condition applied, the vehicle
is less likely to generate a fatal injury than a simple or a grievous injury. This result is

perceptible as one-way roads are more vulnerable to head-on crashes.
5.6 Comparative Study

The model performances were compared in terms of the log-likelihood (LL) of the full

model, AIC, and BIC values. Table 5.7 presents the result of the concerned parameters.

Table 5-7: Results in Terms of Comparison Criterion

Comparison Models

Parameters MNL oL MNL PPO
LL -237 -254 -253 2242
AIC 546 545 544 529
BIC 688 620 619 616

The parameter values in Table 5.7 are a bit perplexing to raise any explicit inference to this
analysis work. It was found that the MNL model is most effective compared to other models
in terms of log-likelihood, PPO is most effective in terms of AIC and BIC.

The models were further compared based on the significance of their predictors (Table 5.8).
In this case, if any category of an independent variable was found to be statistically
significant, then that entire variable was considered significant in influencing the injury
severity of public bus crashes. However, as per the degree of significance, collision type,
road geometry and surface quality are considered to be the most significant ones; whereas,
surface type and time are considered to be significant too. In this regard, junction type, road
class and movement bear a least significance, since they had produced a formidable value
for one particular model only. Both the MNL and PPO models have almost the same
number of significant features impacting public bus crash injury severity. Hence, MNL and
PPO models are considered to be more robust compared to others in the context of the

available crash data in Dhaka city.
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Table 5-8: Results in Terms of Significant Predictors

Predictors Models
MNL oL OP PPO
Collision Type v v v v
Junction Type v
Movement v
Road Class v
Road Geometry v v v v
Surface Quality v v v v
Surface Type v v v
Time v v
5.7 Summary of Comparison
Table 5-9: Summary of Comparison
Name of Factor Significance Comparison Parameters
Models Collision Junction | Movement | Road Class | Road Geometry Surface Surface | Time | LL AIC BIC
Type Type Quality Type
MNL v v v v v v v -237 546 688
oL v v v v -254 | 545 620
OP v v v v -253 544 619
PPO v v v v v -242 529 616
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CHAPTER 6
CONCLUSIONS

6.1 General

This thesis is one of the pioneers to use a set of recognized statistical modeling techniques
to investigate public bus safety in Bangladesh. By using four different crash severity
models on the collision data that was available in Bangladesh, the goal of this study was to

identify the high impact variables relating to public bus safety.
6.2 Key Findings of this Study

This study's key result is that the existing accident severity models have revealed several
important and startling truths from crash data involving public buses. Comparatively, these
derived facts and specifics are more helpful in improving the understanding of accident
situation in Bangladesh than the earlier descriptive-based approaches. The important

conclusions of this thesis are as follows:

a) Public buses striking pedestrians were highly significant in escalating grievous
and fatal harm when compared to all other accident kinds, such as head-on, rear-end,
side swipe, etc. This outcome is unsurprising, given that a collision between a public
bus and a pedestrian can only result in fatalities due to the vast disparity in their
bodily masses.

b) Two-way roads were seen to be significantly safer than one-way roads. Again, a
divider between the lanes was found to reduce the risk of fatal injuries, and a two-
way road without one is more likely to have head-on collisions, which are more likely
to end in fatalities.

c) Straight and flat road geometry with good surface quality are found to escalate
public bus fatalities in Dhaka city. The outcome becomes more severe when public
bus operates on a sealed surface, instead of brick or earthen one. The result is
foreseeable due to the absence of necessary safety parameters on Dhaka city road

networks.
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d) Public buses operating on national roads are found to trigger more fatal injuries.
However, the presence of junctions in this regard, is considered as useful in reducing

grievous injury severities.

e) Itwas discovered that light condition during the daylight and at night (unlit) time
increased the severity of public bus crashes significantly. Additionally, the likelihood

of deadly accidents increased at night when there were no street lights.

f) Comparative analysis also showed that the MNL model is found to be more
robust in terms of selected comparison parameters. MNL and PPO, both models
yielded almost about the same number of significant predictors when compared to
one another, despite the modest differences in the significance of the essential
components for these models. The MNL performed better than other models based
on log-likelihood, while PPO fared better based on AIC and BIC, respectively, which

led to the final model selection decision.
6.3 General Recommendations

The ability to infer useful recommendations from the study's findings is the most important
quality of any analysis-based activity. The four independent severity models calculated
high impact variables triggering public bus safety in Dhaka as mentioned in section 6.2 of
this chapter. These facts, however, do not offer a convincing justification for Bangladesh's
Public Bus safety status. As a result, more consideration is needed before the findings can
be used to create policy. Examples of the origins and treatment that are relevant to the

findings include the following:

a) Pedestrians struck by public buses result in the deadliest consequences.
Furthermore, in rural locations, pedestrians are more at risk. This statistic emphasizes
how vulnerable pedestrians are in remote regions without adequate pedestrian
facilities. Additional pedestrian facilities, such as crosswalks, waiting areas,

overpasses, etc., to be provided to both the regions in order to resolve this issue.

b) A two-way road without a divider in the middle is more fatality-prone than a two-
way road with a divider in-between. This suggests building dividers in two-way streets

since they will significantly reduce the likelihood of head-on crashes.

c) Straight and flat stretches of road lure drivers into over speeding and resulting
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6.4

unwanted fatalities for the pedestrians. However, this tendency gets more
conspicuous when they operate on a good and sealed road surface. In this regard,
physical separation of pedestrians from the vehicular traffics is of utmost importance.
Provision of junction at places and marking of roadway with necessary traffic signs
viz. warning signs, speed limit signs, mandatory signs etc., will be useful in arresting

the speed of vehicular traffics on roadway.

d) Public bus crash injury severity is also suffered by night-time (unlit condition)
driving where the street lights are inadequate. Provision of using retro-reflective
roadway markings and arranging adequate lights on the streets may be useful to
resolve this issue. However, drivers’ understanding of night-time glare-control and
undergoing regular medical check-up (especially, for the eye-sight) will be handy in
reducing the likelihood of public bus related crashes.

Limitations of this Study

a) A number of features in the FIR report, including geometric features,
environmental features, vehicle-related features, driver-related features, pedestrian-
related features, and others are used to exploit the severity of collision injuries. In this
study, the four severity models were trained using only geometric and environmental
variables. This idea was taken into account in order to simplify data analysis. The
study's fundamental flaw is the exclusion of other features, despite the fact that this
strategy improved assessment of the relevant qualities.

b) Owing to the discrete nature of response variable, the approaches chosen for this
thesis are well-established and effective. However, these approaches are a little out of
date given the recent boom in data science. Additionally, the assumptions of these
selected approaches severely restrict the effectiveness of crash severity modeling. On
the other hand, by using sophisticated modeling techniques, this can be easily avoided.
However, the objective was to assess how these fundamental and well-known models
functioned on the crash data that was available in Bangladesh and, if necessary, to
recommend further cutting-edge approaches.

c) Any study's analysis generally uses a confidence level of 95-99%. However, the

model didn't perform well with this degree of confidence level due to the little quantity

and quality of data that we acquired from ARI. Because of this, the 80% confidence
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6.5

threshold was used resulting in less precise predictions.
Future Scope

a) Geometric and environmental characteristics are the only predictors utilized in this
study. However, in order to gain a better understanding of the situation of public bus
safety in Bangladesh, vehicle-related features, driver-related features, pedestrian-

related features, and other factors are also necessary.

b) On the same crash data (2017-2020) utilized in this thesis, advanced modeling
techniques, including artificial neural networks, heteroskedastic ordered logit/probit,
nested logit, random parameters (mixed) logit/ordered logit etc. can be applied. After
that, the accuracy of these algorithms using appropriate comparison parameters can
be tested.

c) Since accident severity was the target/dependent predictor, the study's main focus
was on how accident severity is related to the road, roadway, and operational
environment. However, new connections can be discovered as a result of changing the
target predictor to any other variables, such as accident/collision type, road class etc.
and draw new relationships accordingly.

d) The aspect of collecting the least severe crash records requires special attention.
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Anx.1: Accident Research Form (1/2)
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Anx.1: Accident Research Form (2/2)
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Anx.2: Accident Research Form (1/2)

HAASTSHT LT A
sffert xSRI, Gt |
H-9, W, @ e <t 3
Police Act, 1861 (V of 1861) wa section 12 @ ewg wxwtarer wgl-sffert «firfs, smsces sFrgorv=eo,
Police Regulations Bengal, 1943 wm fAwes et wftarww sreceas =fier, qor:-

B+f#-B> Regulations ww Volume 11 @&t B.P. Form No. 34/Bengal Form No-403Q ww #if¥wrd fawwet Form
eifvgf*re o8, wur:-

B.P, Form No. 34
Bengal Form No. 403Q

1. ACCIDENT REPORT NO. 3. THANA

BANGLADESH POLICE
Register of Road Traffic Accident
(REPORT FORM)
[Regulation 254(b)]

2. FIR NO. 4, DISTRICT/MET. POL.

11. DATE

12. MONTH 13. YEAR

DATE OF
9. ACCIDENT SEVERITY ) cugnence
F. Fatal Accident

G. Gnevous Accident

S. Swnple Injury Accident
M. Motor Collision

14. TIME OF OCCURRENCE

Date Of Reporting

0. DAY

Time Of Reporting

. TRAFFIC CONTROL
No Control

Cantraline

Pedestrian Crossing
Police Controllod
Tratfic Lights

Police + Traffic Lights
Stop/Give Way sign

15. JUNCTION TYPE
1. Not at Junction

s f”
Q,T = \
s

=

17. COLLISION TYPE
Head On 6
Rear End 7. Hit Object off Road
Right Angle 8. Hit Parked Vehicle
Side Swipe 9. Hit

Overturnad
Vemcie 10. Hit Animal

18. MOVEMENT

Hit Object in Road 1. 1-Way Street

2. 2-Way Street

Railway 19. DIVIDER ?

1. Yes
* 2. No

ENONALP

Other ... 11. Other .

WEATHER 21. LIGHT

. Daylight

. Dawn/Dusk

. Night (lit)
Night (unlit)

. Far
Rain
Wind

. Fog

22, ROAD GEOMETRY

1. Straight + Flat
2. Curve Only

3. Slopa Only

4. Curve + Slope
5. Crest

23. SURFACE
CONDITION

24. SURFACE TYPE

. Dry 1. Sealed
. Wet 2. Bnck
Muddy 3. Earth

25. SURFACE 26. ROAD CLASS
QUALITY :

National
1. Good

2. Rough
3. Under Repair

Raegional

.__Rural Road

. Flooded
. Othor......

1

2.

3. Feeder
4

S,

. ROAD FEATURE
None
Brage
Cuvert
Narrowing/Restriction
. Speed Broakers

28. LOCATION TYPE

1. Urban Area
2. Rural Area

"
wx[TL I TT]

S

36. NODE 1

37. NODE 2

35. NODE MAP

L]
L 114
T O

LOCATION

Name of City/ToWnVVIlAGE ..........coiiiminrimimsimmiiiine

Name of Road

JUNCTION ACCIDENT ONLY Name of SECOND Road

Landmark 1

La 2

Distance: ...

Distance: ...

................ (km/m)

(km/m)

o

Distance:

(km/m)

(km/m)

LOCATION SKETCH Show site in relation to prominent landmarks such as KM posts,
bridges or r2ad intersections. Mark dstances to the landmarks

COLLISION DIAGEAM SKETCH

mark the position and

direction of each vehicie and details of

the road layout at the site of the accident

SUMMARY OF ACCIDENT

WITNESSES

1. Name & Address

2. Name &

FlEOOHDING OFFICER

INVESTIGATING OFFICER

ISUPERVISING OFFICER

Name/Rank

SECTION OF LAW

1. Charge Sheet

STATUS OF CASE 2. Final A

3. Under investigation

AXx-4
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Anx.2: Accident Research Form (2/2)

VEHICLE 1

| OWNER'S NAME

DRIVER

OWNER'S ADDRESS

[ADDRESS

VEHICLE MANUFACTURER

38. DISTRICT

VEHICLE REGISTRATION
39.

NUMBER

DRIVING LICENSE
46. DISTRICT 47. NUMBER

40. VALID FITNESS CERTIFICATE

1. Yes

2. No 3.wa Ié‘l

SURANCE
OVER

1. Third Party
2. Comprehensive

LICENSE TYPE + CATEGORY EXPIRY DATE

41. VEHICLE TYPE
1. Bicycle
2 Rickshaw
3. Push Cart
4. Motor Cycle
5. Baby Taxi
6.Tempo

7. Microbus
8. Minibus
9. Bus

10. Car

11. Jeep

12. Pick Up

13.
14.
15.
16.
17.
18.
19.

Truck (<3.5t)
Heavy Truck
Artic. Truck
OilTanker
Tractor

Animal Drawn
Other .....cceuveene

. Crossing Road
. Overtaking
. Going Ahead

. VEHICLE MANOEUVRE
. Left Turn
. Right Turn
. ‘U Turn

7. Reversing
8. Sudden Start
9. Sudden Stop

48. DRIVER SEX

1. Male
2. Female

49. DRIVER INJURY

F. Fatal
G. Grievous

10. Parked
11. Other

43. VEHICLE LOADING

1. Legal
2 lllegal/lUnsafe

44. VEHICLE DEFECT *
: - (from MVireport)
1. None 5. Tyres

2 Lights
3. Brakes
4, Steering

6. Multiple
7. Other

45. VEHICLE DAMAGE

S. Simple Injury
N. Not Injured

50. DRIVER AGE

(Sustained in accident)
1. None 5. Left
2 Front 6. Roof
3. Rear 7. Multiple
4. Right 8. Other ..

51. ALCOHOL

1. Alcohol Suspected
2. Not Suspected

52. SEAT BELT/HELMET
1. Seat Belt/Helmet Worn
2 Not Worn

VEHICLE 2

OWNER'S NAME

NAME

DRIVER2 |

OWNER'S ADDRESS

ADDRESS

VEHICLE MANUFACTURER

38. DISTRICT

VEHICLE REGISTRATION
39.

NUMBER

40. VALID FITNESS CERTIFICATE

1.Yes 2. No 3.na

INSURANCE
CO'

DRIVING LICENSE
46. DISTRICT 47. NUMBER

1. Third Party

VER 2. Comprehensive

41. VEHICLE TYPE

1. Bicycle

2 Rickshaw
3. Push Cart
4. Motor Cycle
5. Bavy Taxi
6.Tempo

7. Microbus
8. Minibus
9. Bus

10. Car

11. Jeep

12. Pick Up

13. Truck (<3.5t)
14.
15.
186.

17
18

19.

Heavy Truck
Artic. Truck
OilTanker
Tractor
Animal Drawn

. U’

42. VEHICLE MANOEUVRE

. Left Turn
. Right Turn

. Crossing Road
. Overtaking
. Going Ahead

LICENSE TYPE + CATEGORY EXPIRY DATE

7. Reversing
8. Sudden Start

Turn 9. Sudden Stop

48. DRIVER SEX
1. Male
2. Female

49. DRIVER INJURY

F Fatal
G. Grievous

10. Parked
11. Other

43. VEHICLE LOADING

1 tegal
2 lllegal/Unsafe

.. VEHICLE DEFECT
1

1. None
2 tights
3. Brakes
4. Steering

(from MVI report)
5. Tytes
6. Multipie
7. Other

45. VEHICLE DAMAGE

S. Simple Injury
N. Not Injured

50. DRIVER AGE

(Sustained in accident)
1. None 5. Left

2 Front 6. Roof
3. Rear 7. Multiple
4. Right 8. Other

51. ALCOHOL

1. Alcohol Suspected
2. Not Suspected

52. SEAT BELT/HELMET

1. Seat Belt/Helmet Worn
2 Not Worn

PASSENGER CASUALTIES

Complete 1 FULL tine for each passenger casualty

* = See Reference boxes below

NAME AND ADDRESS

53.
VEH. NO

3

56.
INJURY

54. 57.* 58. *
SEX POSITION| ACTION

strian casualty

*i= See Reference boxes below

PEDESTRIAN CASUALTIES  Conpite 1 FULLins for each pede:

NAME AND ADDRESS

59.
VEH. NO

* -

60 62. 63. 64.*
SEX INJURY |LOCATION| ACTION

FOR
REFERENCE
ONLY

DONOT |
CIRCLE

56. PASSENGER INJURY.
62. PEDESTRIAN. INJURY

CONTRIBUTORY 1.
FACTORS =
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Anx.3: Instructions for Filling up Accident Research Form (1/20)
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Anx.3: Instructions for Filling up Accident Research Form (2/20)

ot

QT SAfeTeea o AeS YEowIE [HUolT waw qRASd SRR Afadd 3 Fts
e ol e | @ ST (ITE @36 ReITS oA et e (R = |

Age HeoE A Tauibre w2 4pR o R e At vaft = w1 @
TR SR AT A (S TS TG Y (oot s 703 | SR S
(Investigating Officer) w=afba 7= e« »itg, afefs T i@l IAEASI “faet
A |

A (AT SRAIFS TR St Reofoadt A A T @ | P TG S
iR ST ARICS T | e FeRerd Rege TR AR (e av afEreT e
2B (ADU) AR | (TGIATGT Qi A (A0S @IS T A (@I
sffer i ofeeT wage afes ol 3/FE  (ADU) #RTEe | eters
fearefe/r@eifEty o shrmee Sfee skfge «ofstes bt 286 (ADU)
weaEm e Atw ool MAAPS Software-«3 wiuiw sfEhiE «ff o9 |
foaizfe/cr@fEs 2fr sfemes wea (i 9fGFe Database CD/Pendrive/E-
mail-@a M« BIrg <fferd e wet AN | Affer<t Fwa wed zre afGPe Database
CD/Pendrive-a3 T4 @1C (TG A 2P A | (@€ GTR CF, e 7es
fareral FEfREa niftng s St e seten Awz, Remmd g3 s Rt
T I AT AR IR O Sy AL A T | ATE FHO7E O FIBIER 1S
fadraerTz Rifer e SrETe Q3 Ted GEo1 @14 T 70w ey et efseiea
TSI AR T4 |

e 8 @Eend R Fe TN W ¢ wEend Y TR T Y
YR /TPTHRDA IAFS W6 (Fqe ARTS 2@ | RATIR A ove wfea &=
siae Reifas e, T st fealS, 1o wfmed faeeit Tonve arem 2'ts
A3, o Qe e e @ e = |

FAAMBA (@ @A U 79 TF W (> T30S v %) dof IFAToIE s
7@ | of Bote peoe Ffe feme ¢ q¥oaa 3 I FEfFs A |

@3 s Tl SRRl AR FEF TLOA FITR WAl TS SIYreifG Fea 747
FACS TA |



Anx.3: Instructions for Filling up Accident Research Form (3/20)
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Anx.3: Instructions for Filling up Accident Research Form (4/20)

() TR Reifee Rwd
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(e P IE@ 93 HNe T9d W | AfelB At
GFB @ Aed 7oA IR 92 ANE A0S
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Anx.3: Instructions for Filling up Accident Research Form (5/20)
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Anx.3: Instructions for Filling up Accident Research Form (6/20)
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Anx.3: Instructions for Filling up Accident Research Form (7/20)
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Anx.3: Instructions for Filling up Accident Research Form (8/20)
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Anx.3: Instructions for Filling up Accident Research Form (9/20)
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Anx.3: Instructions for Filling up Accident Research Form (10/20)
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Anx.3: Instructions for Filling up Accident Research Form (11/20)
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Anx.3: Instructions for Filling up Accident Research Form (12/20)
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Anx.3: Instructions for Filling up Accident Research Form (13/20)
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Anx.3: Instructions for Filling up Accident Research Form (14/20)
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Anx.3: Instructions for Filling up Accident Research Form (15/20)
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Anx.3: Instructions for Filling up Accident Research Form (16/20)
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Anx.3: Instructions for Filling up Accident Research Form (17/20)
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Anx.3: Instructions for Filling up Accident Research Form (18/20)
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Anx.3: Instructions for Filling up Accident Research Form (19/20)
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Anx.3: Instructions for Filling up Accident Research Form (20/20)
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Anx.4: Year-wise Public Bus Accident Severities (1/17)

Day of Week
Days of Week
Year Accident severity
1 2 3 4 5 6 7 Total
F 14 14 13 20 13 20 16 110
G 5 3 6 3 4 2 4 27
2017
M 2 1 3
S 1 1 2 1 2 2 9
F 12 12 10 10 13 13 19 89
G 4 4 6 6 2 4 5 31
2018
M 2 1 2 5
S 1 1 2
F 8 21 12 20 13 13 8 95
G 6 4 6 3 5 7 5 36
2019
M 1 1
S 2 3 3 8

AX-26




Anx.4: Year-wise Public Bus Accident Severities (2/17)

Day of Week
F 6 14 7 8 10 3 10 58
G 3 1 2 3 4 3 3 19
2020
M 1 1
S 1 1 1 1 4
Grand Total 65 80 66 77 70 68 72 498

Notes: 1=Monday, 2=Tuesday, 3=Wednesday, 4=Thursday, 5=Friday, 6=Saturday,

7=Sunday Source: ARI Accident Database 2017-2020
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Anx.4: Year-wise Public Bus Accident Severities (3/17)

Month of Year

Months of Year
Year Accident severity
01 02 03 04 05 06 07 08 09 10 11 12 Total
F 12 11 13 7 4 9 14 6 12 8 8 6 110
G 3 5 2 2 2 5 1 2 5 27
2017 M 1 1 1 3
S 2 1 3 1 2 9
F 5 9 12 9 10 6 8 6 10 6 4 4 89
G 2 2 4 5 4 5 4 1 2 2 31
2018 M 1 1 1 5
S 1 1 2
F 6 9 6 4 10 7 6 6 12 5 11 13 95
G 1 2 1 6 2 2 5 5 3 4 3 36
2019 M 1 1
S 4 1 2 1 8
F 14 5 11 2 4 3 5 12 2 58
2020
G 7 4 1 1 3 3 19
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Anx.4: Year-wise Public Bus Accident Severities (4/17)

Month of Year

M 1 1
S 2 2 4
Grand Total 54 48 50 36 42 32 52 46 52 23 30 33 498

Notes: 1=January, 2=February, 3=March, 4=April, 5=May, 6=June, 7=July, 8=August, 9=September, 10=October, 11=November,
12=December Source: ARI Accident Database 2017-2020

AXx-29



Anx.4: Year-wise Public Bus Accident Severities (5/17)

Junction Type
Junction Type
Year Accident severity
1 2 3 4 7 Total
F 48 23 18 1 16 110
G 15 3 4 4 27
2017
M 1 1 1 3
S 4 3 1 1 9
F 58 13 6 11 89
G 19 6 1 2 31
2018
M 3 1 5
S 1 1 2
F 54 6 4 3 27 95
G 18 4 3 1 9 36
2019
M 1 1
S 4 1 3 8
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Anx.4: Year-wise Public Bus Accident Severities (6/17)

Junction Type

F 32 2 3 10 2 9 58
2020
G 11 2 2 4 19
M 1 1
S 2 1 1 4
Grand Total 271 65 45 18 14 85 498

Notes: 1=Not at junction, 2=Cross junction, 3=Tee junction, 4=Staggered tee junction, 5=Roundabouts, 6= Railway/level crossing,

7=0ther Source: ARI Accident Database 2017-2020
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Anx.4: Year-wise Public Bus Accident Severities (7/17)

Traffic Control System

Traffic Condition

Year Accident severity
1 2 4 5 8 Total
F 16 10 55 3 15 110
G 7 3 12 5 27
2017
M 1 1 1 3
S 3 5 1 9
F 27 4 48 2 7 89
G 11 3 15 1 1 31
2018
M 2 1 1 1 5
S 2 2
F 15 8 65 1 5 95
G 4 1 26 1 3 36
2019
M 1 1
S 2 1 5 8
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Anx.4: Year-wise Public Bus Accident Severities (8/17)

Traffic Control System

F 14 6 3 32 3 58
2020
G 2 2 13 2 19
M 1 1
S 2 2 4
Grand Total 104 39 8 283 8 9 47 498

Notes: 1=No control, 2= Centerline marking, 3=Pedestrian crossing, 4=Police controlled, 5=Traffic lights, 6=Police + Traffic lights,

7=Stop/Give way sign, 8=Other

Source: ARI Accident Database 2017-2020
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Anx.4: Year-wise Public Bus Accident Severities (9/17)

Collision Type
Collision Type
Year Accident severity
01 02 03 04 05 06 07 08 09 10 Total
F 4 13 5 2 2 1 1 80 2 110
G 1 7 2 1 1 15 27
2017
M 1 1 1 3
S 1 1 1 1 4 1 9
F 5 12 10 1 59 2 89
G 8 1 2 18 2 31
2018
M 2 1 1 1 5
S 1 1 2
F 6 13 8 3 4 59 2 95
G 11 2 22 1 36
2019
M 1 1
S 2 2 3 1 8
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Anx.4: Year-wise Public Bus Accident Severities (10/17)

Collision Type
F 2 12 6 1 36 1 58
2020
G 3 1 1 1 11 2 19
M 1 1
S 1 3 4
Grand Total 20 88 1 38 3 3 8 14 309 14 498

Notes:1=Head on, 2=Rear end, 3=Right angle, 4=Side swipe, 5=0verturn, 6=Hit object in road, 7=Hit object off road, 8=Hit parked vehicle,
9=Hit pedestrian, 10=Hit animal,

Source: ARI Accident Database 2017-2020
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Anx.4: Year-wise Public Bus Accident Severities (11/17)

Weather Condition

Weather Condition
Year Accident severity
1 2 3 4 Total
F 107 1 2 110
G 27 27
2017
M 3 3
S 9 9
F 88 1 89
G 30 1 31
2018
M 5 5
S 2 2
F 94 1 95
G 35 1 36
2019
M 1 1
S 8 8
F 55 2 1 58
G 19 19
2020
M 1 1
S 4 4
Grand Total 488 7 1 2 498

Notes: 1=Fair, 2=Rain, 3=Wind, 4=Fog

Source: ARI Accident Database 2017-2020
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Anx.4: Year-wise Public Bus Accident Severities (12/17)

Light Condition
Light Condition
Year Accident severity
1 2 3 4 Total
F 57 12 36 5 110
G 17 5 3 2 27
2017
M 2 1 3
S 3 2 4 9
F 40 21 24 4 89
G 17 3 11 31
2018
M 2 1 2 5
S 1 1 2
F 51 15 23 6 95
G 18 4 13 1 36
2019
M 1 1
S 3 3 2 8
F 31 8 15 4 58
G 11 1 6 1 19
2020
M 1 1
S 3 1 4
Grand Total 257 75 143 23 498

Notes: 1=Daylight, 2=Dawn/Dusk, 3=Night (lit), 4= Night

(unlit) Source: ARI Accident Database 2017-2020
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Anx.4: Year-wise Public Bus Accident Severities (13/17)

Geometric Condition

Accident severity

Road Geometry

Year
1 2 3 4| 5 Total
F 101 5 1 21 1 110
G 24 1 1 1 27
2017
M 3 3
S 8 1 9
F 83 1 4 1 89
G 30 1 31
2018
M 5 5
S 2 2
F 89 3 3 95
G 34 1 1 36
2019
M 1 1
S 8 8
F 54 2 1 1 58
G 18 1 19
2020
M 1 1
S 3 1 4
Grand Total 464 14 12 6| 2 498

Notes: 1=Straight + Flat, 2=Curve only, 3=Slope only, 4=Curve + Slope,

5=Crest Source: ARI Accident Database 2017-2020




Anx.4: Year-wise Public Bus Accident Severities (14/17)

Road Surface Quality

Surface Quality
Year Accident severity
1 2 3 Total
F 102 6 2 110
G 26 1 27
2017
M 3 3
S 8 1 9
F 88 1 89
G 29 1 1 31
2018
M 5 5
S 2 2
F 92 1 2 95
G 32 2 2 36
2019
M 1 1
S 6 2 8
F 57 1 58
G 16 1 2 19
2020
M 1 1
S 4 4
Grand Total 472 13 13 498

Notes: 1=Good, 2=Rough, 3=Under

repair Source: ARI Accident Database

2017-2020
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Anx.4: Year-wise Public Bus Accident Severities (15/17)

Road Class
Road Class
Year | Accident severity
1 2 3 5 Total
F 50 3 1 56 110
G 8 3 1 15 27
2017
M 2 1 3
S 2 2 5 9
F 58 3 2 24 89
G 13 1 17 31
2018
M 2 1 2 5
S 1 1 2
F 42 4 3 45 95
G 6 3 27 36
2019
M 1 1
S 6 1 1 8
F 33 5 2 17 58
G 6 2 11 19
2020
M 1 1
S 4 4
Grand Total 231 27 10 226 498

Notes:; 1=National, 2=Regional, 3=Feeder, 4=Rural road, 5=City

road Source: ARI Accident Database 2017-2020
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Anx.4: Year-wise Public Bus Accident Severities (16/17)

Road Class
Road Feature
Year | Accident severity

? 1 2 4 5 Total
F 108 2 110
G 26 1 27

2017
M 2 1 3
S 9 9
F 87 1 1 89
G 31 31

2018
M 5 5
S 2 2
F 1 91 1 1 1 95
G 36 36

2019
M 1 1
S 8 8
F 57 1 58
G 19 19

2020
M 1 1
S 4 4
Grand Total 1 486 2 1 8 498

Notes:  *“?”  means blank data field, 1=None, 2=Bridge,

3=Culvert, 4=Narrowing/Restriction, 5=Speed breakers

Source: ARI Accident Database 2017-2020
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Anx.4: Year-wise Public Bus Accident Severities (17/17)

Road Location

Location Type

Year Accident severity
01 2 Total
F 110 110
G 26 1 27
2017
M 3 3
S 9 9
F 88 1 89
G 31 31
2018
M 5 5
S 2 2
F 95 95
G 36 36
2019
M 1 1
S 8 8
F 58 58
G 19 19
2020
M 1 1
S 4 4
Grand Total 496 2 498

Notes: 1=Urban area, 2=Rural area

Source: ARI Accident Database 2017-2020
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