
 

 

 

DEVELOPMENT OF A CLINICAL DIAGNOSIS AND 
DECISION SUPPORT SYSTEM FOR CHEST 

RADIOGRAPHY USING CNN  

 

 

 

BIPIN THAPA MAGAR 

 

 

M.Sc. ENGINEERING THESIS 

 

 

 

 

 

DEPARTMENT OF BIOMEDICAL ENGINEERING 

MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY 

DHAKA, BANGLADESH 

  

MARCH 2023 

 



ii 

 

DEVELOPMENT OF A CLINICAL DIAGNOSIS AND DECISION 

SUPPORT SYSTEM FOR CHEST RADIOGRAPHY USING CNN 
 

 

 

 

 

 

 

 

BIPIN THAPA MAGAR (SN. 0421260012) 

 

 

 

 

 

 

 
 

A Thesis Submitted in Partial Fulfillment of the Requirements for  

the Degree of Master of Science in Biomedical Engineering 

 

 

 

 

 

 

 

 

 

 

 

DEPARTMENT OF BIOMEDICAL ENGINEERING 

MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY 

DHAKA, BANGLADESH 

 

 

 

 

MARCH 2023 







v 

 

ABSTRACT 

Development of a Clinical Diagnosis and Decision Support System  

for Chest Radiography Using CNN 

Chest X-ray (CXR) image is a widely used diagnostic tool for various chest diseases. 

Human interpretation of CXR images, however, has never been always effective. The 

diagnostic level of the radiologists along with other factors like cognitive ability, 

experience, fatigue, and other human-dependent factors may impair the diagnostic 

procedure with missed information, misinterpretation, and requiring more time and cost. 

Computer-aided analysis of CXR images has already demonstrated its potential over 

manual or human screening to facilitate rapid, correct, and low-cost diagnosis of chest 

diseases. Existing computer-aided systems are still not suitable for real-time applications 

due to limited findings, limited generalizability across wide datasets, and not being 

computationally and economically affordable as well. Therefore, an efficient Convolution 

Neural Network (CNN) based computer-aided decision support system, the CXRNet, was 

developed for the automatic detection of abnormalities from CXR images in a real-time 

clinical scenario. The proposed CXRNet model is a 16-layered CNN architecture with 5 

output classes: Cardiomegaly, COVID, Normal, Pneumonia, and Tuberculosis. This 

architecture is trained with frontal CXR images obtained from various sources to improve 

the generalization of the model across multiple datasets. Upon testing the model on three 

different data distribution conditions (70% training and 30% testing, 80% training and 20% 

testing, and 90% training and 10% testing), it achieved a state-of-the-art performance with 

an average accuracy of 95.7%, a precision of 95.3%, a recall of 95.3%, and an f1-score 

of 95.3% for the multiclass classification task. The proposed CXRNet also demonstrates 

excellent performance on binary classification tasks with an average accuracy of 

over 98% for each disease condition. The results obtained from this work outperform 

several other custom-designed CNN architectures as well as pre-trained models-based 

architectures like ResNet, VGG, DenseNet, Xception, Inception, etc. Furthermore, with 

proper testing, validation, and debugging of the model in clinical practice, it can be 

successfully deployed as a decision support system for radiologists. 

Keywords: Chest X-ray image, Convolution Neural Network, Clinical Diagnosis, Decision 

Support System, Multiclass Classification, Binary Classification  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Chest radiography (chest X-ray or CXR) is one of the most routinely used medical 

imaging and diagnostic modalities. Over 2 billion chest radiograph procedures are 

performed each year [1]. On the other hand, chest radiography is immensely common and 

popular in that it is available even in under-resourced small-scaled hospitals to advanced 

large-scale hospitals around the world. This worldwide popularity and acceptance of chest 

radiography as a diagnostic tool are due to its non-invasive nature, operational speed, 

lower cost, lower infrastructure setup, ease of acquisition, accessibility, portability, and 

relatively lower radiation dose [2-4]. It has an important clinical value in the 

diagnosis/screening of various abnormalities in the cardiothoracic region such as 

pneumonia, tuberculosis, interstitial lung diseases, early lung cancer, etc. [5-6]. 

Meanwhile, in present medical practice, the interpretation of image information from 

CXRs is performed by the radiologists and the diagnostic expertise of the radiologist has 

a significant impact on the accuracy of the results [7]. 

In the last decades, the landscape of healthcare services is continuing to shift. In radiology 

including other diagnostic imaging-related domains, the use of Clinical Decision Support 

(CDS) system tools has emerged greatly to deliver high-quality and affordable care [8]. 

Today, the growth of daily increase in radiological examinations far exceeds the growth 

of radiologists who are responsible to interpret these studies [9]. In this context, the role 

of the CDS system in the field of radiology has been evolving showing the great potential 

to assist in the process of decision-making by radiologists in clinically relevant real-world 

medical practice [10]. With the Artificial Intelligence (AI) boom gaining momentum, 

particularly with the development of many deep learning techniques, it has led to 

achieving the automatic diagnosis of diseases as part of the CDS system thereby 

minimizing the lengthy screening period and considerably enhancing the efficiency of 

diagnosis [11]. 

More recently, developments in the deep learning field, especially CNNs, and the 

availability of a large volume of data sets showed great success in the automatic diagnosis 

of diseases in chest radiographs [12]. A CNN is an excellent deep learning algorithm for 
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image classification because of its strong ability for feature extraction and classification 

even from scratch images. It is based upon the functioning of sophisticated neural 

networks in the human brain and after being trained on a huge data set, identifies salient 

clinical features in images [13-14]. Previously, the need for vast amounts of data was a 

barrier to the effective training of deep learning models. However, in recent years, the 

availability of large publicly accessible datasets and the increased numbers of high-end 

computing power led to an increase in several research works that dealt with disease 

detection in CXRs using CNN models [15-16]. All of these works clarified that CNN 

systems can outperform humans in various cases of disease detection and help to make 

decisions on CXR interpretation as part of the CDS system. Taking into consideration of 

progress in Deep Learning (DL) and CNN, this research work is based on building a CNN 

architecture from scratch that detects pulmonary abnormalities from CXR images and 

efficiently classifies them into one of five different classes on a wide range of datasets. 

Besides, the model performance is observed and validated with real-time datasets 

collected from various hospitals and imaging centers in an attempt to implement an 

efficient decision support system for radiologists in medical practice. 

1.2 Problem Statement 

Despite the wide use of CXR images in clinical diagnosis, the correct interpretation of the 

information in the CXR images is always a major challenge even for experienced 

radiologists and other physicians [17]. The major challenges are summarized below: 

(i) A chest radiograph is a 2-dimensional representation of a 3-dimensional 

anatomical structure. As the X-rays pass through the body, these are absorbed 

by multiple anatomical structures producing different pixel values in the 

respective radiograph. Besides, different anatomic components might overlap 

in a single 2-dimensional image, and various pathological and physiological 

alterations can appear identical or single pathology may display various 

features. 

(ii) In practice, radiologists are primarily responsible for interpreting information 

from CXR images. However, not all radiologists are equally qualified or 

experienced, and hence, different radiologists can make an inconsistent 
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diagnosis on the same CXR image. This indicates that the results are 

influenced by cognitive ability, experience, fatigue, and other human-

dependent factors as well [18]. 

Screening of CXR images is thus highly susceptible to misinterpretation or missed 

information. For example, over 22% of all errors in diagnostic radiology are made during 

chest radiograph interpretation [19]. Besides, the adequate interpretation of the CXR 

findings demands a radiologist’s expertise, time, and energy. However, the number of 

qualified radiologists has remained limited to properly address the highly increasing 

number of examinations that further widen the scope of misinterpretation [20]. Thus, 

addressing the issue of misinterpretation or missed information by overcoming the 

inherent limitations of human perception and workload has been one of the key 

motivating factors of this research work. 

In recent years, several research works have been proposed on different AI-based models 

to improve the efficiency and accuracy of diagnosis. However, real-time adoption of these 

models remains limited as follows: 

(i) Most of these works dealt with two or three class abnormalities of CXRs 

classification problems, however, real-world applications may require 

multiple-class disease detection from CXRs. 

(ii) They have limited generalizability across datasets being trained and tested 

with a few datasets from a single source. Real-world applications demand 

efficient performance across a wide dataset. 

(iii) Existing works mostly employed pre-trained models such as LeNet, AlexNet, 

Inception, VGGNet, etc, which are huge with millions of trainable parameters 

requiring much computational power and time. Additionally, the use of pre-

trained models requires fine-tuning the CXR images to perform better. 

(iv) These research works lack rigorous comparative assessment against standard 

data sets for real-time applications. 

Thus, addressing the above challenges by developing a custom-designed CNN model and 

then training and testing the model over multiple source datasets for efficient performance 

has become the other motivating factor in carrying out this research work.   
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1.3 Objectives 

This research aims to design a more efficient CNN-based model for classifying input 

CXR image into one of five classes including 4 major abnormalities findings that is 

common in CXR readings. The specific objectives of this research are: 

(i) To develop a CNN-based model to classify lung diseases from chest 

radiographs. 

(ii) To model the system by optimizing the hyper-parameters of the CNN 

algorithm. 

(iii) To validate the performance of the proposed model from actual medical data 

collected from hospitals to employ it as a decision support system for 

radiologists. 

1.4 Contribution of this Proposed Research 

The primary technical contributions reported in this thesis work are noted below: 

(i) Development of an efficient CNN architecture from scratch: This research 

work developed the CXRNet, an efficient CNN architecture from scratch, to 

detect abnormalities from CXR images and effectively classify them into one 

of five different classes. Also, since the CXRNet has been developed from 

scratch, it is smaller in size with fewer trainable parameters compared to 

various available pre-trained models thus overcoming the limitations of 

research works using such pre-trained models. 

Also, the study demonstrates the tuning of hyperparameters and the use of 

various optimization algorithms to achieve better model performance. 

(ii) Development of a generalized dataset: This work developed a generalized 

dataset collected from various publicly accessible sources originally from 

different hospitals and research centers, thus enhancing the generalizability of 

the purposed model across data sets. In this work, a total of 13,619 Posterior 

Anterior (PA) CXR images are collected corresponding to five different 
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categories namely, Cardiomegaly, COVID-19, Pneumonia, normal, and 

Tuberculosis, thus, addressing the issues of limited findings in most of the 

relevant research works. 

(iii) Development of a robust image processing algorithm: An effective image 

processing algorithm is developed that incorporates the input CXR pre-

processing techniques including data augmentation and also demonstrates the 

impact of image pre-processing on the model performance. 

(iv) A comprehensive review of various deep-learning techniques: The study 

presents a comprehensive review of various DL techniques in the detection of 

various abnormalities present in chest radiographs. After careful analysis, 

their performance is observed, and the limitations have also been 

investigated. 

1.5 Thesis Organization 

This thesis is divided into five different chapters. In addition to Chapter 1, the thesis is 

organized as follows: 

Chapter 2 presents a review of related work providing a thorough review of various DL 

techniques in the detection of various abnormalities present in chest radiographs 

investigating various limitations as well. 

Chapter 3 covers the research methodology of the proposed model. It discusses the 

various materials and methods used in designing the CNN architecture from scratch 

including relevant formulations and algorithms. 

Chapter 4 presents a thorough analysis and discussion of the experimental results 

including the performance of the model in the standard dataset. 

Chapter 5 concludes this thesis with a summary of research findings and outcomes. Also, 

the limitations and recommendations for future research are presented as well.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

This chapter explores the different deep-learning models developed for the detection of 

abnormalities from CXR images over the past decade. With a detailed overview, it 

analyzes how these models detect and classify different diseases. Besides, careful 

comparative analysis of these DL techniques in radiology and their performance and 

limitations are investigated to unfold the scope of future development of DL models for 

clinical analysis and decision support systems. 

2.2 Present State of DL Models 

The evolution of DL models is presented before analyzing their detection and 

classification performance with chest radiography. The evolution of DL in the field of 

medical imaging is figuratively represented by Fig. 2.1. 

 

Fig. 2.1: The evolution of DL in the field of medical imaging. 
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Artificial Intelligence is a branch of computer science that enable machines to perform 

tasks requiring human-like intelligence. The goal of artificial intelligence is achieved by 

Machine Learning (ML), a subset of artificial intelligence that enables computer systems 

with learning capabilities to carry out tasks using data automatically and without manual 

programming. Similarly, deep learning, a subset of ML, primarily deals with the 

extraction of useful deeper by using artificial neural networks with interconnected nodes 

simulating neurons of the human brain [21]. Deep Learning is thus considered as the 

image input machine learning or image-based ML. Deep Learning began gaining 

popularity starting in 2013. Before that, feature-based ML or ML with feature input used 

to be dominant in the field of artificial intelligence. Before 1980, even before ML, 

classical classifiers like Quadratic Discriminant Analysis (QDA), Linear discriminant 

analysis (LDA), and a K-Nearest Neighbor (k-NN) classifier were employed for 

classification [22]. A Multi-Layer Perceptron (MLP) was subsequently proposed by 

Rumelhart and Hinton in 1986 [23]. Later, Vapnik proposed a Support Vector Machine 

(SVM) algorithm in 1995 which became the most popular classifier for quite some time 

with publicly available code on the Internet [24]. Successive development of ML models 

includes random forests by Ho et al. in 1995 [25] and dictionary learning by Mairal et al. 

in 2009 [26].  

Over time, a number of ML with image input (image-based ML) techniques were 

proposed before the term “deep learning” was introduced in the artificial intelligence 

field. DL models can be tracked since 1980 from the Neocognitron by Fukushima [27] 

which was simplified in 1989 by LeCun et al. [28] and then proposed a CNN. Suzuki et 

al. [29] made use of an MLP to cardiac images in a convolutional way in 1994. In 2003, 

Suzuki et al. proposed a Massive Training Artificial Neural Network (MTANN) for the 

classification of patterns [30] and the separation of specific patterns from other patterns in 

X-ray images in 2006 [31]. In 2006, Hinton et al. proposed Deep Belief Network (DBN) 

[32] and introduced the term ‘‘deep learning’’ a year later.  

Unfortunately, because of the complexity of the underlying optimization problem and the 

limitations of the computational technology available at the time, deep learning was not 

widely acknowledged until late 2012. Later in 2012, Convolution Neural Network won 

the ImageNet Large Scale Visual Recognition Challenge, an annual worldwide picture 

classification challenge, gaining significant recognition and offering breakthrough 

performance even exceeding humans in various cases [33].  
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In recent years, three major variables have enabled to gain the popularity of DL 

architectures in almost every domain: (a) the availability of enormous amounts of labeled 

data, (b) the affordable and efficient parallel computing resources, and (c) the 

advancement in training strategies and architectures [34]. 

2.3 DL Models for CXR Image Analysis 

This section summarizes various DL models for the automatic detection of abnormalities 

on chest X-ray images. The common abnormalities that those models address are: 

Pneumonia detection, COVID-19 detection, Tuberculosis detection, and other multiple 

abnormalities detection. The study of DL models for these specific sets of CXR 

abnormalities detection is presented in this section. 

2.3.1 Pneumonia Detection 

Along with the availability of large public chest X-rays data sets, the introduction of DL 

techniques has proven to yield rapid advancement in pneumonia detection.  

In 2019, O. Stephen et al. introduced a CNN model that was trained entirely from scratch 

to classify and detect pneumonia from CXR images [35]. In this work, in contrast to other 

methods that simply rely on transfer learning approaches or conventional handcrafted 

techniques, they designed a CNN model entirely from scratch to extract features and 

classify input CXR image if it is pneumonia infected or normal. They rearranged the 

original dataset consisting of 5,856 AP CXR images into 3,722 images for the training set 

and 2,134 images for the validation set. Also, several data augmentation techniques were 

employed to artificially increase the volume of the dataset and to address the overfitting 

problems. They designed a 12-layered sequential CNN model which was trained to obtain 

a training accuracy of 95.31% and a validation accuracy of 93.73%. Although they have 

developed the CNN model from scratch, the study is limited by the depth of data, limited 

findings, and poor classification accuracy for a two-class classification problem. 

In 2020, R. Jain et al. demonstrated six CNN models to identify pneumonia using CXR 

images out of which two models incorporate two and three convolutional layers 

respectively, and four other models are ResNet50, VGG19, VGG16, and Inception-v3 



9 

 

pre-trained models [36]. In this work, they used 5216 CXR images for training and 624 

images for testing obtaining validation accuracy of 85.26% in model 1, 92.31% in model 

2,  87.28%, 88.46%, 77.56%, and 70.99% in VGG16, VGG19, ResNet50, and Inception-

v3 pre-trained models respectively. Although they have trained several models, they have 

not properly tuned hyper-parameters as well as fine-tuned the parameters of the pre-

trained models, thus, resulting in poor performance in the limited dataset. 

In 2021, M. M. Eid et al. presented the application of pre-trained CNNs for extracting 

features and SVM for Pneumonia classification from CXR images [37]. In this work, they 

combined residual neural networks (ResNet-50) for feature extraction and SVM for 

classification. A total of 5,863 CXR images were used which had been grouped randomly 

into 60% images for training, 20% for validation, and 20% for testing the model. Here, 

they have achieved an accuracy of 98.03% which is comparatively superior to other 

related research works. 

In 2022, O. A. Fagbuagun et al. presented an approach using CNN and transfer learning 

techniques for the accurate detection of Pneumonia from CXR images [38]. In this work, 

they have used a total of 5,856 CXR images out of which 5,232 were used for training 

and 624 images for testing the model. They have designed a model using Inception-V3 as 

their pre-trained base model for feature detection and added a new two-class classifier 

output layer to the end of the network. Here, the model achieved a training accuracy of 

95.66% on the training set while an accuracy of 88.14% and an f1-score of 87% on the 

test images. This indicates that they have not properly addressed the overfitting issues and 

fine-tuning of the pre-trained model resulting in poor performance in the test dataset. 

In 2022, A. Mabrouk et al. presented a computer-aided detection of Pneumonia using 

ensemble learning based on pre-trained CNN models [39]. They used three well-known 

pre-trained CNN models namely DenseNet169, MobileNetV2, and Vision Transformer 

all pre-trained in the ImageNet database. These models were then fine-tuned using the 

CXR dataset which was combined for final classification. In this work, a total of 5,856 

CXR images were used out of which 624 images were used for testing the model. Here, 

they achieved an accuracy of 93.91% and an F1-score of 93.88% on the test dataset. 

In 2022, E. Ayan et al. proposed a method based on the CNN ensemble model for the 

automatic diagnosis of Pneumonia where they developed a computer-aided Pneumonia 
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detection system [40]. In this work, they trained seven popular CNN models (ResNet-50, 

VGG-16, VGG-19, Inception-V3, MobileNet, Xception, and SqueezeNet) pre-trained on 

the ImageNet dataset with fine-tuning strategies on the CXR dataset. Out of seven, the 

three most successful ones were chosen for the ensemble method. Here, they used a total 

of 5,856 CXR images where 5,232 images were used for training while 624 were used for 

testing the model. In model training, ResNet-50, Xception, and MobileNet models 

achieved superior results with accuracy of 94.42%, 95.03%, and 94.87% which were then 

selected for the ensemble model giving the accuracy of 95.83% on the test dataset. 

In 2023, M. W. Kusk et al. performed an experiment to train and validate the CNN model 

for the classification of Pneumonia on CXR images acquired at different levels of image 

noise [41]. In this work, they used a dataset of 5856 AP CXR images where Gaussian 

noise with zero mean was included in the CXR images at 5 different noise variance 

levels, representing the decreasing exposure in the image. This dataset was distributed 

into 80% for training, 10% for testing, and 10% for validation. A custom sequential CNN 

architecture was trained with six different data conditions including the original dataset 

and five other datasets with added noise at different levels. Here, they observed that there 

is no decrease in performance from the original dataset without noise to the five other 

datasets with added noise at different levels. The accuracy for the original dataset was 

90.2% while the accuracy for noise-added datasets ranged from 96.8% - 97.6% on the test 

dataset. Thus, it was concluded that no performance drop of CNN was observed for added 

noise compared to the original dataset indicating the potential of decreasing radiation 

dose to the patients. 

In summary, these studies have proven that the implementation of DL techniques whether 

it is custom-designed CNNs, or transfer learning-based models can detect generic 

pneumonia on chest X-ray images with satisfactory accuracy. In addition, techniques such 

as input image pre-processing, and data augmentation with properly tuned 

hyperparameters in model training enhance the performance of the deep learning models. 

2.3.2 COVID-19 Detection 

After the COVID-19 pandemic and millions of confirmed cases all over the world, the 

fast detection of the disease with minimal diagnosis error has become a crucial task 
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among the research community. There has been a massive increase in research regarding 

chest X-ray images along with DL algorithms for early COVID-19 detection. During the 

early phase of the COVID-19 pandemic, there were limited numbers of labeled COVID-

19 cases, and thus, transfer learning using popular pre-trained classifiers was common in 

practice. 

In 2020, T. Ozturk et al. presented a model for the automatic detection of COVID-19 

from CXR images [42]. In this work, they used the DarkNet-19 model as a classifier for 

the You Only Look Once (YOLO) real-time object detection system instead of building a 

model from scratch. They modified the original DarkNet architecture using fewer layers 

and gradually increasing the number of filters in convolution layers. Here, they used a 

total of 1,125 CXR images where 80% of the images were used for model training and 

20% for testing the model. They achieved an accuracy of 98.08% for binary 

classifications (COVID-19 and No-Findings) and 87.02% accuracy for three classes 

classification (COVID-19, No-Findings, and Pneumonia). Although, the model performed 

well in binary classification, however, the performance decreased in the three-class 

classification task which might be limited due to the less volume of training dataset used 

in this work. 

In 2021, T. Rahman et al. explored the impact of image enhancement techniques and lung 

segmentation on COVID-19 detection from CXR images [43]. In this work, they 

proposed a modified U-Net model for lung segmentation and then the performance of 

seven different CNN models including six pre-trained networks (ResNet101, ResNet50, 

ResNet18, InceptionV3, ChexNet, and DenseNet201) and one shallow CNN model 

developed from scratch was examined on plain and segmented lung CXR images where 

the images were subjected to five different image enhancement techniques (Balance 

Contrast Enhancement Technique (BCET), Histogram Equalization (HE), image 

complement,  Contrast Limited Adaptive Histogram Equalization (CLAHE), and gamma 

correction). Here, a total of 18,479 CXR images were used out of which 80% of images 

were employed for model training and 20% for testing the model. In this work, they 

observed that the gamma correction-based enhancement technique outperformed other 

techniques in identifying COVID-19 from the plain and segmented CXR images. 

However, it was observed that the classification performance is slightly better in plain 

CXR images as compared to the segmented lung images. They achieved the highest 

accuracy of 96.29% using the ChexNet model on gamma-corrected plain CXR images 
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and 95.11% accuracy using the DenseNet201 model on gamma-corrected segmented lung 

images for three class classification task (COVI-19, non-COVID lung opacity, and 

normal). 

In 2022, J. L. Gayathri et al. used a combination of InceptionResnetV2 and Xception pre-

trained model for feature extraction, sparse autoencoder for dimensionality reduction, and 

Feed Forward Neural Network (FFNN) for detection of COVID-19 in CXR images [44]. 

In this work, a total of 504 COVID-19 images and 542 non-COVID-19 images were used 

out of which 90% of images were used for training and 10% for testing the model. Here, 

they achieved an accuracy of 95.78% in the test dataset from this model. 

In 2022, S. Sanket et al. presented a CNN-based model for the detection of COVID-19 

intending to assist physicians throughout the diagnostic procedure in high workload 

conditions [45]. In this work, they proposed the CovCNN model which is a deep-CNN-

based architecture. Here, they included 219 COVID-19-positive images and 438 non-

COVID-19 images out of which 80% images were used for training and 20% images for 

testing the model. Also, they were able to achieve the highest classification accuracy of 

98.4% using their CovCNN model in this work. 

In 2022, A. Kumar et al introduced a Computer Aided Diagnosis (CAD) system 

combining Graph Convolutional Networks and CNNs for detecting COVID-19 in a CXR 

image [46]. In this work, they designed and evaluated the performance of a custom-made 

deep learning architecture SARS-Net to detect and classify CXR images for COVID-19 

diagnosis. Here, a total of 13,975 CXR images were employed out of which 90% images 

were used for training and validation and the rest 10% images for testing the model. Also, 

the proposed SARS-Net model achieved an accuracy of 97.6% on the test set which is 

promising compared to other relevant works. 

From all these papers, it can be concluded that the COVID-19 pandemic has intensified 

the research into its detection using a diverse number of deep learning models including 

custom-designed CNNs, transfer learning, and ensembles. These studies have proven that 

the implementation of deep learning techniques whether it is custom-designed CNNs, or 

transfer learning-based models can detect generic pneumonia on chest X-ray images with 

satisfactory accuracy. However, there is still much work to be done to integrate multi-

classifier models working in a clinical environment. 
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2.3.3 Tuberculosis Detection 

There is a large number of research works based on various DL techniques for the 

automatic detection and classification of Tuberculosis from input CXR images. Most of 

these works make use of several pre-trained CNN models for feature extraction tasks and 

then add a classifier for predictions. 

In 2022, S. I. Nafisah and G. Muhammad proposed an automatic Tuberculosis detection 

system using advanced DL models [47]. Different CNN models were used in this work 

and their classification performance was compared using the publicly available CXR 

dataset. In this work, a total of 1098 CXR images were used where 80% of images were 

used for training and the rest 20% for testing the model. Here, they employed a transfer 

learning approach using five pre-trained models (ResNet50, Inception, Xception, 

MobileNet, and EfficientNetB3) for the automatic detection of Tuberculosis from CXR 

images. They performed classification tasks for both segmented lung CXR images and 

raw CXR images, also with and without augmentation in both cases. In this experiment, 

they were able to obtain the highest accuracy in augmented and lung-segmented CXR 

images with an average accuracy of 98.7% in the two-class classification task. Although 

they achieved superior classification tasks, the experiment is limited to generalization 

ability due to a limited number of datasets. 

In 2022, V. Acharya et al. introduced AI-assisted Tuberculosis detection and 

classification from CXR using a DL normalization-free network model [48]. In this work, 

they trained ImageNet fine-tuned NFNets for classification tasks and utilized the Score-

Cam algorithm to emphasize the areas in the CXR image for accurate inference on the 

diagnosis. Here, they utilized a total of 3500 CXR images which were split into a 4:1 ratio 

for training and testing the model. The proposed model achieved an average accuracy of 

96% for binary classification demonstrating its importance as a secondary decision tool 

for assisting radiologists. 

In 2022, E. Showkatian et al. proposed a DL-based automatic detection of Tuberculosis 

disease in CXR images by training a CNN model from scratch [49]. Also, they compared 

its performance with several other pre-trained CNNs as well. In this work, a total of 800 

CXR images were augmented to generate a larger data volume with 2040 CXR images in 

the training set, and 120 CXR images in both the testing and validation sets. Here, the 
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proposed CNN architecture achieved an accuracy of 87% which was observed to be less 

than the classification accuracy obtained from pre-trained models like Exception, 

ResNet50, and VGG16. 

In 2023, S. S. Guia et al. employed a DL model for Tuberculosis detection from CXR 

images using two pre-trained VGG16 and VGG19 models [50]. In this work, a total of 

7000 CXR images were used which were divided into training, testing, and validation sets 

in the ratios 60%, 20%, and 20% respectively. Here, they created an architecture by 

combining two pre-trained models and adding a dense binary classifier. Also, the 

proposed architecture was able to achieve an accuracy of 99% on the test set for the 

binary classification task. 

In summary, it can be said that the detection of pulmonary tuberculosis has advanced 

substantially with the introduction of various DL models. Several papers showed that pre-

trained models outperform in most cases. Also, employing the data augmentation 

technique played a vital role in increasing the accuracy of the model. However, further 

works require the implementation of these models in clinical settings, integration into 

multi-classifier systems, and interaction with human observers. 

2.3.4 Multiple Abnormalities Detection 

Generally, the multi-class abnormality classification requires larger training data sets. As 

of today, there are several research works on multi-class abnormalities detection models 

from CXR images. These models are based on the datasets which are created by 

combining datasets from multiple sources. 

In 2020, A. I. Khan et al. proposed CoroNet, a Deep CNN model to automatically detect 

Pneumonia and COVID-19 infection from CXR images [51]. In this study, they proposed 

a model based on Xception architecture pre-trained on the ImageNet dataset and trained 

the model by collecting CXR images for four class classification tasks (COVID-19 vs 

Pneumonia bacterial vs Pneumonia viral vs normal). Here, they used only 310 normal, 

330  Pneumonia bacterial, 310 Pneumonia viral, and 284 COVID-19 CXR images for 

training. Four equal sets were created by randomly dividing the training set out of which 

3 sets were used to train and the remaining set was used for validation. Here, the proposed 

CoroNet model achieved an average accuracy of 89.6% for the 4-class classification task. 
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In 2022, A. Musha et al. proposed a model based on YOLOv2 with ResNet architecture 

for COVID-19 and Pneumonia detection from CXR images [52]. In this work, they 

collected 3788 CXR images out of which 80% images were used for training and 20% 

images for testing the model.  Here, the proposed model achieved a maximum overall 

classification accuracy of 97.3% for three class classification (COVID-19 vs Pneumonia 

vs normal) tasks. 

In 2022, F. Bayram and A. Eleyan proposed fusion-based DL for feature extraction and 

classification by implementing a multi-stream CNN model for COVID-19 and Pneumonia 

detection on CXR images [53]. A total of 3886 CXR images were used including 1200 

COVID-19, 1341 normal, and 1345 Pneumonia images. The dataset was divided into five 

subsets for fivefold cross-validation. In this study, a multi-stream CNN was designed with 

three inputs corresponding to the grayscale CXR image, the corresponding local binary 

pattern, and histograms of oriented gradient features of CXR images. Each of these three 

inputs was passed in parallel through the feature extraction module consisting of five 

feature extraction layers composed of a convolution layer, a batch normalization layer, a 

ReLu activation layer, an average pooling layer, and a dropout layer. The features 

obtained from these three parallel layers were concatenated and passed to the 

classification module with three outputs for normal, COVID-19, and Pneumonia cases. 

Here, the proposed model achieved an average accuracy of 97.76% in the three-class 

classification task. 

In 2022, M. Loey et al. proposed a Bayesian-based optimized DL model to detect 

COVID-19 and Pneumonia from CXR images [14]. The proposed model is composed of 

two main components; the first one uses CNN for feature extraction and the second is a 

Bayesian-based optimizer used for tuning CNN hyperparameters. In this work, they 

collected a total of 10,848 CXR images including 3616 COVID-19, 3616 normal, and 

3616 Pneumonia case images. The dataset was split into three different sets comprising of 

training, validation, and test sets in the ratio 80%, 10%, and 10% respectively in one set, 

70%, 10%, and 20% respectively in the second set, and 60%, 10%, and 30% respectively 

in the third set. Also, the proposed model achieved the highest accuracy of 96% for a 

three-class classification task (COVID-19 vs Pneumonia vs normal) in a 10% test split 

dataset. 
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In 2023, I. Kanjanasurat et al. combined CNN and Recurrent Neural Network (RNN) 

models by substituting fully connected layers of CNN with an RNN for the diagnosis of 

COVID-19 and Pneumonia from CXR and Computed Tomography (CT) images [54]. In 

this work, the strength of CNNs was employed to extract features, and RNNs were 

utilized to calculate dependencies and classification based on extracted features. Here, 

pre-trained CNN models like DenseNet121, ResNet152V2, and VGG19 were combined 

with LSTM and Gated Recurrent Unit (GRU)-RNN models. Also, a total of 16,210 

images were used out of which 9271 were CXR images (2545 normal, 3789 Pneumonia, 

and 2937 COVID-19 images) and 6939 were CT images (2259 normal, 2365 Pneumonia, 

and 2315 COVID-19 images). They approximately used 65% of all the image data for 

training, 20% for testing, and 15% for validation. Out of three CNN-RNN networks, 

ResNet152V2 with GRU model performed the best achieving 93.37% accuracy for three 

class classification tasks (COVID-19 vs Pneumonia vs normal). 

In summary, the multi-classifiers are greatly advancing rapidly over time showing 

superior performance in comparison to human operations in many cases. However, due to 

the more complex and difficult task of classification into more classes, these DL models 

generally exhibit lower performances than DL models classifying only one form of 

pathology. This can be also related to the heterogeneity of the testing data set due to 

overlapping features from several pathologies resulting in misclassification. 

2.4 Discussion 

The major developments of DL models for CXR image analysis discussed above can be 

broadly grouped into four categories: (a) CNN-based related studies, (b) transfer learning-

based studies, (c) ensemble model-based studies, and (d) other neural network-based 

studies. CNN-based studies are based on designing and developing CNNs architectures 

for the detection and classification of diseases in CXR images. Transfer Learning based 

studies include the application of the pre-trained deep learning models that make use of 

the information and knowledge learned from the past training itself. The new set of 

models is then used to put this training to use. Ensemble model-based studies are based 

on making use of multiple related but different analytical deep-learning models, then 

synthesizing the result into a single score to improve predictive accuracy. Finally, other 

neural network-based studies include various research works that are related to image-
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based ML models supporting deep learning architecture. Table 2.1 presents the 

performance comparison of different DL techniques that are reviewed in this section for 

several abnormalities detection in CXR investigating their limitations at the same time. 

Table 2.1: Performance comparison of different DL techniques for several abnormalities 

detection on CXR images 

Research Dataset Method Used 
Output 

Classes 

Accur-

acy(%) 
Limitations 

A. Pneumonia Detection 

(O. Stephen et 

al., 2019) 

5,856 

CXR 

images 

CNN from 

scratch 
2 93.7 

Only two class classification 

model which is trained on a 

few datasets with lower 

accuracy performance. 

(R. Jain et al., 

2020) 

5,216 

CXR 

images 

Pre-trained CNN 2 92.3 

Only two class classification 

model which is trained on a 

few datasets with lower 

accuracy performance. 

Additionally, it employs the 

use of pre-trained model 

without fine tuning.  

(M. M. Eid et 

al., 2021) 

5,863 

CXR 

images 

Pre-trained CNN 

with SVM 
2 98.1 

Only two class classification 

model which is trained on a 

few datasets. Also, employs 

pre-trained model. 

(O. A. 

Fagbuagun et 

al., 2022) 

5,856 

CXR 

images 

Pre-trained CNN 2 88.1 

Only two class classification 

model which is trained on a 

few datasets with lower 

accuracy performance. Also, 

it employs the use of pre-

trained model without fine 

tuning. 

(A. Mabrouk et 

al., 2022) 

5,856 

CXR 

images 

Ensemble 

learning based 

on pre-trained 

CNN models 

2 93.9 

Only two class classification 

model which is trained on a 

few datasets with lower 

accuracy performance. Also, 

it employs the use of pre-

trained model without fine 

tuning. 

(E. Ayan et al., 

2022) 

5,856 

CXR 

images 

Ensemble 

learning based 

on pre-trained 

CNN models 

2 95.8 

Only two class classification 

model which is trained on a 

few datasets. Also, employs 

pre-trained model. 
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(M. W. Kusk et 

al., 2023) 

5,856 

CXR 

images 

Custom 

sequential CNN 
2 

96.8 – 

97.6 

Only two class classification 

model which is trained on a 

few datasets. 

B. COVID Detection 

(T. Ozturk et 

al., 2020) 

1,125 

CXR 

images 

DarkNet-19 

model 
2 87 

Only two class classification 

model which is trained on a 

few datasets. 

(T. Rahman et 

al., 2021) 

18,479 

CXR 

images 

Pre-trained CNN 

models 
3 95.1 

Only three class 

classification model built 

using pre-trained models. 

(J. L. Gayathri 

et al., 2022) 

1,046 

CXR 

images 

Pre-trained CNN 

models 
2 95.8 

Only two class classification 

model which is trained on a 

few datasets. Also, employs 

pre-trained model. 

(S. Sanket et 

al., 2022) 

657 

CXR 

images 

CovCNN model 

based on deep-

CNN 

architecture 

2 98.4 

Only two class classification 

model which is trained on a 

few datasets. 

(A. Kumar et 

al., 2022) 

13,975 

CXR 

images 

SARS-Net 

(custom DL 

architecture 

from scratch) 

3 97.6 

Only three class 

classification model which 

is trained on a few datasets. 

C. Tuberculosis Detection 

(S. I. Nafisah et 

al., 2022) 

1,098 

CXR 

images 

Pre-trained CNN 

models 
2 98.7 

Only two class classification 

model which is trained on a 

few datasets. Also, employs 

pre-trained model. 

(V. Acharya et 

al., 2022) 

3,500 

CXR 

images 

ImageNet model 

fine-tuned 

NFNets 

2 96 

Only two class classification 

model which is trained on a 

few datasets. Also, employs 

pre-trained model. 

(E. Showkatian 

et al., 2022 ) 

2,160 

CXR 

images 

ConvNet (CNN 

model from 

scratch) 

2 87 

Only two class classification 

model which is trained on a 

few datasets with lower 

accuracy performance. 

(S. S. Guia et 

al., 2023) 

7,000 

CXR 

images 

Pre-trained CNN 

models 
2 99 

Only two class classification 

model. Also, employs pre-

trained model. 

D. Multiple Abnormalities Detection 

(A. I. Khan et 

al., 2020) 

1,234 

CXR 

images 

Pre-trained CNN 

models 
4 89.6 

Only four class 

classification model which 

is trained on a few datasets 

with lower accuracy. Also, 

employs pre-trained model. 
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(A. Musha et 

al., 2022) 

3,788 

CXR 

images 

YOLOv2 with 

residual network 

architecture 

3 97.3 

Only three class 

classification model which 

is trained on a few datasets. 

Also, employs pre-trained 

model. 

(F. Bayram et 

al., 2022) 

3,886 

CXR 

images 

Fusion based 

model 

implemented by 

a multi-stream 

CNN 

3 97.7 

Only three class 

classification model which 

is trained on a few datasets. 

(M. Loey et al., 

2022) 

10,848 

CXR 

images 

Bayesian-based 

optimized DL 

model 

3 96 

Only three class 

classification model which 

is trained on a few datasets. 

(I. 

Kanjanasurat et 

al., 2023) 

 (9,271 

CXR & 

6,939 

CT) 

Combination of 

pre-trained CNN 

and RNN 

3 93.4 

Only three class 

classification model with 

lower accuracy 

performance. Also, employs 

pre-trained model. 

2.5 Chapter Summary 

Existing  DL methods for the detection of abnormalities in CXR images, their 

performance, and limitations are comprehensively investigated in this chapter. DL 

techniques have demonstrated their great potential for medical image analysis to be a 

leading research domain in detecting various abnormalities in CXR images and play a 

vital role as a decision support system in radiological examinations. However, there can 

be several improvements to enhance the performance of these models and further work is 

required in the multi-classifier implementation of these models in clinical setting 

environments. 
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CHAPTER 3 

 A NEW CXRNet MODEL 

3.1 Introduction 

This chapter presents a new CNN model, the CXRNet, for the classification of input 

CXR images into one of five classes namely Cardiomegaly, COVID, Pneumonia, 

Tuberculosis, and Normal. The materials and methods employed in modeling the 

proposed new mode for the classification of input CXR images are discussed in this 

chapter. This chapter captures the sources and nature of datasets, the preparation, and 

processing of datasets before feeding them into the CXRNet model followed by the 

model’s architecture and tuning of various hyper-parameters for attaining the objectives 

of this research work. The workflow for classifying the input CXR images is finally 

presented with the necessary technical details and diagrams. The general flow diagram of 

the working process of this research work is shown in Fig. 3.1 where the workflow in 

carrying out the training and testing procedure is illustrated. 

3.2 Dataset 

A total of 13,619 frontal CXR images are used in this research work for training and 

testing the model. The dataset includes images acquired from various publicly accessible 

sources contributing to 5 different CXR class categories which are enlisted as follows: 

(i) The primary dataset employed in this research work was acquired from 

Kaggle repositories consisting of a total of  5863 CXR images and 

contributing into two main categories namely Pneumonia and Normal classes 

[55]. These images are originally obtained from Guangzhou Women and 

Children’s Medical Center, Guangzhou, China. 

(ii) The COVID category dataset used in this research work was also collected 

from Kaggle repositories contributing a total of 3616 COVID-positive CXR 

images [56]. This database is developed from the Italian Society of Medical 

and Interventional Radiology (SIRM) COVID-19 DATABASE [57], Medical 

Imaging Databank of the Valencia Region (BIMCV) BIMCV-COVID19+ 

dataset [58], and several other works in GitHub [59].  
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(iii) The Tuberculosis category dataset used in this study was again collected from 

Kaggle repositories contributing a total of 700 Tuberculosis CXR images 

[60]. This was publicly made available from the database developed by a 

group of researchers from Qatar University, Qatar, and the University of 

Dhaka, Bangladesh together with their Malaysian counterparts and medical 

doctors from Hamad Medical Corporation and Bangladesh. 

(iv) The Cardiomegaly category dataset used in this study was collected from the 

clinical PACS database at the National Institutes of Health Clinical Center 

(NIHCC) [61]. This is the largest publicly accessible CXR dataset to date 

with 14 different disease labels, however, only a total of 1093 Cardiomegaly 

labeled CXR images are used in this research work. 

The detailed composition of the dataset used in this thesis work is also presented in Table 

3.1. Thus, the CXR images collected from various sources are first grouped into one of 

five different classes producing a total of 1093 Cardiomegaly, 3616 COVID, 3937 

Normal, 4273 Pneumonia, and 700 Tuberculosis cases of CXR images. These images 

were originally made available in various resolutions. Some of the CXR image samples 

for each category are shown in Fig. 3.2. 

Table 3.1: The detailed composition of the dataset collected from various sources 

Data 

Composition 

Sources 

Total Guangzhou 

Medical 

Center 

SIRM BIMCV GitHub NIHCC Kaggle 

Cardiomegaly     1093  1093 

COVID  119 2474 1023   3616 

Normal 1583     2354 3937 

Pneumonia 4273      4273 

Tuberculosis      700 700 
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Fig. 3.1: The general flow diagram of the working process of this research work. 

In this research work, the data acquisition task is performed keeping in mind to address 

the following limitations which are common in most of the research works. 

(i) The dataset consists of 5 different categories including 4 common chest 

abnormalities which address the problem of limited findings with 2 or 3 class 

classification research works thus making it more suitable for real-time 

adoption of this model in clinical settings. 

(ii) The dataset is acquired from various publicly accessible sources thus 

overcoming the issue of the limited generalizability across datasets as most of 

the research works are based on a dataset from a single source. This in turn 

makes the model produce more robust and reliable performance in real-time 

clinical environments. 
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Fig. 3.2: Chest Radiographs samples; (a) Cardiomegaly, (b) COVID, (c) Normal, (d) 

Pneumonia, and (e) Tuberculosis. 

3.3 Data Pre-processing and Augmentation 

The CXR images in the dataset are originally 8-bit RGB format (3-channels) images and 

made available in varying resolutions ranging from 299 × 299 to 512 ×512 to 1024 × 

1024 to 2583 × 2916. Hence, image pre-processing is an important step that is performed 

to prepare data suitable for passing into the CNN model. In this research work, several 

image pre-processing techniques are implemented using the Keras image preprocessing 

module which is discussed as follows. 

3.3.1 Rescaling 

The dataset used in this work is of unsigned integer type with pixel values ranging from 0 

to 255. Thus, pixel rescaling is performed to rescale the pixel values from the range of 0 

to 255 to the range 0 to 1 which is also known as pixel normalization. This can be 

achieved by dividing each pixel value by 255 which is represented in Equation (3.1) The 

pixel normalization ensures that each input image parameter has a similar data 

distribution and thus making the convergence of loss function faster and speeding up the 

training process. Also, it helps to reduce the exploding and vanishing gradient problem as 

during the process of model training, the kernels (weights) are multiplied, and the biases 

are added to the normalized input feature values. 

255

 _
_

pixeloriginal
imagesnormalize =                              (3.1) 
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3.3.2 Resizing 

CXR images used in this research work are of various dimensions, however, all the 

images have to be resized into a shape that is equal to the input layer of the CNN model. 

Hence, making the decision for the shape of the input layer and resizing the images into 

that shape is one of the important pre-processing tasks before passing the data into the 

network. It is governed by two important factors; (a) computation cost which includes 

memory requirement, and processing time, and (b) model performance which includes 

accuracy and losses in the model. By taking a smaller image size, it will downscale the 

number of input features thus reducing memory requirements and overall processing time. 

However, reducing the image size introduces the loss of image information which might 

in turn affect the performance of the model. On the other hand, taking a larger image size 

will preserve the image information which will support the model's performance; 

however, this will demand higher memory requirements and processing time. Regardless, 

increasing the image size after a certain value will not decidedly improve the model 

performance, however, will substantially add up computational cost in the model 

architecture. Thus, it is important to identify the image size where increasing the size 

from that instance does not significantly improve the performance for the price of an 

increase in computation cost. In this research work, the optimum shape of the input layer 

is set to be 224 × 224, hence, the images are also resized into this shape using the bilinear 

interpolation method. This method is one of the techniques to find the unknown pixel 

value at point (x, y) using the linear interpolation method from the known pixel values at 

four points which is represented in Equation (3.2). 
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Where, )( 11Qf is pixel value at point (x1, y1), )( 12Qf is pixel value at point (x1, y2),  

)( 21Qf is pixel value at point (x2, y1), and )( 22Qf  is pixel value at point (x2, y2). 

3.3.3 Augmentation 

A CNN by itself cannot address rotation and scaling problems if not provided with such 

samples during the training of the model [62]. Hence, training a CNN needs a huge 
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amount of generalized data to avoid the overfitting problem and to obtain a reliable result 

[63]. However, the working database might not contain a large volume of generalized 

data at all times. In such a situation, rather than gathering new data, data augmentation 

techniques can be utilized to generate an increased number of datasets by augmenting the 

existing data. Data augmentation can greatly broaden the range of data that are available 

for training the models. Also, Image augmentation is very crucial when the dataset is 

imbalanced [43]. Hence, in this research work, various data augmentation strategies are 

implemented, as listed in Table 3.2, to address the data imbalance problem, prevent the 

overfitting problem, and improve the generalization abilities of the proposed CNN 

architecture. The mathematical expression for new rotated coordinates (xnew, ynew) 

corresponding to original coordinates (x, y) is represented in Equation (3.3). Also, the 

mathematical expression for image shear mapping operation is represented in Equation 

(3.4) where there is linear mapping to displace each point in the image in a fixed 

horizontal direction by an amount proportional to its y-coordinate. 
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Where, 𝜃 is the rotation angle 
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Where, m is a fixed parameter and called it shear factor. 

Table 3.2: Data augmentation techniques 

Data Augmentation Techniques Values 

Rescale 1.0/255 

Rotation_range 5 

Shear_range 0.2 

Zoom_range 0.2 

Horizontal_flip True 
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In this work, a total of 13,619 frontal CXR images are collected and the distribution of 

images in each category is represented in Fig. 3.3. It indicates that there is an imbalanced 

data distribution among five categories.  Hence, there is a need for balancing the dataset 

to prevent the model from becoming more biased towards the majority class. In this work, 

the oversampling technique is implemented by increasing the number of samples of 

minority classes using augmentation techniques to balance the overall dataset. The 

distribution of the dataset after applying the data augmentation to increase the number of 

samples of minority class is shown in Table 3.3. This data distribution is later used in 

training and testing the performance of the CNN model. 

Table 3.3: Data distribution in each category after oversampling the minority classes 

using data augmentation strategies (Balanced dataset) 

Categories No of Samples 

Cardiomegaly 4,207 

COVID-19 4,224 

Normal 4,225 

Pneumonia 4,273 

Tuberculosis 4,200 

Total 21,129 

3.4 CXRNet Architecture 

CXRNet is a model based on CNN architecture proposed in this research work for the 

classification of input CXR image into one of five different classes namely Cardiomegaly, 

COVID, Normal, Pneumonia, and Tuberculosis cases. CNN architecture is implemented 

in this research work because it is built on feed-forward neural network topologies for 

automatic feature extraction utilizing the inherent properties of images and then the 

classification of images based on the extracted features. Moreover, a CNN requires 

substantially less pre-processing than conventional classification algorithms [64]. 

The general block diagram of the proposed CXRNet model is shown in Fig. 3.4. It is a 

16-layer CNN architecture that is implemented using two different Keras model APIs. 
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First, the Functional model is created to implement three parallel convolution layers of 

kernel sizes 3 × 3, 5 × 5, and 7 × 7 respectively. The augmented CXR image is passed 

through the input layer and then to the three parallel convolution layers where the outputs 

of these three layers are then concatenated and passed as input to the sequential model. 

The sequential model is based on six basic components, namely the convolution layer, 

activation function, pooling layer, dropout layer, flatten layer, and dense layer. These 

elements are utilized in various layers, and they have their respective functionality in the 

CNN architecture. The detailed architecture of the purposed CXRNet model is illustrated 

in Fig. 3.5 while the summary of the model is presented in Table 3.4. In this architecture, 

there is a total of 2,827,909 trainable parameters that are learned during model training 

and will be used in the classification of the input CXR images. 

 

Fig. 3.3: The original distribution of images in each category collected from various 

sources. 
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Fig. 3.4: The general block diagram of the proposed CXRNet model. 
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Fig 3.5: The detailed architecture of the proposed CXRNet model. 
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Table 3.4: Summary of the proposed CXRNet architecture with output shape and 

parameters for each layer 

 

The detail of the various layers and elements of the proposed CXRNet model are 

discussed below. 

3.4.1 Input Layer 

The input layer, which is the first layer of the proposed CXRNet model, has an input 

shape of (224, 224, 3), which corresponds to the shape of the input CXR image to be fed 

into the network. 

3.4.2 Convolution Layer 

The convolution process takes place in this layer, where the feature maps from the 

previous layer convolute with kernels and is passed through the ReLu activation function 

Layer (Type) Output Shape Parameters 

input (Input) 224 × 224 × 3 0 

model (Functional) 224 × 224 × 192 16128 

conv2d_4 (Conv2D) 222 × 222 × 32 55328 

conv2d_5 (Conv2D) 220 × 220 × 32 9248 

max_pooling2d_1 (MaxPooling2D) 110 × 110 × 32 0 

conv2d_6 (Conv2D) 108 × 108 × 64 18496 

max_pooling2d_2 (MaxPooling2D) 54 × 54 × 64 0 

conv2d_7 (Conv2D) 52 × 52 × 128 73856 

max_pooling2d_3 (MaxPooling2D) 26 × 26 × 128 0 

conv2d_8 (Conv2D) 24 × 24 × 256 295168 

max_pooling2d_4 (MaxPooling2D) 12 × 12 × 256 0 

dropout_1 (Dropout) 12 × 12 × 256 0 

flatten (Flatten) 36864 0 

dense_1 (Dense) 64 2359360 

dropout_2 (Dropout) 64 0 

output (Dense) 5 325 

Total Params 2,827,909 

Trainable Params 2,827,909 

Non-Trainable Params 0 
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configuring the output feature maps. The mathematical expression for the convolution 

operation is given in Equation (3.5). 
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Where, 𝑦𝑗
𝑙 represents the jth output feature map of the lth layer, f() is a non-linear function, 

Nj is the input map selection, 𝑦𝑖
𝑙−1 is the ith input map of (l-1)th layer, 𝑀𝑖𝑗

𝑙 is the kernel for 

the input i and output map M in the jth layer, and 𝑎𝑗
𝑙 is the bias associated with the jth 

output map. 

The convolution layer is also called the feature extraction layer as it extracts features 

using convolution filters whose parameters are learned through model training. Since the 

width and height of each kernel are configured to be less than the input feature maps, each 

neuron in the activation map is only linked to a limited local area of the input volume. In 

comparison to normal feed-forward layers, the convolution layers perform better for 

image input DL models because of the following reasons. 

(i) Parameter Sharing: The filter parameters are shared for all local positions 

since the activation map is acquired by performing convolution operation 

between the filter and the input. This will reduce the number of parameters 

hence reducing the computation efforts and good generalization. 

(ii) Sparsity of Connections: Each neuron in the activation map is only 

connected to a small local area of the input volume since the size of each 

kernel is configured to be smaller than the input. 

(iii) Translation Invariance: The convolution operation is independent of the 

object feature position in an image. 

In CXRNet architecture, there are eight different convolution layers of various kernel 

sizes and filter numbers (N). The early convolutional layers in the network process an 

image and come up with extracting low-level features like edges, while the convolutional 

layers deeper in the network can detect complex features such as corners, objects, etc. 

When an input image is subjected to a convolutional layer, each kernel is convolved 

across the width and height of the input image, giving a 2D feature map of that filter. 
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Hence, in this architecture, 32 feature maps are created for each parallel convolution layer 

when the input images are passed through the parallel convolutional layers. Then, the 

output of these parallel convolution layers is concatenated generating 96 feature maps. 

Similarly, corresponding feature maps are created as per the number of filters in 

respective convolutional layers. 

3.4.3 Pooling Layer 

In the CNN, the pooling layer is often used to downsample the outputs which in turn 

reduces the size, thus making the speedy computation, preventing overfitting, and 

reducing the memory requirement as well [65]. There are different types of pooling 

layers, including average pooling, max pooling, and sum pooling. Average pooling 

calculates the average for each patch of the feature map, max pooling selects the largest 

value from the feature map, and sum pooling calculates the sum of all feature map 

elements. Among them, max pooling is the most prevalent and frequently used pooling 

layer. This is so that the feature map containing the most notable features of the previous 

feature map can be summarized by the maxpooling procedure. In CXRNet, four max-

pooling layers are used each after convolutional layers. These max-pooling layers are 

each of (2, 2) pool size and (2, 2) stride. By selecting the largest value from the input 

window of (2, 2) pool size for each channel of input, it downsamples the input along with 

spatial dimension (height and width) as represented in Fig. 3.6. Thus, the spatial shape of 

the resulting output from the max pooling layer is given in Equation (3.6). 

output_shape=floor((input_shape-pool_size)/strides)+1                 (3.6) 

 

Fig. 3.6: Maxpooling operation illustration. 
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3.4.4 Dropout Layer 

The term “dropout” describes dropping out units or ignoring units (i.e., neurons) at 

random in a neural network during the training phase. During each step of model training, 

this layer randomly sets input units to zero value with a set frequency. This will eliminate 

those nodes and remove all the incoming and outgoing links from that node resulting in a 

much diminished network. However, those inputs not set to zero are scaled up by 1/(1-

rate), keeping the total sum of all inputs constant [66]. In this CNN architecture, two 

dropout layers are used with dropout rates of 25%. Thus, the random 25% inputs to these 

layers are eliminated at each step during model training. Also, the effect of the 

implementing dropout layers in the CXRNet performance is experimented and observed 

in this research work. The use of a dropout layer is one of the techniques that help to 

reduce overfitting issues during model training. This can be explained by the following 

reasoning. 

(i) The overfitting issue may result due to assigning higher weight values for 

certain features thus losing the generalization capability for other input 

feature maps. However, using dropout, the NN doesn’t rely on any one 

feature map as the input can drop out at random. Thus, it will force the NN to 

spread out weight parameters enhancing the generalization capabilities and 

addressing the overfit issues. 

(ii) The use of a dropout layer results in much smaller and diminished networks 

which correspond to the simpler network. Thus, the simpler network is 

inherently tolerant of overfitting issues. 

3.4.5 Flatten Layer 

The flatten layer is used to translate the multidimensional data value input into a single 

dimension. This is necessary before passing data into a fully connected dense layer. Thus, 

a flatten layer is used before the dense layer in this CNN architecture where the output 

from the previous layer of shape (12 × 12 × 256) is translated into a single dimension 

with a total of 36,864 nodes. The flattening operation of a two-dimensional input vector is 

shown in Fig 3.7. 
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Fig. 3.7: The flattening operation of two-dimensional input vector. 

3.4.6 Dense Layer 

The dense layer is also known as the fully connected layer. It is a crucial part of CNNs, 

which has been proven to be extremely successful in recognizing and classification of 

input images. The operation in a typical CNN architecture begins with convolution and 

pooling layers, breaking down the image input into features. Then, the result is fed into a 

fully connected dense network that is responsible for the final classification decision task. 

based upon the features broken down from convolution and pooling layers.  

A fully connected dense layer is simply a feed-forward neural network. The example of a 

fully connected dense layer is shown in Fig. 3.8. The operation of the dense layer is 

represented in Equation (3.7). In this research work, two dense layers are implemented 

after flatten layer, where the second dense layer is used for classification with five output 

classes for Cardiomegaly, COVID, Normal, Pneumonia, and Tuberculosis cases. 

output=activation(dot(input, kernel) +bias)                                (3.7) 

Where, the Kernel is a weights matrix created by the layer, activation is the element-wise 

activation function supplied as the activation argument, and bias is a bias vector.  
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Fig. 3.8: An example of a fully connected layer in a deep neural network. 

3.4.7 Activation Function 

As real-world problems are non-linear, activation functions are used to introduce non-

linearity in the model. Various forms of activation functions have been used to transform 

data into a non-linear form. However, in this model, two different types of activation 

functions are implemented which are discussed as follows. 

3.4.7.1 ReLU 

The Rectified Linear Unit is the most popular and commonly used activation function in 

hidden layers of a DL neural network architecture because of its faster and simplicity of 

computation thus speeding up the training process as well as preventing vanishing 

gradient problems in model training [67]. The ReLU function returns a zero value if it 

receives any negative input, otherwise will pass the input value unchanged. This 

operation is similar to the rectification action performed by a diode; hence, it is named 

accordingly. The mathematical representation for the ReLU activation function is 

represented in Equation (3.8) and the line plot is shown in Fig. 3.9. 
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( )xxf ,0max)( =                                                (3.8) 

Where, f(x) is the output from ReLU, and x is the input value. 

 

Fig. 3.9: The line plot of ReLU for negative and positive inputs. 

3.4.7.2 Sigmoid 

It is a type of activation function that maps the input between 0 and 1 values. However, 

this function can result in a vanishing gradient problem during model training. Hence, it is 

only used in the output layer only as it is suitable for predicting probability as an output. 

The mathematical representation for the sigmoid activation function is represented in 

Equation (3.9) and the line plot is shown in Fig. 3.10. 

))exp(1/(1)( xxf −+=                                        (3.9) 

Where, f(x) is the output from the sigmoid function, and x is the input. 

 

Fig. 3.10: The line plot of the sigmoid function for negative and positive inputs. 
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3.5 Model Training 

In this research work, the balanced dataset is randomly distributed into training and 

testing sets in various ratios to observe the performance of the CXRNet in different 

training-testing distributions. In model training, the training dataset is used to learn the 

trainable parameters of the network. Hence, the majority of the total dataset volume is 

allocated for model training. Also, a portion of the testing dataset is used as a validation 

dataset to observe the overfitting issue in model performance during the training process. 

The use of validation datasets is very important in training large DL neural networks 

where a large amount of time is required for the training process. Hence, the validation 

dataset ensures whether the model training is suffering from the overfitting issue or not 

during training as the model with the overfitting problem will not be able to perform well 

in the testing dataset. During the training process, if the training accuracy is increasing 

while there is decreased or no improvement in validation accuracy, then, it is a clear 

indication of overfitting. In such a situation, the use of a validation dataset provides an 

early indication to improve the model architecture without the need to wait for the 

completion of the training process and hence, saving valuable time. 

In this research work, the CXRNet model was trained for 50 epochs where the model is 

iterated over mini-batches of batch-size 32 images. One epoch corresponds when all the 

training data are passed through the model once and hence the number of iterations 

required for completing one epoch of training is given by Equation (3.10). The various 

hyperparameters set for the training process are listed in Table 3.5. These parameters play 

a vital role in the model training process and the performance of the model. The choice 

and tuning of these parameters are explained later in this section. 

iterations (i)=length(training_dataset)/batch_size                       (3.10) 

Table 3.5: The hyper-parameters of the proposed CXRNet model 

Hyper-parameters Value 

Optimizer Adam 

Loss Function Sparse Categorical Cross Entropy 

Initial Learning Rate 0.001 

No. of Epochs 50 

Batch Size 32 
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The overall training process of the proposed CNN model can be summarized in two basic 

operations which are discussed below. 

3.5.1 Forward Propagation 

During this process, the pre-processed images in a batch size of 32 images are fed into the 

input layer of CNN architecture which is then processed in various layers computing 

outputs in each layer. The output from any node in a layer is the result of two operations 

where (a) first there is a linear operation between the previous layer input, weights of the 

layer, and the associated bias for the layer, (b) then there is a non-linear operation by the 

activation function in each node. In this case, the output from the previous layer is fed as 

input to the next layer which shall continue until the output of the last dense layer is 

computed. Thus, the forward propagation process starts with inputting the image batch in 

the input layer and completes with generating output from the last dense layer which is 

the result of the sigmoid activation function. This takes place for each iteration in every 

epoch until the training process is completed. 

3.5.2 Backpropagation 

Backpropagation is the process of backward propagation of errors in supervised learning 

of DL neural networks using various optimization algorithms. For a given error function 

in an ANN, backpropagation computes the gradient of the error function with respect to 

the network’s weight and bias. As the name suggests, the gradients computation is 

performed backward across the network, starting with the gradients of the final layer of 

weights and bias and ending with the gradients of the first layer of weights and bias. Also, 

a portion of the gradient computation from one layer is used when computing the gradient 

for the previous layer. As a result, the backward flow of error information enables for 

efficient computation of gradient at each layer. The computed gradients are then used to 

update the parameters of the corresponding layer of the network thus optimizing the error 

function towards minima. 

In this model, the outputs from the last layer which is the output of the sigmoid activation 

function are used to compute the loss function. It is a multi-class model with five output 

nodes where the output class labels are integer encoded as (a) Cardiomegaly ‘0’, (b) 
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COVID ‘1’, (c) Normal ‘2’, (d) Pneumonia ‘3’, and (e) Tuberculosis ‘4’ for the 

computation of sparse categorical cross-entropy. The loss function for a single image is 

represented in Equation (3.11). 
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Where, yi is the correct image label for input image, sj is the jth component of the output 

vector from output layer for j = 0, 1, 2, 3, 4 

Again, for a single iteration with a batch size of N = 32, the total loss is represented in 

Equation (3.12). 
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Where, i = 0, 1, ……., 31 

Once the total loss function is computed for an iteration, then the goal of the optimization 

algorithm is to find the parameters (weights and bias) based on its gradients to minimize 

this loss function. This task is implemented in this model with the Adam optimization 

algorithm which is a stochastic gradient descent technique based on adaptive estimation 

of the first-order and second-order moments. Hence, in this architecture, the weights and 

biases are updated for each iteration. 

3.6 Adam Optimization Algorithm 

It is the most popular optimization algorithm which has become common in most DL 

applications. It is an extension of the stochastic gradient descent technique designed 

specifically for training DL neural networks. In addition, it is computationally efficient, 

invariant to diagonal rescaling of gradients, has little memory requirement, and is well 

suited for larger problems in terms of data and parameters [68]. It is a combination of 

RMSprop and gradient descent with a momentum optimization algorithm. Adam uses 

estimations of first and second-order moments of the gradient to adapt the learning rate 

for each weight of the neural network and hence update network parameters in each 

iteration during the training process. The mathematical representation for first-order 
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moment and the second-order moment is given in Equation (3.13), Equation (3.14), 

Equation (3.15), and Equation (3.16). 

dwVV dwdw )1( 11  −+=                                        (3.13) 

Where, Vdw is the first-order moment or moving average of the gradient of weight 

parameter, β1 is the first-order moment constant (default value = 0.9), and dw is the 

gradient of the loss function in Equation (3.12) with respect to weight. 

dbVV dbdb )1( 11  −+=                                          (3.14) 

Where, Vdb is the first-order moment or moving average of the gradient of the bias 

parameter, and db is the gradient of the loss function in Equation (3.12) with respect to 

bias. 

2
22 )1( dwSS dwdw  −+=                                      (3.15) 

Where, Sdw is the second-order moment or moving average of the square of the gradient 

of the weight parameter, and β2 is the second-order moment constant (default value = 

0.999) 

2
22 )1( dbSS dbdb  −+=                                       (3.16) 

Where, Sdb is the second-order moment or moving average of the square of the gradient of 

the bias parameter 

Then, the correction in network parameters (weights and bias) in each iteration during the 

training process is represented in Equation (3.17) and Equation (3.18).  
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Where, α is the learning rate, and ∈ is a small constant (10-8) to avoid dividing by zero 

condition. 
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3.7 Improving and Optimization of CNN Network 

The process of designing and training a deep neural network is not definitive and is 

completed after certain pre-defined steps but rather an iterative process that is repeated 

after certain changes are adjusted from the analysis of results in the previous iteration. 

There are several design considerations involving decision-making in the choice of 

various constraints while designing a CNN. This might include various constraints like 

the number of layers in the network, number of hidden units in a layer, learning rate, 

choice of activation functions, choice of optimization algorithms, size of the input layer, 

size of filters, number of filters, approaches to address bias/variance problem, etc. There 

is no mathematically established proven method for the choice of these considerations, 

however, it depends on the nature of the problem, the source and nature of data, and other 

various factors. In this research work, various previous works were reviewed and then a 

standard CNN architecture was first developed to address the limitations of previous 

works in the classification of input CXR images. This standard architecture was then 

experimented with by training the model. Then, the result or performance of the model 

was observed and analyzed which provided the basis for tuning the network to address the 

problem. This process was repeated until a satisfactory performance was achieved giving 

an efficient CXRNet architecture. 

The various techniques that are implemented in this research work for the improvement 

and optimization of CNN architecture are discussed in this section. 

3.7.1 Bias/Variance Problem 

During the training of any DL models, the bias/variance problem is the most commonly 

observed problem which should be properly addressed to achieve an efficient model for 

real-world applications. In traditional ML applications, it was not possible to address bias 

or variance problems individually without offsetting the other one, hence, researchers 

worked on their tradeoff to achieve optimum results. However, with the introduction of 

DL architecture, there is no more tradeoff between bias and variance as one can be 

addressed without hurting the another. The bias/variance problem is defined based on 

three metrics: (a) Bayes error, (b) train error, and (c) validation error. The Bayes error is 

the lowest possible prediction error that can be achieved for any classifier and is 



43 

 

equivalent to the irreducible error. In computer vision, NLP, and speech recognition 

applications, Bayes error is nearly equivalent to human-level error as humans are very 

good at natural perception tasks. In a DL model, it is said to have a high bias problem if 

the training error is large as compared to the Bayes error, and the gap between two errors 

is also called avoidable bias. If avoidable bias is large, it is necessary to spend time and 

resources on bias correction. On the other hand, a DL model is said to have a high 

variance problem if the validation error is large compared to the training error. The high 

variance problem is also an indication of overfitting of the model, which is performing 

well for the training dataset, however, is not able to perform well on other datasets that 

are not part of training the model. In such a situation, it is necessary to implement 

variance reduction techniques in the DL model. There are four different scenarios of 

bias/variance problems which are discussed below. 

(i) High bias/high variance: Need for both bias correction and variance reduction 

techniques. 

(ii) High bias/low variance: Need for only bias correction techniques. 

(iii) Low bias/high variance: Need for only variance reduction techniques. 

(iv) Low bias/low variance: Desired condition.  

To address the bias/variance problem, it is necessary to know the bias correction and 

variance reduction techniques. In this research work, a working procedure was followed 

to address the bias-variance problem while designing an efficient CNN architecture which 

is shown in Fig. 3.11. The two basic goals of designing a DL neural network are (a) to 

optimize the cost function or loss in the network (reduce bias), and (b) to enhance the 

generalizability of the network (reduce variance or overfitting). In this regard, the 

working procedure was developed where different bias correction techniques and 

variance correction techniques are addressed during model training process. First, the 

training accuracy of the model was observed if there is a high bias problem. If there is 

high bias condition, then several bias correction techniques were implemented, and the 

process was repeated again and again finally producing high training accuracy. Once the 

high bias condition was addressed, then the process was repeated to address high variance 

condition. The developed working procedure is applicable not only in this research work 

but also can be of significant value in designing any DL networks. 
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Fig. 3.11: Working procedure to address bias/variance problem while designing proposed  

CXRNet architecture. 

3.7.2 Input Shape 

Image rescaling is one of the important pre-processing steps necessary to rescale the 

shape of the image as per the input shape of the CXRNet architecture. Hence, the choice 

of input image shape is a key factor that determines the performance and computational 

complexity of the model. Using smaller images will reduce the computational cost, 

however, there will be a loss in information resulting in poor model performance. On the 

other hand, using larger images will preserve the information, however, it will introduce 

computational costs (training time, memory requirement, etc.). However, increasing the 
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image shape after a certain point will not result in much difference in model performance 

compared to added computational cost. Thus, finding the optimum input image shape is 

crucial in designing the optimum DL model. This can be achieved by training the model 

starting from a smaller input shape and then increasing the shape observing the 

performance until there is no significant increase in model performance. In this research 

work, the process was experimented with by training the model with an image shape 

starting from 126 × 126 dimensions. It was observed that by increasing the image shape 

beyond 224 × 224, there is no significant improvement in training performance, hence it 

is implemented as an input shape for the network. Also, all the CXR images are then 

reshaped into this shape as the images are originally of different dimensions. 

3.7.3 Model Checkpoint 

In this research work, a model checkpoint was implemented using the Keras Callbacks 

library to save the parameters of the CXRNet for the best model performance during the 

training process. The validation accuracy metric was monitored during each epoch to 

evaluate the best CXRNet model. During the training of the CXRNet for 50 epochs, the 

epoch producing the best validation accuracy was saved as the best CXRNet model. 

Later, the best CXRNet model was loaded for further evaluation of the performance of the 

model. 

3.7.4 Early Stopping 

In this research work, the early stopping technique was implemented using the Keras 

Callbacks library for early breaking of the model training if there is no improvement in 

validation accuracy by 0.01 step for 10 consecutive epochs. This was implemented to 

save time and resources during the training process. 

3.7.5 Hyperparameters Tuning 

Hyperparameters are parameters whose values control the learning process during model 

training and determine the values of model parameters (weights and bias) during the 

process. The values of hyperparameters are set before the model training and are said to 

be external to the model as the values are not changed during model training. Hence, 
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tuning or optimizing the hyperparameter is testing a set of hyperparameter values and 

observing the output as the measurement of the model performance to discover the 

optimum values. In DL architecture, there is a number of hyperparameters that can be 

categorized as follows. 

(i) Model hyperparameters: These hyperparameters determine the network 

structure. 

• Size of the network (number of layers, number of hidden units, 

network topology) 

• Kernel (size and type of the filter), etc. 

(ii) Algorithm hyperparameters: These hyperparameters affect the speed and 

quality of the learning process. 

• Learning rate 

• Batch size 

• Number of epochs, etc. 

In traditional ML models, various hyperparameter tuning approaches, such as grid search, 

randomized search, and Bayesian optimization can be implemented for hyperparameter 

optimization. However, these approaches are less efficient in the case of the DL model 

with a high-dimensional space of hyperparameter numbers [69]. Hence, in this research 

work, the priority index for different hyperparameters was set up based on their impact on 

model performance during the training process. Then the corresponding policy was 

implemented for tuning hyperparameters with the highest priority index thus reducing the 

need for tuning the parameters with minimum control over the training process. 

(i) The learning rate of the Adam optimization algorithm plays an important role 

during the model training process and is one of the hyperparameters with the 

highest priority index. It corresponds to the factor by which there is an update 

in the network parameters. Its value ranges between 0 and 1. Although a 

higher learning rate value ensures that there is a larger update in network 

parameters resulting in faster convergence of the error function, however, 
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there is a high probability of oscillation in the error function as the error 

converges to minima resulting in no more convergence in the loss function. 

On the other hand, although a lower value ensures the convergence of the loss 

function, however, the change is minimal, and it will take a long time to 

converge the training process. Hence, the learning rate policy is implemented 

in this research work to tune the value of the learning rate during model 

training to speed up the training process and address the problem of plateaus 

in gradient descents. This is achieved by setting up the initial learning rate to 

a maximum value of 0.001 to speed up the training process. Then, the 

learning rate was reduced by a factor of ½ if there is no increase in validation 

accuracy for three consecutive epochs to address the issue of the plateau in 

gradient descent. 

(ii) Model hyperparameters also play a vital role in model performance hence 

should be assigned a higher priority index in designing any DL architecture. 

In this work, model hyperparameters such as the number of hidden layers, 

and the number of hidden units are tuned as per Fig. 3.11 while other 

hyperparameters like kernel size {(3 × 3) for convolution filter, (2 × 2) for 

maxpooling}, choice of the activation function (ReLU in hidden layers, 

sigmoid in output layer), choice of optimization algorithms (Adam), etc. are 

set as per the standard practices for better model performance. 

(iii) The batch size determines the number of input CXR images that are loaded in 

one forward pass to compute the parameters of the network through 

backpropagation in a single iteration. A good batch size depends upon the 

working system like RAM and GPU size as the data is loaded into the 

memory. Smaller batch size represents a smaller portion of data; hence the 

learning curve is not always convergence. However, it requires less memory, 

and the update of parameters is much faster. On the other hand, a larger batch 

represents a larger portion of data hence, it maximizes the convergence of the 

learning curve. However, it requires larger memory and the update on 

parameters is much slower. In practice, batch sizes in the power of 2 are 

implemented to utilize GPU processing capability at its fullest. In this 

research work, a batch size of 32 is implemented to exploit the optimum GPU 

usage and produce good learning curve convergence as well.  
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CHAPTER 4 

 RESULTS AND DISCUSSIONS 

4.1 Introduction 

In this chapter, the experimental results obtained from the materials and methods 

described in Chapter 3 for the classification of input CXR images into five classes 

namely, cardiomegaly, COVID, normal, pneumonia, and tuberculosis are thoroughly 

analyzed and discussed. Thus, the results of various tasks performed in this research work 

are presented and discussed accordingly. Also, a set of evaluation metrics are defined, and 

the performance of the CXRNet as obtained from the training process is observed on the 

test datasets. In addition, it presents a comparative analysis of the performance of the 

proposed CXRNet with other related works. Finally, the strength and opportunities for the 

real-time adoption of the proposed model as a decision support system for clinical 

diagnosis of CXR images are presented exploring various challenges and limitations as 

well. 

4.2 Results 

This section presents the experimental results obtained from the various tasks performed 

in this research work as discussed in Chapter 3. 

4.2.1 Input Pre-processing and Augmentation 

In this research work, a set of image pre-processing techniques including data 

augmentation techniques as discussed in the previous chapter are implemented to prepare 

data before passing into the model. Once the images are loaded into the data loader, then 

the data generator generates the output images executing these pre-processing tasks. The 

train data generator is implemented in such a way that the generator shall generate new 

training images executing data augmentation techniques for every next epoch during 

model training to enhance the generalizability of the model and overcome the overfitting 

problem as well. The same generator is also used to generate new images of minority 

classes to create a balanced dataset for this research work. However, the test data 

generator only implements rescaling and resizing imaging pre-processing techniques to 
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evaluate the performance of the model in real-world datasets without any data 

augmentation tasks. The samples of images before and after implementing image pre-

processing and augmentation tasks are represented in Fig. 4.1.  
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Fig. 4.1: The samples of images before and after image pre-processing and augmentation 

tasks, (a) before, and (b) after. 

4.2.2 Model Training 

In this research work, the balanced dataset is randomly distributed into training and 

testing sets in various ratios to observe the performance of the CXRNet in different 

training-testing combinations. The distribution of the dataset is represented in Table 4.1 

where the training dataset is used for the model training while 50% of the testing dataset 

is used for model validation during the training process. There are a total of three 

different data distribution conditions where the model is trained and evaluated for each 

condition. The performance of the CXRNet is then evaluated on the testing dataset. 

Table 4.1: The distribution of the dataset for various training-testing splits 

Distribution Dataset 
Labels 

Total 
(0) (1) (2) (3) (4) 

70% Train, 

30% Test 

Training 2,967 2,974 2,987 3,009 3,004 14,941 

Testing 1,240 1,250 1,238 1,264 1,196 6,188 

80% Train, 

20% Test 

Training 3,398 3,386 3,404 3,402 3,381 16,971 

Testing 809 838 821 871 819 4,158 

90% Train, 

10% Test 

Training 3,801 3,834 3,790 3,847 3,776 19,048 

Testing 406 390 435 426 424 2,081 
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In Fig. 4.2 and Fig 4.3, the learning process of the proposed CXRNet model is 

represented for the first case where the total dataset is randomly distributed into 70% for 

training and 30% for testing the model. In this figure, the graph of training set accuracy vs 

validation set accuracy as well as training loss vs validation loss is presented during 

model training for 50 epochs. In this case, the proposed CXRNet has achieved the highest 

training accuracy value of 97.67% and the highest validation accuracy of 95.17% during 

the model training process.  

Similarly, in Fig. 4.4 and Fig. 4.5, the learning process of the proposed CXRNet model is 

represented for the second case where the total dataset is randomly distributed into 80% 

for training and 20% for testing the model. In this case, the proposed CXRNet has 

achieved the highest training accuracy value of 98.45% and the highest validation 

accuracy of 96.15% during the model training process. 

Lastly, in Fig. 4.6 and Fig. 4.7, the learning process for the third case is represented where 

the total dataset is randomly distributed into 90% for training and 10% for testing the 

model. In this case, the proposed CXRNet has achieved the highest training accuracy 

value of 96.41% and the highest validation accuracy of 96.2% during the model training 

process. 

 

Fig. 4.2: Training accuracy vs validation accuracy curve of proposed CXRNet model for 

70% - 30% data split condition. 
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Fig. 4.3: Training loss vs validation loss curve of proposed CXRNet model for 70% - 

30% data split condition. 

 

 

Fig. 4.4: Training accuracy vs validation accuracy curve of proposed CXRNet model for 

80% - 20% data split condition. 



53 

 

 
 

Fig. 4.5: Training loss vs validation loss curve of proposed CXRNet model for 80% - 

20% data split condition. 

 

 

Fig. 4.6: Training accuracy vs validation accuracy curve of proposed CXRNet model for 

90% - 10% data split condition. 
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Fig. 4.7: Training loss vs validation loss curve of proposed CXRNet model for 90% - 

10% data split condition. 

During the training of the proposed CXRNet model for three different dataset splits, the 

model achieved an average training accuracy of 97.51% and an average validation 

accuracy of 95.84% indicating the highest level of classification performance. The 

summary of the results is presented in Table 4.2. This result indicates that increasing the 

training dataset improves the performance of the model and the generalizability of the 

model in large data distribution. Also, there is a low bias and low variance in model 

performance which in turn supports the working procedure developed in this research 

work to address the bias/variance problem which is common in most of the relevant 

research works.  

Table 4.2: The summary of the results from CXRNet training for different dataset splits 

Dataset Split Training Accuracy (%) Validation Accuracy (%) 

Case I (70% - 30%) 97.67 95.17 

Case II (80% - 20%) 98.45 96.15 

Case III (90% - 10%) 96.41 96.2 

Average 97.51 95.84 
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The graph of the learning rate obtained during the training process for three different 

cases is presented in Fig. 4.8 which indicates that the learning rate policy has been 

implemented accordingly to address the problem of plateaus as well. 

 

Fig. 4.8: Graph of learning rate values during model training, (a) 70% - 30% split, (b) 

80% - 20% split, and (c) 90% - 10% split. 

Also, the impact of dropout layer and data augmentation techniques are experimented 

with by training the model without applying these techniques. The observation of model 

performance during the training process is presented in Fig. 4.9 and Fig. 4.10. In these 

figures, it is observed that there is a huge difference between train and validation accuracy 

or between train and validation loss. Also, validation loss starts increasing after certain 

iterations indicating an overfitting problem in the model. These figures support that, the 

implementation of these techniques in this research work played a vital role to address the 

overfitting problem that is common in various DL models. 

 

(a) (b) 

(c) 



56 

 

In this research work, to find the appropriate input shape of the proposed CXRNet, the 

model has been trained for several input shape conditions. The observations for three 

different input image shapes are shown in Fig. 4.11 where it is observed that increasing 

image shape beyond 224 × 224 doesn’t significantly improve the training performance of 

the model which is then approved as an appropriate input shape of the CXRNet model. 

 

Fig. 4.9: Model performance without data augmentation techniques, (a) accuracy graph, 

and (b) loss graph. 

 

 

Fig. 4.10: Model performance without dropout layers, (a) accuracy graph, and (b) loss 

graph. 

 
(b) (a) 

 
(b) (a) 
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Fig. 4.11: Training performance of the model for different image shapes, (a) accuracy 

graph, and (b) loss graph. 

4.3 Qualitative Evaluation 

Once the model training process is completed, it is then necessary to evaluate the 

classification performance of the model in the test dataset. This is necessary to observe 

the generalizability of the model in diverse dataset environments and hence to validate the 

performance for real-time adoption of the model as a decision support system in clinical 

settings. For this, four common evaluation metrics namely, accuracy, recall, precision, 

and f1-score are employed to assess the proposed model. To evaluate these metrics, the 

following terms are defined first. 

(i) True Positive (TP): It refers to an object corresponding to the positive class 

and also predicted to the same class by the model. 

(ii) False Positive (FP): It refers to an object corresponding to the negative class, 

however, predicted as positive by the model. 

(iii) True Negative (TN): It refers to an object corresponding to the negative class 

and also predicted to the same class by the model. 

(iv) False Negative (FN): It refers to an object belonging to a positive class, 

however, predicted as negative by the model. 
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In correspondence to the above parameters, the four evaluation metrics are represented 

mathematically by Equations (4.1), (4.2), (4.3), and (4.4). 

)/()( FNFPTNTPTNTPAccuracy ++++=                      (4.1) 

)/( FPTPTPPrecision +=                                                    (4.2) 

 )/( FNTPTPRecall +=                                                     (4.3) 

RecallPrecision
scoreF

/11

2
1

+
=−                                       (4.4) 

In this research work, the total dataset is randomly distributed into three different train-

test splits, so the model performance is evaluated for three different conditions. The 

corresponding evaluation metrics and the confusion matrix for each case are also 

presented accordingly. These metrics represent the performance of the proposed CXRNet 

model in predicting the input images in one of five different classes. The evaluation 

metrics of the CXRNet on the test dataset from 70% - 30% data split condition is 

presented in Table 4.3 while the confusion matrix for this condition is shown in Fig. 4.12. 

Precision provides the accuracy of the model over total positive label predictions while 

recall measures the total correct true predictions by the model over total ground truth 

positives. The F1-score value is simply the harmonic mean of precision and recall value. 

In this case, an average accuracy of 95%, a precision of 95%, a recall of 95%, and an f1-

score of 95% were achieved on the test dataset. 

Table 4.3: Experimental performance metrics results of CXRNet on 70% - 30% split case 

X-ray Category Precision Recall F1-score Support 

Cardiomegaly 0.91 0.96 0.93 1240 

COVID 0.95 0.94 0.95 1250 

Normal 0.94 0.89 0.92 1238 

Pneumonia 0.97 0.97 0.97 1264 

Tuberculosis 0.98 0.98 0.98 1196 

Average 0.95 0.95 0.95 6188 
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Fig. 4.12: The resulting confusion matrix of the CXRNet on 70% - 30% split case. 

Similarly, the evaluation metrics of the CXRNet on the test dataset from 80% - 20% data 

split condition is presented in Table 4.4 while the confusion matrix for this condition is 

shown in Fig. 4.13. In this case, an average accuracy of 96%, a precision of 95%, a recall 

of 95%, and an f1-score of 95% were achieved on the test dataset. 

Table 4.4: Experimental performance metrics results of CXRNet on 80% - 20% split case 

X-ray Category Precision Recall F1-score Support 

Cardiomegaly 0.95 0.97 0.96 809 

COVID 0.95 0.96 0.96 838 

Normal 0.87 0.93 0.90 821 

Pneumonia 0.98 0.90 0.94 871 

Tuberculosis 1.00 0.98 0.99 819 

Average 0.95 0.95 0.95 4158 
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Fig. 4.13: The resulting confusion matrix of the CXRNet on 80% - 20% split case. 

In the third case, the evaluation metrics of the CXRNet on the test dataset from 90% - 

10% data split condition is presented in Table 4.5 while the confusion matrix for this 

condition is shown in Fig. 4.14. In this case, an average accuracy of 96%, a precision of 

96%, a recall of 96%, and an f1-score of 96% were achieved on the test dataset. 

Table 4.5: Experimental performance metrics results of CXRNet on 90% - 10% split case 

X-ray Category Precision Recall F1-score Support 

Cardiomegaly 0.95 0.96 0.95 406 

COVID 0.96 0.95 0.96 390 

Normal 0.95 0.93 0.94 435 

Pneumonia 0.96 0.98 0.97 426 

Tuberculosis 0.99 0.99 0.99 424 

Average 0.96 0.96 0.96 2081 
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Fig. 4.14: The resulting confusion matrix of the CXRNet on 90% - 10% split case. 

The summary of the evaluation metrics of the proposed CXRNet model on three different 

dataset split conditions is presented in Table 4.6. The model achieved an accuracy of 

95.66%, a precision of 95.33%, a recall of 95.33%, and an f1-score of 95.33% on average 

indicating superior performance in comparison to other relevant multi-class classification 

research works.  

Table 4.6: The summary of evaluation metrics of the CXRNet model 

Dataset Split Precision (%) Recall (%) F1-score (%) Accuracy (%) 

Case I (70% - 30%) 95 95 95 95 

Case I (80% - 20%) 95 95 95 96 

Case I (90% - 10%) 96 96 96 96 

Average 95.33 95.33 95.33 95.66 
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Also, in this research work, the performance of the proposed CXRNet on binary 

classification tasks has been investigated as well. For this, the output layer of CXRNet for 

multi-class classifications is modified into two class classifications by substituting final 

dense layer with two output nodes and then the model is trained with one of the 

abnormalities case and normal case CXR images in 80% - 20% split conditions. The 

evaluation metrics are presented in Table 4.7 while the corresponding confusion matrix is 

shown in Fig. 4.15. The CXRNet is able to achieve an accuracy of 97.75%, a precision of 

97.75%, a recall of 97.75%, and an f1-score of 97.75% on average indicating the superior 

performance of the model in binary classification tasks as well in comparison to other 

relevant research works. 

Table 4.7: Experimental performance metrics results of CXRNet on the binary 

classification task 

X-ray Category Precision Recall F1-score Support 

A. Cardiomegaly vs Normal 

Cardiomegaly 0.94 0.98 0.96 809 

Normal 0.98 0.94 0.96 821 

Average 0.96 0.96 0.96 1630 

B. COVID vs Normal 

COVID 0.97 0.99 0.98 838 

Normal 0.99 0.97 0.98 821 

Average 0.98 0.98 0.98 1659 

C. Pneumonia vs Normal 

Pneumonia 0.98 0.97 0.98 821 

Normal 0.98 0.98 0.98 871 

Average 0.98 0.98 0.98 1692 

D. Tuberculosis vs Normal 

Tuberculosis 0.99 0.99 0.99 821 

Normal 0.99 0.99 0.99 819 

Average 0.99 0.99 0.99 1640 

Overall Average 0.9775 0.9775 0.9775 6,621 
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Fig. 4.15: The resulting confusion matrix of the CXRNet for binary classification task, (a) 

Cardiomegaly vs Normal, (b) COVID vs Normal, (c) Pneumonia vs Normal, 

and (d) Tuberculosis vs Normal. 

 

 

 
(c) (d) 
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4.4 Comparison with Related Works 

After understanding the performance of the proposed model on test dataset, it is necessary 

to compare the performance of the model with other relevant research works for a better 

understanding of the overall outcome and contribution of this research in the related field. 

In addition, this outlines the limitations and challenges that are able to address by this 

research work in the existing relevant field and also discloses the new scopes for 

improvement as well. Hence, this section provides the comparative analysis on the 

performance of the proposed CXRNet model with other relevant model that are reviewed 

in Chapter 2. The comparative analysis of the performance of the proposed CXRNet 

model with the other relevant research works is presented in Table 4.8. 

There are a large number of research works on automatic disease detection based on chest 

radiography using CNN. Most of these works are based on small-size datasets from single 

data sources and hence are limited to generalization capability of the model in diverse 

data source environments. Also, majority of the works are only a few class classification 

models with only two or three output classes. However, the limited findings of these 

models are not practical in real time application as a CXR image is used in diagnosis of 

multiple abnormalities.  

Similarly, many of the research works made use of the transfer learning approach by 

using various pre-trained models for feature extraction. However, these pre-trained 

models are not only trained with the CXR dataset, hence, there is need for fine tuning 

with CXR dataset for effective performance. Hence, without fine tuning, transfer learning 

from the pre-trained model may involve negative transfer when the CNN is pre-trained on 

data not similar to a chest radiograph.  

Hence, this research work addresses these discussed issues and challenges by developing 

a custom CNN architecture from scratch that can classify input chest radiographs into five 

different classes. At the same time, the model is trained across a diverse set of data source 

environment and the performance is validated on real time dataset from different hospitals 

thus offering the generalizability of the model in real time adoption as an efficient 

decision support system. Although, the performance of the model is superior to relevant 

research work, it is still not absolutely perfect. 



65 

 

Table 4.8: Comparison of the proposed CXRNet model with other related research works 

Research Dataset Method Used Output Classes Precision(%) Recall(%) F1-Score(%) Accuracy(%) 

A. Pneumonia Detection 

(O. Stephen et 

al., 2019) 

5,856 CXR 

images 
CNN from scratch 

Two (Pneumonia 

vs Normal) 
- - - 93.7 

(R. Jain et al., 

2020) 

5,216 CXR 

images 

CNN with pre-trained models 

(VGG16, VGG19, ResNet50, 

and Inception-v3) 

Two (Pneumonia 

vs Normal) 
97 90 93.4 92.3 

(M. M. Eid et 

al., 2021) 

5,863 CXR 

images 

Pre-trained CNN(ResNet-50) 

with SVM 

Two (Pneumonia 

vs Normal) 
100 96.4 98.2 98.1 

(O. A. 

Fagbuagun et 

al., 2022) 

5,856 CXR 

images 
Pre-trained CNN (Inception-V3) 

Two (Pneumonia 

vs Normal) 
90 85 87 88.1 

(A. Mabrouk et 

al., 2022) 

5,856 CXR 

images 

Ensemble learning based on pre-

trained CNN models 

(DenseNet169, MobileNetV2, 

and Vision Transformer) 

Two (Pneumonia 

vs Normal) 
93.7 93 93.4 93.9 

(E. Ayan et al., 

2022) 

5,856 CXR 

images 

Ensemble learning based on pre-

trained CNN models (ResNet-50, 

Xception and MobileNet) 

Two (Pneumonia 

vs Normal) 
95.9 95.2 95.5 95.8 

(M. W. Kusk et 

al., 2023) 

5,856 CXR 

images 

Custom sequential CNN for 

dataset at different noise levels 

Two (Pneumonia 

vs Normal) 
- - - 96.8 – 97.6 

Proposed 

Work 

8,498 CXR 

images 

CXRNet for binary 

classification 

Two (Pneumonia 

vs Normal) 
98 98 98 98 
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B. COVID Detection 

(T. Ozturk et 

al., 2020) 

1,125 CXR 

images 

DarkNet-19 model as a classifier 

for the YOLO real time object 

detection system 

Two (COVID vs 

No findings) 
89.9 85.3 87.3 87 

(T. Rahman et 

al., 2021) 

18,479 CXR 

images 

U-Net model for lung 

segmentation and pre-trained 

model (ChexNet) for 

classification 

Three (COVID vs 

non-COVID lung 

opacity vs 

Normal) 

94.5 94.5 94.5 95.1 

(J. L. Gayathri 

et al., 2022) 

1,046 CXR 

images 

Pre-trained CNN models 

(InceptionResnetV2 and 

Xception) 

Two (COVID vs 

non-COVID) 
95.6 95.6 95.6 95.8 

(S. Sanket et al., 

2022) 

657 CXR 

images 

CovCNN model based on deep-

CNN architecture 

Two (COVID vs 

non-COVID) 
- - - 98.4 

(A. Kumar et 

al., 2022) 

13,975 CXR 

images 

SARS-Net (custom-made DL 

architecture) 

Three (Normal vs 

non-COVID vs 

COVID) 

94.5 94.6 94.5 97.6 

Proposed 

Work  

8,449 CXR 

images 

CXRNet for binary 

classification 

Two (COVID vs 

normal) 
98 98 98 98 

C. Tuberculosis Detection 

(S. I. Nafisah et 

al., 2022) 

1,098 CXR 

images 

Pre-trained CNN models 

(EfficientNetB3) 

Two (TB vs no-

TB) 
98.3 98.3 98.3 98.7 

(V. Acharya et 

al., 2022) 

3,500 CXR 

images 

ImageNet model fine-tuned 

NFNets 

Two (Healthy vs 

TB) 
96.3 91.8 93.9 96 

(E. Showkatian 

et al., 2022 ) 

2,160 CXR 

images 

ConvNet (CNN model from 

scratch) 

Two (Healthy vs 

TB) 
88 87 87 87 
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(S. S. Guia et 

al., 2023) 

7,000 CXR 

images 

Pre-trained CNN models 

(VGG16 and VGG19) 

Two (TB vs 

normal) 
- - - 99 

Proposed 

Work 

8,425 CXR 

images 

CXRNet for binary 

classification 

Two 

(Tuberculosis vs 

normal) 

99 99 99 99 

D. Multiple abnormalities Detection 

(A. I. Khan et 

al., 2020) 

1,234 CXR 

images 

CoroNet (model based on 

Xception pre-trained 

architecture) 

Four (COVID vs 

Pneumonia 

bacterial vs 

Pneumonia viral 

vs normal) 

90 89.29 89.8 89.6 

(A. Musha et 

al., 2022) 

3,788 CXR 

images 

DL model based on YOLOv2 

with residual network 

architecture 

Three (COVID vs 

Pneumonia vs 

normal) 

97.4 97.4 97.4 

97.3 

 

 

(F. Bayram et 

al., 2022) 

3,886 CXR 

images 

Fusion based DL model 

implemented by a multi-stream 

CNN 

Three (COVID vs 

Pneumonia vs 

normal) 

97.8 97.8 97.8 97.7 

(M. Loey et al., 

2022) 

10,848 CXR 

images 

Bayesian-based optimized DL 

model 

Three (COVID vs 

Pneumonia vs 

normal) 

96 96 96 96 

(I. Kanjanasurat 

et al., 2023) 

16,210 images 

(9,271 CXR & 

6,939 CT) 

Combination of CNN and RNN 

where CNN used for feature 

extraction and RNN for 

classification 

Three (COVID vs 

Pneumonia vs 

normal) 

93.7 93.4 93.5 93.4 

Proposed 

Work 

21,129 CXR 

images 

CXRNet (CNN architecture 

from scratch) 
Five 95.3 95.3 95.3 95.7 
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4.5 CXRNet as a Clinical Diagnosis and Decision Support System 

The performance of the DL model is always compared to the human-level performance. If 

an experienced radiologist with 20 years of experience can classify the test dataset with 

97% or higher accuracy, then another radiologist with just 5 years of experience may 

classify the same dataset with 92% or less accuracy. Thus, human performance is always 

subjected to diagnostic level and other various factors as well. On the other hand, there is 

a large number of people who do not have access to medical imaging expertise even 

today. At the same time, even in countries with highly advanced healthcare systems, 

radiograph interpretation demands a radiologist’s time and expertise. However, 

experienced radiologists are still subjected to human limitations like fatigue and various 

biases leading to errors during radiograph interpretation. In such a situation, the results 

presented in this research work demonstrate that a CNN can be used to successfully detect 

diseases in chest radiographs at a level comparable to or even higher than practicing 

radiologists. This research work has developed the CXRNet model that can classify input 

chest radiographs into one of five classes namely Cardiomegaly, COVID, Normal, 

Pneumonia, and Tuberculosis offering an adequate number of findings for real-time 

implementation as well. In addition, this work also implemented the output visual aid 

generating the activation maps depicting discriminative areas from the last convolution 

layer of the proposed CNN architecture for each class classification. In Fig. 4.16, the 

input original images and their corresponding activation map output from the last 

convolution layer of this proposed CNN model are presented. 
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Fig. 4.16: Predicted images from the proposed CXRNet model with its corresponding 

heat-map activated image from last convolutional layer: (a) Cardiomegaly 

original image, (b) Heat-map activated Cardiomegaly image, (c) COVID 

original image, (d) Heat-map activated COVID image, (e) Normal original 

image, (f) Heat-map activated Normal image, (g) Pneumonia original image, 

(h) Heat-map activated Pneumonia image, (i) Tuberculosis original image, and 

(j) Heat-map activated Tuberculosis image. 

In Fig. 4.17, an illustration of the graphical abstract of this research work in real-time 

clinical integration for the clinical diagnosis and decision support system is presented. 

The clinical integration of this system would contribute greatly as a decision support 

system to patient care by reducing the time to diagnosis and facilitating the access to 

interpretation of chest radiographs thereby addressing the issues of missed information 

and misinterpretation as well. 

4.6 Discussion 

Today, there are large numbers of research works based on DL technologies for the 

automatic classification of CXR images. However, the real-time adoption of these models 

in the clinical environment is still a challenge due to various limitations which are well 

discussed and highlighted in the literature review and problem statement section. These 

limitations mainly include: (a) lower accuracy or inefficient performance, (b) limited 

findings, (c) limited generalizability over the dataset, (d) use of pre-trained modes trained 

without fine-tuning on CXR dataset (e) lack of validation on development set dataset, (f) 

computationally and economically expensive. In this research, various strategies and 
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techniques are implemented to address these limitations which are discussed in various 

sections of this research paper. A rigorous iterative approach was pursued to address these 

limitations in designing an efficient CNN architecture from the scratch with superior 

model performance on the test data set as well. Likewise, the dataset from various sources 

was acquired to produce adequate findings including four major abnormalities in the CXR 

image, also addressing the generalizability of the model across the dataset. Also, the CNN 

architecture is designed from scratch and is validated on the development set data from 

hospitals, hence is not computationally and economically expensive for the real-time 

implementation of the system as a decision support system in the clinical environment. 

. 

Fig. 4.17: An illustration of graphical abstract of this research work in clinical diagnosis 

and decision support system. 
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Although the results are overwhelming and are superior to other related works, it is still 

not perfect. So, there is still some room for improvement in this model. First, although 

datasets from four multiple sources are combined, it is still not sufficient enough as the 

deep learning algorithms tend to work better with the larger dataset. Second, a chest 

radiograph can be used as a diagnostic tool for a large number of lung diseases, however, 

this model is capable of only five class classification tasks which can be improved for 

multiple classes. Third, only frontal radiographs were accessed for developing this model, 

however, accurate diagnoses require a lateral view as well. The lack of datasets limits the 

performance of this model for a wide range of disease classifications. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORKS 

5.1 Outcomes 

Chest radiograph plays a significant role in the diagnosis of various lung diseases, and it 

is popularly used as a first-line diagnostic tool worldwide. However, the correct 

interpretation of information while reading a chest radiograph is a major challenge even 

for experienced radiologists. On the other hand, the majority of the research works based 

DL techniques for automatic diagnosis of abnormalities in CXR face serious challenges in 

real-time adaptation in clinical practice due to several limitations. In this regard, this 

research work plays a vital role to address these issues. The outcomes of this research 

work are listed below: 

(i) An efficient CNN model (CXRNet) is developed from scratch to detect 

Cardiomegaly, COVID, Normal, Pneumonia, and Tuberculosis cases from 

input chest radiographs. 

(ii) The model has achieved an accuracy of over 95%  which is comparatively 

equivalent or even superior to human-level performance. 

(iii) A generalized dataset of five different labels is developed by gathering data 

from several publicly accessible sources. 

(iv) A robust image processing algorithm incorporating various pre-processing 

techniques and data augmentation techniques is developed and the impact on 

model performance is observed.  

(v) The comparative analysis of the model performance with various relevant 

research works is performed and also the strength of the proposed CXRNet is 

highlighted addressing the limitations of other research works. 

(vi) Various policies for improving the network performance and optimization 

algorithms for the model checkpoint, early stopping, and hyperparameters 

tuning is established. 

(vii) It developed a working procedure to design an efficient CNN architecture 
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from scratch and then optimization of the architecture for improving 

performance by addressing various issues during model training. The 

techniques, algorithms, and policies implemented in this research work are 

not only limited to this work but are of great importance to those who are 

looking forward to developing any DL applications.  

5.2 Limitations 

The performance of the model developed in this thesis is equivalent or even superior to 

other related research work. However, it is still not absolutely perfect which is limited due 

to various constraints. Some of the limitations of this research work include: 

(i) The classification of CXR images is limited to five classes, however, in 

practice, multiple other abnormalities can be detected from CXR 

interpretation. 

(ii) Only frontal radiographs were accessed for developing this model; however, 

more absolute diagnoses may require lateral view as well. The lack of 

datasets limits the performance of this model for a wide range of disease 

classifications.  

5.3 Future Work 

Today, the application of DL techniques in the medical field is growing rapidly and a 

large number of research works are carried out to address various issues in this field. In 

this context, the CNN model developed, and the strategies implemented for network 

optimization in this thesis provide motivation for future research indicating areas that can 

be improved for the further development of a robust decision support system. The 

recommended areas of future work include the following: 

(i) Real-time validation, testing, and debugging of the model in clinical practice 

to implement the model as an efficient decision support system for 

radiologists. 

(ii) Development of a model that could classify multiple pulmonary diseases that 
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can be achieved from the interpretation of the CXR image and the 

localization of the abnormalities. 

(iii) In real-world practice, diagnosis of certain abnormalities requires CXR 

followed by CT or MRI, hence, integration of CXR with CT and MRI images 

to expand the domain of decision support systems in real-world applications 

is a significant research area. 
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