INDRAJIT KUMAR PAUL

M. Engineering THESIS

DEPARTMENT OF CIVIL ENGINEERING MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY DHAKA, BANGLADESH

JULY 2023

INDRAJIT KUMAR PAUL (SN. 0418110011)

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Civil Engineering

DEPARTMENT OF CIVIL ENGINEERING MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY DHAKA, BANGLADESH

JULY 2023

M. Engineering Thesis

By

INDRAJIT KUMAR PAUL (SN. 0418110011)

Approved as to style and content by the Board of Examination on 23 July 2023:

Professor Dr. Md Zoynul Abedin Department of Civil Engineering MIST, Dhaka Chairman (Supervisor) Board of Examination

Associate Professor Lt Col Mohiuddin Ahmed (Retd.), PhD Department of Civil Engineering MIST, Dhaka Member (Internal) Board of Examination

Professor Dr. Mehedi Ahmed Ansary Department of Civil Engineering BUET, Dhaka Member (External) Board of Examination

Department of Civil Engineering MIST, Dhaka

DECLARATION

I hereby declare that the study reported in this thesis entitled as above is my own original work and has not been submitted before anywhere for any degree or other purposes. Further, I certify that the intellectual content of this thesis is the product of my own work and that all the assistance received in preparing this thesis and sources have been acknowledged and cited in the reference section.

Indrajit Kumar Paul

Department of Civil Engineering MIST, Dhaka

A Thesis

By

Indrajit Kumar Paul

DEDICATON

Dedicated to my most reverend mother and to the memory of my beloved father.

ABSTRACT

Penetration Test Parameters and Their Correlations for Soils from Selected Locations of Bangladesh

Local geological information plays an important role in determining the soil parameters required for designing of foundations. Cone penetration test (CPT) and standard penetration test (SPT) are the most widely used penetration test methods in investigating subsoil condition of a site. Though both the methods, in principles, determines the similar soil parameters and their extent, yet there are marked difference in acquiring the subsoil information. The CPT is a continuous method of penetration using static loading, while SPT is a dynamic and intermittent method of investigation. There are many relations reported by various investigators and they are, however, based on broad qualitative categories of soil. With these concerns, the present study was mainly aimed at finding the relations of the soil parameters obtained from both the investigation methods and engineering soil classes. In total 24 CPT tests were conducted at a site within the proximity SPT borehole's locations of radial distances of 6 m. Soil profiles were prepared using both CPT and SPT data, and similar types of soil were isolated from all the soil profiles for statistical analysis. If case where no consensus soil profiles were obtained SPT profile was given preference. Five classes of soil were considered for investigation like sand and silty sand (SM), silt of low plasticity (ML), silt of high plasticity (MH), clay of low plasticity (CL) and clay of high plasticity (CH).

The analyses indicated that strong linear correlations existed between field SPT N-value, and both CPT cone resistance and sleeve friction for non-plastic silty sand (SM). For non-plastic silt (ML), silt of high plasticity (MH) and clay of low plasticity (CL), moderate linear correlations were obtained. For clay of high plasticity (CH), a moderate linear correlation was observed between field SPT N-value and CPT cone resistance, however, a very weak correlation was found between SPT N-value and CPT sleeve friction. For sandy soil CPT and SPT were found to assess reasonably identical soil profiles. Some deviations were noticed in identifying finer soil layer like silt and clay.

সারসংক্ষেপ

Penetration Test Parameters and Their Correlations for Soils from Selected Locations of Bangladesh

মাটির দৃঢ়তা শক্তি বা ভারবহন ক্ষমতা নির্ধারন তথা ফাউন্ডেশন ডিজাইনের ক্ষেত্রে ভূতাত্ত্বিক ও জিওটেকনিক্যাল তথ্যের গুরুত্ব অপারিসীম। কোন স্থানের ভূ-গর্ভস্থ মাটির দৃঢ়তা বৈশিষ্ট্য যে সকল প্রক্রিয়ায় নির্ণয় করা যায় তার মধ্যে দুইটি ভেদন প্রতিবন্ধকতা (পেনিট্রেসন রেজিস্টেনস) পরীক্ষা যথা কোন পেনিট্রেসন পরীক্ষা (CPT) ও স্ট্যান্ডার্ড পেনিট্রেসন পরীক্ষা (SPT) অন্যতম। কোন পেনিট্রেসন পরীক্ষা (CPT) সাধারনত স্থির বা চাপ শক্তি এবং স্ট্যান্ডার্ড পেনিট্রেসন পরীক্ষা (SPT) ঘাত বা গতি শক্তি দ্বারা সম্পন্ন করা হয়। আবার, CPT পরীক্ষা কোন নির্ধারিত গভীরতা পর্যন্ত নিরবিচ্ছিন্ন ভাবে করা হয় যার জন্য মাটিতে কোন গর্ত (বোরহোল) করার প্রয়োজন পড়ে না, পক্ষান্তরে মাটিতে গর্ত (বোরহোল) করে বিভিন্ন অর্ন্তবর্তী গভীরতায় SPT পরীক্ষা সম্পন্ন করা হয়। এ ছাড়াও SPT পরীক্ষায় মাটির নমনা প্রত্যক্ষভাবে সংগ্রহ করা যায়, কিন্তু CPT পরীক্ষায় প্রাপ্ত তথ্য বিশ্লেষণ পূর্বক পরোক্ষভাবে মাটির ধরন অনুমান করা হয়। এই সব ভিন্নতার কারনেই এ দুইটি পদ্ধতির মাধ্যমে সম্পন্ন পরীক্ষা দ্বারা মাটির দৃঢ়তা বৈশিষ্ট্য নির্ধারন ও মাটির স্তর বিন্যাসে (সয়েল প্রোফাইল) ভিন্নতা থাকা যেমন অস্বাভাবিক নয়, তেমনি তাদের মধ্যে কোন সাদৃশ্য আছে কিনা তাও গবেষণা করা যাইতে পারে। অতীতে গবেষকগন বিভিন্ন দেশে তাদের মাটির উপর গবেষণা পরিচালনা করেছেন, কিন্তু বাংলাদেশের মাটির উপর এ সঙ্ক্ষান্তে গবেষণা খুবই কম, বিশেষ করে বিভিন্ন সংসক্তি (কোহেসিভনেস) ও দানা বা কণা দ্বারা ঘটিত মাটিস্তরের উপর। এসব বিষয়গুলি বিবেচনা করেই. CPT ও SPT এ দুটি পেনিট্রেসন পরীক্ষায় প্রাপ্ত তথ্যের মধ্যে কোন সাদৃশ্য বা সম্পর্ক আছে কিনা তা নির্ণয়ের জন্য বর্তমান গবেষনাটি হাতে নেওয়া হয়। বাংলাদেশের একটি প্রকল্পস্থানে ৩০ মিটার গভীরতার ২৪ টি CPT পরীক্ষা হয় এবং প্রতিটি CPT স্থানের সন্নিকটে ৬ মিটার ব্যাসার্ধের মধ্যে SPT পরীক্ষাও করা হয়। উভয় পরীক্ষার তথ্যের ভিত্তিতে মাটির স্তর বিন্যাস করা হয় এবং বিভিন্ন ধরনের মাটির জন্য তথ্যগুলি পৃথক করা হয়। প্রকল্প স্থানের ভূ-গর্ভস্থ মাটির স্তরে সংসক্তিহীন বালি মাটি (SM), কম সংসক্তির মিহিদানার মাটি (ML), বেশি সংসক্তির মিহিদানার মাটি (MH), কম সংসক্তির সুক্ষকণার মাটি (CL) এবং বেশি সংসক্তির সুক্ষকণার মাটি (CH), এই পাঁচ শ্রেণির মাটি পাওয়া যায়।

কোন্ পেনিট্রেসন পরীক্ষা (CPT) এবং স্ট্যান্ডার্ড পেনিট্রেসন পরীক্ষা (SPT) পরীক্ষা থেকে প্রাপ্ত তথ্য পরিসংখ্যানগত বিশ্লেষণে দেখা যায় যে, সংসক্তিহীন (কোহেসনলেস) বালি মাটির (SM) ক্ষেত্রে SPT N-মানের সাথে CPT পরীক্ষার কোন্ পেনিট্রেসন প্রতিবন্ধকতা (কোন্ পেনিট্রেসন রেজিস্টেনস) ও স্লিভ ফ্রিক্সান

ii

প্রতিবন্ধকতা উভয়েরই শক্তিশালী সরল সম্পর্ক বিদ্যমান। পক্ষান্তরে, কম সংসক্তির মিহিদানার মাটি (ML), বেশি সংসক্তির মিহিদানার মাটি (MH) ও কম সংসক্তির সূক্ষ্মকণার মাটির (CL) ক্ষেত্রে মাঝারি ধরনের সরল সম্পর্ক রয়েছে। অন্যদিকে, বেশি সংসক্তির সূক্ষ্মকণার মাটির (CH) ক্ষেত্রে CPT কোন্ পেনিট্রেসন রেজিস্টেনস এর মাঝারি রৈখিক সম্পর্ক পরিলক্ষিত হলেও, SPT N এর সাথে CPT স্লিভ ফ্রিক্সান এর খুবই দুর্বল সম্পর্ক পাওয়া যায়। মাটির স্তর বিন্যাস (সয়েল প্রোফাইল) নির্ধারণে সংসক্তিহীন বালি মাটির (সেন্ড) জন্য CPT এবং SPT তে প্রায় একই ধরনের বিন্যাস পরিলক্ষিত হয়। মিহিদানার মাটি (সিন্ট) এবং সূক্ষ্মকণার মাটির (ক্রে) স্তর বিন্যাসে দুইটি পেনিট্রেসন পরীক্ষার ক্ষেত্রে কিছু অমিল পাওয়া যায়।

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis supervisor, Dr. Md. Zoynul Abedin, Professor of Civil Engineering, Military Institute of Science and Technology, for his supervising support, helpful discussion, and valuable ideas throughout my master's study. Special appreciation must also be extended to Mr. Md. Nurul Amin, Managing Director, Foundation Consultations Ltd., who expired recently, for his CPT and SPT test supply data. I am also very grateful to Dr. Tanvir Mustafy, Assistant Professor, Department of Civil Engineering, Military Institute of Science and Technology, for his support and help in statistical analysis.

Acknowledgements are due to Mr. Md. Ashraful Alam, Director General, Housing and Building Research Institute (HBRI). My sincere appreciation also goes to my Colleague Dr. Partha Saha, Senior Research Engineer, Soil Mechanics and Foundation Engineering Division, HBRI, for his knowledge-sharing discussion in the geotechnical engineering field. I could not have completed my degree without the support of my family especially of my wife and sons. Finally, I would like to express my gratitude to all the other staff members of the Department of Civil Engineering (MIST) for their support and encouragement during this Master's program.

TABLE OF CONTENTS

Abstrac	t	i
Acknow	vledgements	iv
Table of	f Contents	v
List of I	Main Abbrebriations and Notation	vii
СНАРТ	TER 1: INTRODUCTION	1
1.1	General	1
1.2	Background and Rationale	2
1.3	Objective of the Study	3
1.4	Organization of the Thesis	4
СНАРТ	TER 2: LITERATURE REVIEW	5
2.1	General	5
2.2	Standard Penetration Test (SPT)	5
2.2	.1 Background of SPT	5
2.2	.2 SPT Test Mechanism	
2.2	.3 Test Equipment of SPT	
2.2	.4 Test Procedure of SPT	10
2.2	.5 Factors Affecting SPT Results	10
2.2	.6 Corrections of SPT Values	12
2.2	.7 Interpretation of Soil Properties from SPT-Value	16
2.3	Cone Penetration Test (CPT) and Piezocone Test (CPTU)	19
2.4	Mechanics of CPT/ CPTU	20
2.4	.1 Mechanical Cones	
2.4	.2 Electric Cones	
2.4	.3 Electrical Piezocone Cones	25
2.4	.4 Test Procedures of CPT/ CPTU	
2.4	.5 Factors Affecting Test Results	
2.4	.6 Data Reduction and Presentation of Test Results	
2.4	.7 Interpretation of Results for Stratigraphy of Site	27
2.4	.8 Soil Identification from qc, fs, and Rf	
2.4	.9 Soil Behavioral Type from CPTU	
2.4	.10 Undrained Shear Strength of Soil from CPT	33
2.5	CPT-SPT Relationships	
2.7	Concluding Remarks	
СНАРТ	TER 3:TEST PROGRAM AND PROCEDURES	
3.1	General	
3.2	Project Site	

3.3	Te	st Program	
3.3	Te	st Procedures	
3.	.3.1	Boreholes and Standard Penetration Test (SPT)	42
3.	.3.2	Static Cone Penetration Test	45
3.4	So	il Profiling	47
CHAF	PTER	4: RESULT AND DISCUSSIONS	
4.1	Ge	neral	49
4.2	No	n-plastic Silty Sand (SM)	
4.3	Sil	t of Low Plasticity and Non-Plastic Sandy Silt (ML)	
4.4	Sil	t of High Plasticity (MH)	55
4.5	Cla	ay of Low Plasticity or Silty Clay (CL)	
4.7	Hi	gh Plastic Clay (CH)	
4.8	Su	mmary of SPT-CPT Relations Obtained	61
4.9	Int	erpretation of Soil Profiles	
CHAF	PTER	5: CONCLUSIONS AND RECOMMENDATIONS	63
5.1	Ge	neral	63
5.2	Co	nclusions	
5.3	Re	commendations for Further Study	64
REFE	RENG	CES	65
APPE	NDIX	K- A	
North	ing an	d Easting of SPT and CPT Locations	
APPE	NDIX	ζ- Β	72
CPT-S	SPT P	roximity Locations Soil Profiles	72
APPE	NDIX	K- C	
CPT and SPT Penetration Data and Soil Properties			

LIST OF MAIN ABBREBRIATIONS AND NOTATION

ASTM	American Society for Testing and Materials
BNBC	Bangladesh National Building Code
BUTM	Bangladesh Universal Transverse Mercator
CPT	Cone Penetration Test
CPTU	Cone Penetration Test with Pore water pressure
DMT	Dilatometer Test
SPT	Standard Penetration Test
UCS	Unconfined Compressive Strength
USCS	Unified Soil Classification System
WOH	Weight of Hammer
WOR	Weight of Rod
A_s	Sleeve area (normally 150 cm ²)
A_T	Tip area (normally 10 cm ²)
C_B	Correction factor for borehole diameter
C_N	Vertical effective stress correction factor
C_R	Correction factor for rod length
C_S	Correction factor for sampler geometry
D_r	Relative density
E_R	Energy ratio = $ES/E60$
e _{max}	Void ratio in the loosest state
e _{min}	Void ratio in the densest state
F	Non-dimensional friction
FR or R _f	Friction ratio
F_s	Sleeve force
f_s	Sleeve friction
F_T	Tip force
f ₁	An empirical factor
I _C	Soil behavioral type

Ν	Field-measured SPT blow count
N ₆₀	Energy and procedure-corrected blow count
$(N_1)_{60}$	Corrected SPT to a standard effective stress
q_c	Cone resistance (end bearing)
SPT	Standard penetration test
S _u	Undrained strength
arphi'	Friction angle
σ'_{vo}	Vertical effective stress

CHAPTER 1 INTRODUCTON

1.1 General

Mitchell et al. (1978) provided several explanations for the growing interest in using in situ testing techniques over 40 years ago, including the following: (a) the ability to determine properties of soil deposits that cannot easily be sampled in the undisturbed state; (b) ability to test a larger volume of soil than can be tested conveniently in the laboratory; and (c) ability to avoid some of the challenges of laboratory testing, such as sample disturbance and the proper simulation of in situ stress.

Engineers should not expect a single in situ test to provide the answer to all geotechnical problems. Just as different laboratory tests are used to obtain specific soil properties, different in situ tests have been developed for the same purpose. The Standard Penetration Test (SPT) and Cone Penetration Test (CPT) are the examples of most commonly used in situ tests used in this part of the world including Bangladesh. However, like all other tests, these in situ tests also have a number of limitations. It is important that engineers understand both the advantages and the limitations of these tests, and their relationships. Geotechnical engineering often requires acute engineering judgment especially about the engineering properties of soil that calls for the use of many tools like SPT and CPT values for geotechnical design.

Local soil parameters are always helpful for a geotechnical professional to think about foundation design analysis. Though, nowadays geotechnical professionals are emphasizing to use of the Cone Penetration Test (CPT) data for the foundation design. Nevertheless, CPT test is comparatively expensive, and the field procedures are time consuming. Hence, it is not possible to conduct CPT at every site due to cost. CPT is a continuous process for measuring various soil parameters. But, in CPT test, the biggest difficulty is soil visualization. Moreover, there is a lack of experienced people for this work. On the other hand, Standard Penetration Test (SPT) is the most comprehensive used test for determining soil shear strength parameter of soil. SPT test is not more expensive than the CPT test. Besides, it requires less time to complete the work. In the SPT test, we can easily visualize and categorize the soil. But it is impossible to do that type of characterization in the CPT test. Therefore, it is high time to develop a relationship between SPT and CPT, depending on local soil conditions. Many researchers from different countries around the world have proposed the relationship between SPT and CPT according to the soil type of their country. Accordingly, in this study, I focused on developing a correlation between SPT and CPT from selected sites in Bangladesh soils.

1.2 Background and Rationale

Standard Penetration Test (SPT) is the most common method of soil investigation technique that can be applied in fields (Kara and Gunduz, 2010, Shahien and Abatal, 2014). Though, many foundation designs are based on SPT values, yet SPT has some disadvantages as it cannot often times generate accurate results due to sudden deviations in measured resistance due to human-error or subtle changes in soil characteristics (Kara and Gunduz, 2010). On the other hand, Cone Penetration Test (CPT) has become a wellestablished choice for conducting soil investigations; it can generate reliable information at a swift pace and it can be considered as an excellent complement to SPT for field inspection (Jarushi. AlKaabim and Cosentino, 2015). At present, geotechnical professionals have gained sufficient expertise to utilize local SPT data for foundation design. Therefore, it is also important to use CPT data for the aforesaid purpose. In order to achieve this, a consistent relation between SPT and CPT parameters is needed to be established (Akca, 2003). Numerous researches around the world conducted study on SPT-CPT correlations for soils from various geographic and geological locations to serve their purpose. For instance, in one study, the authors first reviewed the existing SPT-CPT correlations by considering historical progression, influencing factors, variance in past correlations and the existing correlations. Then, they carried out SPT and CPT tests within the Nile Delta of Egypt. They found their existing correlation generally coincided with the previous ones but still, they felt the need to update SPT-CPT correlations for the silty sand deposits of the Nile River Delta (Shahien, and Abatal, 2014). For Turkey soil, relationships between cone penetration resistance (qc) and SPT-N value were explored. The researchers (Kara and Gunduz, 2010) found lower $n = q_c / N$ ratio than that of the values they found in other external sources. On the other hand, they found higher values for power (Superscript) correlations. Although, correlation coefficients were found lower than that obtained from literatures due to Adapazari soil being heterogeneous (Kara and Gunduz, 2010). In a study to determine SPT-CPT correlations for granular soils, the authors emphasized the importance of difference between these two field tests. They stated SPT-N value should be corrected for the energy level. They also suggested the correction of cone resistance due to its unequal area and excess pore pressure (Chin et al., 1990). Robertson et al. (1983) proposed a method to determine Standard Penetration Test (SPT) N-values from Cone Penetration Test (CPT) by taking into account soil grain size and SPT energy input. The authors also discussed the issues with SPT and how those issues related to SPT-CPT correlations. Then, they presented recent data which included energy measurement during SPT. Finally, the authors included a chart to estimate mean grain size from CPT data Robertson et al, (1983). In a report on CPT and SPT Based Liquefaction Triggering Procedure, the authors mainly re-examined the aforementioned process for cohesionless soils. They also considered CPT based procedure along with an evaluation of the effects of variation in the magnitude of scaling factor on the SPT based method (Boulanger and Idriss, 2014).

It revealed that all these studies involved huge data on different penetration tests on a particular location to yield reliable correlations. Unfortunately, in the past, not many CPT tests were carried out to measure the properties of soils from Bangladesh. However, the recent trend in this respect is encouraging. Neither not many studies have been reported. As such, it is felt necessary that a study should be conducted on the relationship between SPT and CPT parameters for soils from Bangladesh, so that correlated parameters could be used to assess the soil parameters performing the simple SPT test instead of those from expensive CPT tests.

1.3 Objective of the Study

The present study aims at the following objectives.

- To find the relationship between CPT cone resistance and SPT values for selected location soils of Bangladesh.
- (ii) To find a method of identifying soil depending on CPT resistances of Bangladesh soil.

1.4 Organization of the Thesis

This thesis reports primarily the relationship between SPT and CPT values in the context of Bangladesh soil conditions. The field test results are analyzed and findings are reported in five chapters. Chapter 1 introduces the hypothesis of the study. Chapter 2 presents the theoretical background and existing literature on the topic. Chapter 3 explains the test and data analysis program and procedures. Chapter 4 provides results and their relevant discussions. Finally, Chapter 5 summarizes the results in the form of conclusions. This chapter also suggests the scope of further studies related to the present investigation.

CHAPTER 2 LITERATURE REVIEW

2.1 General

Explorations below the surface frequently come across difficult or impossible soils to sample using traditional drilling and sampling techniques. Unconsolidated sands and silts below the water table, incredibly soft or sensitive clays, and highly weathered or structured materials, like surficial crusts or residual soils, are typical examples. Drilling and sampling may occasionally be hampered by uncommon groundwater conditions such as artesian or other. In these situations, penetration tests, such as the Standard Penetration Test (SPT) or the Cone Penetration Test (CPT)/Piezocone (CPTU), may yield more accurate results than laboratory studies carried out on defective materials. To distinguish between soft and firm zones, penetration tests, possibly the oldest and most popular type of in situ testing, involve pressing or driving a rod, point, or sampler into the earth. The relationship between the soil characteristics acquired from these penetration tests, SPT and CPT, has been investigated by numerous researchers throughout the world. The current work's main focus is the correlations between soil characteristics measured by SPT and CPT. Following sections present the fundamental ideas or mechanics underlying these in-situ test procedures as well as the relevant literature.

2.2 Standard Penetration Test (SPT)

Leutenegger (2021) provides an excellent and vivid description on the background, mechanism, equipment to be used, test procedure and test results to be obtained from the test SPT. They are being reproduced with slight modifications and presented as under.

2.2.1 Background of SPT

A dynamic penetration test called the SPT is used to gauge how difficult it would be to drive and install a thick-walled tube. In addition, the test is a sampling procedure that obtains a soil sample where the penetration occurs. The fact that it is the only in situ test to offer a model for soil classification and other index testing distinguishes it from all other tests, in the opinion of many engineers. The history of SPT is presented by Fletcher (1965), Broms and Flodin (1988), and Rogers (2006), starting with Charles R. Gow's invention of the technique in or around 1902 (Fletcher 1965) when he employed a 25 mm (1 inch) open pipe driven into the earth to collect a soil sample. Until now, wash boring methods based on site-erected tripod equipment have been the main method used for soil exploration in the United States. A 50 kg (110 lb) weight was used to retrieve soil samples to force an open pipe into the ground. The Gow Co. joined the Raymond Concrete Pile Co. in 1922 (Anon, 2004) and over the following few years, Gow and H.A. Mohr are said to have continued to refine and modify the sampling process.

Around the same time as the 63.5 kg (140 lb) weight and 760 mm (30 in.) drop were standardized mainly by the firm and others, the 50 mm (2 in.) split spoon sampler was created. The test's record was the number of strikes needed to move the sampler 0.3 meters (12 inches) away. Up until around 1945, when industry-standard "A" size drill rods were produced, the sampler could only be advanced 300 mm (12 in) overall utilizing a 25 mm (1 in) drive pipe. A ball check valve was added to the sampler's top to reduce sample loss.

Parsons (1954) made one of the most significant changes to the test, noting the blows needed for each of three consecutive 150 mm (6 in) increments and taking the lowest total of the two increments for a penetration distance of 300 mm (12 in). The initial 150 mm (6 in.) increment, which many people refer to as a "seating" increment, is still taken even though this technique is no longer in use. The test measurement known as the "N-value" is obtained by adding the blows from the second and third 150 mm (6 in.) driving increments.

In order to provide a correlation with expertise in the design and construction of caisson foundations, Fletcher (1965) claims that the first goal of the SPT was to quantify the density of soil formations using a uniform approach. The apparatus described by Fletcher (1965) demonstrated some apparent differences from contemporary SPT apparatus: (i) there was no internal relief inside the sample barrel; (ii) a 24 in. long spoon was used; (iii) a pin weight hammer was shown as standard equipment; and (iv) a hardwood cushion block was used between the hammer and drive rods.

Modifications to the equipment and procedure to bring the test to the present day (2020) configuration will be discussed subsequently and should be obvious to the reader in comparison to the 1950s and 1960s arrangement of the test. The equipment and procedure used to conduct the SPT was standardized in 1958 in test procedure ASTM D1586.

Some geotechnical engineers feel that the SPT has outlived its usefulness for site investigations and geotechnical design and perhaps should be retired given that there are other options available. Some reasons given for this are that the test is outdated, the test results are too variable, and there are more advanced in situ techniques available such as the CPT/CPTU or DMT. For many years, a number of issues plagued the SPT:

- (i) The test was considered highly variable (i.e., equipment and procedures varied too much);
- (ii) Test results were historically too dependent on the operator; and
- (iii) Control of the test has generally been taken away from engineers and given to drillers.

However, the SPT has some advantageous attributes that make it useful for many routine site investigations:

- (i) The test concept, arrangement, and equipment are relatively simple, robust, and inexpensive;
- (ii) The equipment is readily available from most drillers around the world and is easily adaptable to most drill rigs;
- (iii) The procedure is relatively easy to carry out, and testing may be performed at reasonably frequent intervals, often being performed continuously in the upper layers of soil or the primary zone of influence for foundations;
- (iv) A soil sample is usually obtained for visual/manual identification and index property evaluation;
- (v) The test has a wide range of applicability, from weathered rock and gravelly sands to soft insensitive clay;
- (vi) The test data are simple to collect and the test results are reduced rapidly in the field.

There is also an argument by some engineers that the SPT is a "one-number test", that is, the SPT only gives a single number to use in assessing soil behavior.

2.2.2 SPT Test Mechanism

According to the test procedure, a split tube soil sample barrel with the requisite dimensions must be driven a required distance using a specified amount of impact energy. Fig. 2.1 displays the current test's schematic. A falling weight or hammer with a mass of 63.5 kg (140 lb) is used in the test, and it is allowed to fall freely for 760 mm (30 in) before striking an anvil. Drill rods are attached to the anvil and extend to the tested or sampled depth. With each hammer blow, a sampling barrel, commonly known as a split spoon, is lowered into the soil and affixed to the end of the drill rods.

Typically, three 150 mm (6 in) intervals are marked off on the drill string with chalk, the hammer is raised and lowered, and the number of blows required to advance the spoon is recorded as N0-6, N6-12, and N12-18 for each 150 mm (6 in) increment. ASTM refers to the first 150 mm (6 in.) penetration as a "seating" penetration. The second two 150 mm (6 in.) increments' combined hammer blows are referred to as the SPT N value (with units of blows per 300 mm or blows per ft.) and are used as the test's reference measurement. As required by ASTM D1586 (2018), it is crucial to record and report the incremental blow count values for each 150 mm (6 in.) of material.

If the full 450 mm (18 in.) of penetration cannot be achieved, ASTM D1586 (2018) permits the test to be stopped if one of the following conditions is met:

- (i) A total of 50 hammer blows have been applied during any one of the three 150 mm (6 in.) increments;
- (ii) A total of 100 hammer blows have been applied; or
- (iii) There is no observed advance of the sampler during the application of ten successive hammer blows.

The number of hammer blows required to accomplish the desired penetration increment is recorded as the penetration resistance if only partial penetration occurs, for instance, "50 for 2 in." The drill rods and spoon may proceed independently without being driven in exceptionally soft clays. A common name for this is "Weight of Rod" (WOR). It is known as the "Weight of Hammer" (WOH) if the spoon and rods move forward after the hammer has been mounted. When this happens, it is crucial to record the size of the drill rods being utilized as well as the water level inside the boring on the boring logs. The weight that is somewhat buoyant for that distance below the water's surface may be included in the overall mass of the spoon and rods.

Fig. 2.1 Schematic of Standard Penetration Test (after Leutenegger, 2021)

The amount of soil collected for that drive is noted after the spoon is brought to the surface and opened. We call this recovering. The ASTM protocol includes recording the recovery, which should be done on the boring logs. The recovery ratio can be utilized to help evaluate the SPT data qualitatively. For instance, if the recovery ratio is continuously low in deposits with coarse grains, this may indicate the presence of large gravel or cobbles that are too numerous to fit inside the spoon. After recording the Recovery, the soil is typically sent back to the office or lab and put into watertight containers like glass jars or bags for preservation, or it is covered in plastic and aluminum foil.

2.2.3 Test Equipment of SPT

The SPT's mechanics, which were discussed in the preceding part, represent a very straightforward idea; nevertheless, because the exam is regarded as so specific, how it is carried out might vary considerably. These are a consequence of the several test instruments that have been and are still used in the field to conduct the test. The four main parts of the test apparatus are the drop weight or hammer with an anvil, a string of drill rods connecting the sampler to the hammer, and a barrel sampler, as shown in Fig. 2.1.

2.2.4 Test Procedure of SPT

The ASTM D 1586 (2018) and ASTM D 6066 (2011) specifications describe the test methods and apparatus used to conduct the SPT. The SPT is a reference test used internationally and covered in ISO 22476-3 (2005).

2.2.5 Factors Affecting SPT Results

The SPT aims to have the test response reflect variations in soil behavior rather than variations in test methodology. A variety of circumstances can influence the outcomes of the SPT. The test was conducted in a more-or-less rudimentary manner. The results indicated significant variability due to the historical variability in drilling equipment, procedures, personnel, etc. The energy is mainly uncontrollable and varies significantly from drop to drop in drop hammer systems using a rope and cathead, which leads to unpredictable effects. However, many of these problems have been resolved by employing a calibrated automatic hammer. Only calibrated hammers should be utilized when performing the SPT for the following three reasons:

- (i) Automatic hammers provide a repeatable operator-independent known energy.
- (ii) A fully enclosed automatic hammer is much safer for the drill crew;
- (iii) Automatic hammers provide increased productivity in the drilling operation.

The SPT N-value can be influenced by factors other than energy, according to a number of studies (Fletcher 1965; Schmertmann 1978; Decourt 1989; Kulhawy and Trautmann 1996). Almost all of these variables fall into one of two categories: (i) differences in the

equipment and (ii) variances in the operator or procedure. The remaining factors are compiled in Table 2.1 in the event that a calibrated automatic hammer is employed.

Variation Type	Item of variation	Description		
Equipment variations	Sampler dimensions	Variations in exact sampler dimensions vary around the world. Sampler should conform to the latest ASTM standard and should be measured before use		
	Liners/no liners	Use of liners vs. no liner but spoon with internal relief increases blow counts		
	Use of damaged or deformed tip on sample spoon	Damaged shoe may change blow counts		
	Using damaged drill rods	Drill rods that are slightly bent or otherwise damaged tend to reduce energy transfer giving artificially high N-values		
Procedural variations	Inadequate cleaning of the borehole	SPT is only partially made in original soil. Sludge may be trapped in the sampler and compressed as the sampler is driven, increasing the blow count		
	Failure to maintain sufficient hydrostatic head in the boring	The water table in the borehole must be at least equal to the piezometric level in the sand, otherwise the sand at the bottom of the borehole may be transformed into a loose state		
	Using a too large pump	Too high a pump capacity will loosen the soil at the base of the hole causing a decrease in blow count		
	Over-washing ahead of casing	Low blow count may result in dense sand since sand may be loosened by over-washing		
	Drilling method	Drilling technique (e.g., cased holes vs. mud stabilized holes) may result in different N-values for the same soil. The SPT was originally developed from wash boring techniques. Drilling procedures which seriously disturbs the soil will affect the N- value, e.g., drilling with cable tool equipment		
	Rate of testing	In saturated soils, a fast rate of testing may increase pore water pressures.		
	Plugged casing	High N-values may be recorded for loose sand when sampling below groundwater table. Hydrostatic pressure causes sand to rise and plug casing		

Table 2.1: Factors other than hammer energy that may influence SPT results (after Leutenegger, 2021)

Variation Type	Item of variation	Description
	Loose drill rod connections	Energy losses can occur from loose rod connection giving artificially high N-values
	Marking drive increments	Drive marks should be made after the spoon and drill string has been just set on the bottom of the borehole but before the hammer is attached or rods are released
	"Seating" the spoon before marking the rods	There is no such thing as "seating" of the spoon before marking the three 0.15 m (6 in.) incremental drive lengths
	Sampler plugged by gravel	Artificially high blow counts result when gravel plugs sampler; resistance of loose sand could be highly overestimated
	Carelessness in counting the blows and measuring penetration	Poor observations of incremental blow counts may produce errors in N-values.
	Using drill holes that are too large	Holes greater than 100 mm (4 in.) in diameter are not recommended. Use of larger diameters may result in decreases in the blow count from stress relief at bottom of hole
	Attitude of operators	Blow counts for the same soil using the same rig can vary, depending on who is operating the rig, and perhaps the mood of operator and time of day

Table 2.1: Factors other than hammer energy that may influence SPT results (after Leutenegger, 2021)

2.2.6 Corrections of SPT Values

It is required to convert the test findings to a standard energy level because the SPT blow count is directly related to the hammer system energy. This will enable accurate comparison of test results between various hammer systems and accurate interpretation of the test data. In order to take into account, the hammer energy, rod length, borehole diameter, and sampler shape, adjustments are made to the field SPT N-value.

2.2.6.1 Corrections for Hammer Energy, Equipment, and Drilling: N to N60

A reference value of 60% of the theoretical free-fall energy is utilized to bring N-values to a standard reference point based on a number of recommendations. The 60% energy level was also the foundation for various correlations for various soil parameters because it indicates a reasonable average energy level that has been applied since the 1960s using conventional SPT equipment. In order to rectify the field recorded N-values to a reference energy level of 60% and take into account the sampler geometry, drill rod length, and borehole diameter, a variety of correction factors have been included. Thus, the following definition of the energy-corrected blow count is possible:

$$N_{60} = N E_R C_B C_S C_R \tag{2.1}$$

Where,

 N_{60} = Energy and procedure-corrected blow count N = Field-measured blow count E_R = Energy ratio = ES/E60 C_B = Correction factor for borehole diameter C_S = Correction factor for sampler geometry C_R = Correction factor for rod length

Recommended values for these adjustment factors are shown in Table 2.2. SPT N-values obtained from field measurements must always be corrected using Eq. (2.1) and presented as corrected blow counts, N_{60} .

Table 2.2: Recommended average SPT correction factors: N to N_{60} (after Leutenegger, 2021)

Borehole Diameter	Св
65 mm – 115 mm (2.5 in.–4.5 in.)	1.00
150 mm (6 in.)	1.05
200 mm (8 in.)	1.15
Sampler	Cs

Sampler without liner			1.00
Sampler with liner or barrel diameter same as shoe diameter			0.83
Drill Rod Length			CR
< 3m (10ft)			0.75
3 m – 4 m (10 ft. – 13 ft.)			0.80
4 m – 6 m (13 ft. – 20 ft.)			0.90
6 m – 10 m (20 ft.– 30 ft.)			0.95
>10 m (>30 ft.)			1.00
Hammer and Drop Mechanism			
North America	Automatic		1.40
	Safety	Rope and cathead	1.00
	Donut	Rope and cathead	0.75
Japan	Donut	Trip	1.30
	Donut	Rope and cathead	1.10
China	Donut	Trip	1.00
	Donut	Rope and cathead	0.90
United Kingdom	Safety	Trip	1.00
	Safety	Rope and cathead	0.80

Table 2.2: Recommended average SPT correction factors: N to N_{60} (after Leutenegger, 2021)

2.2.6.2 Correction for Overburden Stress in Sands: N60 to (N1)60

The SPT N-value will rise with depth in a homogeneous sand deposit with a fixed void ratio or relative density since the mean effective stress also rises with depth. Therefore, the N-value must be adjusted for the impact of this fluctuating stress level to produce a single characteristic value that depicts a single relative density. A correction factor is typically used to offer a constant effective stress reference to accommodate this. As listed in Table 2.3, numerous overburden correction variables have been proposed. The general format for applying a correction factor is as follows:

$$(N_1)_{60} = C_N N_{60} \tag{2.2}$$

Where,

 N_{60} = Energy-corrected blow count

 $(N_1)_{60}$ = Corrected blow count to a standard vertical effective stress level

 C_N = Vertical effective stress correction factor

Table 2.3: Suggested SPT overburden correction factors for sands: N_{60} to $(N_1)_{60}$ (after Leutenegger, 2021)

Formula for C _N	Units of σ'_{vo}	References
$C_{\rm N} = 50/(10 + \sigma'_{\rm vo})$	psi	Gibbs & Holtz (1959)
$C_{\rm N} = 1/(1 + 2\sigma'_{\rm vo}); \qquad \sigma'_{\rm vo} \le 15$	ksf	Bazaraa (1967)
$C_{\rm N} = 4/(3.25 + 0.5\sigma'_{\rm vo}); \ \sigma'_{\rm vo} > 15$		
$C_{\rm N} = 0.77 \log_{10}(20/\sigma'_{\rm vo})$	kg/cm ² , tsf	Peck et al. (1974)
$C_{\rm N} = 1 - 1.25 \log_{10}(\sigma'_{\rm vo})$	kg/cm ² , tsf	Seed (1976)
$C_{\rm N} = 1.7/(0.70 + \sigma'_{\rm vo})$	kg/cm ² , tsf	Tokimatsu &Yoshimi (1983)
$C_{\rm N} = (1/\sigma'_{\rm vo})^{0.5}$	kg/cm ² , tsf	Liao & Whitman (1986)
$C_N = 2/(1 + \sigma'_{vo})$; For NC medium loose fine sand	kg/cm ² , tsf	Skempton (1986)
$C_N = 3/(2 + \sigma'_{vo})$; For NC dense coarse sand		
$C_{\rm N} = 1.7/(0.7 + \sigma'_{\rm vo})$; For OC fine sand		

Skempton's proposed correction factors are the only ones that consider gradation, as seen in Table 2.3. The adjustment factor recommended by Liao and Whitman (1986) seems to be the one that is most frequently employed. Simple and typically in the middle of the other suggested correction variables, it is a good choice. The phrase (N₁)60 refers to an effective vertical stress of $1 kg/cm^2$ (1 tsf), for which the correction factor equals 1. When employing the SPT in fine-grained soils, there is insufficient data to support the use of overburden correction factors. To estimate undrained shear strength in medium to stiff clays (N>10), Oskorouchi and Mehdibeigi (1988) recommended applying an overburden correction factor to SPT N-values (Leutenegger, 2021).

2.2.7 Interpretation of Soil Properties from SPT-Value

Numerous researchers have connected different SPT values with a wide range of cohesive and cohesionless soil qualities. Researchers discovered a link between specific soft/weak rock properties and SPT readings. In that regard, SPT is a flexible and frequently used test. The following is a list of some of the correlation items. Some of the significant correlations are then described. The complete list is in Leutenegger (2021).

For cohesionless soil;

- (i) Relative density
- (ii) Friction angle
- (iii) Elastic modulus
- (iv) Constrained modulus
- (v) Small-strain shear modulus
- (vi) Shear wave velocity
- (vii) Liquefaction potential

For cohesive soil;

- (i) Undrained shear strength
- (ii) Stress history
- (iii) Insitu lateral stress
- (iv) Elastic modulus of soil
- (v) Small-strain shear modulus

2.2.7.1 Relative Density of Cohesionless Soil

Several early correlations between SPT N-values and the relative density, D_r , of coarsegrained soils were given when the SPT was conducted using either a safety hammer or a donut. Variations in the composition, geologic origin, stress history, moisture conditions, and techniques and equipment utilized for coarse-grained soils affect these correlations differently (Leutenegger, 2021). For instance, Gibbs and Holtz's (1957) correlation used a spoon with a fixed internal diameter and no relief. As a result, the blow counts may be higher than those that would have been obtained by using a spoon with internal relief. Leutenegger (2021) lists several correlations that were created after 1975.

Fig. 2.2: Correlation between SPT $(N_1)_{60}$ and relative density (After NHI, 2002).

Given variations in grain-size distribution, age, stress history, geologic origin, etc., and variations in field procedures employed for obtaining N-values, no single expression can be utilized to characterize the relationship between SPT blow counts and relative density for all sands. A method for determining relative density from N-values that accounts for gradation, as seen by the difference in the void ratio $(e_{max} - e_{min})$, was proposed by Cubrinovski and Ishihara (2001). Using energy and stress-corrected blow counts, $(N_1)_{60}$, various correlations are shown in Fig. 2.2.

2.2.7.2 Friction Angle of Cohesionless Soil

By providing an estimate of the drained friction angle, φ' , the SPT data may help determine the shear strength of granular soils. It should be understood that the value is not fixed but varies for the stress level, stress path, loading conditions, etc., and that any estimate does not account for these variables. Several ideas have been put forth by different researchers for determining SPT N-values. A comparison between SPT $(N_1)_{60}$ results and those derived from triaxial compression testing is shown in Fig. 2.3. This connection seems to be used. Engineers should exercise caution when calculating the friction angle in sands from N values. Any relationships should be supported by local knowledge of foundation performance.

Fig. 2.3: Correlation between $(N_1)_{60}$ and φ' (After NHI, 2002).

2.2.7.3 Undrained Shear Strength in Cohesive Soil

Using N to estimate the undrained shear strength is one of the practical applications of SPT in fine-grained soils. It may be expected that the results of the SPT would indicate a more or less linear increase in N values with increasing depth in soft to extremely soft typically cemented clays. Increasing effective stress and undrained strength would be consistent with this. A constant N/σ'_{vo} would result from dividing the normalized N value by the vertical effective stress, σ'_{vo} indicating a constant normalized undrained shear strength.

A straightforward chart connecting SPT N-values to fine-grained soils' consistency (unconfined compressive strength) can be found in most soil mechanics or foundation engineering texts. A list of various relationships is presented in Figure 2.4. Alternatively, the unconfined compressive strength (UCS) can be calculated using the SPT N-value. It should be noted that most of these correlations employ the "uncorrected" SPT N-values and, as a result, can vary based on the correlation's development system. Only a small amount of research has been done to link clay strength from the energy-corrected SPT N-value, N_{60} . The link suggested by Stroud (1974) for the association between N-values and the undrained strength of stiff intact clays is as follows:

$$s_u = f_1 N \tag{2.4}$$

Where, $f_1 = an$ empirical factor

Fig. 2.4 Comparison of historic reported correlations between SPT N-value and undrained shear strength. (After Kulhawy and Mayne 1990).

The SPT results from which the N-values were derived were based on the modern practice so that the parameter f_1 is more properly defined as:

$$f_1 = s_u / N_{60} \tag{2.5}$$

2.3 Cone Penetration Test (CPT) and Piezocone Test (CPTU)

Cone Penetration Tests have been utilized for over 70 years in many regions of the world to ascertain site stratigraphy, assess strength traits and other soil attributes, and design foundations, among many other uses. Cone tests are incredibly adaptable and have many qualities that make them ideal for in-situ testing. The test has a straightforward premise and can be executed easily. Cone tests have a wide range of uses and can be utilized in various soil types.

Numerous studies have been published on CPTs, cone testing, data interpretation, and cone design applications. The CPT/CPTU is helpful for a quick and more thorough study of the intricate soil layering frequently missed during conventional test drilling and

sampling because it offers a nearly continuous record of the stratigraphy. In general, over the past 10 to 15 years, the empirical interpretation of CPT/CPTU data has reached an advanced stage of maturity (Leutenegger, 2021).

2.4 Mechanics of CPT/ CPTU

The CPT is an intrusive, full displacement cylindrical probe pushed from the ground surface with or without a borehole. It is typically made of stainless steel and has a diameter of around 35.7 mm (1.405 in.). The static hydraulic thrust of a standard drill rig or specialized hydraulic pushing rig is used to advance the cone, which has a tip apex angle of 60° , at a pace of 2 *cm/s*. Fig. 2.5 provides a schematic representation of this idea. Forces or pressures exerted on the cone tip are gauged as the advance progresses. The cone's dimensions and suggested testing methods are covered in ASTM D3441-16 (2016) and ASTM D5778-20 (2020). The International Organization for Standardization has also standardized the CPT and CPTU in ISO 22476-1 (2022).

2.4.1 Mechanical Cones

Early static CPTs were built using straightforward mechanical systems like push rods, cones, and external load cells. According to reports, the "Dutch" CPT was originally applied in the Netherlands to gauge hydraulic fill's thickness and bearing capacity around 1930. One or two men pushed the cone with an apex angle of 60° and an end area of 10 cm2. These only allowed for an exploring depth of around 3 m (10 ft). Cone resistance was measured at the ground's surface using a mechanical load cell or pressure gauge. Most early cones used a dual rod system, pushing the cone forward first with a pair of outside rods and then again with a set of inner rods, only measuring the resistance at the cone tip.

Fig. 2.5: Principle of cone penetrometer testing (After Leutenegger, 2021).

Begemann (1953) modified mechanical cones by proposing a sleeve behind the cone tip to measure the local friction. The name "friction cone" is more often used, while Begemann (1953) referred to this design as the "adhesion jacket cone." Begemann's sleeve had a 150 cm2 surface area.

The cone must first be moved to the test depth by pushing on the outside rods, which calls for another double-rod system. The inner rod is advanced to the test depth, around 40 mm (1.5 in), to measure the tip resistance. The inner rod is still pushed after the initial 40 mm (1.5 in.) push to engage the friction sleeve. The tip and the sleeve are resistant with an additional push of roughly 40 mm. After that, subtraction is used to get the sleeve resistance. The procedure for moving the cone while wearing a friction sleeve is shown in Fig. 2.6.

Fig. 2.6: Sequence of advancing a mechanical cone. (After Leutenegger, 2021).

The usage of mechanical cones is relatively impractical due to their numerous shortcomings. The double rod system is complicated and typically requires the fabrication of a unique set of rods; in other words, standard drill rods cannot typically be utilized. Due to the design and construction, earth particles might get inside or stick to some of the sliding parts, which would cause the cone to jam. Frictional losses could also exist in the double rod arrangement.

The mantle cone and friction jacket cone produce discontinuous data rather than a continuous profile since they can only be used to deliver test findings at intervals of approximately 150 mm. When the cone goes over alternating layers of soft and stiff soil or in highly stratified soils, it might be challenging for the operator to read the load cell precisely. Some unique layering may be overlooked when the load changes substantially over comparatively short distances.

2.4.2 Electric Cones

Since the 1970s, electric cones have become more widely used. Load cells are built into the cone body to measure the force at the tip and sleeve. Strain gages are often installed in the load cells. Modern technology has been devised that measures the load and transmits the data to the surface utilizing electrical components. Even cones without a connection have been utilized, instead using a down-hole memory module. Fig. 2.7 depicts a cross-section of a standard electric CPT cone body. Although other sizes are available, the typical electric cone for routine work has a tip area of 10 cm² and a friction sleeve area of 150 cm².

A computer automatically records the data as the exam progresses. As the cone is advanced, the results are shown in real time so that the operator can immediately see the soil conditions. The information is often shown as a function of depth vs. unit tip and sleeve resistance. These two measurements can assess soil qualities, indicate site stratigraphy, and drive foundation design. Compared to mechanical cones, electric cones have a variety of definite advantages, such as the following: Since only one push rod is needed, almost any rod system can be used. Additionally, the data may be automatically recorded for easier and quicker reporting, the testing interval is closer for better stratigraphic delineation, and the results are typically more reliable because the test is essentially operator-independent. Not every electric cone has the same design. Generally speaking, there are two categories of electric cones: those with tip and sleeve load cells that are intended to be completely independent and those with tip and sleeve load cells that are more or less in series. The latter style is frequently referred to as a "subtraction" cone.

Fig. 2.7: Section through electric cone penetrometer (After Leutenegger, 2021).

The friction sleeve needs to be unrestricted in its motion for an appropriate response. The tip or sleeve resistance, or both, may be incorrect if adequate clearance is not provided at the ends of the sleeve in the design. Additionally, sufficient space must exist between the cone tip and friction sleeve to ensure that tip force transfer is not hindered. In order to prevent water from getting into the load cells, rubber "O" rings are typically employed. Additionally, some sort of soil seal is sometimes utilized at the ends of the friction sleeve to prevent soil from getting between the sleeve and tip or sleeve and body.

Some cones also have an inbuilt inclinometer to track the cone's tilt away from vertical. This measurement is more frequently utilized to warn early about a problem rather than to amend the test findings. Van de Graaf and Jenkel (1982) discussed using data from an internal inclinometer to correct the CPT depth. They demonstrated how depth mistakes of up to 1.2 meters can happen during a CPT sounding at a depth of 30 meters. The likelihood of cone damage or loss often increases if the cone deviates from vertical by

more than around 5° . While a gradual deviation could indicate that the rods were not vertical at the start of the test or that the pushing is not vertical, a sharp deviation might indicate that the cone has encountered an obstruction like a cobble or random, uncontrolled fill.

2.4.3 Electrical Piezocone Cones

The CPTU is an electric friction cone primarily constructed the same as a regular electric friction cone, except that it additionally has a pressure transducer positioned inside the cone body to detect soil pore water pressure as the cone advances. It is also referred to as PCPT or CPTu. A further tool for describing the underlying soil conditions is the measurement of pore water pressure. Eliminating the friction sleeve and measuring the pore water pressure and tip resistance is an alternate design for a CPTU.

The Delft Soil Mechanics Laboratory built the first piezocone in 1962, according to Vlasblom (1985), though Janbu and Sennesset (1974) reported the first observations of pore water pressure during cone penetration. Torstenson (1975) and Wissa et al. (1975) unveiled two pore pressure probe variations simultaneously the following year. Although the location of the filter element varied, the probes described by Torstenson (1975) and Wissa et al. (1975) both measured only pore water pressure. The ASTM D5778 (2020) standard test method outlines the tools and processes for performing piezocone testing.

2.4.4 Test Procedures of CPT/ CPTU

ASTM and ISO standardization of the CPT and CPTU. Numerous recommendations in these standards concern the documentation of test results and standardization of cone geometry (including apex angle, tip, sleeve area, etc.). The test is performed with the rate of advance set to 20 mm/s, and the operation is relatively straightforward because just a few external components are needed. Measuring the depth in addition to the cone tip resistance and sleeve friction is necessary. Many electro-mechanical devices may be used to measure depth, and many of them use a reference point and a rotating potentiometer coupled to the cone rods. Advanced systems, such as self-contained cone trucks, frequently require an electrical system. Whatever method is employed, using a consistent, reliable reference point is critical.

2.4.5 Factors Affecting Test Results

The test findings from the CPT can be affected by several circumstances, even though the test equipment and technique are generally stated. In contrast to the SPT, the CPT does not have as many issues or uncertainties simply because of how the test is set up and how data are gathered. The following sections provide a brief overview of several factors that could influence CPT/CPTU findings. In some circumstances, the discussion is purposefully condensed because it is thought that most CPT work will be done with a cone measuring 10 cm2 (1.55 in²) and having a tip apex angle of 60°. DeRuiter (1982) states that errors can also happen while using electric cones, typically due to calibration or zero load errors. Readings with zero load must be taken before and after each sounding to check for mechanical or electrical issues. The load cells must be calibrated routinely.

2.4.6 Data Reduction and Presentation of Test Results

Data reduction for the CPT/CPTU results is a relatively simple process. By dividing the measured tip load (force) by the cone tip projected end area, the following value is obtained:

$$q_c = F_T / A_T \tag{2.3}$$

Where,

 q_c = Tip resistance (end bearing) F_T = Tip force A_T = Tip area (normally 10 cm²)

By dividing the measured sleeve force by the sleeve area, unit sleeve friction, also known as skin friction

$$q_c = F_T / A_T \tag{2.4}$$

Where,

 f_s = Sleeve friction

 F_s = Sleeve force

 $A_s =$ Sleeve area (normally 150 cm²)

Normal units for q_c and f_s are either kg/cm^2 or tons/ft². An additional parameter that combines the tip and sleeve measurements is called the friction ratio and is defined as

FR or
$$R_f = f_s/q_c \times 100 \,(\%)$$
 (2.5)

The data are shown as q_c , f_s , and R_f vs. depth, so it is possible to determine how these parameters vary vertically at the site. Fig. 2.8 illustrates a typical CPT profile produced from an electric cone. Examples of typical CPTU outcomes in soft clay are shown in Figure 2.9.

2.4.7 Interpretation of Results for Stratigraphy of Site

The outcomes of CPT/CPTU can be used to assess site stratigraphy and estimate various particular soil attributes for coarse- and fine-grained soils. The interpretation of specific soil qualities from CPT/CPTU has more or less matured over the last 10–15 years. Although more observations have been added to the database, many empirical correlations have not been significantly altered. The CPT/CPTU measurements frequently show variances in penetration resistance, which can indicate subsurface soil conditions. Looking at the penetration records of q_c or q_t and f_s versus depth is the quickest way to get a preliminary indication of changes in stratigraphy. Significant changes in soil stratigraphy can also be detected with the additional measurement of pore water pressure. The friction ratio may be helpful as a soil-type indicator.

Instead of getting samples from test borings, soil conditions may be identified using the CPT/CPTU data. This method is indirect but based on extensive research and years of experience, even though it occasionally gives false information. There is no tried-and-true method for consistently identifying soils. Also, remember that a CPT's response (i.e., q_c and f_s) is an average response affected by a sizable amount of soil. This makes it nearly impossible to discern extremely thin layers. Since identification is based on soil behavior or response to the test, it is preferred to classify when evaluating soil conditions from CPT/CPTU data.

Fig. 2.8: Typical CPT data obtained in sand (After Leutenegger, 2021).

Fig. 2.9: Typical CPTU data obtained in soft clay (After Leutenegger, 2021).

2.4.8 Soil Identification from q_c, f_s, and R_f

Cone tip resistance, q_c , and sleeve friction, f_s , are independently measured by electric cones. These numbers can be combined to define the friction ratio, F_R , as given by Eq. (2.5), even if they have not been corrected for the effects of pore pressure. Begemann (1965) proposed using the sleeve friction and cone tip resistance to create a soil profile. He stated that F_R values less than 2.5% would indicate sand, larger than 3.5% would indicate clays, and between 2% and 4% as mixed composition soils. By combining the friction ratio and cone tip resistance acquired from electric cones, several charts have been proposed in determining the kind of soil (e.g., Douglas and Olsen 1981; Robertson et al. 1986). Most of these graphs take on the overall shape depicted in Fig. 2.10, where tip resistance and friction ratio are plotted, and zones of soil behavior are suggested.

Fig. 2.10: Soil identification chart based on CPT (After Douglas and Olsen (1981).

2.4.9 Soil Behavioral Type from CPTU

To determine a CPTU soil behavioral type, the tip resistance, sleeve resistance, and pore water pressure from the CPTU may be combined. The normalized parameters of CPTU tip resistance and sleeve friction were proposed by Robertson and Wride (1998).

$$I_{CRW} = [\{3.47 - \log(Q_{t1})\}^2 + \{1.22 + \log(F)\}^2]^{0.5}$$
(2.6)

Jefferies and Been (2006) suggested I_c as

$$I_{C} = \left[\left\{ 3 - \log(Q_{t} [1 - B_{q}] + 1) \right\}^{2} + \left\{ 1.5 + \log(F_{r}) \right\}^{2} \right]^{0.5}$$
(2.7)

Where, F is the non-dimensional friction ratio denoted by the formula $F = f_s/(q_t - \sigma_{vo})$ and B_q is the observed pore water pressure. Lutenneger (2021) can be cited for more information. Table 2.4 provides values for the soil behavioral type based on I_C and I_{CRW} . A chart created using the CPTU soil behavioral type I_C is shown in Figure 2.11. The CPT index I_C can also be used to measure the percentage of particles (% <No. 200 sieve). According to Table 2.5 (following Mayne et al. 2009), the content of fines can be approximated.

CPTU I _c	CPTU I _{CRW}	Soil behaviour type zone	Soil identification
< 1.25	< 1.31	7	Gravelly sands
1.25 - 1.80	1.31 - 2.05	6	Clean to silty sands
1.80 - 2.40	2.05 - 2.60	5	Sandy mixtures
2.40 - 2.76	2.60 - 2.95	4	Silty mixtures
2.76 - 3.22	2.95 - 3.60	3	Clays
> 3.22	> 3.60	2	Organic soils
N/D	N/D	1	Sensitive clays

Table 2.4: Soil behavioral type from CPTU (after Leutenegger, 2021)

Fig. 2.11: Soil behavioral type chart based on CPTU (After Mayne 2014).

I _c	% Fines
< 1.26	0
1.26 - 3.50	%Fines = $1.75I_{\rm C}^{3.25} - 3.70$
> 3.50	100

Table 2.5: Estimated Fines content from CPT Index I_C (after Leutenegger, 2021)

Charts were created when the device's original design was used (without considering pore water pressure), as illustrated in Fig. 2.12. As can be seen, typically, fine soils have lower qc values and greater friction ratio values. This sort of chart has a restriction because it is based on test data from relatively shallow depths, typically less than 30 m.

Fig. 2.12: Simplified soil classification chart from CPT results (after Robertson and Campanella, 1983; Reproduced from Fernandes, 2020).

2.4.10 Undrained Shear Strength of Soil from CPT

It has been widely used to estimate the undrained shear strength of clays utilizing both the tip resistance and sleeve friction based on the results of the CPT. Similar to SPT, CPT, and CPTU can be used to determine a number of different soil properties. Information is available in Leutenegger (2021).

2.5 CPT-SPT Relationships

Since SPT and CPT are the most frequently used field tests in most nations, attempts to correlate the parameters N and q_c quickly increased due to their use at the exact location in numerous geotechnical investigation campaigns. Many countries have done significant work with their data on CPT and SPT in the past. Researchers have developed several links to cone resistance q_c versus SPT N-values as a function of factor (n). A few researchers have related additional sleeve friction, f_s . The relationships are presented in Table 2.6.

Author(s)	Soil Types	Relationship
De Alencar Velloso	Clay and silty clay	$n = q_c/N = 0.35$
(1)3)	Sandy clay and silty sand	$n = q_c / N = 0.2$
	Sandy silt	$n = q_c / N = 0.35$
	Fine sand	$n = q_c / N = 0.6$
	Sand	$n = q_c / N = 1.00$
Franki piles (1960)	Sand	$n = q_c / N = 1.00$
From Akca (2003)	Clayey sand	$n = q_c / N = 0.6$
	Silty sand	$n = q_c / N = 0.5$
	Sandy clay	$n = q_c / N = 0.4$
	Silty clay	$n = q_c / N = 0.3$
	Clays	$n = q_c / N = 0.2$
	Coarse sand	$n = q_c / N = 0.2$

Table 2.6: Relationship between CPT and SPT parameters (after Kara, 2010)

Author(s)	Soil Types	Relationship
Meigh & Nixon (1961)	Gravelly sand	$n = q_c / N = 0.3 - 0.4$
(Schmertmann (1970)	Silt, sandy silt and silt-sand mix.	$n = (q_c + f_s)/N = 0.2$
	Fine to medium sand, silty sand	$n = (q_c + f_s)/N = 0.3 - 0.4$
	Coarse sand, sand with gravel	$n = (q_c + f_s)/N = 0.5 - 0.6$
	Sandy gravel and gravel	$n = (q_c + f_s)/N = 0.8 - 1.0$
Barata et al. (1978)	Sandy silty clay	$n = q_c / N = 1.5 - 2.5$
	Clayey silty sand	$n = q_c / N = 2.0 - 3.5$
Ajayi & Balogun	Lateritic sandy clay	$n = q_c / N = 3.2$
(1988)	Residual sandy clay	$n = q_c / N = 4.2$
Chang (1988)	Sandy clayey silt	$n = q_c / N = 2.1$
	Clayey silt, sandy clayey silt	$n = q_c / N = 1.8$
Danziger & de	Silt, sandy silt and silt-sand	$n = (q_c + f_s)/N = 0.2$
vaneso (1993)	Fine to medium sand, silty sand	$n = (q_c + f_s)/N = 0.3 - 0.4$
	Coarse sand, sand with gravel	$n = (q_c + f_s)/N = 0.5 - 0.6$
	Sandy gravel and gravel	$n = (q_c + f_s)/N = 0.8 - 1.0$
	Silt, sandy silt and silt-sand	$n = (q_c + f_s)/N = 0.2$
	Silty sand	$n = q_c / N = 7.0$
Danziger et al.	Sand	$n = q_c / N = 5.7$
(1998)	Silty sand, Silty clay	$n = q_c / N = 5.0 - 6.4$
	Clayey silt	$n = q_c / N = 3.1$
	Clay, silt and sand mixtures	$n = q_c / N = 1.0 - 3.5$

Table 2.6: Relationship between CPT and SPT parameters (after Kara, 2010)

Author(s)	Soil Types	Relationship
	Clayey sand and silty clay	$n = q_c / N = 4.6 - 5.3$
	Sandy clay	$n = q_c / N = 1.8 - 3.5$
	Clay	$n = q_c / N = 4.5$
Emrem and Durgunoglu (2000)	Turkey soils	$n = q_c/N = fine (D_{50})$
Akca (2003)	Sand	$n = q_c / N = 0.77$
	Silty sand	$n = q_c / N = 0.70$
	Sandy silt	$n = q_c / N = 0.58$
Bashar Tarawneh (2014)	sand, sandy silt, and silty sand soils	N = 1.59 + 0.993q _c + 0.069 effective stress + 18.185f _s
Kara, and Gündüz (2010)	Clay	$q_c = 0.2152N^{0.8252}$ (all data) q_c = 0.1994N^{0.8535}(filtered data)
	Silt	$q_c = 0.3993 N^{0.7436}$ (all data) q_c
		$= 0.3755 N^{0.7342}$ (filtered data)
	Sand	$q_{c} = 0.7094N^{0.7213} (all data)$ $q_{c} 0.5334N^{0.809}$
		(filtered Data)
	All	$q_c = 0.2106 N^{0.9513} (all data)$
		$q_c = 0.1877 N^{0.9894}$ (filtered Data)
Feda Aral and	High plasticity clays (CH)	$q_{c} / N_{60} = 0.11$
Ekrem Gunes (2017)	Moderate plasticity clays (CL)	$q_c / N_{60} = 0.11$
	Clayey sand-silt-uniform SC, SM and SP sand density	$q_c / N_{60} = 0.39$

Table 2.6: Relationship between CPT and SPT parameters (after Kara, 2010)

Author(s)	Soil Types	Relationship
Mominul et al. (2014)	Constant is better suit for Local soil (Existing correlations)	$q_{11}/(N_1)_{60} = 0.45$
Mehtab Alam 2018	Silty Sand	$q_{c} = 0.427N$
	Sandy Silt	$q_{c} = 0.337N$
	Silty Clay	$q_c = 0.319N$
	Lean Clay	$q_{c} = 0.291N$
Hossain et al. (2020)	Constant better applicable to the local soils instead of D_{50} or f _c -based correlations	$q_{tc}/(N_1)_{60} = 0.45$
Karim et al. (2021)	Sandy soil	$\begin{split} N_{60} &= 7.799 + 1.979 \times q_c \\ & - 6.371 \times f_s; \\ & \text{where } R^2 = 0.9803 \end{split}$
	Silt-Sand mixed soil	$\begin{split} N_{60} &= 2.279 + 3.417514 \times q_c \\ & + 106.210 \times f_s; \end{split}$ where $R^2 = 0.7764$
	Clayey soil	$\begin{split} N_{60} &= -2.879 + 15.404 \times q_c \\ & -13.784 \times f_s; \end{split}$ where $R^2 = 0.9529$
	Silt-Clay mixed soil	$\begin{split} N_{60} &= -2.105 + 14.482 \times q_{c} \\ &+ 21.258 \times f_{s}; \end{split}$
		where $R^2 = 0.9313$
<i>Note</i> : q_c/N in MPa.		

Table 2.6: Relationship between CPT and SPT parameters (after Kara, 2010)

Urmi (2019) conducted a study on geotechnical characterization of riverine and coastal soil of Bangladesh based on the results of CPT and SPT. She proposed several correlations involving SPT N_{160} value, angle of internal friction, ϕ , CPT q_c and other parameters.

2.7 Concluding Remarks

Literature review suggests that SPT and CPT are being the most widely used field tests in most countries, significant attempts have been done to correlate the parameters N, q_c , ϕ and others. However, in Bangladesh, only a few studies have been carried out especially using SPT and CPT parameters from the same site locations and for various types of soil. As such, there is a need a study on these aspects.

CHAPTER 3 TEST PROGRAM AND PROCEDURES

3.1 General

For a new construction work at the Ghorashal Polash Urea Fertilizer Project (GPUFP) site at Narsindhi, soil investigations were done in 30 boreholes with SPT measurements. Later 42 SPT boreholes and 24 CPT profiles were also done at the site. As such, 24 CPT profile and 17 SPT boreholes at proximity locations were considered for analysis to find relations of the parameters obtained from both the tests. The proximity pairs of SPT and CPT locations were within a maximum radial distance of 7 m. In the following sections, the test program and procedures are described.

3.2 Project Site

The proposed site is located on the left bank of the Shitalakhya River under Polash upazila of Narsingdhi district. The site is surrounded by Ghorashal power station on the south, the Shitalakha River on the west, countryside on the north and east. The project area is of about 1.10 hector land. Figure 3.1 shows the project location. The SPT borehole and CPT locations are indicated in Figs. 3.2 (a) and 3.2 (b). Their GPS locations are presented in Tables A.1 and A.2 of Appendix- A.

According to FCL (2019), the site is underlain predominantly by soft cohesive layer (recent deposits) from 3.5 m to 6.0 m below. This layer comprises of very soft to soft cohesive inorganic soil. Sub-soil between 5.0 m to 20 m depth comprises of medium to stiff desiccated clay of Pleistocene age (Madhupur clay) underlain by medium to dense non-cohesive sandy strata. Dense non-cohesive sand soil have been encountered at a depth around 23 m to 25 m. Madhupur Tract a large upland area in the central part of Bangladesh. The southern part of this tract is known in Bangla as Bhawal Garh and the northern part as Madhupur Garh. Geologically it is a terrace from one to ten metres above the adjacent floodplains. Though in its present form it is of Pleistocene age its origin may be in the late Miocene, when the bengal basin was being filled in rapidly. The total extent of this Tract is 4,244 sq km. The main section stretches from just south of Jamalpur in the north, to Fatullah of Narayanganj, in the south. This part of Bangladesh has been uplifted several times, resulting in numerous longitudinal faults. The most prominent of

these are along the western side, where they can be clearly seen at Mirpur (Dhaka city) and near Ghatail and Madhupur further north. Long fault traces are also extant on the eastern side.

Fig. 3.1: Location map of project site (encircled; after Banglapedia, 2021).

BH-5

Fig. 3.2(a): SPT boreholes and CPT locations.

40

A total of seventy-two (72) numbers SPT exploratory boreholes were undertaken at the project site. Twenty-four (24) cone penetration tests (CPT) were also conducted at the site. Liquid limit and plastic limit tests were also carried out on clayey and silty soils for classification purposes. Grain size analysis was also performed on the samples. The main task of the present investigation was to find out relationship between soil parameters obtained from SPT and CPT, for various types of soil. Figure 3.3 outlines the study program.

Fig. 3.3: Outline of the study program.

3.3 Test Procedures

In the present study mainly SPT and CPT tests were carried out in the field, and routine classification tests were done following standard ASTM test procedures. In the following sections, the test procedures are briefly described.

3.3.1 Boreholes and Standard Penetration Test (SPT)

ASTM D1586 (2018) was followed in performing the Standard Penetration Test (SPT). The test includes dropping a hammer (automatic trip) weighing 63.5 kg, and the hammer falls freely from a height of 760 mm along the drill pipe to drive the sampler attached at the end of the drill rod. A drilling rig is used for the purpose. The number of blows, necessary to produce the penetration was recorded in three different stages each of 150

mm. The number of blows required in the 2nd and 3rd 150 mm (total of 300 mm) of the penetration of the sampler is called the SPT value (N) and is represented by 'N'. A typical SPT borehole operation is shown in Fig. 3.4.

Fig. 3.4: Typical SPT operation.

The boreholes were drilled to the depth of 22 m to 40 m. During the drilling operation, the N-SPT values were measured, and soil samples were collected as per BNBC (2020) and ASTM D1587 (2018).

A typical bore log is shown in Fig. 3.5. Soils encountered during boring at shallow depths were mainly clay of medium plasticity (CL), silt of low plasticity (ML) and occasionally fat clay (CH). The subsequent deep layers are prevailing non-cohesive by nature consisting of silty soil, sand silt mix and silty fine sand (SM). Whenever the N-SPT values exceed 50 for 300 mm penetration, it was treated as refusal and further N-SPT values were not measured for that depth as per BNBC (2020) and ASTM D1586 (2018). However, measured SPT N-values were used to determine the relationships of cone resistance q_c and sleeve friction f_c up to a depth of 30 m.

BORE LOG										
Client		: BCIC			Borehole No.				: 1(ONE)	
Locat	Location : Ghorashal Palash Norsingdi			Boring Depth (m)				: 50.00 : 0.31 m down from EGI		
Project : GPUEP Project				B.L.(m)				: 1.98m down from the jetty		
rioject : Grorr rioject.			Date	start	ed		: 4/12/2017			
					Date completed : 4/12				: 4/12/2017	
Denth	Sample	Sample		Bore						
(m)	Type &	Depth (Thick)	Description of Materials	Log	SPT	Blo	w Co	ount	SPT Value	
	110.	(тиск)	EGL		6"	6"	6"	12"	0 10 20 30 40 50 60	
:				1.1.1.1.		-	-			
E 15	DI	(3.00)	Light Yellowish very soft to soft SILT of	<i>KXXX</i>	1		1	1		
E 1.3	D-1	(5.00)	low plasticity (ML).	XXX	Г 1	U U	1	1		
E 30	D-2	3.00		1222	L 1	1	2	3		
Ē	D-2	5.00		1///	1	•	-			
E 4.5	D-3			11/1		1	2	3	• •	
Ē		(5.20)	Pale Bluish Ash soft SILT of high	1///			-	-	5	
E 6.0	D-4	(5.38)	plasticity (MH) with trace organic	KXXX	- 1	2	2	4	• •	
Ē			matter.	1.1.1.						
- 7.5	D-5			11/1	- 1	2	2	4	L N	
E		8.38		1447						
E 9.0	D-6	(2.12)	Pale Yellowish non-plastic dense silty	1 (11) 1 (1)	- 8	13	18	31	\$ 5	
E		(2.12)	fine SAND (SM).	日間						
- 10.5	D-7	10.50		(111)	- 9	14	20	34	10	
Ē				111						
- 12.0	D-8			KR	- 6	9	15	24	24	
Ē		(4.50)	Pale Bluish Ash stiff to very stiff SILT	1222						
- 13.5	D-9		of low plasticity (ML).	11Y	- 4	7	8	15	é 🔥	
E				11/1						
E 15.0	D-10	15.00		KYY I	- 5	8	9	17	15	
È		(1.50)	dense SILT (MI) with few sand	医白癜						
= 16.5	D-11	16.50	dense SILT (ML) with few said.	as carte a	- 6	10	13	23	2	
E 10.0	D 12			iφiω	2	2		_		
E 18.0	D-12	(4.07)	Blackish Decomposed organic matter	ω ω	F 2	2	4	'	Ý 1	
E 10 5	D-13		(OL).	ωω	2	2	5	9		
E 19.5	10-13	20.57			-			ľ	•	
=		(0.43)	Pale Bluish Ash very stiff CLAY of				6		20	
E ^{21.0}	D-14	21.00	medium plasticity (CL).	KXX	- 6	8	9	17		
Ē		(1.50)	Pale Yellowish non-plastic medium	1.00						
E ^{22.5}	D-15	22.50	Dala Vallouich nor relactio denor silter	1,1,1,1,1	- 6	9	10	19		
Earc	DIC	(1.50)	fine SAND (SM)	1.1.1.1.1 1990-091		10	10			
F 24.0	D-16	24.00	Pale Vellowish non-plastic dance	11111	۳ ۹	15	18	33	3	
25.5	D.17	(1.50)	SANDY SILT (SM).	n di	10	16	20	26	25	
E ^{25.5}	D-1/	25.50		1.1.1.1.1	F 10	10	20	30	N°	
E 27.0	D-18				12	25	25	50	a 🖌	
E 27.0	D-10	(4.50)	Pale Yellowish non-plastic dense to very	1.000	- 13	25	25	11"		
E 28 5	D-19	(dense silty SAND (SM).	14 4 14	14	27	23	50	a, 🖕	
- 20.5	13-13				14	-1	23	11"		
E 30.0	D-20	30.00		<u>888</u> 1	- 11	18	25	43		
							I			

Fig. 3.5: Typical borehole log with SPT values.

3.3.2 Static Cone Penetration Test

Cone penetration tests were carried out using a 15 cm² area of electronic cones with 60° apex angle and 225 cm² friction sleeve area with a hydraulic pressure system of 200 kN. A total of 24 soundings were performed at different locations. The tests were terminated at 50 m (maximum) below existing ground level and tests were conducted in accordance to ASTM D 5778 (2020). Throughout the test the cone was advanced by applying thrust. A CPT test arrangement is shown picture of Fig. 3.6.

Fig. 3.6: Typical CPT test arrangements.

The data monitoring arrangements are shown in Fig. 3.7. The cone manufactured by GeoMil (n.d.) is a subtraction type cone equipped with instruments to measure (i) Cone pressure, (ii) Sleeve friction, and (iii) Dynamic pore pressure; Furthermore, the cone is also equipped with two inclinometers to monitor its verticality at all times. Depth of the cone was recorded using an opto-electric encoder. All data was recorded for every centimeter automatically in a computer running proprietary software. Prior to commencement of each test, the pressure transducer of the cone was saturated using silicon oil. The cone was calibrated prior to commencement and at the end of each test conforming to the specification using CPTest acquisition software (GeoMil, n.d.), this software also automatically recorded all data from the cone. Tables A.1 and A.2 in

Appendix show the SPT and CPT location coordinates and ground surface elevation of the 24 proximity SPT and CPT locations, as per BUTM (2010).

Fig. 3.7: Data monitoring system of CPT.

Typical CPT test results are shown in Fig. 3.8. After completion of the test all collected data has been plotted using CPTask processing software (GeoMil, n.d.), which was also used to estimate engineering parameters from the in-situ test data. This software has been used to estimate following engineering parameters: cone resistance (q_c), sleeve friction (f_s), friction ratio % (F_r) and soil classification. Depending of the "Measured Parameters" the following equations are used to calculate new signals.

 $q_c = kPa = Cone resistance = Measured parameter$ $f_s = Mpa = Local friction = Measured parameter$ $R_f (\%) = Friction ratio = (f_s/q_c) \times 100(\%)$

(a) Cone resistance profile.

(b) Sleeve friction profile.

(c) Friction ratio profile.

Fig. 3.8: Typical CPT test results.

3.4 Soil Profiling

For comparison purposes soil profiles were drawn using both SPT and CPT data. SPT profiling was done using the classification schemes suggested by BNBC (2020), ASTM D2487 (2017) and ASTM D2488 (2018). The CPT soil profiles were prepared using the simplified soil classification chart suggested by Robertson et al. (1983). In CPT soil profiling the following broad classification was considered, Table 3.1. Typical soil profiles as obtained from SPT and CPT data are presented in Fig. 3.9. All the soil profiles as considered in this investigation are presented in Figs. B.1 to B.24 of Appendix- B.

In CPT test method, continuous readings of cone resistance q_c and sleeve friction f_s are usually taken. In SPT, however, tests are usually performed at 1.5 m intervals for N values. As such, for comparison purposes, CPT results are interpolated or synchronized

at each 1.5 m intervals. The data were isolated for various types of USCS soil classes. Statistical analyses of the data were done to correlate field SPT N-value with CPT cone resistance and CPT sleeve friction for various types of soil. Excel spread sheet was used for the statistical analysis where data were plotted and regressed to find the relations.

Robertson et al. (1983) soil class	Broad soil classification for profiling
Sand, Silty sand	Sand
Sandy silt and clayey Silt	Silt
Silty clay and Clay	Clay
Silty organic, clayey organic and organic, peat	Organic

Table 3.1: Broad soil classification for profiling as used in the present investigation

Fig. 3.9: Typical CPT and SPT soil profies.

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1 General

The present study was concerned with the relationships of SPT and CPT parameters. SPT tests were performed in boreholes and at the proximities 17 SPT boreholes (within a maximum radial distance of 6.0 m), 24 CPT tests were also performed up to a depth of 30 meters. Both SPT and CPT soil profiles were prepared using the standard procedures. Once both the profile gave the consensus soil types, field SPT N-value, CPT cone resistance q_c and sleeve friction f_s were graphically plotted and statistically analyzed using excel spread sheet. The efficiency of the statistical correlations is expressed in terms of correlation coefficient (R^2) as per the suggestions of Allwright, (2023). In this study, the following five types of soil were considered using classification test results (grain size and consistency limits) to determine the relationships.

- (i) Non-plastic silty sand (SM)
- (ii) Silt of low plasticity and non-plastic sandy silt (ML)
- (iii) Silt of high plasticity (MH)
- (iv) Clay of low plasticity or silty clay (CL)
- (v) Clay of high plasticity (CH)

4.2 Non-plastic Silty Sand (SM)

A total of 147 data of non-plastic silty sand (SM) has been isolated from all the 17 SPT borehole and 24 CPT profiles. The data are presented in Table C.1 of Appendix C. The field SPT N-values are plotted against CPT cone resistance (q_c) and also against sleeve friction (f_c) values. They are shown in Figs. 4.1 and 4.2 respectively. It has been observed that both cone resistance and sleeve friction have positive linear relationship with field SPT N-value in a range of 0 to 75. Statistical analysis yielded the trend line with limiting zero intercept, having strong correlation coefficients. The relations may be expressed as equations (4.1) and (4.2) respectively.

For cone resistance	$q_c(kPa) = 290.1N$	$R^2 = 0.777$	(4.1)
---------------------	---------------------	---------------	-------

Fig. 4.1: SPT and CPT cone resistance relation for non-plastic silty sand (SM) soil.

Fig. 4.2: SPT and CPT sleeve friction relation for non-plastic silty sand (SM) soil.

The relation of cone resistance was compared with the findings of the previous investigators, and are presented in Fig. 4.3. It shows that the relation for SPT N-value and CPT cone resistance obtained from the present investigation agrees well with the findings of Kara and Gunduz (2010), and Aral and Gunes (2017). Some other investigators estimate higher values of cone resistance against SPT N-value, Fig. 4.3.

Fig. 4.3: Comparison of SPT and CPT relationships with results obtained for nonplastic silty sand (SM) soil.

Published literature on the direct correlation of CPT skin resistance and SPT values happened to be a very few. However, some investigators (Schmertmeann, 1970; Denziger & de Valleso, 1995) reported similar relation of SPT N-value with combined CPT cone resistance and sleeve friction, $(q_c + f_s)$. According to them SPT CPT, relations can be described as $(q_c + f_s)(in kPa) = (300 \text{ to } 400)N$. The results of $(q_c + f_s)$ as obtained from present investigation are plotted against SPT N-value in Fig. 4.4.

Fig. 4.4: SPT N-value and CPT $(q_c + f_s)$ relation for non-plastic silty sand (SM) soil.

A strong correlation was obtained that may be represented by eq. (4.3).

$$(q_c + f_s) (in \, kPa) = 295N$$
 $R^2 = 0.797$ (4.3)

While compared with the findings of previous investigator, Fig. 4.5, the present investigation was found to agree with the lower limit values given by Schmertmeann (1970) and Denziger & de Valleso (1995). This may be because of presence of significant amount of fines in the sand (SM) samples encountered in the present investigation.

Fig. 4.5: Comparison of SPT N-value and CPT $(q_c + f_s)$ relation for non-plastic silty sand (SM) soil.

4.3 Silt of Low Plasticity and Non-Plastic Sandy Silt (ML)

From all 17 SPT borehole and 24 CPT profiles, 85 sets of data have been identified for low plastic silty and non-plastic sandy silt (ML) soil. The data are presented in Table C.2 of Appendix C. The field SPT N-values are plotted against CPT cone resistance (q_c) and also against sleeve friction (f_c) values. They are shown in Figs. 4.6 and 4.7 respectively. It has been observed that both cone resistance and sleeve friction have positive linear relationship with field SPT N-value in a range of 0 to 60. Statistical analysis yielded the trend line with limiting zero intercept, having good correlation coefficients. The relations may be expressed as equations (4.4) and (4.5) respectively.

For sleeve friction $f_s(kPa) = 4.3 N$ $R^2 = 0.510$ (4.5)

Fig. 4.6: SPT N-value and CPT cone resistance relation for low plastic silt and non-plastic sandy silt (ML).

Fig. 4.7: SPT N-value and CPT sleeve friction relation for low plastic silt and non-plastic sandy silt (ML).

The relation of cone resistance was compared with the findings of the previous investigators, and are presented in Fig. 4.8. It shows that the relation for SPT N-value and CPT cone resistance obtained from the present investigation agrees well with the findings of Kara & Gunduz (2010), and Chang (1998). Other investigators estimates higher values of cone resistance, Fig. 4.8.

Fig. 4.8: Comparison of SPT N-value and CPT cone resistance relations for silt of low plasticity and non-plastic silty sand (ML) soil.

Some investigators (Schmertmeann, 1970; Denziger & de Valleso, 1995) reported relation of SPT N-value and combined CPT cone resistance and sleeve friction, $(q_c + f_s)$. According to them SPT CPT, relations can be described as $(q_c + f_s)(in kPa) = 200 N$. The results of $(q_c + f_s)$ as obtained from present investigation are plotted against SPT N-value in Fig. 4.9. A correlation was obtained that may be represented by Eq. (4.6). However, the correlation is not very strong as indicated by the correlation coefficient (R^2) of 0.560.

$$(q_c + f_s) (in \, kPa) = 172 \, N \qquad R^2 = 0.560$$
 (4.6)

Figure 4.10 compares the findings of previous investigator with that of the present investigation. Interestingly, the present investigation agrees well with the findings of Schmertmeann (1970) and Denziger & de Valleso (1995).

Fig. 4.9: SPT N-value and CPT $(q_c + f_s)$ relation for silt of low plasticity and non-plastic sand silt (ML) soil.

Fig. 4.10: Comparison SPT N-value and CPT $(q_c + f_s)$ relation for silt of low plasticity and non-plastic sand silt (ML) soil.

4.4 Silt of High Plasticity (MH)

There were 43 data sets has been isolated from all the 17 SPT borehole profiles for determining the SPT-CPT relationships in the soil of silt of high plasticity (MH). The data are presented in Table C.3 of Appendix C. The field SPT N-values are plotted against CPT cone resistance (q_c) and also against sleeve friction (f_c) values. They are shown in

Figs. 4.11 and 4.12 respectively. It has been observed that both cone resistance and sleeve friction have positive linear relationship with field SPT N-value in a range of 0 to 53. Statistical analysis yielded the trend line with limiting zero intercept, having good correlation coefficients. The relations may be expressed as Eqs. (4.7) and (4.8) respectively. However, the correlation is not very strong as indicated by the correlation coefficients (R^2) of 0.556 and 0.468.

For cone resistance
$$q_c(kPa) = 112 N$$
 $R^2 = 0.556$ (4.7)

For sleeve friction
$$f_s(kPa) = 2.6 N$$
 $R^2 = 0.468$ (4.8)

The reported literature involving the relations of SPT N-value with both CPT cone resistance and friction for high plastic silty soil (MH) may be a very few. The present study proposes the relations given by Eqs. (4.7) and (4.8) respectively for cone resistance and sleeve friction.

Fig. 4.11: SPT N-value and CPT cone resistance relation for silt of high plasticity (MH).

Fig. 4.12: SPT N-value and CPT sleeve friction relation for silt of high plasticity (MH).

4.5 Clay of Low Plasticity or Silty Clay (CL)

A large number of 182 data were used for clay soil of low plasticity (CL). The data are presented in Table C.4 of Appendix C. The field SPT N-values are plotted against CPT cone resistance (q_c) and also against sleeve friction (f_c) values. They are shown in Figs. 4.13 and 4.14 respectively. It has been observed that both cone resistance and sleeve friction have positive linear relationship with field SPT N-value in a range of 1 to 51. Statistical analysis yielded the trend line with limiting zero intercept, having good correlation coefficients. The relations may be expressed as Eqs. (4.9) and (4.10) respectively.

For cone resistance $q_c(kPa) = 210 N$ $R^2 = 0.602$ (4.9)

For sleeve friction
$$f_s(kPa) = 5.8 N$$
 $R^2 = 0.548$ (4.10)

The relation of cone resistance was compared with the findings of the previous investigators, and are presented in Fig. 4.15. The SPT N-value and CPT cone resistance relation obtained and as represented by Eq. (4.9) agrees well with the findings of Aral and Gunes (2017), and Alam (2018). Other investigators estimates higher values of cone resistance, Fig. 4.15.

Fig. 4.13: SPT N-value and CPT cone resistance relation for silty clay and clay of low plasticity (CL).

Fig. 4.14: SPT N-value and CPT sleeve friction relation for silty clay and clay of low plasticity (CL).

Fig. 4.15: Comparison of SPT N-value and CPT cone resistance relations for silty clay and clay of low plasticity (CL).

4.7 High Plastic Clay (CH)

There were 14 data sets for defining the SPT-CPT relationships in the soil of clay of high plasticity (CH). The data are presented in Table C.5 of Appendix C. The field SPT N-values are plotted against CPT cone resistance (q_c) and also against sleeve friction (f_c) values. They are shown in Figs. 4.16 and 4.17 respectively. It has been observed that both cone resistance and sleeve friction have positive linear relationship with field SPT N-value in a range of 3 to 22. Statistical analysis yielded the trend line with limiting zero intercept, having a strong to good correlation coefficient for cone resistance and sleeve friction, respectively. The relations may be expressed as Eqs. (4.11) and (4.12) respectively.

For cone resistance
$$q_c(kPa) = 211 N$$
 $R^2 = 0.751$ (4.11)

For sleeve friction
$$f_s(kPa) = 8.4 N$$
 $R^2 = 0.719$ (4.12)

The relation of cone resistance was compared with the findings of the previous investigators, and are presented in Fig. 4.18. The SPT N-value and CPT cone resistance relation obtained and as represented by Eq. (4.11) suggests a different relation while compared to the findings of other investigators, Fig. 4.18. However, this new relation gives an in between values as compared to the other investigators.

Fig. 4.16: SPT N-value and CPT cone resistance relation for high plastic of clay (CH).

Fig. 4.17: SPT N-value and CPT sleeve friction relation for high plastic clay (CH).

Fig. 4.18: Comparison of SPT N-value and CPT cone resistance relations for high plastic clay (CH).

4.8 Summary of SPT-CPT Relations Obtained

The present study proposes various relationships of field SPT N-value with CPT cone resistance, CPT sleeve friction and combinations. For the sake of easy comparison, the cone the relations are reproduced in summary form in Tables 4.1 and 4.2.

SL No.	Soil class	No. of data sets	Relationship between q _c and N (SPT) values	Correlation coefficient (R ²)	Eq. No.
1	Non-plastic silty sand (SM)	147	$q_{c} (kPa) = 290 N$	0.777	(4.1)
2	Silt of low plasticity and non-plastic sandy silt (ML)	85	$q_{c} (kPa) = 168 N$	0.558	(4.4)
3	Silt of high plasticity (MH)	43	$q_{c} (kPa) = 112 N$	0.556	(4.7)
4	Silty clay and clay of low plasticity (CL)	182	$q_{c} (kPa) = 210 N$	0.602	(4.9)
5	High plastic clay (CH)	14	$q_{c} (kPa) = 211 N$	0.751	(4.11)

Table 4.1: SPT N-value and CPT cone resistance relations obtained in the present study

SL No	Classification of the soil	No. of data sets	Relationship between f _s and N (SPT) values	Correlation coefficient (R ²)	Eq. No
1	Non-plastic silty	147	$f_{s} (kPa) = 5.2 N$	0.767	(4.2)
	sand (SM)	147	$(q_c + f_s) (kPa) = 295 N$	0.797	(4.3)
2	Silt of low		$f_{s} (kPa) = 4.3 N$	0.51	(4.5)
	plasticity and non- plastic sandy silt (ML)	85	$(q_c + f_s) (kPa) = 172 N$	0.56	(4.6)
3	Silt of high plasticity (MH)	43	$f_{s} (kPa) = 2.6 N$	0.468	(4.8)
4	Silty clay and clay of low plasticity (CL)	182	$f_{s} (kPa) = 5.8 N$	0.548	(4.10)
5	High plastic clay (CH)	14	$f_{s} (kPa) = 8.4 N$	0.719	(4.12)

Table 4.2: Relation of field SPT N-value and CPT sleeve friction and combinations as obtained from the present study

4.9 Interpretation of Soil Profiles

In the present study soil profiles were drawn using both SPT and CPT data. All the soil profiles as considered in this investigation are presented in Figs. B.1 to B.24 of Appendix-B. As mentioned earlier, in Section 3.4, the CPT soil profiles were tried to prepare using various methods suggested by different investigators and the simplified soil classification chart, Fig. 2.12, suggested by Robertson et al. (1983) was found to yield reasonably identical results of soil profiling while compared to that SPT. Because of too many minor soil classifications used by the other methods, it was found awkward to prepare a reasonably consensus CPT soil profiling with that of SPT. It was observed that both CPT and SPT give comparable soil profile for sandy soil while using Robertson et al. (1983) method of interpretation of CPT results. However, generally found that while Robertson et al. (1983) CPT method interprets a soil as clay, SPT identifies it as silty soil, and the vice versa has also been noticed.

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 General

This present study was carried out to in an attempt correlate the CPT parameters, cone resistance and sleeve friction, with the standard penetration test N-value for various types of subsoil classes from a selected location of Bangladesh. In total 24 CPT tests were conducted at a project site within a SPT boreholes proximity location of radial distances of 6 m. Soil profiles were prepared using both CPT and SPT data, and similar types of soil were isolated for statistical analysis. The following sections provide the outcome of the study as conclusions and suggestions for future work in this context.

5.2 Conclusions

The major outcome of the study can be summarized as follows:

- (i) Strong linear correlations were found to exist between field SPT N-value, and both CPT cone resistance and sleeve friction for non-plastic silty sand (SM). The correlation may be proposed in terms of equations (4.1) and (4.2). In both the cases (cone resistance and sleeve friction), the correlation coefficient (R^2) was larger than 0.75.
- (ii) For soil types like silt of low plasticity and non-plastic sandy silt (ML), silt of high plasticity (MH) and clay of low plasticity or silty clay (CL) moderately strong correlations were obtained with correlation coefficients (R^2) larger than 0.50. The correlations may be proposed as equations (4.3) through (4.11). All these correlations are summarized in Table 4.1.
- (iii) For clay soil of high plasticity (CH), strong (0.751) and good (0.719) linear correlations of field SPT N-value were observed with CPT cone resistance and sleeve friction respectively. The relations may be proposed as Eqs. (4.11) and (4.12).
- (iv) For sandy soil CPT and SPT were found to yield reasonably identical soil profile while using the simplified soil classification chart suggested by Robertson et al.

(1983). While compared the soil profiles, it was observed that both CPT and SPT gave comparable results for sandy soil. However, in general, while Robertson et al. (1983) method of CPT interprets a soil as a clay, SPT identifies that one as a silty soil; the vice versa was also found to be true. Though they did not happen in all the cases.

5.3 **Recommendations for Further Study**

The present study involves CPT and SPT test data only of a particular site of Bangladesh and the study was limited to the relations of field SPT N-value, CPT cone resistance and sleeve friction for a broad soil classification. The study may be extended on the following aspects.

- To generalize the proposed relations in the context of Bangladesh, extensive study may be carried out using soils from various locations of Bangladesh.
- (ii) The other parameters of like soil index properties may be considered in the investigation.
- (iii) The CPT with pore pressure measurement and SPT with various corrections may be considered.
- (iv) A fully research dedicated test scheme may be designed for performing CPT and SPT in the proximity locations at various sites.
- (v) Study may also be carried out to find relations among parameters obtained from CPT, SPT and dynamic cone penetration test (DCP).

REFERENCES

- Ajayi, L.A., and Balogun, L.A. (1988). Penetration Testing in Tropical Lateritic and Residual Soils, (cited by Kara, 2010).
- Alam, S. (2018). Empirical SPT-CPT correlation for soils from Lahore, Pakistan, IOP Conf. Ser. Mater. Sci. Eng., vol. 414, no. 1, 2018, doi: 10.1088/1757-899X/414/1/012015.
- Allwright, S. (2023). Good-r-squared-value, https://stephenallwright.com/good-r-squared-value.
- Anon (2004). Notes on the standard penetration test, GE441 Advanced Engineering geology and geotechnic, spring,2004, https://web.mst.edu/~rogersda/umrcourses/ge441/NOTES%20for%20STANDA RD%20PENETRATION%20TEST.pdf
- Akca, N. (2003). Correlation of SPT–CPT data from the United Arab Emirates, Engineering Geology 67, No. 3-4 (2003): 219-231.
- ASTM D1586-18 (2018). Standard test method for standard penetration test (SPT) and split-barrel sampling of soils, ASTM International, West Conshohocken, PA, USA.
- ASTM D1587-18 (2018). Standard practice for thin wall tube sampling of soils for geotechnical purposes, ASTM International, West Conshohocken, PA, USA.
- ASTM D2487-17 (2017). Standard practice for classification of soils for engineering purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, USA.
- ASTM D2488-18 (2018). Standard practice for description and identification of soils (Visual-Manual Procedures), ASTM International, West Conshohocken, PA, USA.
- ASTM D3441-16 (2016). Standard test method for mechanical cone penetration testing of soils, ASTM International, West Conshohocken, PA, USA.
- ASTM D5778-20 (2020). Standard test method for electronic friction cone and piezocone penetration testing of soils, ASTM International, West Conshohocken, PA, USA.
- ASTM D6066-11 (2011). Standard practice for determining the normalized penetration resistance of sands for evaluation of liquefaction potential, ASTM International, West Conshohocken, PA, USA.
- Banglapedia (2021). National encyclopedia of Bangladesh, https://en.banglapedia.org /index.php/ Bangladesh_Soil, 18 June 2021.
- Bashar Tarawneh. (2014). Correlation of standard and cone penetration tests for sandy and silty sand to sandy silt soil, Electron. J. Geotech. Eng., vol. 19, pp. 6717– 6727. (Cited by Karim et al. graduate thesis (2021).

- Barata, F.E., Pacheco, M.P. and Danziger, F.A.B. 9(1978). Uplift tests on drilled piers and footings built in residual soil. In Conference on soil mechanics and foundation engineering, Bratislava, Slovakia (pp. 1-37).
- Begemann, H.K.S. (1953). Improved method of determining resistance to adhesion by sounding through a loose sleeve placed behind the cone, Proc. 3rd Int. Conf. on Soil Mechanics and Foundation Engineering, Vol. 1, Switzerland, pp. 213–217.
- Begemann, H.K.S. (1965). The friction jacket cone as an Aid in determining the soil profile, Proc. 6th Int. Conf. on Soil Mechanics and Foundation Engineering, Vol. 1, Montreal, Canada, September 8–15, 1965, pp. 17–20.
- BNBC (2020). Bangladesh national building code, Housing and Building Research Institute, Dhaka.
- Boulanger (2014). CPT and SPT Based Liquefaction Triggering Procedures, Report No. UCD/CGM.-14/01.
- Bowles, J.E. (1997). Foundation analysis and design, 5th ed., The McGraw-Hill Companies, Inc., USA.
- Broms, B.B. and Flodin, N. (1988). History of Soil Penetration Testing, Proc. 1st International Symposium on Penetration Testing, Vol. 1, Orlando, USA, March, 1988, pp. 157–220.
- BUTM (2010). Bangladesh Universal Transverse Mercator (Cited by FCL, 2019).
- Chang, M.F. (1988). In-situ testing of residual soils in Singapore, Proceedings 2nd International Conference Geomechanics in Tropical Soils, V1 97-108, Singapore. (Cited by Kara, 2010).
- Chin C.T., Duann S.W. and Kao T.C. (1990). SPT-CPT correlations for granular soils, International Journal of Rock Mechanics and Mining Sciences and Geomechanics, Elsevier Science Vol. 27, No. 2, 1990, pp. A91.
- Cubrinovski, M. and Ishihara, K. (2001). Correlation between penetration resistance and relative density of sandy soils, Proc. 15th International Conference on Soil Mechanics and Geotechnical Engineering, Vol. 1, Istanbul, Turkey, August, 2001, pp. 393–396.
- Danziger, B.R., and D.A. Velloso.(1995). Correlations between the CPT and the SPT for some Brazilian soils", Proc. CPT'95, Linkoping, V:2, pp;155-160, 1995. (Cited by Kara, 2010).
- Danziger, F. A. B., Politano, C. F., and Danziger, B. R. (1998). CPT-SPT correlations for some Brazilian residual soils, In Robertson & Mayne (eds), Geotechnical Site Characterization: 907-912, Rotterdam: Balkema. (Cited by Kara, 2010).
- De Alencar Velloso, D. (1959). O ensaio de diepsondeering e a determinacao da capacidade de cargodo solo. Rodovia, 29. (Cited by Kara, 2010).
- Decourt, L. (1989). The standard penetration test state of the art report, Proc. 12th International Conference on Soil Mechanics and Foundation Engineering. Vol. 4, Rio De Janeiro, Brazil, pp. 2405–2416.

- DeRuiter, J. (1982). The static cone penetration test: state-of-the-art report, Proc. 2nd European Symposium on Penetration Testing, Vol. 2, Amsterdam, Netherlands, May 1982, pp. 389–405.
- Douglas, B.J. and Olsen, R.S. (1981). Soil classification using electric cone penetrometer, Proc. Conf. on Cone Penetration Testing and Experience, ASCE, October, 1981, pp. 209–227.
- Emrem C. and Durgunoglu, H.T. (2000). Türkiye CPT very tabanı ve mevcut amprik bağıntılar ilekarşılaştırma. Zemin Mekanigi ve Temel Mühendisligi Sekizinci Ulusal Kongres. Istanbul. (Cited by Kara, 2010).
- FCL (2019). Unpublished geotechnical investigation report on Ghorashal Palash urea fertilizer factory project, Foundation Consultants Ltd., Dhaka, 2019.
- Feda Aral and E. Gunes (2017). Correlation of Standard and Cone Penetration Tests: Case Study from Tekirdag (Turkey), IOP Conf. Ser. Mater. Sci. Eng., vol. 245, no. 3, doi: 10.1088/1757-899X/245/3/032028.
- Fernandes, M.M. (2020). Analysis and design of geotechnical structures, CRC Press, Park Square, Milton Park, Abingdon, Oxon, UK, 2020.
- Fletcher, G.F.A. (1965). Standard penetration test: its uses and abuses, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 91, No. SM4, pp. 67–75.
- Geomil (n.d.). Digital CPT Cone, Geomil Equipment B.V., Westbaan, MC Moordrecht, Netherlands.
- Gibbs, H.J. and Holtz, W.G. (1957). Research on determining the density of sands by spoon penetration testing, Proc. 4th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, London, October, 1957, pp. 35–39.
- ISO 22476-1: 2022 (2022). Geotechnical investigation and testing-Field testing Part 1– Electrical cone and piezocone penetration test, European Committee for Standardization, Brussels, Belgium, December 2022.
- ISO 22476-3: 2005 (2005). Geotechnical investigation and testing Field testing Part 3 Standard penetration test, European Committee for Standardization, Brussels, Belgium, January 2005.
- Janbu, N. and Senneset, K. (1974). Effective Stress Interpretation of In-Situ Static Penetration Tests, Proc. 1st European Symposium on Penetration Testing, Vol. 2, No. 2, Stockholm, Sweden, June, 1974, pp. 181–194.
- Jarushi F., AlKaabim S. and Cosentino P. (2015). A new correlation between SPT and CPT for various soils, International Journal of Environmental, Ecological, Geological and Geophysical Engineering 9, no. 2 (2015): 101-107.
- Jefferies and Been (2006). Soil liquefaction, 1st edition, 5 Howick place, London.
- Kara O. and G. Z. (2010). Correlation between CPT and SPT in Adapazari, Turkey, 2nd Int. Symp. Cone Penetration Test., vol. 2, pp. 8.

- Karim, R., Nabila, A.T. and Sayeed, N. (2021). Correlation of SPT N and CPT parameters of Dhaka Soil. Under graduate thesis report, Department of Civil and Environmental Engineering, Islamic University of Technology (IUT), Bangladesh.
- Kulhawy, F.H. and Mayne, P.W. (1990). Manual for estimating soil properties for foundation design, Electric Power Research Institute Report 1493-6. (Cited by Leutenegger, 2021).
- Kulhawy, F.H. and Trautmann, C.H. (1996). Estimation of in-situ test uncertainty, Uncertainty in the Geologic Environment: From Theory to Practice, ASCE, Vol. 1, pp. 269–286.
- Leutenegger, A. J. (2021). In-situ testing methods in geotechnical engineering, CRC Press, Park Square, Milton Park, Abingdon, Oxon, UK, 2021.
- Mayne, P.W., Coop. M.R., Springman, S. Huang, A.B. and Zornberg, J. (2009). Geomaterial behaviour and testing, Proceeding of the 17th International Conference on Soil Mechanics and Geotechincal Engineering, P.P. 2777-2872.
- Mayne, P.W. (2014). Interpretation of Geotechnical Parameters from Seismic Piezocone Tests, Proc. 3rd International Symposium on Cone Penetration Testing, Las Vegas, Nevada, USA, May 2014, pp. 47–73.
- Meigh, A.C. and Nixon, I.K. (1961). Comparison of in-situ tests of granular soils. Proceedings of 5th international Conference on Soil Mechanics and Foundation Engineering. Paris. (Cited by Kara, 2010).
- Mitchell, J.K., Guzilkowski, F. and Villet, W. (1978). The measurement of soil properties in-situ, Lawrence Berkeley Laboratories Report LBL-6363, University of California, Berkeley, 1978, pp. 67. (Cited by Leutenegger, 2021).
- Mominul, H.M., Ansary, M.A. and Abedin, M. J. (2014). Applicability of existing CPT, SPT and soil parameter correlations for Bangladesh, 3rd International Symposium on Cone Penetration Testing, Las Vegas, Nevada, USA.
- Hossain, M.M., Sultana, N. and Malo, R.C. (2020). Correlations between CPT, SPT and soil Parameters for Khulna, Bangladesh, e-ISSN:2581-9763, Volume-5, Issue-1, http://doi.org/10.5281/zenodo.3741371
- NHI (2002). Course 132031, Subsurface investigations Geotechnical site characterization reference manual; National Highway Institute (Publication No. FHWA NHI-01-031, USA, 2002.
- Oskorouchi, A.M. and Mehdibeigi, A. (1988). Effect of overburden pressure on SPT Nvalues in cohesive soils of North Iran. Proc. 1st International Symposium on Penetration Testing, Vol. 1, Orlando, USA, March, 1988, pp. 363–367.
- Robertson, P.K., Campanella, R.G., and Wightman, A. (1983). SPT-CPT Correlations. Journal of the Geotechnical Engineering Division, ASCE, Vol. 109, No. 11, November, 1983, pp. 1454–1459.

- Robertson, P.K., Campanella, R.G., Gillespie, D., and Greig, J. (1986). Use of piezometer cone data. Proc. Specialty Conf. on Use of In-situ Tests in Geotechnical Engineering, ASCE, June, 1986, pp. 1263–1280.
- Robertson and Wride (1998). Evaluating cyclic liquefaction potential using the cone penetration test, Geotechnical Group, University of Alberta, Edmonton, AB T6G 2G7, Canada.
- Robertson, P.K. and Cabal, K.L. (2015). Guide to cone penetration testing for geotechnical engineering, 6th ed., Gregg Drilling & Testing, Inc., Signal Hill, California, USA, 2015
- Rogers, J. (2006). Subsurface exploration using the standard penetration test and the cone penetration test, Environmental and Engineering Geoscience, Vol. 12, No. 2, pp. 161–179. https://doi.org/10.2113/12.2.161.
- Schmertmann, J.H. (1970). Static cone to compute static settlement over sand. In ASCE, Journal of the Soil Mechanics and Foundations Division. Vol. 96 No. 3 p. 1011-1043.
- Schmertmann, J.H. (1978). Use of the SPT to measure dynamic soil properties? yes, but...!, ASTM Special Technical Publication, Issue 654, January, 1978, pp. 341– 355.
- Shahien M. M., and Abatal A.H. (2014). SPT-CPT correlations for Nile Delta silty sand deposits in Egypt, Proc. 3rd International Symposium on Cone Penetration Testing, Las Vegas, Nevada, USA. Paper, pp. 2-43. 2014.
- Stroud, M.A. (1974). The standard penetration test in insensitive clays and soft rocks, Proc. of the European Symposium on Penetration Testing, Stockholm, Vol. 2, No. 2, Sweden, June, 1974, pp. 367-375.
- Torstensson, B.A. (1975). Pore Pressure Sounding Instrument, Proc. Specialty Conf. on In-situ Measurement of Soil Properties, ASCE, Vol. 2, Raleigh, North Carolina, USA, June, 1975, pp. 48–54 (cited by Leutenegger, 2021).
- Urmi, Z.A. (2019). Geotechnical characterization of riverine and coastal embankment soil of Bangladesh based on Cone penetration testing and standard, M.Sc. Engineering thesis, Dept. of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka, June, 2019.
- Van de Graaf, H.C. and Jekel, J.W.A. (1982). New guidelines for the use of the inclinometer with the cone penetration test, Proc. 2nd European Symposium on Penetration Testing, Vol. 2, Amsterdam, Netherlands, May 1982, pp. 581–584.
- Vlasblom, A. (1985). The electrical penetrometer; a historical account of its development, Delft Soil Mechanics Laboratory Publication No. 92, pp. 51 (cited by Leutenegger, 2021).
- Wissa, A.E.Z., Martin, R.T., and Garlanger, J.E. (1975). The piezometer probe, Proc. Conf. on In Situ Measurement of Soil.

APPENDIX- A

NORTHING AND EASTING OF SPT AND CPT LOCATIONS

Sl. No	Bore Hole	True north (BUT)	coordination M-2010)	GPUFP coordination		Location	RL (m)
	ID	Easting- X (m)	Northing- Y (m)	Easting- X (m)	Northing- Y (m)		
1	BH-2	565,068.268	2,653,377.249	-	-	-	-
2	BH-4	565,388.712	2,563,413.591	-	-	-	-
3	BH-9	565,714.850	2,653,158.765	-	-	-	-
4	BH-12	565,655.031	2,653,066.313	-	-	-	-
5	BH-13	565,740.702	2,653,060.508	-	-	-	-
6	BH-18	565,563.456	2,652,761.345	-	-	-	-
7	BH-19	565,522.794	2,652,846.969	-	-	-	-
8	BH-26	565,400.473	2,653,316.703	-	-	-	-
9	BH-27	565,617.829	2,653,195.049	-	-	-	-
10	BH-36	565,474.664	2,652,961.582	4,938.181	5,185.940	NUL tools	8.181
11	BH-37	565,452.290	2,652,895.254	4,938.274	5,115.940	NH ₃ tank	8.156
12	BH-43	565,817.107	2,652,844.141	5,300.200	5,184.598	Process compressor house	7.93
13	BH-57	565,975.065	2,652,824.834	5456.000	5217.000	01-T-701	7.764
14	BH-58	565,963.065	2,652,800.393	5456.000	5217.000	01-T-301	7.859
15	BH-63	565,621.511	2,652,887.607	5101.000	5163.000	02-T-501	7.934
16	BH-70	565,533.389	2,653,160.456	4929.983	5393.141	Raw water treatment house	8.327
17	BH-72	565,620.099	2,653,016.046	5058.447	5284.193	Raw water treatment unit	7.824

Table A.1: Northing and easting of the 17 SPT borehole locations

Sl.	CPT ID	True north	coordination	GPUFP		Location	RL
No		(BUTN	A; 2010)	coordi	ination		(m)
		Easting- X (m)	Northing- Y (m)	Easting- X (m)	Northing- Y (m)		
1	CPT 1	564,996.583	2,653,400.576	4,344.513	5,448.304	Corr./ Conveyor	7.267
2	CPT 2	565,170.331	2,653,350.370	4,525.182	5,456.508	Corr./ Conveyor	7.304
3	CPT 3	565,472.617	2,653,236.570	4,848.000	5,445.729	Corr./Conveyor	8.066
4	CPT 4	565,531.907	2,653,189.641	4,919.214	5,420.307	Raw Water Tank	8.018
5	CPT 5	565,630.530	2,653,090.919	5,044.300	5,358.454	Potable water tank	7.553
6	CPT 6	565,659.424	2,653,082.713	5,074.300	5,359.954	Demi. Water tank	7.954
7	CPT 7	565,686.073	2,653,067.877	5,104.300	5,354.454	Process Con. Tank	7.943
8	CPT 8	565,755.373	2,653,044.925	5,177.300	5,354.954	Costic Soda Tank	7.936
9	CPT 9	565,667.069	2,652,980.762	5,114.256	5,265.847	Polish water tank	7.768
10	CPT 10	565,969.978	2,652,830.387	5,449.400	5,220.627	M. Solution Tank	7.709
11	CPT 11	565,957.399	2,652,806.037	5,445.300	5,193.527	M. Tank	7.704
12	CPT 12	565,415.868	2,652,826.002	4,926.001	5,038.663	NG Flare	7.741
13	CPT 13	565,494.933	2,652,726.744	5,032.736	4,970.026	Comm. Building	8.258
14	CPT 14	565,481.203	2,652,980.883	4,938.181	5,206.319	NH ₃ Tank	7.842
15	CPT 15	565,458.207	2,652,954.103	4,924.994	5,173.575	NH ₃ Tank	7.858
16	CPT 16	565,483.166	2,652,945.793	4,951.300	5,173.714	NH ₃ Tank	7.894
17	CPT 17	565,443.394	2,652,911.218	4,924.725	5,128.205	NH ₃ Tank	7.945
18	CPT 18	565,469.259	2,652,902.302	4,952.085	5,128.061	NH ₃ Tank	8.006
19	CPT 19	565,445.970	2,652,876.309	4,938.368	5,095.696	NH ₃ Tank	8.029
20	CPT 20	565,333.668	2,653,450.412	4,647.778	5,603.673	Bag Storage	8.358
21	CPT 21	565,609.373	2,653,187.378	4,993.309	5,443.022	Bulk Urea Storage	7.999
22	CPT 22	565,706.359	2,653,150.126	5,097.120	5,438.862	Bulk Urea Storage	7.563
23	CPT 23	565,594.980	2,652,913.384	5,067.600	5,178.900	Granulation House	7.919
24	CPT 24	565,811.163	2,652,795.637	5,310.135	5,136.751	NH ₃ REF Struc.	8.305

Table A.2. Northing and easting of 24 CPT locations

APPENDIX-B

CPT-SPT PROXIMITY LOCATIONS SOIL PROFILES

Sl. No.	CPT Location ID	Proximity SPT BH No.	Sl. No.	CPT Location ID	Proximity SPT BH No.
1	CPT 1	DII 2	13	CPT 13	BH 18
2	CPT 2	DN 2	14	CPT 14	
3	CPT 3	BH 26	15	CPT 15	BH 36
4	CPT 4	BH 70	16	CPT 16	
5	CPT 5		17	CPT 17	
6	CPT 6	BH 12	18	CPT 18	BH 37
7	CPT 7		19	CPT 19	
8	CPT 8	BH 13	20	CPT 20	BH 4
9	CPT 9	BH 72	21	CPT 21	BH 27
10	CPT 10	BH 57	22	CPT 22	BH 9
11	CPT 11	BH 58	23	CPT 23	BH 63
12	CPT 12	BH 19	24	CPT 24	BH 43

Table B.1: CPT and proximity SPT Borehole locations

(a) CPT soil profile				
(a) C	PT soil profile	(b) SPT soil profile		
Legend:				
Sand		Clay		
Silt		Organic		
Fig. B.1: CPT and SPT soil profies (CPT 01 and Proximity SPT BH-02)				

(a) CP	Г soil profile	(b) SPT soil profile		
Legend:				
Sand		Clay		
Silt		Organic		
Fig. B.2: CPT and SPT Soil Profies (CPT 02 and Proximity SPT BH-02)				

(a) CPT soil profile			
(a)	CPT soil profile	(b) SPT soil profile	
Legend:			
Sand		Clay	
Silt		Organic	
Fig. B.3: CPT and SPT Soil Profies (CPT 03 and proximity SPT BH-26)			

(a) CP7	Γ soil profile	(b) SPT soil profile		
Legend:		·		
Sand		Clay		
Silt		Organic		
Fig. B.5: CPT and SPT soil profies (CPT 05 and proximity SPT BH-12)				

(a) C	CPT soil profile	(b) SPT soil profile		
Legend:				
Sand		Clay		
Silt		Organic		
Fig. B.7: CPT and SPT soil profies (CPT 07 and proximity SPT BH-12)				

(a) C	CPT soil profile	(b) SPT soil profile		
Legend:				
Sand		Clay		
Silt		Organic		
Fig. B.11: CPT and SPT soil profies (CPT 11 and proximity SPT BH-58)				

(a) CP	T soil profile	(b) SPT soil profile		
Legend:				
Sand		Clay		
Silt		Organic		
Fig. B.12: CPT and SPT soil profies (CPT 12 and proximity SPT BH-19)				

(a) (CPT soil profile	(b) SPT soil profile		
Legend:				
Sand		Clay		
Silt		Organic		
Fig. B.13:	CPT and SPT soil profies	(CPT 13 and proxi	mity SPT BH-18)	

(a) CP	T soil profile	(b) SPT soil profile		
Legend:				
Sand		Clay		
Silt		Organic		
Fig. B.14: CF	T and SPT soil profies	(CPT 14 and proximit	y SPT BH-36)	

(a) C	CPT soil profile	(b) SPT	soil profile
Legend:			
Sand		Clay	
Silt		Organic	
Fig. B.15:	CPT and SPT soil profie	s (CPT 15 and proximit	y SPT BH-36)

(a) CPT	' soil profile	(b) S	PT soil profile		
Legend:		·			
Sand		Clay			
Silt		Organic			
Fig. B.17: CP	T and SPT soil profie	s (CPT 17 and proxi	mity SPT BH-37)		

(a) CPT	' soil profile	(b) SPT soil profile		
Legend:		·		
Sand		Clay		
Silt		Organic		
Fig. B.19: CP	T and SPT soil profie	es (CPT 19 and prox	imity SPT BH-37)	

(a)	CPT soil profile	(b) SPT soil profile			
Legend:					
Sand		Clay			
Silt		Organic			
Fig. B.21:	CPT and SPT soil profies (CPT 21 and proxim	ity SPT BH-27)		

(a) CF	PT soil profile	(b) SPT soil profile		
Legend:				
Sand		Clay		
Silt		Organic		
Fig. B.22: C	PT and SPT soil profie	s (CPT 22 and proximit	y SPT BH-09)	

		(b) SPT soil profile						
(a)	CPT soil profile	(b) SPT soil profile						
Legend:		·						
Sand		Clay						
Silt		Organic						
Fig. B.23: 0	Fig. B.23: CPT and SPT soil profies (CPT 23 and proximity SPT BH-63)							

APPENDIX-C

CPT AND SPT PENETRATION DATA AND SOIL PROPERTIES

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Con	sistency l	imits ar	nd grain s	ize
	(m)	SPT N -	resistance	friction	ratio	classification	LL	PL	PI	Sand	Fines
		value	(q _c) kPa	(fs) kPa	(R_{f}) %	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)
	18.0	40	18763	395.2	2.106						
	19.63	36	21359	260.8	1.221						
	21.0	47	3197	141.6	4.429						
CPT 1	22.63	52	3731	198.4	5.318	Silty sand (SM)					
	27.5	48	3096	41.3	1.334					56	44
	29.0	50	1830	27.5	1.503					51	49
	30.5	60	3197	97.9	3.062					71	29
	1.60	4	1634	16.6	1.016					80	20
	12.42	37	20107	254	1.263					71	29
	13.80	40	21110	292.7	1.387					73	27
CPT 2	15.31	60	23795	247.8	1.041	Silty sand (SM)				71	29
	27.50	48	17882	237.3	1.327					56	44
	29.00	54	16111	256.7	1.593					67	33
	30.55	66	14543	250.4	1.722					69	31
	1.77	8	4296	27.8	0.647					82	18
	10.23	26	5990	144.3	2.409						
CDT 2	11.78	24	12547	314.1	2.503	Ciltar and (CM)					
CPI 3	13.23	24	7095	159.9	2.254	Siny sand (SM)					
	23.78	48	11712	248	2.117						
	25.23	32	13530	161.8	1.196						

Table C.1: SPT, CPT test results and index properties of non-plastic silty sand (SM)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Con	sistency l	limits ar	nd grain s	ize
	(m)	SPT N -	resistance	friction	ratio	classification	LL	PL	PI	Sand	Fines
		value	(q _c) kPa	(f _s) kPa	(R_{f}) %	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)
CDT 2	26.78	43	18541	248.8	1.342	Silty and (SM)					
CFIS	28.23	42	23055	143.3	0.622	Sinty sailu (Sivi)					
	1.78	8	2553	12.8	0.501						
	10.23	26	7518	179.5	2.388						
	11.78	24	3688	62	1.681						
	13.23	24	3121	68.4	2.192						
CPT 4	23.78	48	9291	273.5	2.944	Silty sand (SM)					
	25.23	32	11560	286.3	2.477						
	26.78	43	13546	190.2	1.404						
	28.23	42	14678	183.9	1.253						
	29.78	49	16769	192.1	1.146						
	24.23	31	12282	296.8	2.417					54	46
	25.75	33	13976	241.1	1.725					58	42
CPT 5	27.23	34	13828	262.5	1.898	Silty sand (SM)				59	41
	28.73	41	14916	291.7	1.956					66	34
	30.23	44	17737	231.1	1.303					60	40
	0.725	4	4021	27	0.671						
	11.73	15	1800	21.5	1.194						
	13.23	17	1669	7.3	0.437						
CDT 6	22.23	28	11071	307	2.773	Cilty and (CM)					
CFIO	23.73	30	10805	353.3	3.270	Sinty sand (SM)				76	24
	25.23	38	16155	187	1.158						
	26.73	35	18562	204.8	1.103						
	29.00	49	14421	176.3	1.223						

Table C.1: SPT, CPT test results and index properties of non-plastic silty sand (SM)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Consistency limits and grain size			ize	
	(m)	SPT N -	resistance	friction	ratio	classification	LL	PL	PI	Sand	Fines
		value	(q _c) kPa	(f _s) kPa	$(R_{\rm f})$ %	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)
	22.93	30	9626	225	2.337						
	24.46	37	10802	340	3.148					62	38
CPT 7	26.00	35	10588	221.4	2.091	Silty cond (SM)					
	27.50	47	16471	285.2	1.732	Sifty Sand (Sivi)				58	42
	29.00	49	18307	362.9	1.982						
	30.55	75	18596	262.6	1.412					60	40
	0.45	17	16770	97.2	0.580						
	1.225	10	9278	62.5	0.674	Silty sand (SM)				97	3
	23.73	36	8574	386.1	4.503						
CPT 8	25.23	42	10646	283.65	2.664						
	26.73	46	12935	367.05	2.838						
	28.23	48	11931	305.8	2.563						
	29.73	69	16886	343.8	2.036						
	0.725	4	2548	21.2	0.832						
	2.725	0	701	11.5	1.641						
	11.73	15	1656	55.8	3.369						
	13.23	17	3185	138.5	4.349						
СРТ О	22.23	28	6752	326.9	4.842	Silty cond (SM)					
CF19	23.73	30	10255	421.2	4.107	Sinty Sand (SIM)				76	24
	25.23	38	11529	430.8	3.737						
	26.73	35	12293	398.1	3.238						
	28.23	44	17295	397.6	2.299					59	41
	29.73	49	17751	242.5	1.366						

Table C.1: SPT, CPT test results and index properties of non-plastic silty sand (SM)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Cor	nsistency li	mits ar	nd grain si	ze
	(m)	SPT N-	resistance	friction	ratio	classification	LL	PL (%)	PI	Sand	Fine
		value	(q _c) kPa	(f _s) kPa	$(R_{\rm f})$ %	(BNBC, 2020)	(%)		(%)	(%)	s (%)
	19.23	33	2081	46	2.211						
	20.73	51	3760	161.3	4.290	Cilty and					
CPT 11	22.23	57	8210	331.6	4.039	Sitty sand (SM)				53	47
	23.73	62	8210	331.6	4.039	(5101)					
	25.23	19	10870	287	2.640						
	10.23	17	10510	252.5	2.403						
	11.73	28	10955	273.4	2.496	Silty sand (SM)				52	48
	13.23	31	5223	163.6	3.132						
CPT 12	14.23	31	1975	28.8	1.459						
-	16.23	48	2675	72.8	2.721						
	28.23	37	15841	308.9	1.950						
	29.73	38	16860	214.2	1.270						
	15.31	11	5463	160.9	2.945					60	40
	16.84	14	10674	118.2	1.107					58	42
	22.93	28	3530	96.9	2.745					55	45
CDT 12	24.64	50	2648	32.9	1.242	Silty sand				54	46
CI I 15	26.00	41	2973	32.9	1.107	(SM)					
	27.50	43	3170	32.9	1.038					60	40
	29.00	57	4077	28.2	0.692					64	36
	30.50	60	3768	23.1	0.613						
	1.225	2	4359	30.6	0.702						
CDT 14	11.73	26	8269	136.8	1.654	Silty sand					
	13.23	31	10449	152	1.455	(SM)				83	17
	14.73	37	15769	149.9	0.951						

Table C.1: SPT, CPT test results and index properties of non-plastic silty sand (SM)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Consistency limits and grain size				ze
	(m)	SPT N-	resistance	friction	ratio	classification	LL	PL (%)	PI	Sand	Fine
		value	(q _c) kPa	(f _s) kPa	(R_{f}) %	(BNBC, 2020)	(%)		(%)	(%)	s (%)
	25.23	43	9679	358.1	3.700						
CPT 14	26.73	38	9423	392.5	4.165	Silty sand					
CF I 14	28.23	36	14710	314.1	2.135	(SM)					
	29.73	44	15011	240.6	1.603						
	1.225	2	2913	22.4	0.769						
CPT 15	5.725	14	2174	57.6	2.650						
	10.23	20	10346	227.7	2.201						
	11.73	26	17622	152	0.863	Silty sand					
	13.23	31	16368	119.5	0.730	(SM)				83	17
	14.73	37	16119	144.4	0.896						
	16.23	28	26572	272.5	1.026						
	17.73	22	16977	179.5	1.057						
	11.73	26	9238	62	0.671						
	13.23	31	7328	68.4	0.933					83	17
CPT 16	14.73	37	12081	121.8	1.008	Silty sand					
	16.23	28	5237	83.3	1.591	(SM)					
	25.23	43	10559	286.3	2.711						
	26.73	38	11693	190.2	1.627						
	10.23	17	12770	115.9	0.908						
	11.73	28	16876	234.4	1.389	Cilty and				52	48
CPT 17	16.23	48	6427	193.2	3.006	Sifty sand					
	28.23	37	14700	267.5	1.820	(1410)					
	29.73	38	15914	176.7	1.110						

Table C.1: SPT, CPT test results and index properties of non-plastic silty sand (SM)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Co	Consistency limits and grain size				
	(m)	SPT N-	resistance	friction	ratio (R _f)	classification	LL	PL	PI	Sand	Fines	
		value	(q _c) kPa	(f _s) kPa	%	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)	
	11.73	28	15038	223.3	1.485					52	48	
	13.23	31	20918	236	1.128							
CPT 18	14.73	31	20376	215.7	1.059	Silty sand (SM)						
	16.23	48	18418	324.3	1.761							
	31.23	37	13985	241.7	1.728							
	10.23	17	6798	211.1	3.105							
	11.73	28	15618	278.4	1.783					52	48	
CPT 19	13.23	31	15730	308.5	1.961	Silty sand (SM)						
	14.73	31	23235	207.2	0.892							
	16.23	48	20382	254.2	1.247							
	28.23	37	3367	20	0.594							
	29.73	38	9335	151.7	1.625							
	1.60	5	4321	60.4	1.398							
CPT 20	13.8	35	17824	132.5	0.743	Silty sand (SM)				57	43	
	15.31	38	6944	74	1.066					68	32	
	1.60	4	1957	10.2	0.521					89	11	
	26.0	43	11166	194.5	1.742					61	39	
CPT 21	27.5	54	17037	187.4	1.100	Silty sand (SM)				62	38	
	29.0	54	13066	310	2.373							
	30.5	60	16224	173	1.066							
	15.3	40	11343	111	0.979					52	48	
CPT 22	26.0	39	12535	241.8	1.929	Silty sand (SM)						
	27.5	60	13482	202.5	1.502					66	34	

Table C.1: SPT, CPT test results and index properties of non-plastic silty sand (SM)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Cor	nsistency	limits a	nd grain s	size
	(m)	SPT N-	resistance	friction	ratio	classification	LL	PL	PI	Sand	Fines
		value	(q _c) kPa	(f _s) kPa	(R_{f}) %	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)
СРТ 22	29.00	42	8728	377.8	4.329	Silty and (SM)					
	30.55	66	17184	208	1.210	Sinty saild (Sivi)					
CDT 22	10.23	21	12802	242.9	1.897	Silty cond (SM)					
CPT 23	11.73	29	13821	438.1	3.170	Sitty sand (SM)					
	23.73	36	8645	405	4.685						
	25.23	38	9729	238.3	2.449					78	22
CDT 24	26.73	54	11183	389.7	3.485	Ciltur cond (CM)					
CPT 24	27.50	48	12589	344.7	2.738	Sinty sand (SMI)				62	38
	29.00	54	21667	402.6	1.858						
	30.50	66	19380	176.8	0.912						

Table C.1: SPT, CPT test results and index properties of non-plastic silty sand (SM)

Table C.2: SPT, CPT test results and index properties of low plastic silt and non-plastic sandy silt (ML)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Consistency limits and grain size						
	(m)	SPT N-	resistance	friction	ratio	classification	LL	PL	PI	Sand	Fines		
		value	(q _c) kPa	(f _s) kPa	(R _f) %	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)		
	0.8	10	4949	49.2	0.994	Low plastic silt (ML)							
	1.5	3	789	22.5	2.851		43	27	16	10	90		
CDT 1	3.0	6	750	42.0	5.598								
CPII	9.0	18	7255	154.6	2.131		40	27	13	9	91		
	10.7	26	10663	284.6	2.668								
	12.0	24	20075	221.8	1.105	-							

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Co	nsistency li	mits ar	nd grain s	size
	(m)	SPT N-	resistance	friction	ratio	classification	LL	PL (%)	PI	Sand	Fines
		value	(q _c) kPa	(f _s) kPa	$(\mathbf{R}_{\mathrm{f}})$ %	(BNBC, 2020)	(%)		(%)	(%)	(%)
	13.6	47	17106	213.9	1.250						
CPT 1	24.5	37	3197	97.9	3.062	NP sandy silt (ML)				19	81
	26	39	7384	440.2	5.962	(IVIL)				24	76
	3.125	4	668	7.0	1.048					19	81
	10.75	13	9246	120.0	1.297	NP sandy silt					
CP12	24.5	37	8638	400.3	4.634	(ML)				19	81
	25.98	39	14873	219.5	1.476					24	76
	7.2	18	710	13.3	1.869	Low plastic silt (ML)	38	28	10	11	89
	8.8	13	3706	91.4	2.466						
	14.8	13	2675	59.0	2.207		45	28	17	9	91
CPT 3	16.2	15	2085	43.9	2.107						
	17.8	27	4959	142.7	2.878						
	20.775	18	6850	180.5	2.636	NP sandy silt					
	22.225	26	7439	359.2	4.829	(ML)					
	7.2	18	851	10.7	1.255		38	28	10	11	89
	8.8	13	2908	64.1	2.205	T 1 / · · · 1/					
	14.8	13	3759	121.8	3.240	Low plastic silt					
CPT 4	16.2	15	3333	83.3	2.500	(IVIL)					
	17.8	27	3262	96.2	2.947						
-	20.775	18	4823	132.5	2.747	NP sandy silt					
	22.225	26	9291	346.2	3.726	(ML)					
CPT 5	1.2	2	486	22.1	4.540	Low plastic silt (ML)					

Table C.2: SPT, CPT test results and index properties of low plastic silt and non-plastic sandy silt (ML)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Consistency limits and grain size				ize
	(m)	SPT N-	resistance	friction	ratio	classification	LL	PL (%)	PI	Sand	Fines
		value	(q _c) kPa	(f _s) kPa	$(\mathbf{R}_{\mathrm{f}})$ %	(BNBC, 2020)	(%)		(%)	(%)	(%)
CPT 6	20.725	17	10281	396.5	3.857	NP sandy silt (ML)					
	1.6	0	428	10.5	2.446	NP sandy silt (ML)					
CPT 7	4.7	9	588	8.4	1.432	Low plastic silt	34	25	9		
	6.2	20	963	17.8	1.849	(ML)				4	96
	12.415	22	2139	47.3	2.212	NP sandy silt (ML)				45	56
	2.7	6	260	9.4	3.616						
	4.2	7	1154	22.6	1.959		34	24	10	9	91
	5.7	6	1430	23.7	1.654						
	7.2	9	783	9.1	1.156						
	8.7	3	1086	11.5	1.059						
	10.2	8	8309	130.1	1.566						
	11.7	22	11968	202.0	1.688	Low plastic silt					
CFIO	13.2	25	4035	107.6	2.667	(ML)					
	14.7	28	2794	38.4	1.374		35	28	7	9	91
	16.2	23	3726	116.2	3.117						
-	17.7	22	3931	159.7	4.061						
	19.2	29	2858	81.8	2.860						
	20.7	30	2221	29.6	1.332						
	22.2	33	5223	213.5	4.087		44	31	13	40	60

Table C.2: SPT, CPT test results and index properties of low plastic silt and non-plastic sandy silt (ML)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Consistency limits and grain size					
	(m)	SPT N-	resistance	friction	ratio	classification	LL	PL (%)	PI	Sand	Fines	
		value	(q _c) kPa	(fs) kPa	(R _f) %	(BNBC, 2020)	(%)		(%)	(%)	(%)	
CPT 10	10.2	14	3017	87.1	2.885	Low plastic						
	11.7	16	4337	223.4	5.151	silt (ML)	43	31	12	13	87	
	8.7	20	3246	88.9	2.738							
	10.2	30	3636	106.3	2.922							
	11.7	24	3760	116.8	3.106	Low plastic silt						
CPT 11	13.2	18	3634	94.7	2.606	(ML)	47	28	19	11	89	
	14.7	18	2630	101.7	3.867	(1/12)						
	16.2	13	2984	108.2	3.627							
	17.7	22	2335	57.5	2.460							
CDT 12	12.4	8	7036	292.6	4.159	Low plastic silt (ML)	34	25	9			
CF I 15	13.8	7	2981	114.3	3.835							
CPT 14	5.725	14	3654	93.4	2.557	NP sandy silt (ML)						
	25.225	43	2737	48.2	1.761							
CPT 15	26.725	38	2917	44.3	1.517	NP sandy silt						
CI I 15	28.225	36	3789	99.5	2.626	(ML)						
	29.725	44	4707	76.9	1.633							
CPT 17	13.225	31	2859	58.8	2.057	NP sandy silt						
	14.725	31	2925	77.8	2.660	(ML)						
	10.225	17	7596	163.1	2.146	ND condy all						
CPT 18	28.225	37	2767	38.6	1.395	(ML)						
CPT 18	29.725	38	3623	75.8	2.092	(IVIL)						

Table C.2: SPT, CPT test results and index properties of low plastic silt and non-plastic sandy silt (ML)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Soil Consistency				limits and grain size			
	(m)	SPT N-	resistance	friction	ratio (R _f)	classification	LL	PL (%)	PI	Sand	Fines			
		value	(q _c) kPa	(f _s) kPa	%	(BNBC, 2020)	(%)		(%)	(%)	(%)			
	27.5	47	5093	132.5	2.601	ND condructit				32	68			
CPT 20	29	54	2444	25.8	1.056	(MI)								
	30.5	60	3111	64.5	2.074	(IVIL)				24	76			
CPT 21	6.17	12	518	7.9	1.525	NP sandy silt				8	92			
	7.7	14	921	9.4	1.026	(ML)								
CPT 22	7.7	9	810	17.7	2.180	Low plastic silt (ML)	28	22	6.09					
	9.2	8	5340	73.1	1.368					10	90			
	21.41	36	3123	73.1	2.339									
	24.5	46	3044	67.3	2.209		28	22	6.2					
	1.2	1	4249	50.4	1.187									
CDT 22	2.7	3	733	20.6	2.806	Low plastic silt								
CF I 23	4.2	8	1490	37.8	2.541	(ML)	45	31	14	9	91			
	5.7	16	1288	39.4	3.060									
	4.2	8	2241	55.8	2.490	Low plastic silt								
CPT 24	5.7	15	5517	128.2	2.323	(ML)								
	20.725	16	2595	34.2	1.316	NP sandy silt								
	22.225	26	9044	408.8	4.520	(ML)								

Table C.2: SPT, CPT test results and index properties of low plastic silt and non-plastic sandy silt (ML)
CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil		Testir	ng Param	neter	
	(m)	SPT N-	resistance	friction	ratio (R _f)	classification	LL	PL	PI	Sand	Fines
		value	(q _c) kPa	(f _s) kPa	%	(BNBC,	(%)	(%)	(%)	(%)	(%)
						2020)					
	3.77	6	833	9.6	1.153	Silt of high	55	31	24	10	90
CPT 3	5.77	11	3755	77.2	2.056	plasticity					
	19.23	53	3092	59.6	1.927	(MH)					
	3.775	6	709	10.7	1.509	Silt of high	55	31	24	10	90
CPT 4	5.775	11	993	8.5	0.856	plasticity					
	19.23	53	2340	47	2.008	(MH)					
	2.725	1	1117	34.6	3.099	Silt of high	67	36	31	31	69
CPT 5	5.725	4	5181	111.3	2.148	plasticity					
	7.60	7	808	-1.2	-0.149	(MH)	60	31	29	15	85
	2.725	0	544	21.6	3.974	Silt of high	58	32	26	8	92
CPT 6	4.60	4	4041	59.5	1.472	plasticity (MH)					
						Silt of high					
CPT 9	4.60	4	764	23.1	3.022	plasticity	58	32	26	8	92
						(MH)					
	1.225	8	1338	42.1	3.147						
	2.725	9	1529	59.3	3.879	Silt of high					
CPT 12	4.225	8	1783	43.7	2.450	plasticity	57	30	27	14	86
	5.725	9	2229	41.5	1.862	(MH)					
	7.225	10	3057	79.8	2.610						

Table C.3: SPT, CPT test results and index properties of high plastic silt (MH)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil		Testir	ng Paran	neter	
	(m)	SPT N-	resistance	friction	ratio (R _f)	classification	LL	PL	PI	Sand	Fines
		value	(q _c) kPa	(f _s) kPa	%	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)
	1.6	10	2039	31	1.521						
	3.125	9	1348	54.3	4.030						
	4.65	16	1418	46.5	3.280	Silt of high	50	32	18		
CPT 13	6.17	14	1423	40.7	2.859	plasticity					
	18.34	15	3764	95	2.524	(MH)	51	32	19		
	19.9	17	3644	127.9	3.510						
	21.41	13	2762	48.4	1.752						
	1.225	8	1343	29.7	2.211						
	2.725	9	1753	54.4	3.103						
CDT 17	4.225	8	1819	39.3	2.160	Silt of high	57	30	27		
CFI I/	5.725	9	2724	57.4	2.107	(MH)					
	7.225	10	2538	67.1	2.644	(1411)					
	8.725	13	2478	58.2	2.349						
	1.225	8	1454	25.6	1.760						
	2.725	9	1432	40.5	2.828	Silt of high					
CPT 18	4.225	8	1734	55.6	3.207	plasticity	57	30	27		
	5.725	9	1237	26.5	2.143	(MH)					
	7.225	10	4581	168	3.668						
	1.225	8	674	8.3	1.231						
	2.725	9	1348	53.6	3.975	Silt of high					
CPT 19	4.225	8	1517	55.1	3.633	plasticity	57	30	27		
	5.725	9	1404	28	1.994	(MH)					
	7.225	10	1910	31.1	1.628						

Table C.3: SPT, CPT test results and index properties of high plastic silt (MH)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil		Testir	ng Param	neter	
	(m)	SPT N-	resistance	friction	ratio (R _f)	classification	LL	PL	PI	Sand	Fines
		value	(qc) kPa	(f _s) kPa	%	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)
	18.4	18	2533	39.4	1.556	II's hands	53	34	20		
CPT 21	19.9	21	2763	47.8	1.730	Hign plastic					
	21.41	21	2705	47.7	1.763	SIII (WIII)					

Table C.3: SPT, CPT test results and index properties of high plastic silt (MH)

Table C.4: SPT, CPT test results and index properties of low plastic silty clay (CL)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Co	nsistency	v limits a	nd grain s	size
	(m)	SPT N-	resistance	friction	ratio	classification	LL	PL	PI	Sand	Fines
		value	(q _c) kPa	(fs) kPa	(R _f) %	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)
	5.00	5	1523.2	65.3	4.287						
CDT 1	7.00	6	1742.6	65.0	3.730	Clay of low					
CPII	15.00	38	4692.2	128.1	2.730	clay (CL)					
	16.63	18	3185.4	130.1	4.084	eluy (CL)	44	26	18		
	4.65	11	370.8	8.6	2.320		50	28	22		
	6.17	8	1081.2	19.2	1.771						
	7.70	2	2310.0	29.2	1.264						
	9.23	4	6335.9	100.4	1.584	Clay of low	41	24	17		
CPT 2	16.84	8	11408.2	273.5	2.397	plasticity; silty	44	26	18		
	18.37	16	3119.4	113.6	3.642	clay (CL)					
	19.90	18	3486.3	120.8	3.465						
	21.41	12	2412.9	46.9	1.944		40	24	16		
	22.93	11	4196.8	143.0	3.407						

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Co	nsistency	limits a	nd grain s	size
	(m)	SPT N-	resistance	friction	ratio	classification	LL	PL	PI	Sand	Fines
		value	(q _c) kPa	(f _s) kPa	(R_{f}) %	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)
	10.10	6	971.0	0.4	0.041						
	12.60	21	2840.3	104.7	3.686						
	13.78	17	3263.5	49.0	1.501						
	15.23	22	2139.6	19.7	0.921	Clay of low					
CPT 5	16.73	26	2811.7	21.8	0.775	plasticity; silty					
	18.23	21	5169.2	88.1	1.704	clay (CL)					
	19.73	14	3187.8	8.6	0.270		45	27	18		
	21.23	14	8865.5	227.6	2.567						
	22.73	27	11296.1	335.2	2.967						
	6.60	6	1009.4	1.4	0.139						
CPT 6	8.6	15	14738	110.3	0.748	Clay of low	58	28	30	9	91
	10.75	17	2525.5	67.5	2.673						
CPT 6	14.73	13	3954.2	109.7	2.774	plasticity; silty					
	16.23	20	2768.1	67.9	2.453	clay (CL)					
	17.73	21	7762.6	112.6	1.451						
	19.23	17	7038.6	387.5	5.505						
	3.13	7	641.7	13.4	2.088						
	7.70	5	3101.6	121.6	3.921						
	9.23	10	5133.7	71.8	1.399						
	10.75	17	2727.3	164.4	6.028	Clay of low					
10.75 17 2727.3 CPT 7 13.80 17 1978.6	1978.6	45.5	2.300	plasticity; silty							
	15.30	17	3422.5	75.7	2.212	clay (CL)					
	16.84	20	3475.9	118.7	3.415						
	18.40	14	2834.2	116.9	4.125						
	19.90	15	2246.0	30.2	1.345		45	27	18		

Table C.4: SPT, CPT test results and index properties of low plastic silty clay (CL)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Co	nsistency	limits a	nd grain s	size
	(m)	SPT N-	resistance	friction	ratio	classification	LL	PL	PI	Sand	Fines
		value	(q _c) kPa	(f _s) kPa	$(R_{\rm f})$ %	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)
CPT 7	21.41	17	4973.3	262.1	5.270	Clay of low plasticity; silty clay (CL)					
	6.60	6	764.3	17.3	2.263						
	14.73	13	2101.9	36.5	1.737		46	27	19	15	85
	16.23	20	2993.6	98.1	3.277	Clay of low					
CF19	17.73	21	3121.0	123.1	3.944	clay (CL)					
	19.23	17	2738.9	101.9	3.721		39	24	15	8	92
	20.73	12	1910.8	36.5	1.910						
	13.23	10	2640.0	69.3	2.625	_	36	20	16	21	79
	14.73	17	3142.9	132.6	4.219						
	16.23	15	1948.6	74.7	3.834						
	17.73	10	2640.0	70.6	2.674						
	19.23	17	1697.1	85.8	5.056						
	20.73	14	3080.0	158.7	5.153	Clay of law					
CPT 10	22.23	17	2577.1	54.6	2.119	plasticity silty					
01110	23.73	18	4965.7	283.3	5.705	clay (CL)					
	25.23	24	2891.4	60.0	2.075						
	26.73	18	2891.4	92.5	3.199						
	28.23	21	2957.1	126.4	4.274						
	29.73	24	3471.4	125.6	3.618						
	31.23	26	2957.1	79.8	2.699						

Table C.4: SPT, CPT test results and index properties of low plastic silty clay (CL)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Co	nsistency	limits a	nd grain s	size
	(m)	SPT N-	resistance	friction	ratio	classification	LL	PL	PI	Sand	Fines
		value	(q _c) kPa	(fs) kPa	$(R_{\rm f})$ %	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)
	26.73	26	2999.1	91.1	3.038						
CDT 11	28.23	28	3063.1	50.2	1.639	Clay of low	47	25	22	28	72
CFIII	29.73	41	3228.1	94.0	2.912	clay (CL)					
	31.23	31	3073.1	38.8	1.263	endy (CE)					
	8.73	13	4140.1	71.9	1.737						
	17.73	14	3566.9	126.4	3.544						
	19.23	16	4331.2	143.5	3.313						
CDT 12	20.73	11	3375.8	79.9	2.367	Clay of low					
CPT 12	22.23	6	2356.7	33.5	1.421	clay (CL)					
	23.73	10	3312.1	62.1	1.875	eldy (CL)					
	25.23	13	11210.2	306.2	2.731						
	26.73	12	12293.0	294.4	2.395						
	7.70	9	2383.2	71.7	3.009	Clay of low					
CPT 13	9.23	8	1692.3	38.8	2.293	plasticity; silty					
	10.75	6	1381.5	17.4	1.260	clay (CL)					
	2.73	1	1346.2	15.0	1.114						
	4.23	7	1153.9	24.4	2.115						
	7.23	13	1794.9	10.5	0.585						
CDT 14	8.73	14	6025.6	166.1	2.757	Clay of low					
CPI 14	10.23	20	8397.4	148.6	1.770	clay (CL)					
	16.23	28	4423.1	93.9	2.123	elay (CL)					
	17.73	22	3205.1	41.8	1.304						
	19.23	14	2179.5	20.4	0.936						

Table C.4: SPT, CPT test results and index properties of low plastic silty clay (CL)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Co	nsistency	limits a	nd grain s	size
	(m)	SPT N-	resistance	friction	ratio	classification	LL	PL	PI	Sand	Fines
		value	(q _c) kPa	(f _s) kPa	(R_{f}) %	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)
	20.73	12	7051.3	237.5	3.368	Clay of low					
CPT 14	22.23	12	3782.1	87.3	2.308	plasticity; silty					
	23.73	17	3910.3	50.6	1.294	clay (CL)					
	2.73	1	1315.8	28.4	2.158						
	4.23	7	2173.8	57.6	2.650						
	7.23	13	1401.2	11.2	0.799						
CDT 15	8.73	14	3981.0	124.8	3.135	Clay of low					
CPT 15	19.23	14	3818.9	89.1	2.333	clay (CL)					
	20.73	12	2053.4	31.4	1.529	Clay (CL)					
	22.23	12	4144.1	93.2	2.249						
	23.73	17	2286.4	32.3	1.413						
	1.23	2	1055.2	10.7	1.014						
	2.73	1	1201.4	6.4	0.533						
	4.23	7	1841.9	8.5	0.461						
	5.73	14	3469.6	8.5	0.245						
	7.23	13	2135.3	10.7	0.501						
CDT 16	8.73	14	2282.3	64.1	2.809	Clay of low					
CPT 10	10.23	20	6705.7	179.5	2.677	clay (CL)					
	17.73	22	3492.8	96.2	2.754	Clay (CL)					
	19.23	14	2652.7	47.0	1.772						
	20.73	12	3128.3	132.5	4.236						
	22.23	12	2042.6	346.2	16.949						
	23.73	17	6218.1	273.5	4.398						

Table C.4: SPT, CPT test results and index properties of low plastic silty clay (CL)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Co	nsistency	limits a	nd grain s	size
	(m)	SPT N-	resistance	friction	ratio	classification	LL	PL	PI	Sand	Fines
		value	(q _c) kPa	(fs) kPa	$(R_{\rm f})$ %	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)
	17.73	14	3142.1	87.9	2.797						
	19.23	16	2868.3	53.4	1.862						
	20.73	11	2495.3	32.9	1.319	Clay of low					
CPT 17	22.23	6	2275.8	9.0	0.395	plasticity; silty					
	23.73	10	2499.2	21.9	0.876	clay (CL)					
	25.23	13	7081.5	246.8	3.485						
	26.73	12	10455.7	350.4	3.351						
	8.73	13	3409.6	94.7	2.777						
	17.73	14	2425.1	85.9	3.542						
	17.73 14 2425.1 85.9 5.542 19.23 16 3271.8 129.6 3.961 20.73 11 2139.7 69.2 3.234										
CDT 10	20.73	11	2139.7	69.2	3.234	Clay of low					
CP1 18	22.23	6	2052.3	28.4	1.384	clay (CL)					
	23.73	10	6194.3	92.7	1.497	endy (CL)					
	25.23	13	3036.9	58.0	1.910						
	26.73	12	2511.1	34.5	1.374						
	8.73	13	2471.9	68.0	2.751						
	17.73	14	3146.1	110.8	3.522						
	19.23	16	2359.6	60.0	2.543						
CDT 10	20.73	11	2303.4	16.0	0.695	Clay of low					
CP1 19	22.23	6	1573.0	4.0	0.254	clay (CL)					
	23.73	10	1966.3	8.9	0.453	Clay (CL)					
	25.23	13	3539.3	101.5	2.868						
	26.73	12	2977.5	6.9	0.232						

Table C.4: SPT, CPT test results and index properties of low plastic silty clay (CL)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Co	nsistency	limits a	nd grain s	size
	(m)	SPT N-	resistance	friction	ratio	classification	LL	PL	PI	Sand	Fines
		value	(q _c) kPa	(fs) kPa	$(R_{\rm f})$ %	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)
	3.13	3	1388.9	25.3	1.822						
	9.23	7	848.8	15.6	1.838		50	24	26		
	10.75	8	925.9	15.6	1.685						
	12.42	6	9413.6	52.6	0.559						
	16.83	33	3395.1	99.4	2.928	Clay of low					
CPT 20	18.36	15	3163.6	58.4	1.846	plasticity; silty	46	27	19		
	19.90	17	2623.5	37.0	1.410	clay (CL)					
	21.41	15	2932.1	50.6	1.726						
	22.93	19	4861.1	120.8	2.485						
	24.46	18	5555.6	214.3	3.857						
	26.00	25	3703.7	81.8	2.209						
	3.13	5	1439.0	10.0	0.695						
	4.65	6	518.0	9.8	1.892		43	26	17		
	9.23	4	1208.7	9.3	0.769		46	25	22		
	10.75	5	5928.5	52.4	0.884						
CDT 21	12.42	5	1266.3	8.9	0.703	Clay of low					
CF121	13.84	11	2187.2	22.6	1.033	clay (CL)					
	15.31	13	3453.5	38.0	1.100	endy (CL)	38	22	16		
	16.84	16	3280.8	91.6	2.792						
	22.93	15	4777.3	139.4	2.918						
	24.46	17	7079.7	361.2	5.102					Sand (%)	

Table C.4: SPT, CPT test results and index properties of low plastic silty clay (CL)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Co	nsistency	limits a	nd grain s	size
	(m)	SPT N-	resistance	friction	ratio	classification	LL	PL	PI	Sand	Fines
		value	(q _c) kPa	(fs) kPa	(R_{f}) %	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)
	1.60	4	1353.3	4.5	0.333						
	3.13	5	1889.0	7.3	0.386						
	10.75	5	4767.8	135.3	2.838						
	12.05	13	3993.3	185.3	4.640	Clay of low					
CPT 22	13.84	24	3798.2	92.8	2.443	plasticity; silty					
	16.84	6	2844.1	88.1	3.098	clay (CL)	41	23	18		
	18.37	9	3845.7	93.5	2.431						
	19.90	11	3668.1	59.7	1.628						
	22.93	40	3092.5	85.1	2.752		35	24	11		
	7.23	8	3963.8	70.6	1.781	_					
	8.73	13	4021.6	115.8	2.879						
	13.23	14	5594.4	221.6	3.961						
	14.73	14	12455.9	303.4	2.436						
	16.23	11	2138.5	57.3	2.679		31	20	11	35	65
	17.73	23	3678.9	72.8	1.979						
	19.23	36	3739.3	109.2	2.920	Clay of low					
CP1 23	20.73	11	14524.6	442.2	3.044	clay (CL)					
	22.23	12	2111.5	42.6	2.018	Clay (CL)					
	23.73	10	3916.2	73.8	1.885		45	22	23	17	83
	25.23	12	2580.6	56.2	2.178						
	26.73	16	2551.3	28.1	1.101						
	28.23	16	3647.8	73.2	2.007						
	29.73	18	3419.2	150.0	4.387						

Table C.4: SPT, CPT test results and index properties of low plastic silty clay (CL)

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Co	nsistency	limits a	nd grain s	size
	(m)	SPT N-	resistance	friction	ratio	classification	LL	PL	PI	Sand	Fines
		value	(q _c) kPa	(fs) kPa	(R_{f}) %	(BNBC, 2020)	(%)	(%)	(%)	(%)	(%)
	1.23	1	723.1	46.1	6.376						
	2.73	6	1169.5	62.8	5.370		45	25	20	7	93
	7.23	9	2471.1	69.8	2.825						
	8.73	13	1702.4	55.9	3.284						
	10.23	34	2879.7	205.1	7.122	Clay of low					
CPT 24	11.73	20	3921.1	165.5	4.221	plasticity; silty					
	13.23	14	5745.8	220.0	3.829	clay (CL)	35	23	12	6	94
	14.73	17	1935.3	64.0	3.307						
1 1 1	16.23	25	4700.5	131.9	2.806						
	17.73	25	5328.5	166.6	3.127						
	19.23	24	3342.7	110.2	3.297						

Table C.4: SPT, CPT test results and index properties of low plastic silty clay (CL)

Table C.5: SPT, CPT test results and index properties of high plasticity clay (CH) soil

CPT ID	Depth	Field	Cone	Sleeve	Friction	Soil	Consistency limits and grain size					
	(m)	SPT N- value	resistance (q _c) kPa	friction (f _s) kPa	ratio (R _f) %	classification (BNBC, 2020)	LL (%)	PL (%)	PI (%)	Sand (%)	Fines (%)	
CPT 9	8.6	13	3185	123.1	3.865	Clay of high plasticity (CH)	58	28	30	9	91	
	10.225	22	2166	61.5	2.840							
CPT 10	1.225	6	440	34.4	7.818	Clay of high plasticity (CH)						
	2.725	7	1446	103.5	7.159							

CPT ID	Depth	Field	Cone resistance (q _c) kPa	Sleeve friction (f _s) kPa	Friction ratio (R _f) %	Soil classification (BNBC, 2020)	Consistency limits and grain size				
	(m)	SPT N- value					LL (%)	PL (%)	PI (%)	Sand (%)	Fines (%)
	4.225	8	1760	89.8	5.102		55	25	30	12	88
	5.725	5	1257	66.5	5.290						
	7.225	14	6160	170.2	2.763						
	8.725	12	4777	256.5	5.369						
CPT 11	0.45	3	703	61.6	8.766	Clay of high plasticity (CH)					
	1.225	7	1271	76.4	6.009		60	28	32	13	87
	2.725	7	1615	74.1	4.588						
	4.225	9	1710	68.8	4.023						
	5.725	9	1303	50.2	3.854						
	7.225	13	1813	1095.2	60.406						

Table C.5: SPT, CPT test results and index properties of high plasticity clay (CH) soil
