Geographical Information System Approach to Delineate the Watershed’s Morphometric Parameters for Sustainable Hydrological Modeling of Barind Region, Bangladesh

MIST Central Library Repository

Show simple item record

dc.contributor.author Rahman, Md. Ashikur
dc.contributor.author Sazzad, M. H.
dc.contributor.author Rupom, R. S.
dc.date.accessioned 2021-09-01T03:45:21Z
dc.date.available 2021-09-01T03:45:21Z
dc.date.issued 2021-06
dc.identifier.issn 2224-2007
dc.identifier.uri http://dspace.mist.ac.bd:8080/xmlui/handle/123456789/594
dc.description.abstract Water is an important resource of the earth’s surface and it is integral for all on this planet. The availability or the scarcity of water depends on the watershed characterizes that consider the basic, linear, and shape parameters of any waterbody. The objective of the study was to delineate 14 morphometric parameters in the Barind region (Dinajpur district, Bangladesh) for sustainable hydrological modeling. An ASTER-DEM of 30-meter resolution data, geographical information system (GIS), and Remote sensing technique were used for extracting drainage components of interest region. The whole study region was covered by the flow of the Purnovoba river, Jamuna river, Atrai river (part-1 and part-2). Research results found that the Purnovoba river had a high bifurcation ratio (0.9982) that defined hydrologically more disturbed than the other three watershed areas and it had a high stream frequency (0.8332) that denoted rocky having low infiltration capacity. Jamuna river had a low drainage density (0.7322) that defined more vegetation having higher permeability. Besides, the Jamuna river had the lowest no. of stream order that was insignificant in the steady runoff process and less prone to cause a flash flood. The research predicted that the availability of groundwater might decrease to Jamuna river in the future as it had the lowest basin area (217.42 sqr. km ) and perimeter (114.90 km) and the basin surface slope would become gentle to Atrai river part-1 for the lowest length of overland flow (0.6072). Purnovoba river experienced the lowest form factor (0.2351) which indicated the most possibility for erosion. The elongated ratio of all basins was greater than 0.5 which considered all the shapes were more elongated. These findings will help for further modeling of an integrated watershed for sustainable hydrological models in the Barind region. en_US
dc.language.iso en en_US
dc.publisher R&D Wing, MIST en_US
dc.subject Geographical Information System GIS Remote Sensing Watershed Morphometric Parameter Sustainable Hydrological Mode en_US
dc.title Geographical Information System Approach to Delineate the Watershed’s Morphometric Parameters for Sustainable Hydrological Modeling of Barind Region, Bangladesh en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account